PD-1-specific antisense oligonucleotide and its use in therapy

Information

  • Patent Application
  • 20230183708
  • Publication Number
    20230183708
  • Date Filed
    April 30, 2021
    3 years ago
  • Date Published
    June 15, 2023
    a year ago
Abstract
The present invention refers to an antisense oligonucleotide comprising 10 to 25 nucleotides, wherein at least one of the nucleotides is modified, and the antisense oligonucleotide hybridizes with a nucleic acid sequence of Programmed Cell Death 1 (PD-5 1) of SEQ ID NO.1, wherein the antisense oligonucleotide inhibits at least 30% of the PDl expression in a cell compared to an untreated cell. The invention further refers to a pharmaceutical composition comprising such antisense oligonucleotide as well as the use of the antisense oligonucleotide or the pharmaceutical composition in a method of preventing and/or treating a malignant tumor, a benign tumor and/or an infectious disease. The antisense oligonucleotide or the pharmaceutical composition is alternatively used for reducing expression of PD-1 in an isolated immune cell in preparation for cell therapy.
Description

The present invention refers to an antisense oligonucleotide comprising 10 to 25 nucleotides hybridizing with a nucleic acid sequence of Programmed Cell Death 1 (PD-1) of SEQ ID NO.1, wherein at least one nucleotide is modified, and inhibiting the expression of PD-1. The invention is further directed to a pharmaceutical composition comprising an antisense oligonucleotide of the present invention, wherein the antisense oligonucleotide and the pharmaceutical composition, respectively, is used in a method of preventing and/or treating a malignant tumor, a benign tumor and/or an infectious disease. In addition, the antisense oligonucleotide or the pharmaceutical composition is further used in reducing expression of PD-1 RNA in an isolated immune cell for use in cell therapy.


TECHNICAL BACKGROUND

PD-1 is a type I transmembrane protein preferentially expressed in immune cells such as T, B and NK cells. Programmed cell death 1 ligand 1 (PD-L1) is a member of the B7 family of co-stimulatory/co-inhibitory molecules of antigen presentation expressed by a wide range of cell types, including cancer cells. When engaged to its receptor PD-L1, PD1 strongly interferes with T cell receptor (TCR) signal transduction through several poorly understood molecular mechanisms. PD1 is made of an extracellular immunoglobulin-like binding domain, a transmembrane region and a cytoplasmic domain containing an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). These motifs are implicated in its immunosuppressive effects. Interfering with PD1 signal transduction either by antibody blockade or any other means enhances T cell functions by potentiating signal transduction from the TCR signalosome.


PD-1 (encoded by the PDCD1 gene) plays a particularly important role in the suppression of T cell responses. After activation, the expression of PD-1 is induced on the surface of T cells. Within the framework of an antigen-specific T cell response, various activating factors are phosphorylated by binding the T cell receptor (in the case of CAR, T cells, e.g., a CAR). By binding PD-1 to its ligand PD-L1, this phosphorylation is counteracted, resulting in reduced secretion of cytokines, prevention of cell division and reduced expression of survival factors. This mechanism could lead to exhaustion of the cells and to a reduced therapeutic efficiency in the context of T cell therapies.


In recent years, T cell therapies have proven to be a promising therapeutic option for patients with various diseases, especially in form of chimeric antigen receptor transgenic T cells for the treatment of cancer patients. After activation, e.g. by recognizing a surface structure on cancer cells, T cells highly upregulate the expression of genes that are supposed to limit the activity of the T cells in order to counteract and confine, respectively, an excessive response. In the context of T cell therapies, however, this can lead to the T cells not being sufficiently efficient or their persistence in the patient being reduced so that, for example, the cancer cells cannot be successfully eliminated. One of these genes is PDCD1 which codes for the protein PD-1. The interaction of PD-1 on T cells with its ligand PD-L1 on target cells limits the activity of the T cells.


Potential applications of T cell therapies include treating cancers, autoimmune disease, and infectious disease, or improving a weakened immune system.


The downsides are unsatisfying activities and thus, unsatisfying results of the different cell therapies. Thus, there is an urgent need to develop cell therapies having reduced side effects and increased efficiency.


So far, T cells have been transfected with siRNA, however, T cells are difficult to be transfected and suitable delivery reagents are lacking. One possible transfection method is electroporation, which has though a strong impact on the viability of the cells like delivery reagents. Alternatively, T cells have been treated with self-delivering siRNA (sdRNA) molecules which are complex, strongly modified molecules, whose effectiveness on desired targets is poorly characterized. Negative effects of sdRNA on cell viability have been confirmed.


In another alternative permanent removal of PDCD1 (e.g., via CRISPR/CAS) may be considered, but the permanent knockout of PDCD1 for example in therapeutic T cells bears high risks such as the development of cell tumors. These risks can be avoided by temporary inhibition of the PD-1 expression.


Hence, an antisense oligonucleotide is missing which is highly efficient in reduction and inhibition, respectively, of PD-1 expression. siRNA and sdRNA bear the above mentioned risks of poor efficacy and/or side effects as well as permanent removal of PDCD1.


An antisense oligonucleotide of the present invention is very successful in the inhibition of the expression of PD-1 and overcomes the previously mentioned problems. Moreover, the mode of action of an antisense oligonucleotide differs from the mode of action of an antibody or small molecule, and antisense oligonucleotides are highly advantageous regarding for example

  • (i) the penetration of tumor tissue in solid tumors,
  • (ii) the use in cell therapy including ex vivo treatment of immune cells resulting in non-permanent long-term in vivo effects,
  • (iii) the combination of oligonucleotides with each other or an antibody or a small molecule, and
  • (iv) the inhibition of intracellular effects which are not accessible for an antibody or inhibitable via a small molecule.


SUMMARY OF THE INVENTION

The present invention is directed to an antisense oligonucleotide comprising 10 to 25 nucleotides, wherein at least one of the nucleotides is modified, and the antisense oligonucleotide hybridizes with a nucleic acid sequence of Programmed Cell Death 1 (PD-1) of SEQ ID NO.1 (NG_012110.1:5001-14026 Homo sapiens programmed cell death 1 (PDCD1), RefSeqGene on chromosome 2), wherein the antisense oligonucleotide inhibits at least 30% of the PD1 expression in a cell compared to an untreated cell. The modified nucleotide is for example selected from the group consisting of a bridged nucleic acid such as LNA, cET, ENA, 2′Fluoro modified nucleotide, 2O-Methyl modified nucleotide and a combination thereof. The modified nucleotide(s) is/are for example located at the 5′- or 3′-end, at the 5′- and 3′-end of the oligonucleotide, within the antisense oligonucleotide or a combination thereof.


The antisense oligonucleotide of the present invention hybridizes for example within the region of from position 0 to position 299 of SEQ ID NO.1, within the region of from position 300 to position 599 of SEQ ID NO.1, within the region of from position 600 to position 899 of SEQ ID NO.1, within the region of from position 900 to position 1199 of SEQ ID NO.1, within the region of from position 1200 to position 1499 of SEQ ID NO.1, within the region of from position 1500 to position 1799 of SEQ ID NO.1, within the region of from position 1800 to position 2099 of SEQ ID NO.1, within the region of from position 2100 to position 2399 of SEQ ID NO.1, within the region of from position 2400 to position 2699 of SEQ ID NO.1, within the region of from position 2700 to position 2999 of SEQ ID NO.1, within the region of from position 3000 to position 3299 of SEQ ID NO.1, within the region of from position 3300 to position 3599 of SEQ ID NO.1, within the region of from position 3600 to position 3899 of SEQ ID NO.1, within the region of from position 3900 to position 4199 of SEQ ID NO.1, within the region of from position 4200 to position 4499 of SEQ ID NO.1, within the region of from position 4500 to position 4799 of SEQ ID NO.1, within the region of from position 4800 to position 5099 of SEQ ID NO.1, within the region of from position 5100 to position 5399 of SEQ ID NO.1, within the region of from position 5400 to position 5699 of SEQ ID NO.1, within the region of from position 5700 to position 5999 of SEQ ID NO.1, within the region of from position 6000 to position 6299 of SEQ ID NO.1, within the region of from position 6300 to position 6599 of SEQ ID NO.1, within the region of from position 6600 to position 6899 of SEQ ID NO.1, within the region of from position 6900 to position 7199 of SEQ ID NO.1, within the region of from position 7200 to position 7499 of SEQ ID NO.1, within the region of from position 7500 to position 7799 of SEQ ID NO.1, within the region of from position 7800 to position 8099 of SEQ ID NO.1, within the region of from position 8100 to position 8399 of SEQ ID NO.1, within the region of from position 8400 to position 8699 of SEQ ID NO.1, within the region of from position 8700 to position 8999 of SEQ ID NO.1 or within the region of from position 9000 to position 9299 of SEQ ID NO.1 or a combination thereof.


