This application claims the benefit of priority of Japanese Patent Application Number 2016-004739 filed on Jan. 13, 2016, the entire content of which is hereby incorporated by reference.
1. Technical Field
The present disclosure relates to a package which houses a semiconductor element, and particularly to a physical quantity sensor for use in attitude control, a navigation system, etc., for mobile objects such as aircrafts, vehicles, etc.
2. Description of the Related Art
Conventionally known such packages include packages used for physical quantity sensors such as a gyroscope. Conventional packages have a configuration as illustrated in
As illustrated in
Case 2 includes power electrode 3, output electrode 4, and a ground (GND) electrode (not illustrated), on an outer bottom surface. Power electrode 3, output electrode 4, and the GND electrode (not illustrated) are electrically connected to IC 1 and the detection element (not illustrated) via wiring conductor 5 and lead 6. In addition, metallization layer 7 is disposed on an upper surface of case 2.
Metal frame 8 is disposed on metallization layer 7. Metal frame 8 is made of, for example, an alloy of Fe, Ni, and Co, and is brazed to metallization layer 7. Lid 9 is disposed on metal frame 8. Lid 9 is made of, for example, an alloy of Fe, Ni, and Co, and is joined to metal frame 8 by brazing, for example. As illustrated in
Bent portion 10 is formed in lid 9. Bent portion 10 has a shape curved to protrude downward, and is formed in a more interior position on lid 9 than joint portion 11 between metal frame 8 and lid 9, and along joint portion 11 to extend over the whole circumference of lid 9.
The following describes, in particular, a method of attaching lid 9 to case 2 of the conventional package configured as described above.
First, Joule heat is generated by supplying current via metal frame 8 to lid 9 disposed in an opening of case 2, and a connecting portion of lid 9 made of the alloy of Fe, Ni, and Co is heated to the melting point of 1449 degrees Celsius to be melted. Next, lid 9 is pressed toward case 2 to connect case 2 and lid 9 with each other. At this time, the temperature of lid 9 as a whole increases to approximately 700 degrees Celsius on average.
Subsequently, lid 9 shrinks when the temperature of the package decreases to room temperature. At this time, there are instances where a crack appears in the outer surface of case 2 due to tensile stress applied to the outer surface of case 2 as a result of shrinking of lid 9.
For that reason, the conventional package has bent portion 10 in lid 9. In this manner, even if lid 9 shrinks, bent portion 10 bends to reduce the tensile stress applied to the outer surface of case 2, and thus it is possible to suppress cracking in the outer surface of case 2.
Bent portion 10, as described above, is formed in a more interior position on lid 9 than joint portion 11 between metal frame 8 and lid 9, and along joint portion 11 to extend over the whole circumference of lid 9. For this reason, in lid 9 having a square shape in a top view, it is possible to uniformly reduce the tensile stress that is generated in four sides of lid 9.
For example, Japanese Unexamined Patent Application Publication No. 2006-332599 is known as information on background art documents related to the disclosure of this application.
However, in the case where lid 9 of the above-described conventional package has a rectangular shape in a top view, when bent portion 10 is formed in a more interior position on lid 9 than joint portion 11 between case 2 (metal frame 8) and lid 9, and along joint portion 11 to extend over the whole circumference of lid 9, the tensile stress applied to short-side areas of lid 9 is significantly reduced due to bent portion 10 formed in the short-side areas of lid 9. As a result, von Mises stress that is represented by a scalar value increases. Accordingly, stress concentrates approximately at the center portions of longitudinal-side areas of the outer surface of case 2 which correspond to longitudinal-side areas of lid 9, posing a problem that it is difficult to suppress cracking in the outer surface of case 2.
The present disclosure provides a solution to the problems described above. One non-limiting and explanatory embodiment provides a package capable of suppressing cracking in the outer surface of a case, even when a lid has a rectangular shape in a top view.
In order to achieve the above-described object, the present disclosure has a configuration as described below.
