The present invention relates generally to integrated devices. More particularly, the present invention provides a method for fabricating a monolithically integrated MEMS device using release supports. More specifically, the present invention provides a method for forming release structures underlying a free standing MEMS structure and releasing the MEMS structure via an etching process. Merely by way of example, the MEMS devices can include at least an accelerometer, a gyroscope, a magnetic sensor, a pressure sensor, a microphone, a humidity sensor, a temperature sensor, a chemical sensor, a biosensor, an inertial sensor, and others. Additionally, the other applications include at least a sensor application or applications, system applications, and broadband applications, among others. But it will be recognized that the invention has a much broader range of applicability.
Research and development in integrated microelectronics have continued to produce astounding progress in CMOS and MEMS. CMOS technology has become the predominant fabrication technology for integrated circuits (IC). MEMS, however, continues to rely upon conventional process technologies. In layman's terms, microelectronic ICs are the “brains” of an integrated device which provides decision-making capabilities, whereas MEMS are the “eyes” and “arms” that provide the ability to sense and control the environment. Some examples of the widespread application of these technologies are the switches in radio frequency (RF) antenna systems, such as those in the iPhone™ device by Apple, Inc. of Cupertino, Calif., and the Blackberry™ phone by Research In Motion Limited of Waterloo, Ontario, Canada, and accelerometers in sensor-equipped game devices, such as those in the Wii™ controller manufactured by Nintendo Company Limited of Japan. Though they are not always easily identifiable, these technologies are becoming ever more prevalent in society every day.
Beyond consumer electronics, use of IC and MEMS has limitless applications through modular measurement devices such as accelerometers, gyroscopes, actuators, and sensors. In conventional vehicles, accelerometers and gyroscopes are used to deploy airbags and trigger dynamic stability control functions, respectively. MEMS gyroscopes can also be used for image stabilization systems in video and still cameras, and automatic steering systems in airplanes and torpedoes. Biological MEMS (Bio-MEMS) implement biosensors and chemical sensors for Lab-On-Chip applications, which integrate one or more laboratory functions on a single millimeter-sized chip only. Other applications include Internet and telephone networks, security and financial applications, and health care and medical systems. As described previously, ICs and MEMS can be used to practically engage in various type of environmental interaction.
Although highly successful, ICs and in particular MEMS still have limitations. Similar to IC development, MEMS development, which focuses on increasing performance, reducing size, and decreasing cost, continues to be challenging. Additionally, applications of MEMS often require increasingly complex microsystems that desire greater computational power. Unfortunately, such applications generally do not exist. These and other limitations of conventional MEMS and ICs may be further described throughout the present specification and more particularly below.
From the above, it is seen that techniques for improving operation of integrated circuit devices and MEMS are highly desired.
According to the present invention, techniques related generally to integrated devices and systems are provided. More particularly, the present invention provides a method for fabricating an integrated MEMS device using release supports. More specifically, the present invention provides a method for forming at least one MEMS device overlying patterned support structures and releasing the MEMS device(s) by vapor etching the patterned support structures. Merely by way of example, the MEMS devices can include at least an accelerometer, a gyroscope, a magnetic sensor, a pressure sensor, a microphone, a humidity sensor, a temperature sensor, a chemical sensor, a biosensor, an inertial sensor, and others. Additionally, the other applications include at least a sensor application or applications, system applications, and broadband applications, among others. But it will be recognized that the invention has a much broader range of applicability.
In a specific embodiment, embodiments of the present invention provides a method for fabricating a monolithic integrated MEMS device using release supports. The method includes providing a substrate having a surface region and forming at least one conduction material and at least one insulation material overlying at least one portion of the surface region. At least one support structure can be formed overlying at least one portion of the conduction and insulation surface regions, and at least one MEMS device can be formed overlying the support structure(s) and the conduction and insulation surface regions. In a variety of embodiments, the support structure(s) can include dielectric or oxide materials. The support structure(s) can then be removed and a cover material can be formed overlying the MEMS device(s), the conduction and insulation materials, and the substrate. In various embodiments, the removal of the support structure(s) can be accomplished via a vapor etching process.