The antisense oligonucleotide of the present invention comprises for example a sequence selected from the group consisting of SEQ ID NO.22, SEQ ID NO.27, SEQ ID NO.29, SEQ ID NO. 18, SEQ ID NO.20, SEQ ID NO. 16, SEQ ID NO. 14, SEQ ID NO.34, SEQ ID NO.42, SEQ ID NO.20, SEQ ID NO.23, SEQ ID NO.40 and a combination thereof.


The antisense oligonucleotide of the present invention is further selected for example from the group consisting of









+C*+G*+T*C*G*T*A*A*A*G*C*C*A*A*+G*+G*+T (SEQ ID NO.22; A37024HI);


+T*+G*+A*G*A*G*T*C*T*T*G*T*C*C*+G*+G*+C (SEQ ID NO.27; A37030HI);


+C*+G*+A*A*T*G*G*C*G*A*A*C*G*C*+A*+G*+T (SEQ ID NO.29; A37032HI);


+T*+G*+G*A*C*G*G*C*C*T*G*C*A*A*+T*+G*+G (SEQ ID NO.18; A37019HI);


+G*G*+A*A*C*G*C*C*T*G*T*A*C*C*+T*+T (SEQ ID NO.20; A37021HI);


+C*+A*+T*A*C*T*C*C*G*T*C*T*G*C*+T*+C*+A (SEQ ID NO.16; A37017HI);


+C*+T*+T*T*G*A*T*C*T*G*C*G*C*C*+T*+T*+G (SEQ ID NO.14; A37015HI);


+C*G*+G*C*A*T*C*T*C*T*G*A*C*C*G*+T*+G (SEQ ID NO.34; A37037HI);


+C*+G*+A*G*A*T*G*C*C*A*T*G*C*A*+A*+C*+G (SEQ ID NO.42; A37046HI);


+G*G*+A*A*C*G*C*C*T*G*T*A*C*C*+T*+T (SEQ ID NO.20; A37022HI);


+G*+A*+A*C*T*G*T*C*C*T*C*A*C*T*+C*+G*+A (SEQ ID NO.23; A37025HI);


+G*+C*+T*G*A*C*A*A*G*C*G*C*T*C*G*+C*+C (SEQ ID NO.40; A37043HI)






and a combination thereof, wherein + indicates a LNA-modified nucleotide and * indicates phosphorothioate.


The present invention further refers to a pharmaceutical composition comprising an antisense oligonucleotide of the present invention and a pharmaceutically acceptable excipient.


The antisense oligonucleotide and the pharmaceutical composition, respectively, of the present invention are for example for use in T cell therapy. The antisense oligonucleotide or the pharmaceutical composition of the present invention are in further examples for use in a method of preventing and/or treating a malignant tumor, a benign tumor and/or an infectious disease.


The tumor is for example selected from the group consisting of solid tumors, blood born tumors, leukemias, tumor metastasis, hemangiomas, acoustic neuromas, neurofibromas, trachomas, pyogenic granulomas, psoriasis, astrocytoma, blastoma, Ewing’s tumor, craniopharyngioma, ependymoma, medulloblastoma, glioma, hemangioblastoma, Hodgkin’s lymphoma, mesothelioma, neuroblastoma, non-Hodgkin’s lymphoma, pinealoma, retinoblastoma, sarcoma, seminoma, and Wilms’ tumor, bile duct carcinoma, bladder carcinoma, brain tumor, breast cancer, bronchogenic carcinoma, carcinoma of the kidney, cervical cancer, choriocarcinoma, choroid carcinoma, cystadenocarcinoma, embryonal carcinoma, epithelial carcinoma, esophageal cancer, cervical carcinoma, colon carcinoma, colorectal carcinoma, endometrial cancer, gallbladder cancer, gastric cancer, head cancer, liver carcinoma, lung carcinoma, medullary carcinoma, neck cancer, non-small-cell bronchogenic/lung carcinoma, ovarian cancer, pancreas carcinoma, papillary carcinoma, papillary adenocarcinoma, prostate cancer, small intestine carcinoma, prostate carcinoma, rectal cancer, renal cell carcinoma, skin cancer, small-cell bronchogenic/lung carcinoma, squamous cell carcinoma, sebaceous gland carcinoma, testicular carcinoma, uterine cancer or a combination thereof.


The infectious disease is for example selected from the group consisting of a Hepatitis B infection, a Hepatitis A infection, a Cytomegalovirus infection, an Epstein-Barr-Virus infection, an Adenovirus infection or a combination thereof.


The antisense oligonucleotide or the pharmaceutical composition of the present invention is for example used in reducing expression of PD-1 RNA in an isolated immune cell in preparation for cell therapy.


In addition, the present invention refers to a method for reducing expression of PD-1 RNA in an isolated immune cell in preparation for cell therapy, comprising: incubating the isolated immune cell comprising the PD-1 RNA with an antisense oligonucleotide or the pharmaceutical composition of the present invention without use of a transfection means, wherein the antisense oligonucleotide is administered to the isolated immune cell at least once in a time period of day 0 to day 21, the antisense oligonucleotide hybridizes with the PD-1 RNA and reduces the expression of PD-1 (of e.g., RNA), reduces the function and/or activity of PD-1 (of e.g., protein), or a combination thereof up to 8 weeks from day 0 of the incubation with the antisense oligonucleotide. The isolated immune cell is for example genetically modified by a gene transfer technology before or after incubating the immune cell with the antisense oligonucleotide. The genetically modification of the immune cell is for example permanent or transient. The isolated, genetically modified immune cell is for example expanded before or after incubating the immune cell with the antisense oligonucleotide. The immune cell is for example permanently or transiently genetically modified. The immune cell is for example selected from the group consisting of a T cell, a dendritic cell, a natural killer (NK) cell, a peripheral blood mononuclear cell (PBMC), a hematopoietic stem cell, a B cell and a combination thereof.


All documents cited or referenced herein (“herein cited documents”), and all documents cited or referenced in herein cited documents, together with any manufacturer’s instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention.


More specifically, all referenced documents are incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference.





DESCRIPTION OF THE FIGURES


FIG. 1 depicts a schematic of a T cell therapy.



FIGS. 2A and 2B depict efficacy screening of PD-1 ASOs in activated human T cells.



FIG. 3 shows the dose-dependent PD-1 mRNA knockdown by two selected PD-1 ASOs in activated human T cells.



FIGS. 4A to 4C show time-dependency of PD-1 knockdown in activated human T cells after treatment with selected PD-1 ASOs, wherein FIG. 4A refers to PD-1 mRNA expression, FIG. 4B to % PD-1+ cells in Life gate and FIG. 4C to residual % PD-1 cells in Life gate.



FIGS. 5A and 5B depict persistency of PD-1 target knockdown in activated human T cells after ASO treatment, stringent washing and re-stimulation, wherein FIG. 5A shows residual PD-1 mRNA expression and FIG. 5B shows residual % PD-1 cells in Life gate.



FIGS. 6A and 6B show comparison of the effects of a PD-1-specific ASO and a PD-1 specific self-delivering small interfering RNA in activated human T cells, wherein FIG. 6A depicts residual PD-1 mRNA expression and FIG. 6B depicts relative viability as compared to mock-treated cells.





DETAILED DESCRIPTION

The present invention provides for the first time human and murine antisense oligonucleotides which hybridize with a pre-mRNA sequence of Programmed Cell Death 1 (PD-1) of SEQ ID NO.1 (NG_012110.1:5001-14026 Homo sapiens programmed cell death 1 (PDCD1), RefSeqGene on chromosome 2) and inhibit the expression, function and/or activity, of PD-1. Pre-mRNA comprises exons, introns and UTRs of the PD-1 encoding nucleic acid sequence. Thus, the oligonucleotides of the present invention represent an interesting and highly efficient tool for use in a T cell therapy and a method of preventing and/or treating disorders, respectively, where the PD-1 expression, function and /or activity is not desired or increased.


Reducing expression of a PD-1 RNA according to the present invention means decreasing the expression (of e.g., RNA), function and/or activity of the PD-1 (of e.g., protein) in different amounts up to complete inhibition. Thus, the PD-1 protein is not or only in a reduced amount available to a cell. The expression, function and/or activity level in the cell is determined for example by measuring and comparing the expression, function and/or activity level of the PD-1 before treatment, i.e., administration of an oligonucleotide, and after treatment.


