OPTICAL SYSTEM OF A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS

Abstract
The disclosure concerns an optical system of a microlithographic projection exposure apparatus. To permit comparatively flexible and fast influencing of intensity distribution and/or the polarization state, an optical system includes at least one layer system that is at least one-side bounded by a lens or a mirror. The layer system is an interference layer system of several layers and has at least one liquid or gaseous layer portion with a maximum thickness of one micrometer (μm), and a manipulator for manipulation of the thickness profile of the layer portion.
Description
FIELD OF THE DISCLOSURE

The disclosure concerns an optical system of a microlithographic projection exposure apparatus.


BACKGROUND

Microlithography is used for the production of microstructured components such as for example integrated circuits or LCDs. The microlithography process is carried out in what is referred to as a projection exposure apparatus having an illumination system and a projection objective. The image of a mask (=reticle) illuminated via the illumination system is projected via the projection objective onto a substrate (for example a silicon wafer) which is coated with a light-sensitive layer (for example photoresist) and arranged in the image plane of the projection objective in order to transfer the mask structure onto the light-sensitive coating on the substrate.


In some instances, in the illumination system and also in the projection objective, a desired intensity distribution and/or an initially set polarization state can be altered in an unwanted fashion. The influences which are responsible for that include in particular birefringence effects which are variable in respect of time such as what is referred to as polarization-induced birefringence (PIB), compacting in non-crystalline material (for example quartz glass) of optical components, degradation phenomena and thermal effects as well as birefringence which is present in anti-reflecting or highly reflecting layers on the optical components as a consequence of form birefringence or by virtue of different Fresnel reflection and transmission for orthogonal polarization states.


SUMMARY

In some embodiments, the disclosure provides an optical system of a microlithographic projection exposure apparatus that permits comparatively flexible and fast influencing of the intensity distribution and/or the polarization state.


In certain embodiments, the disclosure provides an optical system of a microlithographic projection exposure apparatus that includes at least one layer system which is at least one-side bounded by a lens or a mirror, wherein the layer system is an interference layer system of several layers and has at least one liquid or gaseous layer portion whose maximum thickness is at a maximum 1 micrometer (μm), and a manipulator for manipulation of the thickness profile of the layer portion.


The effect achieved by the layer system with a liquid or gaseous layer portion of a maximum thickness of a maximum of 1 micrometer (μm) is to be distinguished from the action achieved in accordance with the state of the art (for example in the case of a liquid lens) of a refractive optical element. While, in the latter case, the refractive power which influences the beam path and which is dependent on the form of the refractive lens is altered the concept of the disclosure provides that the beam path as such is not influenced in a first approximation but—in a fundamentally different form of action—it can involve influencing for example phase separation by interference effects which occur between the partial waves of the light components partially reflected a plurality of times in the layer system.


In other words, in accordance with the disclosure—unlike for example a liquid lens with a liquid layer of typically a few millimeters—the system does not influence the direction of individual flat waves (or beams), but essentially only the phase position of the individual flat waves is manipulated. In contrast the interference effects utilized in accordance with the disclosure, in a conventional liquid lens with a liquid layer of typically a few millimeters, because of the limited coherence length of the light, no longer play any part as the interference effects utilized in accordance with the disclosure and thus phase influencing occur only in the thickness region which is selected in the present case and which is near the wavelength.


Partial reflection phenomena occur at the interfaces in relation to the liquid or gaseous layer portion provided in accordance with the disclosure, wherein ultimately the effect of the layer system is determined by the superimpositioning which takes place in respect of the partial waves occurring in that situation. In that respect use is made of the fact that the action of the layer stack, as an interference phenomenon, is particularly sensitively dependent on the thicknesses of the individual layers. The concept according to the disclosure of providing a liquid or gaseous layer portion, in the case of application to a multilayer system with a multiplicity of partial layers, involves modulating the thickness of one of those partial layers in its thickness configuration, whereby the interference properties are modified.


The layer system is at least one-side bounded by a lens or a mirror, i.e. the layer system is arranged adjacent, at least on one side of the layer system, to a lens or a mirror.


Basically the layer system according to the disclosure provides that, for each of the two parameters intensity I and phase φ, both the averaged value ((Is+Ip/2) and (φsp)/2)) as well as the separation of intensity (Is−Ip, “diattenuation”) or the phase (φs−φp) can be influenced.


In that respect the variation in thickness which is caused in the liquid layer portion, depending on the respective specific factors involved, that is to say the structure of the layer system as well as the arrangement thereof within the optical system, can have an effect either on the phase or also on the intensity, with a relatively high degree of sensitivity. In particular the layer design in the layer system according to the disclosure can be so selected that one of the foregoing four parameters (for example phase separation, i.e. the phase difference obtained for orthogonal polarizations states) is influenced in a deliberately specific fashion, with the other parameters remaining at least substantially unchanged.