Many benefits are achieved by way of the present invention over conventional techniques. For example, the present technique provides an easy to use process that relies upon conventional technology. In various embodiments, the method can protect against damage reduce stiction, the process of a MEMS device becoming struck together during a releasing process. The releasing process, which can include performing a vapor etching process, can also be more effective due to the reaction proceeding quickly and not being diffusion limited when applied to a high aspect ratio structure. The method provides a process and system that are compatible with conventional process technology without substantial modifications to conventional equipment and processes. Preferably, the invention provides for an improved MEMS device system and related applications for a variety of uses. In one or more embodiments, the present invention provides for all MEMS and related applications, which may be integrated on one or more integrated circuit device structures. Depending upon the embodiment, one or more of these benefits may be achieved. These and other benefits will be described in more throughout the present specification and more particularly below.
Various additional objects, features and advantages of the present invention can be more fully appreciated with reference to the detailed description and accompanying drawings that follow
The diagrams disclosed in the present patent application are merely implementation examples, which should not unduly limit the scope of the claims herein. It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this process and scope of the appended claims.
According to the present invention, techniques related generally to integrated devices and systems are provided. More particularly, the present invention provides a method for fabricating an integrated MEMS device using release supports. More specifically, the present invention provides a method for forming at least one MEMS device overlying patterned support structures and releasing the MEMS device(s) by vapor etching the patterned support structures.
Merely by way of example, the MEMS devices can include at least an accelerometer, a gyroscope, a magnetic sensor, a pressure sensor, a microphone, a humidity sensor, a temperature sensor, a chemical sensor, a biosensor, an inertial sensor, and others. Additionally, the other applications include at least a sensor application or applications, system applications, and broadband applications, among others. But it will be recognized that the invention has a much broader range of applicability.
As shown in
These steps are merely examples and should not unduly limit the scope of the claims herein. As shown, the above method provides a way of fabricating an integrated MEMS device using release supports according to an embodiment of the present invention. One of ordinary skill in the art would recognize many other variations, modifications, and alternatives. For example, various steps outlined above may be added, removed, modified, rearranged, repeated, and/or overlapped, as contemplated within the scope of the invention.
As shown in
Following step 102, fabrication method 100 involves providing a substrate having a surface region, step 104. In an embodiment, the substrate can include a buried oxide (BOX) layer. In a specific embodiment, the substrate can include an epitaxial (EPI) layer. The substrate can also be a silicon substrate. In further embodiments, the substrate can include a silicon, single crystal silicon, or polycrystalline silicon material. The substrate can also be a substrate-on-insulator or the substrate can have micro lead-frame packaging (MLP) materials, wafer level packaging (WLP) materials, or chip scale packaging (CSP) materials. Those skilled in the art will recognize other variations, modifications, and alternatives.
An integrated circuit (IC) layer can be formed overlying at least one portion of the surface region, step 106. The IC layer can have an IC surface region. In a specific embodiment, the IC layer can be a CMOS layer having a CMOS surface region. The CMOS layer can include one or more CMOS IC devices, which can be formed overlying the substrate. In further embodiments, additional transistors, metal layers, and structures can be added. The fabrication of the one or more CMOS IC devices can be done through foundry-compatible processes. Of course, there can be other variations, modifications, and alternatives.
Following the formation of IC layer, at least one insulation material can be formed overlying at least one portion of the surface region, step 108. In an embodiment, the insulation material(s) can include dielectric material(s), such as a silicon dioxide material, or oxide material, or other material and combination thereof. The dielectric material(s) can have one or more patterned regions. In a specific embodiment, the insulation material(s) can include a first dielectric material and can be formed overlying at least one portion the IC surface region. At least one conduction material can be formed overlying at least one portion of the surface region, step 110. In various embodiments, the conduction material(s) can be formed overlying at least one portion of the IC surface region. The conduction material(s) can include a metal, metal alloy, or other conductive material or combination thereof. In a specific embodiment, the conduction material(s) can include metal layers coupled to one or more portions of the IC layer. As stated previously, there can be other variations, modifications, and alternatives.
After forming the insulation and conduction materials, at least one support structure can be formed overlying at least one portion of the conduction can insulation surface regions, step 112. In an embodiment, the forming of the support structure(s) can include forming a second dielectric material overlying the insulation and conduction surface regions and removing at least a portion of the second dielectric material. The support structure(s) can be patterned from the second dielectric material via a wet etching, dry etching, or mechanical process. The second dielectric material can include an oxide, silicon dioxide, or other material and combination thereof. In various embodiments, the support structure(s) can include oxide retainer(s), small patterned support(s), or bond support(s). Of course, there can be other variations, modifications, and alternatives.