The antisense oligonucleotides of the present invention are for example designed in silico and examined in vitro for their mRNA and protein knockdown efficiency. They are suitable for the production of T cell products, wherein T cells are for example isolated from a patient (or an allogeneic donor), genetically modified ex vivo (e.g., with a CAR) if necessary, expanded and treated with the PD-1 antisense oligonucleotides during the ex vivo phase of the production. The cells are then (re-)transferred to the patient. If the T cells encounter tumor cells and recognize a corresponding target structure, they are activated. The persistence of PD-1 antisense oligonucleotides prevents the upregulation of PD-1 expression during the encounter with tumor cells (see e.g., FIG. 1).


In the following, the elements of the present invention will be described in more detail. These elements are listed with specific embodiments, however, it should be understood that they may be combined in any manner and in any number to create additional embodiments. The variously described examples and embodiments should not be construed to limit the present invention to only the explicitly described embodiments. This description should be understood to support and encompass embodiments which combine the explicitly described embodiments with any number of the disclosed elements. Furthermore, any permutations and combinations of all described elements in this application should be considered disclosed by the description of the present application unless the context indicates otherwise.


Throughout this specification and the claims, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated member, integer or step or group of members, integers or steps but not the exclusion of any other member, integer or step or group of members, integers or steps. The terms “a” and “an” and “the” and similar reference used in the context of describing the invention (especially in the context of the claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by the context. In particular, the terms “a” and “an” and “the” are synonymous to “one or more”. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”, “for example”), provided herein is intended merely to better illustrate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


An oligonucleotide of the present invention is for example an antisense oligonucleotide (ASO) consisting of or comprising 10 to 25 nucleotides, 10 to 15 nucleotides, 15 to 20 nucleotides, 12 to 19 nucleotides, or 15 to 18 nucleotides. The oligonucleotides for example consist of or comprise 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 nucleotides. The oligonucleotides of the present invention comprise at least one nucleotide which is modified. The modified nucleotide is for example a bridged nucleotide such as a locked nucleic acid (LNA, e.g., 2′,4′-LNA), cET, ENA, a 2′Fluoro modified nucleotide, a 2‛O-Methyl modified nucleotide or a combination thereof. In some embodiments, the oligonucleotide of the present invention comprises nucleotides having the same or different modifications. In some embodiments the oligonucleotide of the present invention comprises a modified phosphate backbone, wherein the phosphate is for example a phosphorothioate.


The antisense oligonucleotide of the present invention is for example an antisense oligonucleotide, siRNA, sdRNA or aptamer.


The oligonucleotide of the present invention comprises the one or more modified nucleotides at the 3′- and/or 5′- end of the oligonucleotide and/or at any position within the oligonucleotide, wherein modified nucleotides follow in a row of 1, 2, 3, 4, 5, or 6 modified nucleotides, or a modified nucleotide is combined with one or more unmodified nucleotides. The following Table 1 presents embodiments of oligonucleotides comprising modified nucleotides for example LNA which are indicated by (+) and phosphorothioate (PTO) indicated by (*); alternatively, the phosphate backbone of the antisense oligonucleotide is unmodified. The oligonucleotides consisting of or comprising the sequences of Table 1 may comprise any other modified nucleotide and/or any other combination of modified and unmodified nucleotides. Oligonucleotides of Table 1 hybridize with pre-mRNA of PD-1 of SEQ ID NO.1:












Seq ID
Name
Antisense Sequence 5′-3′
Antisense Sequence 5′-3′ with PTO (*) and LNA (+)




