The invention relates to an optical system, in particular for microlithography, and to a method for operating an optical system.
Microlithography is used for producing microstructured components, such as for example integrated circuits or liquid crystal displays (LCDs). The microlithography process is carried out in a so-called projection exposure apparatus having an illumination device and a projection lens. The image of a mask (reticle) illuminated with the illumination device is in this case projected with the projection lens onto a substrate (for example a silicon wafer) coated with a light-sensitive layer (photoresist) and arranged in the image plane of the projection lens, in order to transfer the mask structure to the light-sensitive coating of the substrate.
In projection lenses designed for the extreme ultraviolet (EUV) range, i.e. at wavelengths of e.g. approximately 13 nm or approximately 7 nm, owing to the lack of availability of suitable light-transmissive refractive materials, mirrors are used as optical components for the imaging process. One problem which arises in practice is that, in particular as a result of the absorption of the radiation emitted by the EUV light source, the EUV mirrors heat up and thus undergo an associated deformation, which in turn can negatively affect the imaging properties of the optical system.
Known approaches to mitigate the above problem e.g. involve to make use of mirror substrate materials that exhibit a so-called zero crossing temperature, where the coefficient of thermal expansion has a zero crossing in its temperature dependence, so that no or only a negligible thermal expansion takes place. A suitable mirror substrate material is e.g. quartz glass doped with titanium dioxide (TiO2), as e.g. the material sold under the trade name ULE® (by Corning Inc.). A further suitable mirror substrate material is e.g. a lithium-aluminium-silicon oxide-glass ceramic, as e.g. the material sold under the trade name Zerodur® (by Schott AG). Consequently, it is desirable to keep the mirror at said zero crossing temperature in order to minimize its sensitivity to thermal effects and to achieve high imaging performance of the optical system.
However, in practice the further problem arises here that an EUV mirror is exposed during operation of the microlithographic projection exposure apparatus to changing intensities of the incident electromagnetic radiation, specifically both spatially, for example due to the use of illumination settings with an intensity that varies over the optical effective face of the respective EUV mirror, and also temporally, wherein the relevant EUV mirror typically heats up in particular at the beginning of the microlithographic exposure process from a comparatively low temperature to its operating temperature reached in the lithography process.
One known approach for avoiding surface deformation caused by varying introductions of heat into an EUV mirror and associated optical aberrations includes the use of pre-heaters for example on the basis of infrared radiation. With such pre-heaters, active mirror heating can take place in phases of comparatively low absorption of EUV useful radiation, wherein sthis active mirror heating is correspondingly decreased as the absorption of the EUV useful radiation increases. In order to consider not only time-variations of heat introductions into an EUV mirror (e.g. during a starting phase of the microlithographic exposure process) but also spatial variations of heat introductions into an EUV mirror (which may be due to the use of certain illumination settings), such pre-heaters may also be designed to be spatially controllable.
However, while such pre-heaters may be basically effective in consideration of time-and/or spatial variations of heat introductions into an EUV mirror, further problems may arise with increasing values of the power of the (EUV-) light source used in the lithographic process. One reason for using (EUV-) light sources with enhanced power (e.g. more than 500 W, in particular more than 800 W) is the accompanying use of less-sensitive photoresist materials, which again may be favourable for reduction of the relative impact of noise in the number of photons in relation to the total number of photons.
Regarding the prior art, reference is made only by way of example to WO 2018/177649 A1 and US 10,324,383 B2.
It is an object of the present invention to provide an optical system, in particular for microlithography, and to provide a method for operating an optical system, which make is possible to at least reduce undesired thermally-induced mirror-deformations and accompanying deteriorations of the optical performance even at higher power values of the light source used in the optical system.
This and other objects are achieved by way of optical systems as well as by methods according to the features recited in the independent claims set forth hereinbelow.
According to one aspect of the invention an optical system comprises
The mirror can be in particular a mirror for a microlithographic projection exposure apparatus. However, the invention is not limited thereto. In other applications, a mirror according to the invention can also be employed or utilized for example in a system for mask metrology.
Aspects of the invention are associated in particular with adapting, in an optical system comprising a mirror that is configured to be cooled by a cooling fluid flowing in a cooling channel during operation of the optical system, the temperature and/or the flow rate of the cooling fluid to a value of the source power of the light source used in the optical system. This in particular makes it possible to take into account increasing values of said source power in attempts for avoiding surface deformations caused by introductions of heat into the mirror and associated optical aberrations during operation of the system.
More specifically, by adapting the temperature and/or the flow rate of the cooling fluid depending on the source power in the thermal load to be expected in the mirror substrate for said source power, this aspect of the invention makes it possible to reduce the temperature of the cooling fluid (and/or enhance the flow rate of the cooling fluid) at higher source powers, thereby bringing the average temperature of the mirror near the zero crossing temperature while reducing impacts from material variations regarding said zero crossing temperature (as will be also explained below in more detail with reference to
Further aspects of the invention are inter alia based on the consideration that temperature gradients in the mirror substrate - which may e.g. be due to inhomogeneous illumination of the mirror during operation of the system in certain illumination settings and/or due to use of different reticles resulting in different light absorption in the object plane - have an increasing negative contribution to undesired surface deformations and associated optical aberrations if the average mirror temperature is relatively far from the zero crossing temperature.