According to an aspect of a package of the present disclosure, the package includes: a semiconductor element; a case which has an opening, and houses the semiconductor element; and a lid which has a rectangular parallelepiped shape, and occludes the opening of the case. In the package, the lid is joined to an end portion of the opening of the case, and the lid includes: a bent portion formed in a more interior position on the lid than a joint portion corresponding to a longitudinal side and along the joint portion corresponding to the longitudinal side, in a top view, among sides of the lid which are joined to the case; and a flat portion which does not include a bent portion formed in a more interior position on the lid than a joint portion corresponding to a short side and along the joint portion corresponding to the short side, in the top view, among the sides of the lid which are joined to the case.
In addition, according to another aspect of the package of the present disclosure, the package includes: a semiconductor element; a case which has an opening, and houses the semiconductor element; and a lid which has a rectangular parallelepiped shape, and occludes the opening of the case. In the package, the lid is joined to an end portion of the opening of the case, and the lid includes: a longitudinal-side bent portion formed in a more interior position on the lid than a joint portion corresponding to a longitudinal side and along the joint portion corresponding to the longitudinal side, in a top view, among sides of the lid which are joined to the case; a short-side bent portion formed along a joint portion corresponding to a short side; and a spacing portion between the longitudinal-side bent portion and the short-side bent portion, for spacing the longitudinal-side bent portion and the short-side bent portion.
According to the present disclosure, it is possible to suppress cracking in an outer surface of a case even when a lid has a rectangular shape in a top view.
These and other objects, advantages and features of the disclosure will become apparent from the following description thereof taken in conjunction with the accompanying drawings that illustrate a specific embodiment of the present disclosure.
Hereinafter, an embodiment of the present disclosure shall be described with reference to the drawings. It should be noted that the subsequently-described embodiment shows a specific example of the present disclosure. Thus, the numerical values, shapes, materials, structural components, the disposition and connection of the structural components, and others described in the following embodiment are mere examples, and do not intend to limit the present disclosure. Furthermore, among the structural components in the following embodiment, components not recited in the independent claim which indicates the broadest concept of the present disclosure are described as arbitrary structural components.
In addition, each of the diagrams is a pattern diagram and thus is not necessarily strictly illustrated. In each of the diagrams, substantially the same structural components are assigned with the same reference signs, and redundant descriptions will be omitted or simplified. Furthermore, axis X, axis Y, and axis Z represent three axes of a three-dimensional orthogonal coordinate system in the Description and Drawings of the present application.
First, a configuration of package 100 according to the embodiment of the present disclosure shall be described with reference to
Package 100 is a semiconductor element housing package for housing a semiconductor element. As illustrated in
As illustrated in
In addition, as illustrated in
Furthermore, as illustrated in
The pair of first drive electrodes 65 is located in an inner position of approximately the center of an upper surface of detection element 61, and disposed on an upper surface of piezoelectric layer 64 as illustrated in
Case 70 is a casing body made of, for example, a ceramic, and houses detection element 61 and IC 88. Case 70 has a substantially rectangular parallelepiped shape and has an opening of a substantially rectangular shape. In a top view, case 70 has a substantially rectangular shape. Case 70 has an inner bottom surface, inner side surfaces, and an outer bottom surface, which have a layered structure including a ceramic and a wiring conductor. As illustrated in
As illustrated in
As illustrated in
Each of first drive electrodes 65, second drive electrodes 66, detection electrodes 67, and GND electrode 69 of detection element 61 is electrically connected to a corresponding one of terminals 81 via wire 85 as illustrated in
As illustrated in
As illustrated in
IC 88 illustrated in
Lid 89 is a lid member made of a metal such as kovar. Lid 89 occludes the opening of case 70. Lid 89 has a plate-like rectangular parallelepiped shape, and substantially rectangle in a plan view as illustrated in
Lid 89 is joined to an end portion of the opening of case 70. As illustrated in
Since lid 89 is joined to metal frame 79 according to the embodiment, joint portion 90 is a portion of the surface of lid 89 for joining to metal frame 79, and lid 89 is joined at joint portion 79a of metal frame 79. According to the present embodiment, joint portion 90 of lid 89 and joint portion 79a of metal frame 79 are matched. Lid 89 and metal frame 79 can be joined by, for example, welding such as seam welding. It is possible to easily assemble package 100 by joining lid 89 and metal frame 79 using seam welding.