2
A37001H
CACCAGAGTGCCGCCTT
+C*+A*C*C*A*G*A*G*T*G*C*C*G*C*+C*+T*+T


2
A37002H
CACCAGAGTGCCGCCTT
+C*+A*C*C*A*G*A*G*T*G*C*C*G*C*+C*T*+T


2
A37003H
CACCAGAGTGCCGCCTT
+C*+A*C*C*A*G*A*G*T*G*C*C*G*C*C*+T*+T


3
A37004H
CGGTCACCACGAGCAGG
+C*+G*+G*T*C*A*C*C*A*C*G*A*G*C*+A*+G*+G


4
A37005H
TCGGTCACCACGAGCAG
+T*+C*+G*G*T*C*A*C*C*A*C*G*A*G*+C*+A*+G


5
A37006H
CCTTCGGTCACCACGA
+C*+C*+T*T*C*G*G*T*C*A*C*C*A*+C*+G*+A


6
A37007H
CGAAGCTCTCCGATGTG
+C*+G*+A*A*G*C*T*C*T*C*C*G*A*T*+G*+T*+G


7
A37008H
GCACGAAGCTCTCCGAT
+G*+C*+A*C*G*A*A*G*C*T*C*T*C*C*+G*+A*+T


8
A37009H
CCAGTTTAGCACGAAGC
+C*+C*+A*G*T*T*T*A*G*C*A*C*G*A*+A*+G*+C


9
A37010H
GTACCAGTTTAGCACGA
+G*+T*+A*C*C*A*G*T*T*T*A*G*C*A*+C*+G*+A


10
A37011H
ATGCGGTACCAGTTTAG
+A*+T*+G*C*G*G*T*A*C*C*A*G*T*T*+T*+A*+G


11
A37012HM
CTTGTCCGTCTGGTTGC
+C*+T*+T*G*T*C*C*G*T*C*T*G*G*T*+T*+G*+C


12
A37013H
TGACACGGAAGCGGCAG
+T*+G*+A*C*A*C*G*G*A*A*G*C*G*G*+C*+A*+G


13
A37014H
ACAGAGGTAGGTGCCGC
+A*+C*+A*G*A*G*G*T*A*G*G*T*G*C*+C*+G*+C


14
A37015HM
CTTTGATCTGCGCCTTG
+C*+T*+T*T*G*A*T*C*T*G*C*G*C*C*+T*+T*+G


15
A37016HM
ACGACACCAACCACCAG
+A*+C*+G*A*C*A*C*C*A*A*C*C*A*C*+C*+A*+G


16
A37017H
CATACTCCGTCTGCTCA
+C*+A*+T*A*C*T*C*C*G*T*C*T*G*C*+T*+C*+A


17
A37018H
CCATTCCGCTAGGAAAG
+C*+C*+A*T*T*C*C*G*C*T*A*G*G*A*+A*+A*+G


18
A37019H
TGGACGGCCTGCAATGG
+T*+G*+G*A*C*G*G*C*C*T*G*C*A*A*+T*+G*+G


19
A37020H
CCACGGCGCCTTCAGCC
+C*C*+A*C*G*G*C*G*C*C*T*T*C*A*+G*+C*+C


20
A37021H
GGAACGCCTGTACCTT
+G*+G*+A*A*C*G*C*C*T*G*T*A*C*C*+T*+T


20
A37022H
GGAACGCCTGTACCTT
+G*G*+A*A*C*G*C*C*T*G*T*A*C*C*+T*+T


21
A37023HI
TCGAGTGAGGACCAAGG
+T*+C*+G*A*G*T*G*A*G*G*A*C*C*A*+A*+G*+G


22
A37024HI
CGTCGTAAAGCCAAGGT
+C*+G*+T*C*G*T*A*A*A*G*C*C*A*A*+G*+G*+T


23
A37025HI
GAACTGTCCTCACTCGA
+G*+A*+A*C*T*G*T*C*C*T*C*A*C*T*+C*+G*+A


24
A37026HI
CTCTCTCCTCGATCCGG
+C*+T*C*T*C*T*C*C*T*C*G*A*T*C*+C*G*+G


25
A37027HI
CGTGCCTGAAGAGCCGG
+C*G*+T*G*C*C*T*G*A*A*G*A*G*C*C*+G*+G


26
A37028HI
TGTCCGGCACAAGCGCG
+T*+G*+T*C*C*G*G*C*A*C*A*A*G*C*G*+C*+G


26
A37029HI
TGTCCGGCACAAGCGCG
+T*+G*T*C*C*G*G*C*A*C*A*A*G*C*+G*C*+G


27
A37030HI
TGAGAGTCTTGTCCGGC
+T*+G*+A*G*A*G*T*C*T*T*G*T*C*C*+G*+G*+C


28
A37031HI
AACGCAGTGAATAGATC
+A*+A*+C*G*C*A*G*T*G*A*A*T*A*G*+A*+T*+C


29
A37032HI
CGAATGGCGAACGCAGT
+C*+G*+A*A*T*G*G*C*G*A*A*C*G*C*+A*+G*+T


30
A37033HI
AAGTCCTGTCGAAGGCC
+A*+A*G*T*C*C*T*G*T*C*G*A*A*G*+G*C*+C


31
A37034HI
AGCCACTCGGTCGGCGG
+A*+G*C*C*A*C*T*C*G*G*T*C*G*G*C*+G*+G


32
A37035HI
AAGCCACTCGGTCGGCG
+A*+A*G*C*C*A*C*T*C*G*G*T*C*G*+G*C*+G


33
A37036HI
GCGGCCTTATTAGGAAT
+G*+C*+G*G*C*C*T*T*A*T*T*A*G*G*+A*+A*+T


34
A37037HI
CGGCATCTCTGACCGTG
+C*G*+G*C*A*T*C*T*C*T*G*A*C*C*G*+T*+G


35
A37038HI
CGCAGAGAGACCGCATT
+C*+G*+C*A*G*A*G*A*G*A*C*C*G*C*+A*+T*+T


36
A37039HI
CTCGGATCCACGTAGGA
+C*+T*+C*G*G*A*T*C*C*A*C*G*T*A*+G*+G*+A


37
A37040HI
TGATCTGTGCTGGCGCT
+T*+G*A*T*C*T*G*T*G*C*T*G*G*C*+G*C*+T


38
A37041HI
CGACAGGACAATGGCCG
+C*+G*A*C*A*G*G*A*C*A*A*T*G*G*+C*C*+G


39
A37042HI
ATAGGCGTGTGCGGCGT
+A*+T*+A*G*G*C*G*T*G*T*G*C*G*G*+C*+G*+T


40
A37043HI
GCTGACAAGCGCTCGCC
+G*+C*+T*G*A*C*A*A*G*C*G*C*T*C*G*+C*+C


40
A37044HI
GCTGACAAGCGCTCGCC
+G*+C*T*G*A*C*A*A*G*C*G*C*T*C*G*+C*+C


41
A37045HI
GGACCAACTCCTAGTGC
+G*+G*+A*C*C*A*A*C*T*C*C*T*A*G*+T*+G*+C


42
A37046HI
CGAGATGCCATGCAACG
+C*+G*+A*G*A*T*G*C*C*A*T*G*C*A*+A*+C*+G


43
A37047HI
CTTCTACGTGAGGCTGC
+C*+T*+T*C*T*A*C*G*T*G*A*G*G*C*+T*+G*+C


44
A37048HI
TGAGCCGTGCTCCTAGG
+T*G*+A*G*C*C*G*T*G*C*T*C*C*T*+A*G*+G


45
A37049HI
TACCGGCACCGAACCTG
+T*+A*+C*C*G*G*C*A*C*C*G*A*A*C*C*+T*+G


45
A37050HI
TACCGGCACCGAACCTG
+T*+A*C*C*G*G*C*A*C*C*G*A*A*C*C*+T*+G


46
A37051HI
TACCGGCACCGAACCT
+T*A*+C*C*G*G*C*A*C*C*G*A*A*+C*C*+T


47
A37052HI
GCAGTACCGGCACCGA
+G*+C*+A*G*T*A*C*C*G*G*C*A*C*+C*G*+A


48
A37053H
TCGGTCACCACGAGCAGG
+T*+C*+G*G*T*C*A*C*C*A*C*G*A*G*C*+A*+G*+G


49
A37054H
CCTTCGGTCACCACGAGC
+C*+C*+T*T*C*G*G*T*C*A*C*C*A*C*G*+A*+G*+C


50
A37055H
AGGTGAAGGTGGCGTTGT
+A*+G*+G*T*G*A*A*G*G*T*G*G*C*G*T*+T*+G*+T


51
A37056H
CAGGTGAAGGTGGCGTTG
+C*+A*+G*G*T*G*A*A*G*G*T*G*G*C*G*+T*+T*+G


52
A37057H
AAGCTCTCCGATGTGTTG
+A*+A*+G*C*T*C*T*C*C*G*A*T*G*T*G*+T*+T*+G


53
A37058H
CGAAGCTCTCCGATGTGT
+C*+G*+A*A*G*C*T*C*T*C*C*G*A*T*G*+T*+G*+T


54
A37059H
AGCACGAAGCTCTCCGAT
+A*+G*+C*A*C*G*A*A*G*C*T*C*T*C*C*+G*+A*+T


55
A37060H
ACCAGTTTAGCACGAAGC
+A*+C*+C*A*G*T*T*T*A*G*C*A*C*G*A*+A*+G*+C


56
A37061H
TACCAGTTTAGCACGAAG
+T*+A*+C*C*A*G*T*T*T*A*G*C*A*C*G*+A*+A*+G