In particular the layer system according to the disclosure—with the averaged intensity being influenced—can be used as a variable gray filter, for example in the projection objective, the properties of which can be manipulated on a comparatively small time scale.


In certain embodiments, the layer system is at least one-side bounded by a lens and the manipulator has an arrangement of actuators provided at the edge of the lens. In particular the liquid or gaseous layer portion can be arranged between two lenses, wherein at least one of those two lenses is actively deformable. In that case the manipulator can have for example an arrangement of actuators provided at the edge of a lens arranged in adjacent relationship with the layer portion.


In some embodiments, the layer system is at least one-side bounded by a mirror and the manipulator has an arrangement of actuators that is provided on a surface, which is not optically effective, of the mirror (for example the “rear side” of a concave mirror).


The concept according to the disclosure makes it possible to provide for deliberate targeted detuning of the layer system for the correction of a disturbance, which is present elsewhere in the optical system (for example the projection objective) in respect of the desired intensity distribution, insofar as reflection or the action in the transmission mode—depending on the respective arrangement of the layer system on a mirror or a refractive lens—is manipulated in positionally resolved fashion until the desired correction action is achieved, by deliberate targeted deformation of the deformable layer portion.


In addition a change in phase which possibly occurs in an unwanted fashion can be remedied by phase manipulators arranged elsewhere in the optical system so that intensity influencing remains as the sole nett effect. Equally polarization separation which possibly occurs in an unwanted fashion can also be compensated by suitable manipulators elsewhere in the optical system.


Phase separation can also be set as a desired effect with the layer system according to the disclosure which includes the deformable layer portion, in order for example to compensate for a disturbance, which occurs elsewhere in the optical system, in polarization distribution (for example as a consequence of holder-induced stress refraction etc.). Influencing the above-described separation parameters (that is to say transmission or phase separation) represents a particularly advantageous use of the disclosure as basically that is relatively difficult to achieve with other approaches.


In certain embodiments, the maximum thickness of the liquid or gaseous layer portion is at a maximum half a working wavelength (λ) of the optical system. Typical working wavelengths in a microlithographic projection exposure apparatus are less than 250 nm, for example about 193 nm or about 157 nm. In that respect, use is made of the fact that in the thickness range of between zero and λ/2, basically the entire range of action can be covered by setting a phase in the range of 0°-180°, which can also be covered with somewhat thicker layer systems (for example a layer of a thickness of 3λ/2).


The maximum thickness of the liquid or gaseous layer portion can be in particular in the range of between 10 and 100 nm (e.g., in the range of between 30 and 100 nm, in the range of between 50 and 100 nm).


In some embodiments, the layer system has an alternate succession of layers of a first layer material and a second layer material, wherein the first layer material has a refractive index of less than the refractive index of quart glass (SiO2) at a working wavelength and the second layer material has a refractive index of greater than the refractive index of quart glass (SiO2) at the working wavelength. In that respect in accordance with the disclosure it is possible in particular to use layer materials which admittedly are otherwise rather unusual but provide the deformable layer portion or the desired deformability, for example water with n=1.44 at λ=193 nm or also a suitable gel. It is also possible to use in a liquid layer portion for example the immersion liquids H2SO4, H3PO4 and aqueous solutions thereof, as are referred to in US 2006/0221456 A1 (with refractive indices n in the range of 1.5-1.8 at λ=193 nm and optionally with substitution of deuterium), or cyclohexane (with a refractive index n=1.556 at λ=193 nm).


In that respect, in the context of layer optimization—which as such can be implemented in conventional manner—it can be predetermined that the respectively desired layer portions including the stated deformable liquid or gaseous layer portion are included in the layer system.


In certain embodiments, a layer portion with particularly advantageous growth or adhesion conditions can be provided in the layer system as the first (growth) layer portion. Furthermore a protective layer affording a particularly good protective action in relation to environmental influences can advantageously be selected as the outermost, uppermost layer portion of the layer stack.


In some embodiments, a change in a reflection capability of the layer system of at least 0.1% (e.g., at least 1%) can be set by a variation in the thickness profile of the first layer for at least one optically useable direction of incidence of light passing through the layer system.


In certain embodiments, a change in a transmission separation of the layer system of at least 0.1% (e.g., at least 1%) can be set by a variation in the thickness profile of the first layer for at least one optically useable direction of incidence of light passing through the layer system.


In some embodiments, a change in a birefringence of the layer system of at least 0.1° (e.g., at least 1°) can be set by a variation in the thickness profile of the first layer for at least one optically useable direction of incidence of light passing through the layer system.


An optical system as set forth in claim 1, wherein a change in an absorption capability of the layer system of at least k=0.001/cm (at least k=0.01/cm) can be set by a variation in the thickness profile of the first layer for at least one optically useable direction of incidence of light passing through the layer system.