As illustrated in
In addition, as illustrated in
In addition, lid 89 includes a flat portion which does not include a bent portion formed in a more interior position on lid 89 than joint portion 90 corresponding to a short side and along joint portion 90 corresponding to the short side, in the top view, among the sides of lid 89 which are joined to case 70 (metal frame 79 according to the embodiment).
According to the embodiment, bent portion 91 is formed in a more interior position on lid 89 than joint portion 90 corresponding to a longitudinal side and along joint portion 90 corresponding to the longitudinal side, in the top view, among the sides of lid 89 which are joined to case 70. In other words, bent portion 91 is formed in a more interior position on lid 89 than joint portion 90 corresponding to only the longitudinal side, and a bent portion is not formed in a more interior position on lid 89 than joint portion 90 corresponding to the short side. Accordingly, only the flat portion is included in the more interior position on lid 89 than joint portion 90 corresponding to the short side.
The following describes, using
First, base 62 made of Si is prepared in advance as illustrated in
Then, mid-formation electrode 65a made of an alloy thin film of Ti and Au is formed by vapor deposition on an upper surface of piezoelectric layer 64 as illustrated in
Next, although not illustrated, a voltage is applied to common GND electrode 63, and first drive electrode 65, second drive electrode 66, detection electrode 67, monitor electrode 68, and GND electrode 69 are grounded, thereby polarizing piezoelectric layer 64.
Next, an unnecessary portion is removed from base material 62, thereby forming individual detection element 61 as illustrated in
Next, as illustrated in
Next, power electrode 76, GND electrode 77, and output electrode 78 each made of Ag are disposed on the bottom surface of multi-layer circuit board 72.
Next, IC 88 is mounted on the upper surface of multi-layer circuit board 72 of case 70, and then IC 88 and multi-layer circuit board 72 are electrically connected to each other.
Next, acceleration sensor element 87 is mounted on the upper surface of multi-layer circuit board 72 of case 70 to be in parallel with IC 88, and then acceleration sensor element 87 and each of terminal electrodes 75 included in case 70 are electrically connected by wire bonding to each other via wire line 85 made of aluminum.
Next, subsequent to mounting the eight terminals 81 on mount component 80 by insert molding in advance, a bottom surface of support portion 61c included in detection element 61 is fixed to mount component 80. Then, first drive electrodes 65, second drive electrodes 66, detection electrodes 67, monitor electrode 68, and GND electrode 69 which are disposed on the upper surface of detection element 61 are each electrically connected by wire bonding to a corresponding one of terminals 81 via wire line made of aluminum.
Next, subsequent to soldering the eight terminals 81 to terminal electrodes 75 included in case 70, terminals 81 are buried in case 70 by covering terminals 81 by reinforcement member 86 made of resin.
Next, bent portion 92 is formed by deep drawing in a more interior position on lid 89 than joint portion 90 corresponding to only the longitudinal side of lid 89 made of metal which is prepared in advance.
Lastly, metal frame 79 included in case 70 and lid 89 are fixed by joining lid 89 by seam welding to the opening of case 70 in a nitrogen atmosphere.
The following describes a state in which lid 89 having a rectangular shape in a top view as in the present embodiment shrinks due to the seam welding at this time.
When joining lid 89 and metal frame 79 by the seam welding, Joule heat is generated by supplying current to lid 89, and the connecting portion of lid 89 made of the alloy of Fe, Ni, and Co and metal frame 79 is heated to the melting point of 1449 degrees Celsius to be melted. Lid 89 is pressed toward case 70 while the connecting portion is melted, thereby connecting case 70 and lid 89 with each other. In this manner, it is possible to assemble package 100. At this time, the temperature of lid 89 as a whole increases to approximately 700 degrees Celsius on average.