57
A37062H
GTACCAGTTTAGCACGAA
+G*+T*+A*C*C*A*G*T*T*T*A*G*C*A*C*+G*+A*+A


58
A37063H
CATGCGGTACCAGTTTAG
+C*+A*+T*G*C*G*G*T*A*C*C*A*G*T*T*+T*+A*+G


59
A37064H
TCATGCGGTACCAGTTTA
+T*+C*+A*T*G*C*G*G*T*A*C*C*A*G*T*+T*+T*+A


60
A37065H
TTGTCCGTCTGGTTGCTG
+T*+T*+G*T*C*C*G*T*C*T*G*G*T*T*G*+C*+T*+G


61
A37066H
CTTGTCCGTCTGGTTGCT
+C*+T*+T*G*T*C*C*G*T*C*T*G*G*T*T*+G*+C*+T


62
A37067H
TGTGACACGGAAGCGGCA
+T*+G*+T*G*A*C*A*C*G*G*A*A*G*C*G*+G*+C*+A


63
A37068H
CAGTTGTGTGACACGGAA
+C*+A*+G*T*T*G*T*G*T*G*A*C*A*C*G*+G*+A*+A


64
A37069H
GCAGTTGTGTGACACGGA
+G*+C*+A*G*T*T*G*T*G*T*G*A*C*A*C*+G*+G*+A


65
A37070H
TCATGTGGAAGTCACGCC
+T*+C*+A*T*G*T*G*G*A*A*G*T*C*A*C*+G*+C*+C


66
A37071H
GCTCATGTGGAAGTCACG
+G*+C*+T*C*A*T*G*T*G*G*A*A*G*T*C*+A*+C*+G


67
A37072H
CACAGAGGTAGGTGCCGC
+C*+A*+C*A*G*A*G*G*T*A*G*G*T*G*C*+C*+G*+C


68
A37073H
CTTTGATCTGCGCCTTGG
+C*+T*+T*T*G*A*T*C*T*G*C*G*C*C*T*+T*+G*+G


69
A37074H
TCTTTGATCTGCGCCTTG
+T*+C*+T*T*T*G*A*T*C*T*G*C*G*C*C*+T*+T*+G


70
A37075H
CTCTCTTTGATCTGCGCC
+C*+T*+C*T*C*T*T*T*G*A*T*C*T*G*C*+G*+C*+C


71
A37076H
CGCAGGCTCTCTTTGATC
+C*+G*+C*A*G*G*C*T*C*T*C*T*T*T*G*+A*+T*+C


72
A37077H
CCGCAGGCTCTCTTTGAT
+C*+C*+G*C*A*G*G*C*T*C*T*C*T*T*T*+G*+A*+T


73
A37078H
ACGACACCAACCACCAGG
+A*+C*+G*A*C*A*C*C*A*A*C*C*A*C*C*+A*+G*+G


74
A37079H
CACGACACCAACCACCAG
+C*+A*+C*G*A*C*A*C*C*A*A*C*C*A*C*+C*+A*+G


75
A37080H
GAGAACACAGGCACGGCT
+G*+A*+G*A*A*C*A*C*A*G*G*C*A*C*G*+G*+C*+T


76
A37081H
ATAGTCCACAGAGAACAC
+A*+T*+A*G*T*C*C*A*C*A*G*A*G*A*A*+C*+A*+C


77
A37082H
CATAGTCCACAGAGAACA
+C*+A*+T*A*G*T*C*C*A*C*A*G*A*G*A*+A*+C*+A


78
A37083H
CCATAGTCCACAGAGAAC
+C*+C*+A*T*A*G*T*C*C*A*C*A*G*A*G*+A*+A*+C


79
A37084H
GGTCTTCTCTCGCCACTG
+G*+G*+T*C*T*T*C*T*C*T*C*G*C*C*A*+C*+T*+G


80
A37085H
ATACTCCGTCTGCTCAGG
+A*+T*+A*C*T*C*C*G*T*C*T*G*C*T*C*+A*+G*+G


81
A37086H
CCATTCCGCTAGGAAAGA
+C*+C*+A*T*T*C*C*G*C*T*A*G*G*A*A*+A*+G*+A


82
A37087H
CCAAGGAAGCCGGTCAGA
+C*+C*+A*A*G*G*A*A*G*C*C*G*G*T*C*+A*+G*+A


83
A37088H
CATTGAGACATGAGTCCT
+C*+A*+T*T*G*A*G*A*C*A*T*G*A*G*T*+C*+C*+T


84
A37089H
GCATTGAGACATGAGTCC
+G*+C*+A*T*T*G*A*G*A*C*A*T*G*A*G*+T*+C*+C


85
A37090H
CCTTAGCATGCTCTCATA
+C*+C*+T*T*A*G*C*A*T*G*C*T*C*T*C*+A*+T*+A


86
A37091H
CAGGCGGAGGTGAGCGGAA
+C*+A*+G*G*C*G*G*A*G*G*T*G*A*G*C*G*+G*+A*+A


87
A37092H
GTGCCGCCTTCTCCACTGC
+G*+T*+G*C*C*G*C*C*T*T*C*T*C*C*A*C*+T*+G*+C


88
A37093H
GATCTGCATGCCTGGAGCA
+G*+A*+T*C*T*G*C*A*T*G*C*C*T*G*G*A*+G*+C*+A


89
A37094H
TAAGAACCATCCTGGCCGC
+T*+A*+A*G*A*A*C*C*A*T*C*C*T*G*G*C*+C*+G*+C


90
A37095H
CTTCGGTCACCACGAGCAG
+C*+T*+T*C*G*G*T*C*A*C*C*A*C*G*A*G*+C*+A*+G


91
A37096H
CCTTCGGTCACCACGAGCA
+C*+C*+T*T*C*G*G*T*C*A*C*C*A*C*G*A*+G*+C*+A


92
A37097H
CAGGTGAAGGTGGCGTTGT
+C*+A*+G*G*T*G*A*A*G*G*T*G*G*C*G*T*+T*+G*+T


93
A37098H
GCAGGTGAAGGTGGCGTTG
+G*+C*+A*G*G*T*G*A*A*G*G*T*G*G*C*G*+T*+T*+G


94
A37099H
GAGAAGCTGCAGGTGAAGG
+G*+A*+G*A*A*G*C*T*G*C*A*G*G*T*G*A*+A*+G*+G


95
A37100H
GTTGGAGAAGCTGCAGGTG
+G*+T*+T*G*G*A*G*A*A*G*C*T*G*C*A*G*+G*+T*+G


96
A37101H
GTGTTGGAGAAGCTGCAGG
+G*+T*+G*T*T*G*G*A*G*A*A*G*C*T*G*C*+A*+G*+G


97
A37102H
ATGTGTTGGAGAAGCTGCA
+A*+T*+G*T*G*T*T*G*G*A*G*A*A*G*C*T*+G*+C*+A


98
A37103H
GATGTGTTGGAGAAGCTGC
+G*+A*+T*G*T*G*T*T*G*G*A*G*A*A*G*C*+T*+G*+C


99
A37104H
GAAGCTCTCCGATGTGTTG
+G*+A*+A*G*C*T*C*T*C*C*G*A*T*G*T*G*+T*+T*+G


100
A37105H
CGAAGCTCTCCGATGTGTT
+C*+G*+A*A*G*C*T*C*T*C*C*G*A*T*G*T*+G*+T*+T


101
A37106H
AGCACGAAGCTCTCCGATG
+A*+G*+C*A*C*G*A*A*G*C*T*C*T*C*C*G*+A*+T*+G


102
A37107H
TAGCACGAAGCTCTCCGAT
+T*+A*+G*C*A*C*G*A*A*G*C*T*C*T*C*C*+G*+A*+T


103
A37108H
TTTAGCACGAAGCTCTCCG
+T*+T*+T*A*G*C*A*C*G*A*A*G*C*T*C*T*+C*+C*+G


104
A37109H
TACCAGTTTAGCACGAAGC
+T*+A*+C*C*A*G*T*T*T*A*G*C*A*C*G*A*+A*+G*+C


105
A37110H
GTACCAGTTTAGCACGAAG
+G*+T*+A*C*C*A*G*T*T*T*A*G*C*A*C*G*+A*+A*+G


106
A37111H
CATGCGGTACCAGTTTAGC
+C*+A*+T*G*C*G*G*T*A*C*C*A*G*T*T*T*+A*+G*+C


107
A37112H
TCATGCGGTACCAGTTTAG
+T*+C*+A*T*G*C*G*G*T*A*C*C*A*G*T*T*+T*+A*+G


108
A37113H
CTCATGCGGTACCAGTTTA
+C*+T*+C*A*T*G*C*G*G*T*A*C*C*A*G*T*+T*+T*+A


109
A37114H
TTGTCCGTCTGGTTGCTGG
+T*+T*+G*T*C*C*G*T*C*T*G*G*T*T*G*C*+T*+G*+G


110
A37115H
CTTGTCCGTCTGGTTGCTG
+C*+T*+T*G*T*C*C*G*T*C*T*G*G*T*T*G*+C*+T*+G


111
A37116H
GCTTGTCCGTCTGGTTGCT
+G*+C*+T*T*G*T*C*C*G*T*C*T*G*G*T*T*+G*+C*+T


112
A37117H
TGTGACACGGAAGCGGCAG
+T*+G*+T*G*A*C*A*C*G*G*A*A*G*C*G*G*+C*+A*+G


113
A37118H
GTTGTGTGACACGGAAGCG
+G*+T*+T*G*T*G*T*G*A*C*A*C*G*G*A*A*+G*+C*+G