In some embodiments, a flow movement can be produced or maintained in the liquid or gaseous layer portion in operation of the optical system, whereby it is possible to counteract an unwanted rise in temperature of the respectively adjoining optical element (lens or mirror).


The concept according to the disclosure can equally well be implemented both in the illumination system and also in the projection objective.


The disclosure further concerns an optical element, a method of modifying the imaging properties in an optical system of a microlithographic projection exposure apparatus, a microlithographic projection exposure apparatus, a process for the microlithographic production of microstructured components and a microstructured component.


Further configurations of the disclosure as set forth in the description and the appendant claims.


The disclosure is described in greater detail hereinafter by way of exemplary embodiments aspects of which are illustrated in the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 shows a diagrammatic view of the structure of a layer system,



FIG. 2 shows a diagrammatic view of the structure of a layer system,



FIG. 3 shows a diagrammatic view of the structure of a microlithographic projection exposure apparatus,



FIGS. 4-5 show an overall meridional cross-section through specific examples of complete catadioptric projection objectives in which a layer system can be embodied,



FIGS. 6
a-b show the calculated incidence angle dependency of reflection (FIG. 6a) and reflection separation (FIG. 6b) respectively for different reductions in thickness of a liquid layer portion, and



FIG. 7 shows a graph for comparing the degrees of reflection and reflection separation which can be achieved in different layer systems with a water layer and with an air layer respectively.





DETAILED DESCRIPTION


FIG. 1 shows a diagrammatic view of the structure of a layer system.


In FIG. 1, the concept according to the disclosure is implemented on a concave mirror 110, wherein arranged on the rear side of the mirror or the substrate thereof are individual actuators 105a, 105b, 105c, . . . which are actuable independently of each other.


In FIG. 1, starting from the concave mirror 110, individual layer portions 121 through 126 of a layer system 120 occur in succession in a direction towards the left, the layer portion 123 here forming the liquid layer portion 123 according to the disclosure. The layer portions 122 and 124 respectively adjoining that liquid layer portion 123 can if desired additionally be coated at the interface with a membrane or also with a glass plate of small thickness.


It will be appreciated that the disclosure is not limited to a concave mirror so that instead thereof it is also possible to use a flat mirror for the arrangement of the layer portions on that mirror. Corresponding suitable flat mirrors are available both in the illumination system and also in various designs of projection objectives, for example in the RCR design described in fuller detail hereinafter with reference to FIG. 5.


The actuators 105a, 105b, 105c, . . . in their totality thus form a manipulator for manipulation of the thickness profile of the liquid layer portion 123 and can be for example in the form of piezoelectric elements and/or Lorentz motors.


As is shown in FIG. 1 in only diagrammatic and highly exaggerated form, liquid is displaced out of the liquid layer portion 123 for example at the position of the double-headed arrow P by pressure applied by the corresponding manipulator so that the liquid layer portion 123 becomes thinner there and the layer action of the layer system 120 is influenced at that location. In that case the layer portions 124 and 125 arranged on the side of the liquid layer portion 123, that is remote from the concave mirror 110, ideally remain unchanged in their geometry.


It will be appreciated that the illustration of the layer system 120 in FIG. 1 is not true to scale but is greatly exaggerated, in which respect in particular it is also possible to provide a larger or smaller number of layers. Typically the layer system has an alternate succession of layers of a first layer material and layers of a second layer material, wherein the first layer material has refractive index which is less than the refractive index of quartz glass (SiO2) at a working wavelength of the optical system, and the second layer material has a refractive index which is greater than that of quartz glass (SiO2) at the working wavelength.


Suitable layer materials of the “low-refractive” layer portions are for example chiolith (refractive index n=1.38 at λ=193 nm) and magnesium fluoride (MgF2, n(193 nm)=1.42).


Suitable layer materials of the “higher-refractive” layer portions are for example sapphire (Al2O3, n(193 nm)=1.81) and lanthanum fluoride (LaF3, n(193 nm)=1.70).


A specific embodiment by way of example of a layer system according to the disclosure is set out in Table 1.













TABLE 1









Absorptions


Layer
Thickness

Refractive
coefficient


No
(nm)
Material
index (193 nm)
(k)



















1
70.0
Aluminum (Al)
0.1127
2.20286


2
19.3
Chiolith (Na5Al3F14)
1.384
0.00037


3
84.0
Water (H2O)
1.44
0


4
14.9
Aluminum oxide
1.811
0.0026




(Al2O3)


5
43.0
Chiolith (Na5Al3F14)
1.384
0.00037


6
25.1
Aluminum oxide
1.811
0.0026




(Al2O3)










FIG. 6, for the above-indicated layer system and with a variation in the thickness of the liquid layer portion of water, illustrates the calculated incidence angle dependency of reflection (FIG. 6a) and reflection separation (FIG. 6b). In that case the thickness of the liquid layer portion is reduced stepwise with respect to the nominal starting value of 84.0 nm as shown in Table 1, wherein FIG. 6, for the individual curves, specifies the respective reduction in thickness in relation to that starting value (that is to say, there was a reduction in thickness by 0 nm, 14 nm, 24 nm, 34 nm, 44 nm and 54 nm). There is found to be a delicate dependency in respect of the curves on the thickness of the liquid layer, which can thus be suitably selected depending on the respectively desired effect.