At least one MEMS device can then be formed overlying at least one portion of the conduction and insulation surface regions, as well as the support structure(s). In an embodiment, the formation of the MEMS device(s) can begin with the formation of at least one MEMS layer, step 114. The MEMS layer can include silicon, metals, dielectrics, and other materials and combinations thereof. The MEMS layer can then be bonded to at least one portion of the dielectric material(s), step 116. Once the MEMS layer(s) are bonded, the MEMS layer(s) can be patterned to form MEMS device(s), step 118. The MEMS device(s) can be formed by a wet etching, dry etching, or mechanical process. In various embodiments, the MEMS device(s) can include MEMS sensor(s), MEMS actuator(s), or other MEMS structure (s) and combinations thereof. The MEMS device(s) can be supported by the support structure(s) to protect against undesirable stress during wafer bonding or other fabrication processes. One or more via structures can also be formed to coupled the MEMS device(s) to the conduction material(s) or the IC layer. Again, there can be other variations, modifications, and alternatives.
Once the MEMS device(s) are fully bonded and patterned, the support structure(s) can be removed, step 120. The removal of the support structure(s) would cause the MEMS device(s) to be free standing. In a specific embodiment, the support structure(s) can be sized and spatially configured to increase the speed of removing the support structure(s). The removal process of the support structure(s) can also be improved to not be diffusion limited when applied to high aspect ratio structures. In further embodiments, the support structure(s) can be sized and spatially configured to reduce stiction, the process of the MEMS device(s) becoming stuck during a releasing process. The removing of the support structure(s) can include performing a wet etching, dry etching, or mechanical process. In a specific embodiment, the etching process can include a Hydrogen Fluoride (HF) vapor etching process. Those skilled in the art will recognize other variations, modifications, and alternatives.
Once the support structure(s) have been removed, a cover material can be formed overlying at least one portion of the conduction and insulation surface regions, and at least on portion of the substrate, step 122. In various embodiments, the cover material can include micro lead-frame packaging (MLP) material, wafer level packaging (WLP) material, chip scale packaging (CSP) material, or other materials and combinations thereof. Of course, there can be other variations, modifications, and alternatives.
The above sequence of processes provides a fabrication method for forming an integrated MEMS device according to an embodiment of the present invention. As shown, the method uses a combination of steps including providing a substrate, forming support structure(s) overlying insulation and conduction materials over an IC layer, forming MEMS device(s) overlying the support structures, removing the support structures, and forming a cover. Other alternatives can also be provided where steps are added, one or more steps are removed, or one or more steps are provided in a different sequence without departing from the scope of the claims herein. Further details of the present method can be found throughout the present specification.
In an embodiment, substrate 210 can include a buried oxide (BOX) layer. In a specific embodiment, substrate 210 can include an epitaxial (EPI) layer. Substrate 210 can also be a silicon substrate. In further embodiments, substrate 210 can include a silicon, single crystal silicon, or polycrystalline silicon material. Substrate 210 can also be a substrate-on-insulator or substrate 210 can have micro lead-frame packaging (MLP) materials, wafer level packaging (WLP) materials, or chip scale packaging (CSP) materials. Those skilled in the art will recognize other variations, modifications, and alternatives.
Integrated circuit (IC) layer 220 can be formed overlying at least one portion of the surface region. IC layer 220 can have an IC surface region. In a specific embodiment, IC layer 220 can be a CMOS layer having a CMOS surface region. The CMOS layer can include one or more CMOS IC devices, which can be formed overlying the substrate. In further embodiments, additional transistors, metal layers, and structures can be added. The fabrication of the one or more CMOS IC devices can be done through foundry-compatible processes. Of course, there can be other variations, modifications, and alternatives.
In an embodiment, insulation material(s) 230 can include dielectric material(s), such as a silicon dioxide material, or oxide material, or other material and combination thereof. The dielectric material(s) can have one or more patterned regions. In a specific embodiment, insulation material(s) 230 can include a first dielectric material and can be formed overlying at least one portion the IC surface region. In various embodiments, conduction material(s) 240 can be formed overlying at least one portion of the IC surface region. Conduction material(s) 240 can include a metal, metal alloy, or other conductive material or combination thereof. In a specific embodiment, conduction material(s) 240 can include metal layers coupled to one or more portions of IC layer 220. As stated previously, there can be other variations, modifications, and alternatives.