114
A37119H
GCAGTTGTGTGACACGGAA
+G*+C*+A*G*T*T*G*T*G*T*G*A*C*A*C*G*+G*+A*+A


115
A37120H
GGCAGTTGTGTGACACGGA
+G*+G*+C*A*G*T*T*G*T*G*T*G*A*C*A*C*+G*+G*+A


116
A37121H
CTCATGTGGAAGTCACGCC
+C*+T*+C*A*T*G*T*G*G*A*A*G*T*C*A*C*+G*+C*+C


117
A37122H
TGACCACGCTCATGTGGAA
+T*+G*+A*C*C*A*C*G*C*T*C*A*T*G*T*G*+G*+A*+A


118
A37123H
CCACAGAGGTAGGTGCCGC
+C*+C*+A*C*A*G*A*G*G*T*A*G*G*T*G*C*+C*+G*+C


119
A37124H
TCTTTGATCTGCGCCTTGG
+T*+C*+T*T*T*G*A*T*C*T*G*C*G*C*C*T*+T*+G*+G


120
A37125H
CTCTTTGATCTGCGCCTTG
+C*+T*+C*T*T*T*G*A*T*C*T*G*C*G*C*C*+T*+T*+G


121
A37126H
CGCAGGCTCTCTTTGATCT
+C*+G*+C*A*G*G*C*T*C*T*C*T*T*T*G*A*+T*+C*+T


122
A37127H
CACGACACCAACCACCAGG
+C*+A*+C*G*A*C*A*C*C*A*A*C*C*A*C*C*+A*+G*+G


123
A37128H
CCACGACACCAACCACCAG
+C*+C*+A*C*G*A*C*A*C*C*A*A*C*C*A*C*+C*+A*+G


124
A37129H
CAGACTAGCAGCACCAGGC
+C*+A*+G*A*C*T*A*G*C*A*G*C*A*C*C*A*+G*+G*+C


125
A37130H
AGAGAACACAGGCACGGCT
+A*+G*+A*G*A*A*C*A*C*A*G*G*C*A*C*G*+G*+C*+T


126
A37131H
CAGAGAACACAGGCACGGC
+C*+A*+G*A*G*A*A*C*A*C*A*G*G*C*A*C*+G*+G*+C


127
A37132H
GTCCACAGAGAACACAGGC
+G*+T*+C*C*A*C*A*G*A*G*A*A*C*A*C*A*+G*+G*+C


128
A37133H
ATAGTCCACAGAGAACACA
+A*+T*+A*G*T*C*C*A*C*A*G*A*G*A*A*C*+A*+C*+A


129
A37134H
CATAGTCCACAGAGAACAC
+C*+A*+T*A*G*T*C*C*A*C*A*G*A*G*A*A*+C*+A*+C


130
A37135H
CCATAGTCCACAGAGAACA
+C*+C*+A*T*A*G*T*C*C*A*C*A*G*A*G*A*+A*+C*+A


131
A37136H
TTCTCTCGCCACTGGAAAT
+T*+T*+C*T*C*T*C*G*C*C*A*C*T*G*G*A*+A*+A*+T


132
A37137H
CTTCTCTCGCCACTGGAAA
+C*+T*+T*C*T*C*T*C*G*C*C*A*C*T*G*G*+A*+A*+A


133
A37138H
CATACTCCGTCTGCTCAGG
+C*+A*+T*A*C*T*C*C*G*T*C*T*G*C*T*C*+A*+G*+G


134
A37139H
ACAATGGTGGCATACTCCG
+A*+C*+A*A*T*G*G*T*G*G*C*A*T*A*C*T*+C*+C*+G


135
A37140H
AAGACAATGGTGGCATACT
+A*+A*+G*A*C*A*A*T*G*G*T*G*G*C*A*T*+A*+C*+T


136
A37141H
AAAGACAATGGTGGCATAC
+A*+A*+A*G*A*C*A*A*T*G*G*T*G*G*C*A*+T*+A*+C


137
A37142H
GAAAGACAATGGTGGCATA
+G*+A*+A*A*G*A*C*A*A*T*G*G*T*G*G*C*+A*+T*+A


138
A37143H
ATTCCGCTAGGAAAGACAA
+A*+T*+T*C*C*G*C*T*A*G*G*A*A*A*G*A*+C*+A*+A


139
A37144H
CAAGGAAGCCGGTCAGAGG
+C*+A*+A*G*G*A*A*G*C*C*G*G*T*C*A*G*+A*+G*+G


140
A37145H
CCAAGGAAGCCGGTCAGAG
+C*+C*+A*A*G*G*A*A*G*C*C*G*G*T*C*A*+G*+A*+G


141
A37146H
GCAGAACACTGGTGGCCAA
+G*+C*+A*G*A*A*C*A*C*T*G*G*T*G*G*C*+C*+A*+A


142
A37147H
CTGAGGAAATGCGCTGACC
+C*+T*+G*A*G*G*A*A*A*T*G*C*G*C*T*G*+A*+C*+C


143
A37148H
TCTCCTGAGGAAATGCGCT
+T*+C*+T*C*C*T*G*A*G*G*A*A*A*T*G*C*+G*+C*+T


144
A37149H
AGACATGAGTCCTGTGGTG
+A*+G*+A*C*A*T*G*A*G*T*C*C*T*G*T*G*+G*+T*+G


145
A37150H
TGAGACATGAGTCCTGTGG
+T*+G*+A*G*A*C*A*T*G*A*G*T*C*C*T*G*+T*+G*+G


146
A37151H
GCATTGAGACATGAGTCCT
+G*+C*+A*T*T*G*A*G*A*C*A*T*G*A*G*T*+C*+C*+T


147
A37152H
TGGCAGGACCTGAAGCAGT
+T*+G*+G*C*A*G*G*A*C*C*T*G*A*A*G*C*+A*+G*+T


148
A37153H
TGGACGCAGGCAGCTCTGT
+T*+G*+G*A*C*G*C*A*G*G*C*A*G*C*T*C*+T*+G*+T


149
A37154H
GCAGCAGCAGAGATTCAGG
+G*+C*+A*G*C*A*G*C*A*G*A*G*A*T*T*C*+A*+G*+G


150
A37155H
CAAGGCCATCTCCAACCAG
+C*+A*+A*G*G*C*C*A*T*C*T*C*C*A*A*C*+C*+A*+G


151
A37156H
CCAAGGCCATCTCCAACCA
+C*+C*+A*A*G*G*C*C*A*T*C*T*C*C*A*A*+C*+C*+A


152
A37157H
GCTCCAAGGCCATCTCCAA
+G*+C*+T*C*C*A*A*G*G*C*C*A*T*C*T*C*+C*+A*+A


153
A37158H
GAAACTTCTCTAGGCCTGC
+G*+A*+A*A*C*T*T*C*T*C*T*A*G*G*C*C*+T*+G*+C


154
A37159H
GGCATGTGTAAAGGTGGAG
+G*+G*+C*A*T*G*T*G*T*A*A*A*G*G*T*G*+G*+A*+G


155
A37160H
CGCTTACTGCCTCAGCTTC
+C*+G*+C*T*T*A*C*T*G*C*C*T*C*A*G*C*+T*+T*+C


156
A37161H
TGGAATGCGGCGGCAGGAG
+T*+G*+G*A*A*T*G*C*G*G*C*G*G*C*A*G*+G*+A*+G


157
A37162H
GGTGGAATGCGGCGGCAGG
+G*+G*+T*G*G*A*A*T*G*C*G*G*C*G*G*C*+A*+G*+G


158
A37163H
GTGTGGATGTGAGGAGTGG
+G*+T*+G*T*G*G*A*T*G*T*G*A*G*G*A*G*+T*+G*+G


159
A37164H
GTGCAGTGTGTGGATGTGA
+G*+T*+G*C*A*G*T*G*T*G*T*G*G*A*T*G*+T*+G*+A


160
A37165H
TTAGCATGCTCTCATATTT
+T*+T*+A*G*C*A*T*G*C*T*C*T*C*A*T*A*+T*+T*+T


161
A37166H
CTTAGCATGCTCTCATATT
+C*+T*+T*A*G*C*A*T*G*C*T*C*T*C*A*T*+A*+T*+T


162
A37167H
CCTTAGCATGCTCTCATAT
+C*+C*+T*T*A*G*C*A*T*G*C*T*C*T*C*A*+T*+A*+T


163
A37168HI
GGACTGAGAGTGAAAGGT
+G*+G*+A*C*T*G*A*G*A*G*T*G*A*A*A*+G*+G*+T


164
A37169HI
CAAGGACCGGCTGAGAGG
+C*+A*+A*G*G*A*C*C*G*G*C*T*G*A*G*+A*+G*+G


165
A37170HI
CCAAGGACCGGCTGAGAG
+C*+C*+A*A*G*G*A*C*C*G*G*C*T*G*A*+G*+A*+G


166
A37171HI
CCGTCATTCTACAGAAAC
+C*+C*+G*T*C*A*T*T*C*T*A*C*A*G*A*+A*+A*+C


167
A37172HI
AAGGCAGAGCCGCCACGC
+A*+A*+G*G*C*A*G*A*G*C*C*G*C*C*A*+C*+G*+C


168
A37173HI
CAAGGCAGAGCCGCCACG
+C*+A*+A*G*G*C*A*G*A*G*C*C*G*C*C*+A*+C*+G


169
A37174HI
AGTGAGGACCAAGGATGC
