This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2004-087419, filed Mar. 24, 2004, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a pattern forming method which suppresses occurrence of a defect due to pattern collapse of a resist and a method for manufacturing a semiconductor device using the pattern forming method.
2. Description of the Related Art
In recent years, realization of a fine structure of a pattern has advanced, and a pattern collapse of a resist which occurs in a lithography process has become a serious problem. As main factors of the pattern collapse, there can be considered a surface tension and a flow drag of a rinse agent when drying the rinse agent. Above all things, an influence of the surface tension becomes larger in a fine patterning. According to H. Namatsu et al., Appl. Phys. Lett. 66, 2655 (1955), when drying a rinse agent, a vertical stress σ applied to a resist pattern can be represented as follows:
σ=6γcosθ/D×(H/W)2 (1)
where W is a line width, D is a space width, H is a pattern height, γ is a surface tension of the rinse agent, and θ is an angle formed at an interface between a rinse agent and a resist side wall. As a resolution to the problem, the most effective method is a reduction in film thickness of a resist, but the method is reaching its limit in view of a substrate processing. In recent years, although a three-layered resist process or a hard mask process has been used in order to further reduce the film thickness from the limit, however, the limit still exists in a reduction in the resist film thickness, thus an essential resolution is not achieved.
Further, applications of processes using techniques disclosed in specifications of Japanese Patent No. 2723260, Japanese Patent No. 3057879, Japanese Patent No. 3071401, Japanese Patent No. 3218814, Japanese Patent No. 3476080, Japanese Patent No. 3476081, and Japanese Patent No. 3476082 (which will be collectively referred to as a shrink process hereinafter) has been spreading. The process is mainly used for a layer having a hole pattern which is hard to secure a lithography margin. A flow of the shrink process is generally as follows. After a resist pattern is formed, a solution containing a pattern shrink material is coated. Subsequently, a reaction layer is formed on a resist pattern surface. The reaction layer is, e.g., a mixed layer, a bridging layer, a coating layer or the like, and it differs depending on type of the pattern shrink materials. At last, an unreacted layer is removed, thereby obtaining a hole or space pattern smaller than the original pattern. However, when a hole pattern and a line-and-space pattern are coexisted, a problem can be occurred. When a ratio of a line width to a space width is desired to be processed close to 1:1 as much as possible after applying the shrink process, the pattern after the lithography must be finished so that the line width is finer than the space width. Modifying Eq. (1) by setting a patch in the line-and-space pattern as P, the following expression can be obtained:
σ=6γcosθ/(P−W)×(H/W)2 (2)
Here, a dependence of the vertical stress a on the line width W can be represented as follows.
∂σ∂W=−6γcosθ×(2PW2−3W2)/(PW2−W3)2 (3)
Therefore, when W=2P/3, i.e., a ratio of the line width to the space width is 2:1, it can be understood that the vertical stress can take a minimal value. That is, in case of the same pitch, pattern collapse is apt to occur in drying the rinse agent as the line is finished to be finer beyond the ratio 2:1. This problem becomes more prominent as the pattern pitch becomes finer and as a degree of shrink in the shrink process becomes larger.
Therefore, there is a need for a pattern forming method which can suppress pattern collapse of a resist pattern and a method for manufacturing a semiconductor device using this pattern forming method.
According to an aspect of the present invention, a pattern forming method comprises: forming a resist film on a substrate; selectively irradiating an energy beam on the resist film in order to form a latent image in the resist film; supplying a developer onto the resist film in order to form a resist pattern from the resist film having the latent image formed therein; supplying a rinse agent onto the substrate in order to replace the developer on the substrate with the rinse agent; supplying an coating film material onto the substrate in order to replace at least a part of the rinse agent on the substrate with the coating film material, wherein the coating film material contains a solvent and a solute different from the resist film; volatilizing the solvent in the coating film material in order to form an coating film covering the resist film on the substrate; removing at least a part of a surface of the coating film in order to expose at least a part of an upper surface of the resist pattern and form a mask pattern comprising the coating film; and processing the substrate using the mask pattern.
According to another aspect of the present invention, a pattern forming method comprises: forming a resist film on a substrate; selectively irradiating an energy beam on the resist film in order to form a latent image in the resist film; supplying a developer onto the resist film in order to form a resist pattern from the resist film having the latent image formed therein; supplying an coating film material onto the resist film in order to replace at least a part of the developer on the resist film with the coating film material, wherein the coating film material contains a solvent and a solute different from the resist film; forming a film which volatilizes the solvent in the coating film material in order to form an coating film covering the resist pattern on the substrate; removing at least a part of a surface of the coating film in order to expose at least a part of an upper surface of the resist pattern and form a mask pattern comprising the coating film; and processing the substrate using the mask pattern.
According to still another aspect of the present invention, a pattern forming method comprises: forming a resist film on a substrate; selectively irradiating an energy beam on the resist film in order to form a latent image in the resist film; supplying a developer onto the resist film in order to form a resist pattern from the resist film having the latent image formed therein; supplying a rinse agent onto the substrate in order to replace the developer on the substrate with the rinse agent; supplying an coating film material onto the substrate in order to replace at least a part of the rinse agent on the substrate with the coating film material, wherein the coating film material contains a solvent and a solute different from the resist film; forming a film which volatilizes the solvent in the coating film forming material in order to form an coating film covering the resist film on the substrate; forming a reaction layer at an interface between the resist film and the coating film; and selectively removing the coating film in order to form a mask pattern in which the resist pattern and the reaction layer are laminated on the substrate.
