1. Field of the Invention
The present invention relates to a PCB layout structure for suppressing EMI and a method thereof. In particular, this invention relates to a PCB layout structure and a method thereof that has high frequency signals and can suppress EMI.
2. Description of the Related Art
All electronic devices with high frequency signals will generate noise. Electronic noise can be divided into conducting interference and radiating interference. Generally, conducting interference is transmitted by the power wire and interferes with other electronic devices, and radiating interference is transmitted by radiation and interferes with other equipment. Therefore, the national electric equipment safety specification has a rule for regulating the EMI.
As the technology has been developed, electromagnetic interference (EMI) becomes a key issue. When the speed of a semiconductor becomes faster and its density becomes heavy, noise also becomes bigger. For a PCB layout engineer, EMI becomes a serious problem. By using a proper PCB layout technology and a systematic design method, the EMI problem can be overcome.
Currently, a sheltering method is the most popular method to reduce EMI or suppressing EMI. For example, the cable is wrapped with a layer of sheltering screen which grounded, or a metal conducting element is placed around the elements in the housing of the electronic device that emit the electromagnetic wave. Theses methods increase the manufacturing cost of the electronic device, and the electronic device becomes complex.
One particular aspect of the present invention is to provide a PCB layout structure for suppressing EMI and a method thereof that dispose a plurality of electric grids on the signal layer of the PCB to cover the signal lines on the signal layer. The electronic-conducting grids destroy the interference magnetic filed generated by the signal lines so that the area of the magnetic field on the PCB is reduced and the noise radiation is weaken. Thereby, the EMI is suppressed.
The PCB layout structure for suppressing EMI includes a multi-layer PCB, a plurality of electric grids, and a plurality of conductive vias. The multi-layer PCB has a plurality of signal layers and a grounding layer. Each of the signal layers is disposed with a plurality of signal lines. The plurality of electric grids are disposed on each of the signal layers and cover the signal lines on each of the signal layers. The plurality of conductive vias are located on each layer of the multi-layer PCB to electrically connect the grounding layer with the electric grids on each of the signal layers. Thereby, specific electromagnetic waves are shielded by appropriately choosing the dimensions of the electric grids.
The PCB layout method for suppressing EMI is implemented on a multi-layer PCB. The multi-layer PCB has a plurality of signal layers and a grounding layer. The method includes the following steps. Firstly, a plurality of electric grids are formed on each of the signal layers of the PCB, and the electric grids cover the signal lines on each of the signal layers. The size of electric grid depends on the frequency of the electromagnetic waves desired to be shielded. Next, a plurality of conductive vias are formed between the layers of the multi-layer PCB. The conductive vias electrically connect the grounding layer with the electric grids on each of the signal layers to form an enclosed grounding net. Thereby, specific electromagnetic waves are shielded by appropriately choosing the dimensions of the electric grids.
The PCB layout structure for suppressing EMI and a method thereof of the present invention use the electric grid layout to shield electromagnetic waves with a specific frequency. The layout structure and the method thereof of the present invention can reduce the area distributed by the interference magnetic field to weaken the noise radiation to suppress the interference between signals. Furthermore, the density of the conductive vias can be reduced 30˜50% so that the strength of the PCB will not become weak. Moreover, by using the electric grid layout method of the present invention, the electroplate cost is reduced about 25˜30%.
For further understanding of the invention, reference is made to the following detailed description illustrating the embodiments and examples of the invention. The description is only for illustrating the invention and is not intended to limit of the scope of the claim.
The drawings included herein provide a further understanding of the invention. A brief introduction of the drawings is as follows:
Reference is made to
Reference is made to
Reference is made to
Reference is made to
Therefore, the first signal layer 10 and the second signal layer 14 of the multi-layer PCB 1 are disposed with the large area electric grids 102. The large area electric grids 102 fully cover the signal lines 103 of the first signal layer 10 and the second signal layer 14 to shield the electromagnetic noise generated from the signal lines 103. Thereby, the EMI suppressing effect is achieved.
Reference is made to
C=f×λ (1)
In formula (1), C is the velocity of light. f is the frequency of the electromagnetic waves to be shielded. λ is the wavelength of the electromagnetic waves to be shielded. Because the velocity of light C is a constant, the frequency f of the electromagnetic waves to be shielded and their wavelength λ are inversely proportional.
For determining the dimension of grid cell, firstly the frequency f of the electromagnetic waves to be shielded is determined. Next, according to formula (1), the wavelength λ of the electromagnetic waves to be shielded is obtained. The length of grid cell is equal to the wavelength λ of the electromagnetic waves to be shielded divided by n (n is an integer). The length L and the width W of grid cell is calculated by formulas (2) and (3). n is an integer.
L=λ/n (2)
W=λ/n (3)
Reference is made to
The PCB layout structure for suppressing EMI and a method thereof of the present invention use the electric grid layout to shield electromagnetic waves with a specific frequency. The layout structure and method of the present invention can reduce the area distributed by the interference magnetic field to weaken the noise radiation to suppress the interference between signals. Furthermore, the density of the conductive vias 104 can be reduced 30˜50% so that the strength of the PCB will not become weak. Moreover, by using the electric grid 102 layout method of the present invention, the electroplate cost is reduced about 25˜30%.
The description above only illustrates specific embodiments and examples of the invention. The invention should therefore cover various modifications and variations made to the herein-described structure and operations of the invention, provided they fall within the scope of the invention as defined in the following appended claims.