+A*+G*+T*G*A*G*G*A*C*C*A*A*G*G*A*+T*+G*+C


170
A37175HI
GAGTGAGGACCAAGGATG
+G*+A*+G*T*G*A*G*G*A*C*C*A*A*G*G*+A*+T*+G


171
A37176HI
TCGAGTGAGGACCAAGGA
+T*+C*+G*A*G*T*G*A*G*G*A*C*C*A*A*+G*+G*+A


172
A37177HI
AAACTCGAGTGAGGACCA
+A*+A*+A*C*T*C*G*A*G*T*G*A*G*G*A*+C*+C*+A


173
A37178HI
TAAAGCCAAGGTTAGTCC
+T*+A*+A*A*G*C*C*A*A*G*G*T*T*A*G*+T*+C*+C


174
A37179HI
GTAAAGCCAAGGTTAGTC
+G*+T*+A*A*A*G*C*C*A*A*G*G*T*T*A*+G*+T*+C


175
A37180HI
CGTAAAGCCAAGGTTAGT
+C*+G*+T*A*A*A*G*C*C*A*A*G*G*T*T*+A*+G*+T


176
A37181HI
TCGTAAAGCCAAGGTTAG
+T*+C*+G*T*A*A*A*G*C*C*A*A*G*G*T*+T*+A*+G


177
A37182HI
ACTCGAACAGGTACACTT
+A*+C*+T*C*G*A*A*C*A*G*G*T*A*C*A*+C*+T*+T


178
A37183HI
CACTCGAACAGGTACACT
+C*+A*+C*T*C*G*A*A*C*A*G*G*T*A*C*+A*+C*+T


179
A37184HI
CTCACTCGAACAGGTACA
+C*+T*+C*A*C*T*C*G*A*A*C*A*G*G*T*+A*+C*+A


180
A37185HI
TGTCCTCACTCGAACAGG
+T*+G*+T*C*C*T*C*A*C*T*C*G*A*A*C*+A*+G*+G


181
A37186HI
ACTGTCCTCACTCGAACA
+A*+C*+T*G*T*C*C*T*C*A*C*T*C*G*A*+A*+C*+A


182
A37187HI
AACTGTCCTCACTCGAAC
+A*+A*+C*T*G*T*C*C*T*C*A*C*T*C*G*+A*+A*+C


183
A37188HI
GAACTGTCCTCACTCGAA
+G*+A*+A*C*T*G*T*C*C*T*C*A*C*T*C*+G*+A*+A


184
A37189HI
AGAACTGTCCTCACTCGA
+A*+G*+A*A*C*T*G*T*C*C*T*C*A*C*T*+C*+G*+A


185
A37190HI
AAGAACTGTCCTCACTCG
+A*+A*+G*A*A*C*T*G*T*C*C*T*C*A*C*+T*+C*+G


186
A37191HI
ACGGATGGTCTGAACAGG
+A*+C*+G*G*A*T*G*G*T*C*T*G*A*A*C*+A*+G*+G


187
A37192HI
CCACGGATGGTCTGAACA
+C*+C*+A*C*G*G*A*T*G*G*T*C*T*G*A*+A*+C*+A


188
A37193HI
GGACTGTCTTAGGCTTGG
+G*+G*+A*C*T*G*T*C*T*T*A*G*G*C*T*+T*+G*+G


189
A37194HI
AAGAGGTGGCGCTGAGGC
+A*+A*+G*A*G*G*T*G*G*C*G*C*T*G*A*+G*+G*+C


190
A37195HI
GCTGCGGACACCTTGCTC
+G*+C*+T*G*C*G*G*A*C*A*C*C*T*T*G*+C*+T*+C


191
A37196HI
AGGCTGCGGACACCTTGC
+A*+G*+G*C*T*G*C*G*G*A*C*A*C*C*T*+T*+G*+C


192
A37197HI
CGAGTGTCAGGCTGCGGA
+C*+G*+A*G*T*G*T*C*A*G*G*C*T*G*C*+G*+G*+A


193
A37198HI
TGTCCGGCACAAGCGCGG
+T*+G*+T*C*C*G*G*C*A*C*A*A*G*C*G*+C*+G*+G


194
A37199HI
TGAGAGTCTTGTCCGGCA
+T*+G*+A*G*A*G*T*C*T*T*G*T*C*C*G*+G*+C*+A


195
A37200HI
GTGAGAGTCTTGTCCGGC
+G*+T*+G*A*G*A*G*T*C*T*T*G*T*C*C*+G*+G*+C


196
A37201HI
CTGTGAGAGTCTTGTCCG
+C*+T*+G*T*G*A*G*A*G*T*C*T*T*G*T*+C*+C*+G


197
A37202HI
AGGCATCCTGGAATGAAG
+A*+G*+G*C*A*T*C*C*T*G*G*A*A*T*G*+A*+A*+G


198
A37203HI
AGTGAATAGATCAGGAGG
+A*+G*+T*G*A*A*T*A*G*A*T*C*A*G*G*+A*+G*+G


199
A37204HI
ACGCAGTGAATAGATCAG
+A*+C*+G*C*A*G*T*G*A*A*T*A*G*A*T*+C*+A*+G


200
A37205HI
AACGCAGTGAATAGATCA
+A*+A*+C*G*C*A*G*T*G*A*A*T*A*G*A*+T*+C*+A


201
A37206HI
GAACGCAGTGAATAGATC
+G*+A*+A*C*G*C*A*G*T*G*A*A*T*A*G*+A*+T*+C


202
A37207HI
TGGCGAACGCAGTGAATA
+T*+G*+G*C*G*A*A*C*G*C*A*G*T*G*A*+A*+T*+A


203
A37208HI
ATGGCGAACGCAGTGAAT
+A*+T*+G*G*C*G*A*A*C*G*C*A*G*T*G*+A*+A*+T


204
A37209HI
AATGGCGAACGCAGTGAA
+A*+A*+T*G*G*C*G*A*A*C*G*C*A*G*T*+G*+A*+A


205
A37210HI
GAATGGCGAACGCAGTGA
+G*+A*+A*T*G*G*C*G*A*A*C*G*C*A*G*+T*+G*+A


206
A37211HI
CGAATGGCGAACGCAGTG
+C*+G*+A*A*T*G*G*C*G*A*A*C*G*C*A*+G*+T*+G


207
A37212HI
CGCTGACTGGAGCTCACA
+C*+G*+C*T*G*A*C*T*G*G*A*G*C*T*C*+A*+C*+A


208
A37213HI
ACGGAGAAGTCAGTAAGG
+A*+C*+G*G*A*G*A*A*G*T*C*A*G*T*A*+A*+G*+G


209
A37214HI
TAATCCTCAGGACGCAGC
+T*+A*+A*T*C*C*T*C*A*G*G*A*C*G*C*+A*+G*+C


210
A37215HI
TTTAATCCTCAGGACGCA
+T*+T*+T*A*A*T*C*C*T*C*A*G*G*A*C*+G*+C*+A


211
A37216HI
GTTATTGATTCTAGGTGA
+G*+T*+T*A*T*T*G*A*T*T*C*T*A*G*G*+T*+G*+A


212
A37217HI
AGTTATTGATTCTAGGTG
+A*+G*+T*T*A*T*T*G*A*T*T*C*T*A*G*+G*+T*+G


213
A37218HI
CCGTGCAGAGATGAAGGC
+C*+C*+G*T*G*C*A*G*A*G*A*T*G*A*A*+G*+G*+C


214
A37219HI
CTTCCTGTACAGAGTCAC
+C*+T*+T*C*C*T*G*T*A*C*A*G*A*G*T*+C*+A*+C


215
A37220HI
GCTTCCTGTACAGAGTCA
+G*+C*+T*T*C*C*T*G*T*A*C*A*G*A*G*+T*+C*+A


216
A37221HI
GGACTAGGTAAGATGAGG
+G*+G*+A*C*T*A*G*G*T*A*A*G*A*T*G*+A*+G*+G


217
A37222HI
AACTCCTCACAGTCGTGT
+A*+A*+C*T*C*C*T*C*A*C*A*G*T*C*G*+T*+G*+T


218
A37223HI
GGAGTGAGGTCTTCCAAC
+G*+G*+A*G*T*G*A*G*G*T*C*T*T*C*C*+A*+A*+C


219
A37224HI
GAAGCGCACAGAAGAAGG
+G*+A*+A*G*C*G*C*A*C*A*G*A*A*G*A*+A*+G*+G


220
A37225HI
CCAGAAGCGCACAGAAGA
+C*+C*+A*G*A*A*G*C*G*C*A*C*A*G*A*+A*+G*+A


221
A37226HI
CTTTCCAGAAGCGCACAG
+C*+T*+T*T*C*C*A*G*A*A*G*C*G*C*A*+C*+A*+G


222
A37227HI
CCGCATTACAGGACATTG
+C*+C*+G*C*A*T*T*A*C*A*G*G*A*C*A*+T*+T*+G


223
A37228HI
GAGAGACCGCATTACAGG
+G*+A*+G*A*G*A*C*C*G*C*A*T*T*A*C*+A*+G*+G


224
A37229HI
AGAGAGACCGCATTACAG
+A*+G*+A*G*A*G*A*C*C*G*C*A*T*T*A*+C*+A*+G


225
A37230HI
CAGAGAGACCGCATTACA
+C*+A*+G*A*G*A*G*A*C*C*G*C*A*T*T*+A*+C*+A


226
A37231HI