Subsequently, lid 89 shrinks when the temperature of package 100 decreases to room temperature. At this time, since tensile stress is applied by lid 89 to the outer surface of case 70, there is a possibility of cracking in the outer surface of case 70 unless bent portion 92 is formed in a position corresponding to only the longitudinal side of lid 89.
Here, when the tensile stress applied to longitudinal-side area of lid 89 is σ1 and the tensile stress applied to short-side area of lid 89 is σ2 as illustrated in
For that reason, the von Mises stress σe represented by the expression below is σe=4.75×108 [Pa] in the case where bent portion 92 is not formed.
σe=√{square root over (σ12−σ1×σ2+σ22)} [Math. 1]
Where
σe: the Von Mises stress applied to the longitudinal side of the lid (Mpa)
σ1: the tensile stress applied to the longitudinal side of the lid (Mpa)
σ2: the tensile stress applied to the short side of the lid (Mpa)
In view of the above, as illustrated in
When σ1 and σ2 generated in lid 89X illustrated in
More specifically, when lid 89X has a rectangular shape in a top view, the Von Mises stress σe that is represented by a scalar value increases as a result of forming bent portion 92 in a shape of a frame to extend over the whole circumference of joint portion 90, causing an adverse effect on alleviation of stress.
The above-described Von Mises stress σe works as shear forces to side wall 73 of case 70. At this time, the tensile stress is 7.55×107 [Pa] as a result of calculating the tensile stress applied to side wall 73 of case 70 by simulation.
In contrast, in package 100 according to the embodiment as illustrated in
Here, in the same manner as above, when the tensile stress applied to the longitudinal-side area of lid 89 is σ1 and the tensile stress applied to the short-side area of lid 89 is σ2 as illustrated in
This means that, since bent portion 91 of lid 89 according to the embodiment does not include short-side bent portion 93 unlike bent portion 92 of lid 89X illustrated in
For that reason, in the case where bent portion 91 is formed for joint portion 90 corresponding to only the longitudinal side as in the present embodiment, the Von Mises stress σe is represented by the above-described expression is σe=4.77×108 [Pa]. Accordingly, the Von Mises stress is significantly reduced compared to the case where bent portion 92 is formed to extend over the whole circumference.
As described above, the Von Mises stress σe generated in lid 89 works as shear forces to side wall 73 of case 70. At this time, the tensile stress applied to side wall 73 of case 70 is 7.09×107 [Pa] as a result of calculating the tensile stress by simulation. Accordingly, the tensile stress is significantly reduced compared to the case where bent portion 92 is formed to extend over the whole circumference.
In other words, in package 100 according to the embodiment, bent portion 91 is formed in a more interior position on lid 89 than joint portion 90 corresponding to only a longitudinal side and along joint portion 90 corresponding to only the longitudinal side, in a top view, among the sides of lid 89 which are joined to metal frame 79. Accordingly, the tensile stress σ2 applied to the short-side area of lid 89 is not significantly reduced.
As a result, the von Mises stress that is represented by a scalar value does not increase, and thus it is possible to suppress concentration of stress to and around the center portion of the longitudinal-side area of the outer surface of case 70 joined to lid 89 via metal frame 79.
The following describes operations of package 100 configured as described above according to the present embodiment.
First, a positive voltage is applied to first arm 61a of detection element 61 having a shape of a tuning fork and first drive electrodes 65 disposed on first arm 61a, and a negative voltage is applied to second drive electrodes 66. This causes piezoelectric layer 64 under first drive electrodes 65 to stretch, and piezoelectric layer 64 under second drive electrodes 66 to shrink. In this manner, first arm 61a and second arm 61b of detection element 61 move outwardly away from each other.
Next, a negative voltage is applied to first arm 61a of detection element 61 having a shape of a tuning fork and first drive electrodes 65 disposed on first arm 61a, and a positive voltage is applied to second drive electrodes 66. This causes piezoelectric layer 64 under first drive electrodes 65 to shrink, and piezoelectric layer 64 under second drive electrodes 66 to stretch. In this manner, first arm 61a and second arm 61b of detection element 61 move inwardly to come close to each other.