In an embodiment, a method for forming support structure(s) 250 can include forming a second dielectric material overlying the insulation and conduction surface regions and removing at least a portion of the second dielectric material. Support structure(s) 250 can be patterned from the second dielectric material via a wet etching, dry etching, or mechanical process. The second dielectric material can include an oxide, silicon dioxide, or other material and combination thereof. In various embodiments, support structure(s) 250 can include oxide retainer(s), small patterned support(s), or bond support(s). Of course, there can be other variations, modifications, and alternatives.
In an embodiment, the MEMS device(s) can be formed overlying at least one portion of the conduction and insulation surface regions, as well as the support structure(s). In an embodiment, the formation of the MEMS device(s) can begin with the formation of at least one MEMS layer 260. MEMS layer(s) 260 can include silicon, metals, dielectrics, and other materials and combinations thereof. MEMS layer(s) 260 can then be bonded to at least one portion of dielectric material(s) 230. Once MEMS layer(s) 260 are bonded, MEMS layer(s) 260 can be patterned to form MEMS device(s). In a specific embodiment, the MEMS device(s) can be formed by a wet etching, dry etching, or mechanical process. In various embodiments, the MEMS device(s) can include MEMS sensor(s), MEMS actuator(s), or other MEMS structure (s) and combinations thereof. The MEMS device(s) can be supported by the support structure(s) to protect against undesirable stress during wafer bonding or other fabrication processes. One or more via structures 270 can also be formed to coupled the MEMS device(s) to the conduction material(s) or the IC layer. Again, there can be other variations, modifications, and alternatives.
In various embodiments, cover material 280 can include micro lead-frame packaging (MLP) material, wafer level packaging (WLP) material, chip scale packaging (CSP) material, or other materials and combinations thereof. Of course, there can be other variations, modifications, and alternatives.
It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.
In various embodiments, computing device 1200 may be a hand-held computing device (e.g. Apple iPad, Apple iTouch, Dell Mini slate, Lenovo Skylight/IdeaPad, Asus EEE series, Microsoft Courier, Notion Ink Adam), a portable telephone (e.g. Apple iPhone, Motorola Droid, Google Nexus One, HTC Incredible/EVO 4G, Palm Pre series, Nokia N900), a portable computer (e.g. netbook, laptop), a media player (e.g. Microsoft Zune, Apple iPod), a reading device (e.g. Amazon Kindle, Barnes and Noble Nook), or the like.
Typically, computing device 1200 may include one or more processors 1210. Such processors 1210 may also be termed application processors, and may include a processor core, a video/graphics core, and other cores. Processors 1210 may be a processor from Apple (A4), Intel (Atom), NVidia (Tegra 2), Marvell (Armada), Qualcomm (Snapdragon), Samsung, TI (OMAP), or the like. In various embodiments, the processor core may be an Intel processor, an ARM Holdings processor such as the Cortex-A, -M, -R or ARM series processors, or the like. Further, in various embodiments, the video/graphics core may be an Imagination Technologies processor PowerVR-SGX, -MBX, -VGX graphics, an Nvidia graphics processor (e.g. GeForce), or the like. Other processing capability may include audio processors, interface controllers, and the like. It is contemplated that other existing and/or later-developed processors may be used in various embodiments of the present invention.
In various embodiments, memory 1220 may include different types of memory (including memory controllers), such as flash memory (e.g. NOR, NAND), pseudo SRAM, DDR SDRAM, or the like. Memory 1220 may be fixed within computing device 1200 or removable (e.g. SD, SDHC, MMC, MINI SD, MICRO SD, CF, SIM). The above are examples of computer readable tangible media that may be used to store embodiments of the present invention, such as computer-executable software code (e.g. firmware, application programs), application data, operating system data or the like. It is contemplated that other existing and/or later-developed memory and memory technology may be used in various embodiments of the present invention.
In various embodiments, touch screen display 1230 and driver 1240 may be based upon a variety of later-developed or current touch screen technology including resistive displays, capacitive displays, optical sensor displays, electromagnetic resonance, or the like. Additionally, touch screen display 1230 may include single touch or multiple-touch sensing capability. Any later-developed or conventional output display technology may be used for the output display, such as TFT-LCD, OLED, Plasma, trans-reflective (Pixel Qi), electronic ink (e.g. electrophoretic, electrowetting, interferometric modulating). In various embodiments, the resolution of such displays and the resolution of such touch sensors may be set based upon engineering or non-engineering factors (e.g. sales, marketing). In some embodiments of the present invention, a display output port, such as an HDMI-based port or DVI-based port may also be included.