Here, this aspect of the invention deliberately accepts the additional effort required for the adjustment or control of the temperature and/or flow rate of the cooling fluid in order to obtain, in return, the advantageous effect of bringing the average mirror temperature close to the zero crossing temperature while reducing impacts from material variations.
As far as the adjustment or control of the temperature of the cooling fluid is concerned, different concepts are possible according to the invention: According to one option, a feedforward control can be realized based on a prior estimation of the thermal load to be expected in the mirror substrate, wherein this prior estimation can be made either by calibration measurements (being performed for different values of the source power) or by simulation. According to further options, a feedback control can be realized, in which the temperature of the cooling fluid is controlled (in the sense of a closed loop control) based on a measurement of a temperature (or a temperature dependent property or a quantity that characterizes the thermal load in the mirror substrate) of the mirror during operation of the system. This measurement can e.g. be realized by use of temperature sensors or by use of an infrared camera. Further options may involve the use of so-called sub-resolution assist features in the reticle, which generate diffraction angles that exceed the numerical aperture of the optical system and direct light to regions of the mirror that are outside the optically used region, so that a detector being present in said outside region can be used for estimation of the incident light and thermal load on the mirror.
According to one embodiment, the optical system further comprises a heater for heating the mirror. Said heater can in particular be configured to introduce heat into the mirror in a spatially variable manner. Accordingly, in preferred embodiments (but without the invention being limited thereto) the inventive concept of adapting the temperature of the cooling fluid to the source power is combined with presence of a heater for heating the mirror, more particularly a heater configured to introduce heat into the mirror in a spatially variable manner. Here, this aspect of the invention is based on the further consideration that such heaters - although they make it possible to inhomogeneously introduce heat into the mirror and thereby principally enable compensation of undesired deformation contributions due to inhomogeneities in illumination of the mirror or in substrate material properties - are not effective or able to react to enhanced source powers (or, in other words, are not robust to changes in source power). A reason for this is that such heaters may only introduce additional heat into the mirror substrate, but are not capable of actively reducing the mirror substrate temperature in response to enhanced source powers.
In contrast to this, the aforementioned inventive concept to combine such a heater with a specific adaptation or control of a cooling fluid temperature and/or cooling fluid flow rate makes it possible to combine the advantageous effect of the inhomogeneous heater (considering or compensating local variations of heat generation in the mirror substrate due to illumination settings or a spatially varying impact of heat generation in the mirror substrate on deformation and optical aberration due to material inhomogeneities) with the advantageous effect of a fluid temperature change (serving to bring the average mirror substrate temperature close to the zero crossing temperature, as will still be explained in more detail with regard to
According to one embodiment, the light source has a power of at least 500 W, in particular at least 800 W, more particularly at least 1kW.
According to one embodiment, the temperature of the cooling fluid is variably settable by at least 0.1 K, in particular at least 0.2 K, more particularly at least 0.5 K.
According to one embodiment, an average zero-crossing-temperature of the mirror substrate material, at which the coefficient of thermal expansion has a zero crossing in its temperature dependence, is substantially equal to a manufacturing temperature at which the optical effective surface of the mirror has been shaped. The advantageous effect of such an embodiment will follow from explanation further below with regard to
According to one embodiment, the optical system is designed for an operating wavelength of less than 250 nm, in particular less than 200 nm, more particularly less than 160 nm.
According to one embodiment, the optical system is designed for an operating wavelength of less than 30 nm, in particular less than 15 nm.
According to one embodiment, the optical system is an optical system for microlithography.
The invention further relates to a microlithographic projection exposure apparatus having an illumination device and a projection lens, wherein said projection exposure apparatus has an optical system as defined above.
The invention further relates to a method for operating an optical system, wherein the optical system has at least one mirror having an optical effective surface and a mirror substrate, wherein at least one cooling channel is arranged in the mirror substrate,
According to one embodiment, said adjustment is made such that an average mirror temperature remains in a predefined temperature band.
According to one embodiment, a zero-crossing-temperature of the mirror substrate material, at which the coefficient of thermal expansion has a zero crossing in its temperature dependence, is within said predefined temperature band.
According to one embodiment, adjustment of the temperature and/or the flow rate of the cooling fluid comprises a feedforward control based on a prior estimation of the thermal load to be expected in the mirror substrate for different values of the power of the light source.
According to one embodiment, said prior estimation of the thermal load to be expected in the mirror substrate for different values of the power of the light source is made based on calibration measurements.
According to one embodiment, said prior estimation of the thermal load to be expected in the mirror substrate for different values of the power of the light source is made based on a simulation.