According to yet another aspect of the present invention, a pattern forming method comprises: forming a resist film on a substrate; selectively irradiating an energy beam on the resist film in order to form a latent image in the resist film; supplying a developer onto the resist film in order to form a resist pattern from the resist film having the latent image formed therein; supplying an coating film material onto the substrate in order to replace at least a part of the developer on the substrate with the coating film material, wherein the coating film material contains a solvent and a solute different from the resist film; forming a film which volatilizes the solvent in the coating film material in order to form an coating film covering the resist film on the substrate; forming a reaction layer at an interface between the resist film and the coating film; and selectively removing the coating film in order to form a mask pattern in which the resist pattern and the reaction layer are laminated on the substrate.
According to further aspect of the present invention, a method for manufacturing a semiconductor device comprises: forming a mask pattern on a semiconductor substrate which is in a process of manufacturing a semiconductor device; and processing the semiconductor substrate with the mask pattern being used as a mask; the forming the mask pattern comprises, forming a resist film on the semiconductor substrate, selectively irradiating an energy beam on the resist film in order to form a latent image in the resist film, supplying a developer onto the resist film in order to form a resist pattern from the resist film having the latent image formed therein, supplying a liquid agent which stops a development onto the semiconductor substrate in order to replace at least a part of the developer on the semiconductor substrate with the liquid agent, supplying an coating film material onto the semiconductor substrate and volatilizing the solvent in the coating film material in order to form an coating film covering the resist film on the semiconductor substrate, and removing at least a part of a surface of the coating film in order to expose at least a part of an upper surface of the resist pattern and form a mask pattern comprising the coating film.
According to further aspect of the present invention, a method for manufacturing a semiconductor device comprises: forming a mask pattern on a semiconductor substrate which is in a process of manufacturing a semiconductor device; and processing the semiconductor substrate with the mask pattern being used as a mask; the forming the mask pattern comprises, forming a resist film on the semiconductor substrate, selectively irradiating an energy beam on the resist film in order to form a latent image in the resist film, supplying a developer onto the resist film in order to form a resist pattern from the resist film having the latent image formed therein, supplying a liquid agent which stops a development onto the semiconductor substrate in order to replace at least a part of the developer on the semiconductor substrate with the liquid agent, supplying an coating film material onto the semiconductor substrate and volatilizing the solvent in the coating film material in order to form an coating film covering the resist film on the semiconductor substrate, forming a reaction layer at an interface between the resist film and the coating film, and selectively removing the coating film in order to form a mask pattern in which the resist pattern and the reaction layer are laminated on the semiconductor substrate.
The embodiments of the present invention will be described with reference to the accompanying drawings. Throughout the drawings, corresponding portions are denoted by correspondent reference numerals.
(First Embodiment)
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
A pattern collapse is apt to occur in drying processing. Since the processing of drying the rinse agent 15 is not performed in the embodiment, the pattern collapse can be suppressed. In the embodiment, without performing the drying processing of the rinse agent 15, a processing is performed by replacing the rinse agent 15 with the water-soluble silicone solution 16, forming the water-soluble silicone film 17, forming a pattern on the water-soluble silicone film 17, and selectively removing the resist pattern 13.
In the present embodiment, the description has been given as to the example where the ArF resist film is used as the resist film and the ArF exposure device is used as the exposure device, the embodiment of the present invention is not limited thereto. It can be used a resist film having sensitivity with respect to g-line, i-line, KrF, F2, EUV, an electron beam or others, and an exposure device corresponding to each member.
Furthermore, the rinse agent is replaced with the water-soluble silicone in the embodiment, but replacement may be completely or partially carried out. Moreover, the substrate may be stationary or be spun during the replacement processing.
Additionally, although etching back is performed in the embodiment, it can be used various known techniques, e.g., a use of CMP as disclosed in Jpn. Pat. Appln. KOKAI Publication No. 2000-310863, or a use of wet etching as disclosed in Jpn. Pat. Appln. KOKAI Publication No. 2002-110510. Further, the present invention can be embodied by combining with a technique disclosed in U.S. patent application Ser. No. 10/839,184 filed on May 6, 2004.
It is to be noted that, after supplying the developer 14, the water-soluble silicone solution 16 can be supplied to replace at least a part of the developer 14 with the water-soluble silicone solution 16 without supplying the rinse agent 15.
(Second Embodiment)
A second embodiment according to the present invention will now be described hereinafter with reference to
As shown in
As shown in
As shown in
As shown in
As shown in
The pattern collapse is apt to occur in the processing of drying the rinse agent. Since the processing of drying the rinse agent 25 is not performed in the embodiment, the pattern collapse can be suppressed. In the embodiment, without performing the drying processing of the rinse agent 25, the processing is performed by replacing the rinse agent 25 with the solution 26 to form the coating film for pattern shrink, forming the coating film 27, forming the reaction layer 28, and selectively removing the unreacted coating film 27.
The pattern collapse is apt to occur in the drying processing of the rinse agent when the line is finished to be finer beyond the ratio 2:1 of the line width to the space width. Therefore, it is preferable to apply the pattern forming method according to the embodiment when the line is finer beyond the ratio 2:1 of the line width to the space width.
Although the rinse agent 25 is replaced with the solution 26 in the embodiment, replacement may be completely or partially performed. Moreover, the substrate may be stationary or be spun during the replacement processing.
It is to be noted that, after supplying the developer 24, the solution 26 can be supplied to replace at least a part of the developer 24 with the solution 26 without supplying the rinse agent 25.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general invention concept as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2004-087419 | Mar 2004 | JP | national |