In some embodiments of the present invention, image capture device 1250 may include a sensor, driver, lens and the like. The sensor may be based upon any later-developed or convention sensor technology, such as CMOS, CCD, or the like. In various embodiments of the present invention, image recognition software programs are provided to process the image data. For example, such software may provide functionality such as: facial recognition, head tracking, camera parameter control, or the like.
In various embodiments, audio input/output 1260 may include conventional microphone(s)/speakers. In some embodiments of the present invention, three-wire or four-wire audio connector ports are included to enable the user to use an external audio device such as external speakers, headphones or combination headphone/microphones. In various embodiments, voice processing and/or recognition software may be provided to applications processor 1210 to enable the user to operate computing device 1200 by stating voice commands. Additionally, a speech engine may be provided in various embodiments to enable computing device 1100 to provide audio status messages, audio response messages, or the like.
In various embodiments, wired interface 1270 may be used to provide data transfers between computing device 1200 and an external source, such as a computer, a remote server, a storage network, another computing device 1200, or the like. Such data may include application data, operating system data, firmware, or the like. Embodiments may include any later-developed or conventional physical interface/protocol, such as: USB 2.0, 3.0, micro USB, mini USB, Firewire, Apple iPod connector, Ethernet, POTS, or the like. Additionally, software that enables communications over such networks is typically provided.
In various embodiments, a wireless interface 1280 may also be provided to provide wireless data transfers between computing device 1200 and external sources, such as computers, storage networks, headphones, microphones, cameras, or the like. As illustrated in
GPS receiving capability may also be included in various embodiments of the present invention, however is not required. As illustrated in
Additional wireless communications may be provided via RF interfaces 1290 and drivers 1300 in various embodiments. In various embodiments, RF interfaces 1290 may support any future-developed or conventional radio frequency communications protocol, such as CDMA-based protocols (e.g. WCDMA), GSM-based protocols, HSUPA-based protocols, or the like. In the embodiments illustrated, driver 1300 is illustrated as being distinct from applications processor 1210. However, in some embodiments, these functionality are provided upon a single IC package, for example the Marvel PXA330 processor, and the like. It is contemplated that some embodiments of computing device 1200 need not include the RF functionality provided by RF interface 1290 and driver 1300.
In various embodiments, any number of future developed or current operating systems may be supported, such as iPhone OS (e.g. iOS), WindowsMobile (e.g. 7), Google Android (e.g. 2.2), Symbian, or the like. In various embodiments of the present invention, the operating system may be a multi-threaded multi-tasking operating system. Accordingly, inputs and/or outputs from and to touch screen display 1230 and driver 1240 and inputs/or outputs to physical sensors 1310 may be processed in parallel processing threads. In other embodiments, such events or outputs may be processed serially, or the like. Inputs and outputs from other functional blocks may also be processed in parallel or serially, in other embodiments of the present invention, such as image acquisition device 1250 and physical sensors 1310.