According to one embodiment, said adjustment of the temperature and/or the flow rate of the cooling fluid comprises a feedback control based on measurements of a quantity that characterizes the thermal load of the mirror during operation of the optical system.
According to one embodiment, said adjustment of the temperature and/or the flow rate of the cooling fluid comprises intervention of said feedback control in time intervals less than 120 s, in particular less than 60 s, more particularly less than 20 s.
Further configurations of the invention can be gathered from the description and the dependent claims.
The invention is explained in greater detail below on the basis of exemplary embodiments illustrated in the accompanying figures.
In the drawings:
In the following, different embodiments of a mirror are described. These embodiments have in common that a cooling device with specifically adjustable temperature and/or flow rate of the cooling fluid is provided in order to reduce undesired thermally-induced mirror-deformations and accompanying deteriorations of the optical performance even at higher power values of the light source used in the optical system.
The mirror 100 having an optical effective surface 101 comprises in particular a mirror substrate 110, which is made from any desired suitable mirror substrate material. A suitable mirror substrate material is e.g. quartz glass doped with titanium dioxide (TiO2), as e.g. the material sold under the trade name ULE® (by Corning Inc.). A further suitable mirror substrate material is e.g. a lithium-aluminium-silicon oxide-glass ceramic, as e.g. the material sold under the trade name Zerodur® (by Schott AG). The mirror 100 further comprises a reflection layer stack 120 (for example as a multilayer system made of molybdenum and silicon layers). Without the invention being restricted to specific configurations of this layer stack, one suitable construction that is merely by way of example can comprise approximately fifty plies or layer packets of a layer system comprising molybdenum (Mo) layers having a layer thickness of in each case 2.4 nm and silicon (Si) layers having a layer thickness of in each case 3.4 nm. In further embodiments, the mirror can also be configured for use with so-called grazing incidence. In this case, the reflection layer system can comprise for example in particular just one individual layer composed of e.g. ruthenium (Ru) having an exemplary thickness of 30 nm.
The impingement of electromagnetic EUV radiation (indicated by an arrow in
According to
Furthermore, according to
As explained in the following with reference to the flow charts of
In some embodiments of the invention, the unit 135 according to
If the actual source power provided in step S210 changes during operation of the optical system, other values of the temperature and/or the flow rate of the cooling fluid can be appropriate in order to still maintain the target mirror temperature (e.g. the zero crossing temperature). Accordingly, such different values are set in step S240 using the capability of unit 135 in
While the above described embodiment explicitly involves a temperature measurement at the mirror using one or more temperature sensors, further embodiments are also possible in order to determine the actual thermal load of the mirror during operation of the optical system in order to realize said feedback control. Such embodiments may e.g. involve use of an infrared camera or the use of one or more intensity detectors outside the optically used region, wherein light may be directed to said intensity detectors using sub-resolution assist features in the reticle which generate diffraction angles that exceed the numerical aperture of the optical system.
With reference to
Furthermore, the mirror 500 according to
Similar to the embodiments of
Furthermore, the mirror 600 in accordance with
During operation of the mirror 600, different electrical potentials can be applied to the individual electrodes 681 of the electrode arrangement, wherein the electrical voltages generated thereby between the electrodes 681 bring about an electric current flow via the electrically conductive layer 685. The heat induced by said electric current results in a locally varying heating-up of the mirror surface depending on the potentials respectively applied to the individual electrodes 681. The embodiment according to
The combined use of electrode arrangement and electrically conductive layer 685 in the case of the mirror 600 - despite comparatively coarse structures of the electrode arrangement -enables continuously varying power inputs into the mirror according to the invention, wherein at the same time the coupling-in of the thermal power - in contrast for instance to the use of infrared (IR) heating devices - is limited to the mirror itself. On account of the material selection, there is a comparatively high electrical resistance in the electrically conductive layer 685, such that the electrical voltage is dropped there, whereas, on account of the comparatively significantly higher electrical conductivity in the leads 682, no voltage or heat is dropped in the leads 682 and in this respect fine structures are not required in order to generate the high electrical resistances.
In the following, advantageous effects associated with the invention are explained with reference to the diagrams shown in
With reference to
As already discussed before and schematically illustrated in
The diagram of
However, if the thermal load of the mirror or the absorbed intensity, respectively, increases due to an enhanced source power or an enhanced reflectivity of the reticle, relatively large shape deviations will occur according to
The beam shaping and illumination system 910 illustrated in
Even though the invention has been described on the basis of specific embodiments, numerous variations and alternative embodiments are evident to the person skilled in the art, e.g. through combination and/or exchange of features of individual embodiments. Accordingly, such variations and alternative embodiments are concomitantly encompassed by the present invention, and the scope of the invention is restricted only within the meaning of the appended patent claims and equivalents thereof.
This is a Continuation of International Application PCT/EP2020/072216, which has an international filing date of Aug. 7, 2020. The disclosure of the international application is incorporated into the present Continuation in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2020/072216 | Aug 2020 | WO |
Child | 18161140 | US |