More specifically, when an AC voltage is applied to first drive electrodes 65 and second drive electrodes 66 of detection element 61 having a shape of a tuning fork, first arm 61a and second arm 61b of detection element 61 perform bending movement at velocity V at natural frequency in an in-plane direction. During the bending movement in detection element 61, voltages applied to first drive electrodes 65 and second drive electrodes 66 are adjusted so as to maintain an output signal generated from monitor electrode 68 to be constant, thereby controlling the amplitude of the bending vibration.
In the state where first arm 61a and second arm 61b of detection element 61 perform bending movement at natural frequency, when detection element 61 rotates about the central axis (detection axis) of longitudinal direction at an angular velocity ω, the Coriolis force of F=2 mV×ω is generated in first arm 61a and second arm 61b of detection element 61. The Coriolis force causes an output signal corresponding to a charge generated in piezoelectric layer 64 under detection electrodes 67 to be input to IC 88 via detection electrodes 67, wire 85, terminal electrodes 75, and wiring pattern (not illustrated) of case 70. The output signal is subject to waveform processing, and then output from output electrode 78 of case 70 to the outside, as an output signal at an angular velocity.
Although the package according to the present disclosure has been described based on the above-described embodiment, the present disclosure is not limited to the above-described embodiment.
For example, although bent portion 91 which has a linear shape is formed in lid 89 in package 100 according to the above-described embodiment, the shape of the bent portion is not limited to this example. For example, lid 89A including bent portion 94 having a rhomboid shape in a top view as illustrated in
In addition, in the above-described embodiment, bent portion 91 formed along joint portion 90 corresponding to the longitudinal side among the sides of lid 89 which are joined to case 70 is not necessarily limited to bent portion 91 formed in parallel with the longitudinal side of lid 89, and bent portion 91 formed obliquely with respect to the longitudinal side of lid 89 is also capable of producing the same advantageous effect.
In addition, as illustrated in
In addition, although bent portion 91 is formed in proximity to joint portion 90 corresponding to the longitudinal side in package 100 according to the above-described embodiment, the present disclosure is not limited to this example. For example, as illustrated in
In addition, in package 100 according to the above-described embodiment, although bent portion 91 is formed only along joint portion 90 corresponding to the longitudinal side, and a bent portion is not at all formed along joint portion 90 corresponding to the short side in a more interior position on lid 89 than joint portion 90 corresponding to the short side, the present disclosure is not limited to this example. For example, as in the case illustrated in
In the case where short-side bent portion 96 is formed as illustrated in
In addition, spacing portion 97 between longitudinal-side bent portion 95 and short-side bent portion 96 has a greater area in a short-side portion of lid 89C (short-side spacing portion) than in a longitudinal-side portion of lid 89C (longitudinal-side spacing portion). With the-above described configuration, tensile stress applied to the short-side areas of lid 89C is prevented from being significantly reduced, and thus it is possible to produce the advantageous effect same as the advantageous effect of package 100 according to the above-described embodiment.
In addition, in package 100 according to the above-described embodiment, bent portion 91 of lid 89 has a recessed shape which is recessed inwardly. However, as illustrated in
In addition, although lid 89 and metal frame 79 are joined by seam welding in package 100 according to the above-described embodiment, the present disclosure is not limited to this example. For example, lid 89 and metal frame 79 may be joined by spot welding or the like.
In addition, although lid 89 and case 70 are joined via metal frame 79 in package 100 according to the above-described embodiment, the present disclosure is not limited to this example. For example, lid 89 and case 79 may be directly joined by plating without using metal frame 79. In addition, lid 89 and case 79 may be joined by metal joining other than plating.
Although only some exemplary embodiments of the present disclosure have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the present disclosure.
The package according to the present disclosure produces an advantageous effect that it is possible to suppress cracking in the outer surface in the longitudinal-side area of the case even when the lid has a rectangular shape in a top view, and is particularly useful as a package used in attitude control, a navigation system, etc., for mobile objects such as aircrafts, vehicles, etc.
Number | Date | Country | Kind |
---|---|---|---|
2016-004739 | Jan 2016 | JP | national |