It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3614677 | Wilfinger | Oct 1971 | A |
4954698 | Yasunaga et al. | Sep 1990 | A |
5140745 | McKenzie | Aug 1992 | A |
5157841 | Dinsmore | Oct 1992 | A |
5173597 | Anglin | Dec 1992 | A |
5493769 | Sakai et al. | Feb 1996 | A |
5610414 | Yoneda et al. | Mar 1997 | A |
5668033 | Ohara | Sep 1997 | A |
5729074 | Shiomi et al. | Mar 1998 | A |
6046409 | Ishii et al. | Apr 2000 | A |
6076731 | Terrell | Jun 2000 | A |
6115261 | Platt et al. | Sep 2000 | A |
6188322 | Yao | Feb 2001 | B1 |
6263736 | Thundat et al. | Jul 2001 | B1 |
6278178 | Kwon et al. | Aug 2001 | B1 |
6480699 | Lovoi | Nov 2002 | B1 |
6483172 | Cote | Nov 2002 | B1 |
6485273 | Goodwin-Johansson | Nov 2002 | B1 |
6534726 | Okada et al. | Mar 2003 | B1 |
6753664 | Neufeld et al. | Jun 2004 | B2 |
6855572 | Jeun et al. | Feb 2005 | B2 |
6912336 | Ishii | Jun 2005 | B2 |
6933165 | Musolf et al. | Aug 2005 | B2 |
6979872 | Borwick | Dec 2005 | B2 |
7019434 | Helmbrecht | Mar 2006 | B2 |
7095226 | Wan et al. | Aug 2006 | B2 |
7145555 | Taylor et al. | Dec 2006 | B2 |
7153717 | Carley et al. | Dec 2006 | B2 |
7183630 | Fogelson et al. | Feb 2007 | B1 |
7195945 | Edelstein et al. | Mar 2007 | B1 |
7239000 | Witcraft | Jul 2007 | B2 |
7253079 | Hanson et al. | Aug 2007 | B2 |
7258009 | Imai | Aug 2007 | B2 |
7370530 | DCamp et al. | May 2008 | B2 |
7391091 | Tondra | Jun 2008 | B2 |
7402449 | Fukuda et al. | Jul 2008 | B2 |
7430674 | Van Mueller et al. | Sep 2008 | B2 |
7453269 | Won et al. | Nov 2008 | B2 |
7454705 | Cadez et al. | Nov 2008 | B2 |
7456042 | Stark | Nov 2008 | B2 |
7493496 | Smith et al. | Feb 2009 | B2 |
7498715 | Yang | Mar 2009 | B2 |
7511379 | Flint | Mar 2009 | B1 |
7521783 | Tsai et al. | Apr 2009 | B2 |
7536909 | Zhao et al. | May 2009 | B2 |
7676340 | Yasui | Mar 2010 | B2 |
7690255 | Gogoi et al. | Apr 2010 | B2 |
7708189 | Cipriano | May 2010 | B1 |
7713785 | Flint | May 2010 | B1 |
7779689 | Li et al. | Aug 2010 | B2 |
7814791 | Andersson et al. | Oct 2010 | B2 |
7814792 | Tateyama et al. | Oct 2010 | B2 |
7814793 | Sato | Oct 2010 | B2 |
7861422 | MacDonald | Jan 2011 | B2 |
7891103 | Mayor | Feb 2011 | B2 |
8011577 | Mullen et al. | Sep 2011 | B2 |
8016191 | Bonalle et al. | Sep 2011 | B2 |
8025365 | McAvoy et al. | Sep 2011 | B2 |
8037758 | Sato | Oct 2011 | B2 |
8056412 | Rutkiewicz et al. | Nov 2011 | B2 |
8061049 | Mayor | Nov 2011 | B2 |
8070055 | Block et al. | Dec 2011 | B2 |
8087296 | Ueda et al. | Jan 2012 | B2 |
8148808 | Braden et al. | Apr 2012 | B2 |
8165323 | Zhou | Apr 2012 | B2 |
8181874 | Wan et al. | May 2012 | B1 |
8227285 | Yang | Jul 2012 | B1 |
8236577 | Hsu | Aug 2012 | B1 |
8245923 | Merrill et al. | Aug 2012 | B1 |
8250921 | Nasiri et al. | Aug 2012 | B2 |
8259311 | Petschko | Sep 2012 | B2 |
8324047 | Yang | Dec 2012 | B1 |
8342021 | Oshio | Jan 2013 | B2 |
8367522 | Yang | Feb 2013 | B1 |
8395252 | Yang | Mar 2013 | B1 |
8395381 | Lo et al. | Mar 2013 | B2 |
8402666 | Hsu et al. | Mar 2013 | B1 |
8407905 | Hsu et al. | Apr 2013 | B1 |
8421082 | Yang | Apr 2013 | B1 |
8476084 | Yang et al. | Jul 2013 | B1 |
8476129 | Jensen et al. | Jul 2013 | B1 |
8477473 | Koury et al. | Jul 2013 | B1 |
8486723 | Wan et al. | Jul 2013 | B1 |