The disclosure is not limited to a liquid medium such as for example water in regard to the layer portion which can be manipulated (“tuned”) in respect of its thickness profile, but instead it is also possible to use a gaseous medium such as for example air or another gas, wherein in the case of using the disclosure in a projection objective, that gas can in particular also be a flushing gas used in the projection objective (for example a chemically inert gas such as nitrogen (N2), argon (Ar), helium (He) or mixtures thereof.


The use of a gaseous medium such as air in place of a liquid medium can be advantageous in particular in regard to service life of the adjoining optical components or layer portions. Embodiments for layer systems with such a gaseous layer portion are set forth hereinafter in Tables 2 and 3, in each of which an air layer is used in place of a water layer.









TABLE 2







(=Example L1 in FIG. 7):















Absorptions


Layer
Thickness

Refractive
coefficient


No
(nm)
Material
index (193 nm)
(k)














1
70.0
Aluminum (Al)
0.1127
2.20286


2
24.4
Chiolith (Na5Al3F14)
1.384
0.00037


3
25.8
Aluminum oxide
1.811
0.0026




(Al2O3)


4
40.8
Chiolith (Na5Al3F14)
1.384
0.00037


5
25.8
Aluminum oxide
1.811
0.0026




(Al2O3)


6
60.3
Air
1
0


7
24.8
Aluminum oxide
1.811
0.0026




(Al2O3)


8
39.5
Chiolith (Na5Al3F14)
1.384
0.00037


9
23.1
Aluminum oxide
1.811
0.0026




(Al2O3)


10
44.5
Chiolith (Na5Al3F14)
1.384
0.00037
















TABLE 3







(=Example L2 in FIG. 7):















Absorptions


Layer
Thickness

Refractive
coefficient


No
(nm)
Material
index (193 nm)
(k)














1
70.0
Aluminum (Al)
0.1127
2.20286


2
25.5
Chiolith (Na5Al3F14)
1.384
0.00037


3
25.5
Aluminum oxide
1.811
0.0026




(Al2O3)


4
39.9
Chiolith (Na5Al3F14)
1.384
0.00037


5
24.8
Aluminum
1.811
0.0026




oxide(Al2O3)


6
51.1
Air
1
0









The layer system in accordance with Table 2, including the layer portion of air, can be implemented in such a way that the layer portions Nos 1-5 are vapor deposited in mutually superposed relationship on a quartz substrate, the layer portions 7-10 are similarly vapor deposited on another quartz substrate, and then the two sub-layer systems formed in that way are arranged at the spacing corresponding to the air layer to be formed, relative to each other. In the layer system of Table 3, unlike the example of Table 2, the “tunable” air layer directly adjoins a quartz substrate so that only one substrate has to be coated, unlike the situation with the example of Table 2.


It will be appreciated that the disclosure is not limited to quartz or quartz glass as a material adjoining the layer system according to the disclosure so that instead it is also possible to use other suitable lens materials such as for example calcium fluoride (CaF2), garnets, in particular lutetium aluminum garnet (Lu3Al5O12) and yttrium aluminum garnet (Y3Al5O12) or spinel, in particular magnesium spinel (MgAl2O4) as materials adjoining the layer system according to the disclosure.


The following layer systems of Tables 4 and 5 are further embodiments by way of example of layer systems with a liquid layer of water which otherwise involve a respective structure similar to Table 2 and Table 3 respectively. As can be seen from FIG. 7, higher values in respect of the degree of reflection can be achieved when using air instead of water, which can be attributed to the refractive index difference in relation to the adjoining layer portion, which is greater in the case of air. FIG. 7 also shows (being plotted on the right-hand vertical axis in FIG. 7) the value (Rs−Rp)/(Rs+Rp) for the layer systems of Tables 2-5.









TABLE 4







(=Example W1 in FIG. 7):















Absorptions


Layer
Thickness

Refractive
coefficient


No
(nm)
Material
index (193 nm)
(k)














1
70.0
Aluminum (Al)
0.1127
2.20286


2
25.6
Chiolith (Na5Al3F14)
1.384
0.00037


3
25.5
Aluminum oxide
1.811
0.0026




(Al2O3)


4
39.7
Chiolith (Na5Al3F14)
1.384
0.00037


5
24.8
Aluminum oxide
1.811
0.0026




(Al2O3)


6
41.5
Water (H2O)
1.44
0


7
22.6
Aluminum oxide
1.811
0.0026




(Al2O3)


