1. Field of the Invention
The invention relates to semiconductor devices. More specifically, the invention relates to the production of semiconductor devices which require and etch using a patterned mask formed using immersion lithography over an organic anti-reflective coating (ARC).
2. Description of the Related Art
In the formation of semiconductor devices, photolithographic techniques are used to illuminate and then pattern photoresist. Immersion lithography replaces a usual air gap between a final lens and the photoresist surface with a liquid medium with an index of refraction that is greater than one. This results in a lithographic resolution that is increased by a factor that is equal to the refractive index of the liquid.
To achieve the foregoing and in accordance with the purpose of the present invention, a method for forming etch features in an etch layer over a substrate and below an organic ARC layer, which is below an immersion lithography photoresist mask is provided. The substrate with the etch layer, organic ARC layer, and immersion lithography photoresist mask is placed into a processing chamber. The organic ARC layer is opened. The organic ARC layer opening comprises flowing an organic ARC open gas mixture into the processing chamber, wherein the organic ARC open gas mixture comprises an etchant gas and a polymerization gas comprising CO, forming an organic ARC open plasma from the organic ARC open gas mixture, etching the organic ARC layer with the organic ARC open plasma until the organic ARC layer is opened, and stopping the flow of organic ARC open gas mixture into the processing chamber before the etch layer is completely etched.
In another manifestation of the invention, a method for forming etch features in an etch layer over a substrate and below an organic ARC layer, which is below an immersion lithography photoresist mask is provided. The substrate with the etch layer, organic ARC layer, and immersion lithography photoresist mask is placed into a processing chamber. The organic ARC layer is opened, comprising the steps of flowing an organic ARC open gas mixture into the processing chamber, wherein the organic ARC open gas mixture comprises an etchant gas comprising N2 and H2 and a polymerization gas comprising CO and CH3F, forming an organic ARC open plasma from the organic ARC open gas mixture, etching the organic ARC layer with the organic ARC open plasma until the organic ARC layer is opened, and stopping the flow of organic ARC open gas mixture into the processing chamber before the etch layer is completely etched. The etch layer is etched after stopping the flow of the organic ARC open gas mixture, using the immersion lithography photoresist as an etch mask. The substrate is removed from the processing chamber, so that the opening the organic ARC layer and etching the etch layer are done in situ or ex-situ.
In another manifestation of the invention an apparatus for etching features in an etch layer, wherein the etch layer is supported by a substrate and wherein the etch layer is covered by an organic ARC layer, which is below an immersion lithography photoresist mask with mask features is provided. A plasma processing chamber is provided, comprising a chamber wall forming a plasma processing chamber enclosure, a substrate support for supporting a wafer within the plasma processing chamber enclosure, a pressure regulator for regulating the pressure in the plasma processing chamber enclosure, at least one electrode for providing power to the plasma processing chamber enclosure for sustaining a plasma, a gas inlet for providing gas into the plasma processing chamber enclosure, and a gas outlet for exhausting gas from the plasma processing chamber enclosure. A gas source is in fluid connection with the gas inlet an etchant gas source and a CO polymerization gas source. A controller is controllably connected to the gas source and the at least one electrode and comprises at least one processor and computer readable media. The computer readable media comprises computer readable code for opening the organic ARC layer, comprising computer readable code for flowing an organic ARC open gas mixture into the processing chamber, wherein the organic ARC open gas mixture comprises an etchant gas and a polymerization gas comprising CO, computer readable code for forming an organic ARC open plasma from the organic ARC open gas mixture, computer readable code for etching the organic ARC layer with the organic ARC open plasma until the organic ARC layer is opened, and computer readable code for stopping the flow of organic ARC open gas mixture into the processing chamber before the etch layer is completely etched and computer readable code for etching the etch layer.
These and other features of the present invention will be described in more details below in the detailed description of the invention and in conjunction with the following figures.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
In immersion lithography process, a soft photoresist may result. Such a photoresist layer easily erodes when opening an underlying organic ARC. It is desirable to have a method that is able to open or etch an organic ARC, while minimizing the erosion of the immersion lithography photoresist layer.
To facilitate understanding,
Although the etch layer 204 is shown as being on top of the substrate 208, one or more layers may be between the etch layer 204 and the substrate 208. Alternatively, the substrate may be the etch layer. In addition, one or more layers may be between the etch layer 204 and the ARC layer 216. The etch layer may be a conductive layer or a dielectric layer. The etch layer may be an organic layer, such as amorphous carbon.
In an example of the invention, the etch layer 204 is a silicon oxide dielectric layer over a silicon wafer substrate 208. The organic ARC layer is a bottom antireflective coating (BARC), which is an organic ARC material. It is preferred that BARC be similar to photoresist, so that the BARC has similar stripping characteristics. Because of the similarities between BARC and immersion lithography photoresist and because of the additional softness of immersion lithography photoresist, it is difficult to find a recipe to open a BARC layer without significantly eroding the immersion lithography photoresist. In other embodiments, the ARC layer may be made of other organic materials to form an organic ARC layer. In this example, the organic ARC is the ARC® series of the 193 nm product from Brewer Science. The photoresist mask 220 is made of an immersion lithography photoresist. Preferably the immersion lithography photoresist mask is a 193 nm and higher generation photoresist. Such immersion lithography photoresists are softer than non immersion lithography photoresist, and therefore erode much more easily than non immersion lithography photoresist.
CPU 522 is also coupled to a variety of input/output devices, such as display 504, keyboard 510, mouse 512 and speakers 530. In general, an input/output device may be any of: video displays, track balls, mice, keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or paper tape readers, tablets, styluses, voice or handwriting recognizers, biometrics readers, or other computers. CPU 522 optionally may be coupled to another computer or telecommunications network using network interface 540. With such a network interface, it is contemplated that the CPU might receive information from the network, or might output information to the network in the course of performing the above-described method steps. Furthermore, method embodiments of the present invention may execute solely upon CPU 522 or may execute over a network such as the Internet in conjunction with a remote CPU that shares a portion of the processing.
In addition, embodiments of the present invention further relate to computer storage products with a computer-readable medium that have computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts. Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media such as floptical disks; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (ASICs), programmable logic devices (PLDs) and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher level code that are executed by a computer using an interpreter. Computer readable media may also be computer code transmitted by a computer data signal embodied in a carrier wave and representing a sequence of instructions that are executable by a processor.
Preferably, the organic ARC open etchant gas comprises H2 and N2. Preferably the CO polymerization gas comprises CO and CH3F. In this example, the organic ARC open etchant gas comprises 75 sccm N2 and 50 sccm H2. The organic ARC open CO polymerization gas comprises 150 sccm CO and 10 sccm CH3F. The chamber pressure is set to 150 mTorr. The power provided by the lower electrode is at 27 MHz and/or 60 MHz with no power provided at 2 MHz. The power provided during this step is kept low to reduce the removal of any of the photoresist mask 220. This organic ARC open gas mixture which uses H2 and N2 as the ARC open etchant gases is highly selective for etching BARC with respect to the immersion lithography photoresist. This high selectivity is defined as being greater than 5:1. Preferably, the lower electrode is kept at a temperature between −20° and 40° C.
It was unexpected that such a process would be successful in reducing erosion of an immersion lithography photoresist mask, while opening an organic ARC layer. It was the speculation of the inventors that this method will also work with O2 based ARC open chemistries to achieve similar results.
Table 1 provides preferred, more preferred, and most preferred ranges for the open etch.
While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, modifications and various substitute equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, modifications, and various substitute equivalents as fall within the true spirit and scope of the present invention.