20010053565 | Khoury | Dec 2001 | A1 |
20020072163 | Wong et al. | Jun 2002 | A1 |
20020134837 | Kishon | Sep 2002 | A1 |
20030058069 | Schwartz et al. | Mar 2003 | A1 |
20030095115 | Brian et al. | May 2003 | A1 |
20030184189 | Sinclair | Oct 2003 | A1 |
20040002808 | Hashimoto et al. | Jan 2004 | A1 |
20040016995 | Kuo et al. | Jan 2004 | A1 |
20040017644 | Goodwin-Johansson | Jan 2004 | A1 |
20040056742 | Dabbaj | Mar 2004 | A1 |
20040063325 | Urano et al. | Apr 2004 | A1 |
20040104268 | Bailey | Jun 2004 | A1 |
20040113246 | Boon | Jun 2004 | A1 |
20040119836 | Kitaguchi et al. | Jun 2004 | A1 |
20040140962 | Wang et al. | Jul 2004 | A1 |
20040177045 | Brown | Sep 2004 | A1 |
20040207035 | Witcraft et al. | Oct 2004 | A1 |
20040227201 | Borwick et al. | Nov 2004 | A1 |
20050074147 | Smith et al. | Apr 2005 | A1 |
20050174338 | Ing | Aug 2005 | A1 |
20050247787 | Von Mueller et al. | Nov 2005 | A1 |
20060049826 | Daneman et al. | Mar 2006 | A1 |
20060081954 | Tondra et al. | Apr 2006 | A1 |
20060141786 | Boezen et al. | Jun 2006 | A1 |
20060168832 | Yasui et al. | Aug 2006 | A1 |
20060192465 | Kornbluh et al. | Aug 2006 | A1 |
20060208326 | Nasiri et al. | Sep 2006 | A1 |
20060211044 | Green | Sep 2006 | A1 |
20060238621 | Okubo et al. | Oct 2006 | A1 |
20060243049 | Ohta et al. | Nov 2006 | A1 |
20060274399 | Yang | Dec 2006 | A1 |
20070132733 | Ram | Jun 2007 | A1 |
20070152976 | Townsend et al. | Jul 2007 | A1 |
20070181962 | Partridge et al. | Aug 2007 | A1 |
20070200564 | Motz et al. | Aug 2007 | A1 |
20070281379 | Stark et al. | Dec 2007 | A1 |
20080014682 | Yang et al. | Jan 2008 | A1 |
20080066547 | Tanaka et al. | Mar 2008 | A1 |
20080110259 | Takeno | May 2008 | A1 |
20080119000 | Yeh et al. | May 2008 | A1 |
20080123242 | Zhou | May 2008 | A1 |
20080210007 | Yamaji et al. | Sep 2008 | A1 |
20080211043 | Chen | Sep 2008 | A1 |
20080211113 | Chua et al. | Sep 2008 | A1 |
20080277747 | Ahmad | Nov 2008 | A1 |
20080283991 | Reinert | Nov 2008 | A1 |
20090007661 | Nasiri et al. | Jan 2009 | A1 |
20090049911 | Fukuda et al. | Feb 2009 | A1 |
20090108440 | Meyer et al. | Apr 2009 | A1 |
20090115412 | Fuse | May 2009 | A1 |
20090153500 | Cho et al. | Jun 2009 | A1 |
20090262074 | Nasiri et al. | Oct 2009 | A1 |
20090267906 | Schroderus | Oct 2009 | A1 |
20090321510 | Day et al. | Dec 2009 | A1 |
20100044121 | Simon et al. | Feb 2010 | A1 |
20100071467 | Nasiri et al. | Mar 2010 | A1 |
20100075481 | Yang | Mar 2010 | A1 |
20100083756 | Merz et al. | Apr 2010 | A1 |
20100109102 | Chen et al. | May 2010 | A1 |
20100208118 | Ueyama | Aug 2010 | A1 |
20100236327 | Mao | Sep 2010 | A1 |
20100248662 | Sheynblat et al. | Sep 2010 | A1 |
20100260388 | Garrett et al. | Oct 2010 | A1 |
20100302199 | Taylor et al. | Dec 2010 | A1 |
20100306117 | Terayoko | Dec 2010 | A1 |
20100307016 | Mayor et al. | Dec 2010 | A1 |
20100312519 | Huang et al. | Dec 2010 | A1 |
20110131825 | Mayor et al. | Jun 2011 | A1 |
20110146401 | Inaguma et al. | Jun 2011 | A1 |
20110154905 | Hsu | Jun 2011 | A1 |
20110172918 | Tome | Jul 2011 | A1 |
20110183456 | Hsieh et al. | Jul 2011 | A1 |
20110198395 | Chen | Aug 2011 | A1 |
20110265574 | Yang | Nov 2011 | A1 |
20110266340 | Block et al. | Nov 2011 | A9 |
20110312349 | Forutanpour et al. | Dec 2011 | A1 |
20120007597 | Seeger et al. | Jan 2012 | A1 |
20120007598 | Lo et al. | Jan 2012 | A1 |
20120215475 | Rutledge et al. | Aug 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
61367032 | Jul 2010 | US |