8
42.7
Chiolith (Na5Al3F14)
1.384
0.00037


9
23.0
Aluminum oxide
1.811
0.0026




(Al2O3)


10
32.1
Chiolith (Na5Al3F14)
1.384
0.00037
















TABLE 5







(=Example W2 in FIG. 7):















Absorptions


Layer
Thickness

Refractive
coefficient


No
(nm)
Material
index (193 nm)
(k)














1
70.0
Aluminum (Al)
0.1127
2.20286


2
25.6
Chiolith (Na5Al3F14)
1.384
0.00037


3
25.4
Aluminum oxide
1.811
0.0026




(Al2O3)


4
39.9
Chiolith (Na5Al3F14)
1.384
0.00037


5
24.6
Aluminum oxide
1.811
0.0026




(Al2O3)


6
34.5
Water (H2O)
1.44
0










FIG. 2 is a diagrammatic view showing the structure of a layer system, this view also not being true to scale but being greatly exaggerated.


Referring to FIG. 2, what is referred to as a bidirectional active lens element (=“BALE”) 210, a layer portion 220 according to the disclosure or an interference layer system with a liquid or gaseous layer portion according to the disclosure and a further lens 230 held independently of the lens element 210 are arranged in a condition of bearing flush against each other. The bidirectional active lens element 210 is manipulated in positionally resolved fashion by way of actuators arranged at the edge in basically known manner in respect of its thickness, thereby once again achieving specific desired manipulation of the thickness distribution of the layer portion 220. In an alternative configuration the layer portion 220 can also be arranged between two lens elements which are respectively manipulatable in their thicknesses.


It will be appreciated that the disclosure is not limited to curved lens surfaces so that instead it is also possible to use plane plates for the arrangement of the layer portion according to the disclosure.



FIG. 3 is an only diagrammatic view showing the structure in principle of a microlithographic projection exposure apparatus. In this case the concept according to the disclosure can be implemented equally both in the illumination system and also in the projection objective.


The microlithographic projection exposure apparatus has an illumination system 301 and a projection objective 302. The illumination system 301 serves for illuminating a structure-bearing mask (reticle) 303 with light from a light source unit 304 which for example includes an ArF laser for a working wavelength of 193 nm as well as a beam shaping optical mechanism for producing a parallel light beam. The parallel light beam of the light source unit 304 is firstly incident on a diffractive optical element 305 (also referred to as a “pupil defining element”) which, by way of an angle radiation characteristic defined by the respective diffracting surface structure, produces in the pupil plane P1 a desired intensity distribution (for example dipole or quadrupole distribution). Disposed downstream of the diffractive optical element 305 in the light propagation direction is an optical unit 306 including a zoom objective for producing a parallel light beam of variable diameter, and an axicon lens. Different illumination configurations are produced via the zoom objective in conjunction with the upstream-disposed diffractive optical element 305 in the pupil plane P1 depending on the respective zoom position and the position of the axicon elements. In the illustrated example the optical unit 306 further includes a deflection mirror 307. Disposed downstream of the pupil plane P1 in the light propagation direction is a light mixing device 308 disposed in the beam path and which for example in per se known manner can have an arrangement of microoptical elements that is suitable for achieving a light mixing effect. The light mixing device 308 is followed in the light propagation direction by a lens group 309, downstream of which is disposed a field plane F1 with a reticle masking system (REMA) which is projected by an REMA objective 310 following in the light propagation direction onto the structure-bearing mask (reticle) 303 arranged in the field plane F2, and thereby limits the illuminated region to the reticle. The image of the structure-bearing mask 303 is formed with the projection objective 302 which in the illustrated embodiment has two pupil planes PP1 and PP2 on a substrate 311 or a wafer provided with a light-sensitive layer.


One or more layer systems according to the disclosure can be used in the illumination system 301 and/or the projection objective 302, for example in the proximity of a pupil plane and/or a field plane of the illumination system 301 and/or the projection objective 302 respectively. Depending on the respectively desired effect the layer system according to the disclosure can be used both in field-near relationship, pupil-near relationship and also at an intermediary position. Thus for example in the case of correction to be implemented for a disturbance in intensity and/or polarization distribution, the correction action of the layer system is generally correspondingly better, the better the positioning in question of the layer system used as the correction element, in terms of its arrangement in field-near, pupil-near or intermediary relationship (that is to say for example in respect of the subaperture ratio), corresponds to the corresponding location of the disturbance to be corrected. Ideally, the arrangement of the layer system in dependence on the location to be expected for the defect to be corrected can already be taken into consideration in the design of the optical system.


Referring to FIG. 4 shown therein is a meridional section of a specific projection objective 400. The design data of that projection objective 400 are set out in Table 6. In that respect the number of the respective refractive or otherwise significant optical surface is identified in column 1, the radius of that surface (in mm) is identified in column 2, optionally a reference to an asphere at that surface is identified in column 3, the spacing, referred to as thickness, of that surface in relation to the following surface (in mm) is identified in column 4, the material following the respective surface is identified in column 5 and the optically usable free half-diameter (in mm) of the optical component is identified in column 6.


The aspheric constants are set forth in Table 7. The surfaces which are identified in FIG. 4 with bold dots and specified in Tables 6 and 7 are aspherically curved, wherein the curvature of those surfaces is given by the following aspheric formula:










P


(
h
)


=





(

1
/
r

)

·

h
2



1
+


1
-


(

1
+
cc

)




(

1
/
r

)

2



h
2






+


C
1



h
4


+


C
2



h
6



=






(
1
)







In that formula P is the camber height of the surface in question parallel to the optical axis, h is the radial spacing from the optical axis, r is the radius of curvature of the surface in question, cc is the conic constant (identified in Table 7 by K) and C1, C2, . . . are the aspheric constants set out in Table 7.


As shown in FIG. 4 the projection objective 400 in a catadioptric structure has a first optical subsystem 410, a second optical subsystem 420 and a third optical subsystem 430. In that respect, the term “subsystem” is always used to denote such an arrangement of optical elements, by which a real object is imaged into a real image or an intermediate image. In other words any subsystem, starting from a given object or intermediate image plane, always includes all optical elements as far as the next real image or intermediate image.


The first optical subsystem 410 includes an arrangement of refractive lenses 411-417 and forms the image of the object plane “OP” as a first intermediate image IMI1, the approximate position of which is indicated by an arrow in FIG. 4. That first intermediate image IMI1 is imaged by the second optical subsystem 420 as a second intermediate image IMI2, the approximate position of which is also indicated by an arrow in FIG. 4. The second optical subsystem 420 includes a first concave mirror 421 and a second concave mirror 422 which are each “cut off” in a direction perpendicular to the optical axis in such a way that light propagation can respectively occur from the reflecting surfaces of the concave mirrors 421, 422 towards the image plane “IP”. The second intermediate image IMI2 is imaged by the third optical subsystem 430 into the image plane IP. The third optical subsystem 430 includes an arrangement of refractive lenses 431-443.


A layer system according to the disclosure can be arranged in the case of the projection objective 400 of FIG. 4 for example on one of the concave mirrors 421 or 422 or also on both concave mirrors 421 and 422 for example involving the structure shown in FIG. 1.



FIG. 5 shows a meridional section of a further specific complete projection objective 500 which is disclosed in WO 2004/019128 A2 (see therein FIG. 19 and Tables 9 and 10). The projection objective 500 includes a first refractive subsystem 510, a second catadioptric subsystem 530 and a third refractive subsystem 540 and is therefore also referred to as a “RCR-system”. The first refractive subsystem 510 includes refractive lenses 511 through 520, downstream of which in the beam path a first intermediate image IMI1 is produced. The second subsystem 530 includes a double-folding mirror with two mirror surfaces 531 and 532 which are arranged at an angle relative to each other, wherein light entering from the first subsystem 510 is firstly reflected at the mirror surface 531 in the direction towards the lenses 533 and 534 and a subsequent concave mirror 535. The concave mirror 535 in per se known manner permits effective compensation of the image field curvature produced by the subsystems 510 and 540. The light reflected at the concave mirror 535 is reflected after again passing through the lenses 534 and 533 at the second mirror surface 532 of the double-folding mirror so that the optical axis OA is accordingly folded twice through 90°. The second subsystem 530 produces a second intermediate image IMI2 and the light issuing therefrom impinges on the third refractive subsystem 540 which includes refractive lenses 541 through 555. The second intermediate image IMI2 is reproduced on the image plane IP by the third refractive subsystem 540.


A layer system according to the disclosure can be arranged in the case of the projection objective 500 of FIG. 5 for example on the concave mirror 535 and/or on the flat mirror surface or surfaces 531 and/or 532, once again for example involving the structure shown in FIG. 1.


Even if the disclosure has been described by reference to specific embodiments numerous variations and alternative embodiments will be apparent to the man skilled in the art, for example by combination and/or exchange of features of individual embodiments. Accordingly it will be appreciated by the man skilled in the art that such variations and alternative embodiments are also embraced by the present disclosure and the scope of the disclosure is limited only in the sense of the accompanying claims and equivalents thereof.









TABLE 6







(DESIGN DATA FOR FIG. 4):












Sur-




Half-


face
Radius
Asphere
Thickness
Material
diameter















1
0.000000

−0.011620
LV193975
75.462


2
585.070331
AS
17.118596
SIO2V
76.447


3
−766.901651

0.890161
HEV19397
78.252


4
145.560665

45.675278
SIO2V
85.645


5
2818.543789
AS
40.269525
HEV19397
83.237


6
469.396236

29.972759
SIO2V
75.894


7
−193.297708
AS
21.997025
HEV19397
73.717


8
222.509238

27.666963
SIO2V
57.818


9
−274.231957

31.483375
HEV19397
52.595


10
0.000000

10.117766
SIO2V
44.115


11
0.000000

15.361487
HEV19397
47.050


12
26971.109897
AS
14.803554
SIO2V
54.127


13
−562.070426

45.416373
HEV19397
58.058


14
−510.104298
AS
35.926312
SIO2V
76.585


15
−118.683707

36.432152
HEV19397
80.636


16
0.000000

199.241665
HEV19397
86.561


17
−181.080772
AS
−199.241665
REFL
147.684


18
153.434246
AS
199.241665
REFL
102.596


19
0.000000

36.432584
HEV19397
105.850


20
408.244008

54.279598
SIO2V
118.053


21
−296.362521

34.669451
HEV19397
118.398


22
−1378.452784

22.782283
SIO2V
106.566


23
−533.252331
AS
0.892985
HEV19397
105.292


24
247.380841

9.992727
SIO2V
92.481


25
103.088603

45.957039
HEV19397
80.536


26
−1832.351074

9.992069
SIO2V
80.563


27
151.452362

28.883857
HEV19397
81.238


28
693.739003

11.559320
SIO2V
86.714


29
303.301679

15.104783
HEV19397
91.779


30
1016.426625

30.905849
SIO2V
95.900


31
−258.080954
AS
10.647394
HEV19397
99.790


32
−1386.614747
AS
24.903261
SIO2V
108.140


33
−305.810572

14.249112
HEV19397
112.465


34
−11755.656826
AS
32.472684
SIO2V
124.075


35
−359.229865

16.650084
HEV19397
126.831


36
1581.896158

51.095339
SIO2V
135.151


37
−290.829022

−5.686977
HEV19397
136.116


38
0.000000

0.000000
HEV19397
131.224


39
0.000000

28.354383
HEV19397
131.224


40
524.037274
AS
45.835992
SIO2V
130.144


41
−348.286331

0.878010
HEV19397
129.553


42
184.730622

45.614622
SIO2V
108.838


43
2501.302312
AS
0.854125
HEV19397
103.388


44
89.832394

38.416586
SIO2V
73.676


45
209.429378

0.697559
HEV19397
63.921


46
83.525032

37.916651
CAF2V193
50.040


47
0.000000

0.300000
SIO2V
21.480


48
0.000000

0.000000
SIO2V
21.116


49
0.000000

3.000000
H2OV193B
21.116


50
0.000000

0.000000
AIR
16.500
















TABLE 7





(ASPHERIC CONSTANTS for FIG. 4):





















2
5
7
12
14





K
0
0
0
0
0


C1
  −5.72E−02
  −4.71E−02
  1.75E−01
  −8.29E−02
  −4.35E−02


C2
  −2.97E−07
  7.04E−06
  −1.17E−05
  −1.87E−07
  1.59E−06


C3
  1.03E−12
  1.09E−10
  1.34E−09
  −7.04E−10
  −6.81E−11


C4
  2.76E−14
  −2.90E−14
  −5.44E−14
  6.65E−14
  5.03E−15


C5
  −1.51E−18
  −1.55E−21
  −1.82E−18
  −1.33E−17
  −1.68E−23


C6
  −1.04E−24
  5.61E−23
  2.56E−22
  2.46E−21
  −2.36E−23


C7
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00


C8
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00


C9
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00






17
18
23
31
32





K
−197.849
−204.054
0
0
0


C1
  −2.94E−02
  5.77E−02
  −7.06E−02
  3.41E−02
  −4.85E−02


C2
  2.63E−07
  −5.00E−07
  4.11E−06
  4.07E−08
  9.88E−07


C3
  −6.11E−12
  2.67E−11
  −1.18E−10
  8.10E−11
  7.37E−11


C4
  1.11E−16
  −5.69E−16
  2.92E−15
  −4.34E−15
  −6.56E−15


C5
  −2.01E−21
  1.89E−20
  −3.23E−20
  7.59E−19
  6.53E−19


C6
  2.08E−26
  −1.49E−25
  2.18E−25
  −3.41E−23
  −2.88E−23


C7
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00


C8
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00


C9
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
















34
40
43







K
0
0
0



C1
  1.59E−02
  −4.10E−02
  −3.89E−02



C2
  −1.51E−06
  3.04E−07
  4.76E−06



C3
  6.62E−13
  5.71E−11
  −2.23E−10



C4
  1.72E−15
  −1.72E−15
  8.89E−15



C5
  −9.36E−20
  −9.60E−22
  −2.41E−19



C6
  2.36E−24
  3.81E−25
  3.43E−24



C7
0.000000e+00
0.000000e+00
0.000000e+00



C8
0.000000e+00
0.000000e+00
0.000000e+00



C9
0.000000e+00
0.000000e+00
0.000000e+00









Claims
  • 1. An optical system of, comprising: an optical element selected from the group consisting of a lens and a mirror;an interference layer system bounded by the optical element, the interference layer system comprising a plurality of layers including a first layer having a maximum thickness of at most one micrometer, the first layer comprising a liquid or a gas; anda manipulator configured to manipulate a thickness profile of the first layer,wherein the optical system is configured to be used in a microlithographic projection exposure apparatus.
  • 2. An optical system as set forth in claim 1, wherein the maximum thickness of the first layer is at most 500 nanometers.
  • 3. An optical system as set forth in claim 1, wherein the maximum thickness of the first layer is at most half of a working wavelength of the optical system.
  • 4. An optical system as set forth in claim 1, wherein the maximum thickness of the first layer is in the range of between 10 nm and 100 nm.
  • 5. An optical system as set forth in claim 1, wherein, during use of the optical system, manipulation of the thickness profile of the first layer is adjustable in dependence on an intensity configuration currently measured in a predetermined plane of the optical system.
  • 6. An optical system as set forth in claim 1, wherein, during use of the optical system, manipulation of the thickness profile of the first layer is adjustable in dependence on a polarization distribution currently measured in a predetermined plane of the optical system.
  • 7. An optical system as set forth in claim 1, wherein the first layer comprises water.
  • 8. An optical system as set forth in claim 1, wherein the first layer comprises at least one gas selected from the group consisting of air, nitrogen (N2), argon (Ar), and helium (He).
  • 9. An optical system as set forth in claim 1, wherein the optical element is a mirror, the manipulator comprises an arrangement of actuators that is provided on a surface of the mirror, and the surface of the mirror not being optically effective.
  • 10. An optical system as set forth in claim 1, wherein the optical element is a lens, and the manipulator comprises an arrangement of actuators provided at an edge of the lens.
  • 11. An optical system as set forth in claim 10, wherein the interference layer system is between two lenses, and at least one lens of the two lenses is actively deformable.
  • 12. An optical system as set forth in claim 1, wherein a change in a reflection capability of the interference layer system of at least 0.1% can be set by a variation in the thickness profile of the first layer for at least one optically useable direction of incidence of light passing through the interference layer system.
  • 13. An optical system as set forth in claim 1, wherein a change in a transmission separation of the interference layer system of at least 0.1% can be set by a variation in the thickness profile of the first layer for at least one optically useable direction of incidence of light passing through the interference layer system.
  • 14. An optical system as set forth in claim 1, wherein a change in a birefringence of the interference layer system of at least 0.1° can be set by a variation in the thickness profile of the first layer for at least one optically useable direction of incidence of light passing through the interference layer system.
  • 15. An optical system as set forth in claim 1, wherein a change in an absorption capability of the interference layer system of at least k=0.001/cm can be set by a variation in the thickness profile of the first layer for at least one optically useable direction of incidence of light passing through the interference layer system.
  • 16. An optical system as set forth in claim 1, wherein a flow movement in the first layer can be produced or maintained during operation of the optical system.
  • 17. An optical system as set forth in claim 1, wherein the interference layer system comprises an alternate succession of layers comprising a first material and layers comprising a second material, wherein the first material has a refractive index that is smaller than a refractive index of quartz glass (SiO2) at a working wavelength of the optical system, and the second material has a refractive index that is greater than the refractive index of quartz glass (SiO2) at the working wavelength.
  • 18. An optical system as set forth in claim 1, wherein plurality of layers further comprises a second layer between the optical element and the first layer.
  • 19. An article, comprising: an optical element selected from the group consisting of a lens and a mirror; anda interference layer system bounded by the optical element,wherein the interference layer system comprises a plurality of layers including a layer comprising a liquid or a gas, a maximum thickness of the first layer is at most one micrometer, and a thickness profile of the first layer is manipulatable.
  • 20. An apparatus, comprising: an illumination system; anda projection objective,wherein at least one member selected from the group consisting of the illumination system and the projection objective comprises: an optical element selected from the group consisting of a lens and a mirror;a interference layer system bounded by the optical element, the interference layer system comprising a plurality of layers including a first layer having a maximum thickness of at most one micrometer, the first layer comprising a liquid or a gas; anda manipulator configured to manipulate a thickness profile of the first layer,wherein the optical system is configured to be used in a microlithographic projection exposure apparatus.
Priority Claims (1)
Number Date Country Kind
102007034641.9 Jul 2007 DE national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims benefit under 35 USC 120 to, international application PCT/EP2008/059435, filed Jul. 18, 2008, which claims benefit of German Application No. 10 2007 034 641.9, filed Jul. 23, 2007 and U.S. Ser. No. 60/951,294, filed Jul. 23, 2007. International application PCT/EP2008/059435 is hereby incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
60951294 Jul 2007 US
Continuations (1)
Number Date Country
Parent PCT/EP2008/059435 Jul 2008 US
Child 12687299 US