GCAGAGAGACCGCATTAC
+G*+C*+A*G*A*G*A*G*A*C*C*G*C*A*T*+T*+A*+C


227
A37232HI
CCTGGATCAAGTTAGATT
+C*+C*+T*G*G*A*T*C*A*A*G*T*T*A*G*+A*+T*+T


228
A37233HI
CTTGGCTGGTAGTGTCTA
+C*+T*+T*G*G*C*T*G*G*T*A*G*T*G*T*+C*+T*+A


229
A37234HI
GGTGTCTGCAGTTCAAGC
+G*+G*+T*G*T*C*T*G*C*A*G*T*T*C*A*+A*+G*+C


230
A37235HI
CTCCTGACTTGATCTGTG
+C*+T*+C*C*T*G*A*C*T*T*G*A*T*C*T*+G*+T*+G


231
A37236HI
GCTCCTGACTTGATCTGT
+G*+C*+T*C*C*T*G*A*C*T*T*G*A*T*C*+T*+G*+T


232
A37237HI
AACTGGAAACTTAGCTGC
+A*+A*+C*T*G*G*A*A*A*C*T*T*A*G*C*+T*+G*+C


233
A37238HI
GTGAGGAACAGAAGTCAT
+G*+T*+G*A*G*G*A*A*C*A*G*A*A*G*T*+C*+A*+T


234
A37239HI
CCTTCACCTGCGTGCCTG
+C*+C*+T*T*C*A*C*C*T*G*C*G*T*G*C*+C*+T*+G


235
A37240HI
CGCTCGCCTCCTTCACCT
+C*+G*+C*T*C*G*C*C*T*C*C*T*T*C*A*+C*+C*+T


236
A37241HI
GCTGACAAGCGCTCGCCT
+G*+C*+T*G*A*C*A*A*G*C*G*C*T*C*G*+C*+C*+T


237
A37242HI
CCAACTCCTAGTGCCAAC
+C*+C*+A*A*C*T*C*C*T*A*G*T*G*C*C*+A*+A*+C


238
A37243HI
CATGTGACCAGGACCAAC
+C*+A*+T*G*T*G*A*C*C*A*G*G*A*C*C*+A*+A*+C


239
A37244HI
CTCAAGGAGCAACCAGCT
+C*+T*+C*A*A*G*G*A*G*C*A*A*C*C*A*+G*+C*+T


240
A37245HI
TGACTCAAGGAGCAACCA
+T*+G*+A*C*T*C*A*A*G*G*A*G*C*A*A*+C*+C*+A


241
A37246HI
ATGACTCAAGGAGCAACC
+A*+T*+G*A*C*T*C*A*A*G*G*A*G*C*A*+A*+C*+C


242
A37247HI
GCGGTGGTGATGACTCAA
+G*+C*+G*G*T*G*G*T*G*A*T*G*A*C*T*+C*+A*+A


243
A37248HI
CAGCGAGGTGACACAGAG
+C*+A*+G*C*G*A*G*G*T*G*A*C*A*C*A*+G*+A*+G


244
A37249HI
CACTCAGTTCCGTCTCAG
+C*+A*+C*T*C*A*G*T*T*C*C*G*T*C*T*+C*+A*+G


245
A37250HI
TCACTCAGTTCCGTCTCA
+T*+C*+A*C*T*C*A*G*T*T*C*C*G*T*C*+T*+C*+A


246
A37251HI
TGTCACTCAGTTCCGTCT
+T*+G*+T*C*A*C*T*C*A*G*T*T*C*C*G*+T*+C*+T


247
A37252HI
CTGTCACTCAGTTCCGTC
+C*+T*+G*T*C*A*C*T*C*A*G*T*T*C*C*+G*+T*+C


248
A37253HI
CCGAGATGCCATGCAACG
+C*+C*+G*A*G*A*T*G*C*C*A*T*G*C*A*+A*+C*+G


249
A37254HI
CCAACACAGGCGCTTAAG
+C*+C*+A*A*C*A*C*A*G*G*C*G*C*T*T*+A*+A*+G


250
A37255HI
CACCAACACAGGCGCTTA
+C*+A*+C*C*A*A*C*A*C*A*G*G*C*G*C*+T*+T*+A


251
A37256HI
TGAAACATATGCCTGCCA
+T*+G*+A*A*A*C*A*T*A*T*G*C*C*T*G*+C*+C*+A


252
A37257HI
GACCTCCTGAAACATATG
+G*+A*+C*C*T*C*C*T*G*A*A*A*C*A*T*+A*+T*+G


253
A37258HI
TCGGATGTGGACAGACAC
+T*+C*+G*G*A*T*G*T*G*G*A*C*A*G*A*+C*+A*+C


254
A37259HI
TGACTCGGATGTGGACAG
+T*+G*+A*C*T*C*G*G*A*T*G*T*G*G*A*+C*+A*+G


255
A37260HI
TTGACTCGGATGTGGACA
+T*+T*+G*A*C*T*C*G*G*A*T*G*T*G*G*+A*+C*+A


256
A37261HI
ATGCTTCAGAGACGAGAT
+A*+T*+G*C*T*T*C*A*G*A*G*A*C*G*A*+G*+A*+T


257
A37262HI
GACTAGAGCTCACAGCAA
+G*+A*+C*T*A*G*A*G*C*T*C*A*C*A*G*+C*+A*+A


258
A37263HI
TTTCAGGACAAGCTCGGA
+T*+T*+T*C*A*G*G*A*C*A*A*G*C*T*C*+G*+G*+A


259
A37264HI
CCTACTAAGAGCCTTCAC
+C*+C*+T*A*C*T*A*A*G*A*G*C*C*T*T*+C*+A*+C


260
A37265HI
CCTTCTACGTGAGGCTGC
+C*+C*+T*T*C*T*A*C*G*T*G*A*G*G*C*+T*+G*+C


261
A37266HI
TCCTTCTACGTGAGGCTG
+T*+C*+C*T*T*C*T*A*C*G*T*G*A*G*G*+C*+T*+G


262
A37267HI
CCTCTTCCTTCTACGTGA
+C*+C*+T*C*T*T*C*C*T*T*C*T*A*C*G*+T*+G*+A


263
A37268HI
GGAATGTCATTGAGAAGT
+G*+G*+A*A*T*G*T*C*A*T*T*G*A*G*A*+A*+G*+T


264
A37269HI
CAGAGATGCCGGTCACCA
+C*+A*+G*A*G*A*T*G*C*C*G*G*T*C*A*+C*+C*+A


265
A37270HI
CTAGAGGACAGAGATGCC
+C*+T*+A*G*A*G*G*A*C*A*G*A*G*A*T*+G*+C*+C


266
A37271HI
AGCCGTGCTCCTAGGTGG
+A*+G*+C*C*G*T*G*C*T*C*C*T*A*G*G*+T*+G*+G


267
A37272HI
AGTGGATCATGCAGGAAA
+A*+G*+T*G*G*A*T*C*A*T*G*C*A*G*G*+A*+A*+A


268
A37273HI
CCGCAGGCAGGCACATAT
+C*+C*+G*C*A*G*G*C*A*G*G*C*A*C*A*+T*+A*+T


269
A37274HI
GTCTCCAATGTAAGATAA
+G*+T*+C*T*C*C*A*A*T*G*T*A*A*G*A*+T*+A*+A


270
A37275HI
TCTACAGAAACACGCAGCC
+T*+C*+T*A*C*A*G*A*A*A*C*A*C*G*C*A*+G*+C*+C


271
A37276HI
CCGTCATTCTACAGAAACA
+C*+C*+G*T*C*A*T*T*C*T*A*C*A*G*A*A*+A*+C*+A


272
A37277HI
AAGGCAGAGCCGCCACGCA
+A*+A*+G*G*C*A*G*A*G*C*C*G*C*C*A*C*+G*+C*+A


273
A37278HI
TCGTAAAGCCAAGGTTAGT
+T*+C*+G*T*A*A*A*G*C*C*A*A*G*G*T*T*+A*+G*+T


274
A37279HI
CTCATCTAAACTTTGACGT
+C*+T*+C*A*T*C*T*A*A*A*C*T*T*T*G*A*+C*+G*+T


275
A37280HI
CACCAGCTCATCTAAACTT
+C*+A*+C*C*A*G*C*T*C*A*T*C*T*A*A*A*+C*+T*+T


276
A37281HI
CTCACTCGAACAGGTACAC
+C*+T*+C*A*C*T*C*G*A*A*C*A*G*G*T*A*+C*+A*+C


277
A37282HI
AGAACTGTCCTCACTCGAA
+A*+G*+A*A*C*T*G*T*C*C*T*C*A*C*T*C*+G*+A*+A


278
A37283HI
AAGAACTGTCCTCACTCGA
+A*+A*+G*A*A*C*T*G*T*C*C*T*C*A*C*T*+C*+G*+A


279
A37284HI
GAAGAACTGTCCTCACTCG
+G*+A*+A*G*A*A*C*T*G*T*C*C*T*C*A*C*+T*+C*+G


280
A37285HI
CACGGATGGTCTGAACAGG
+C*+A*+C*G*G*A*T*G*G*T*C*T*G*A*A*C*+A*+G*+G


281
A37286HI
GGACTGTCTTAGGCTTGGC
+G*+G*+A*C*T*G*T*C*T*T*A*G*G*C*T*T*+G*+G*+C


282
A37287HI
AAGGATGCTGCCTCAGGTG
+A*+A*+G*G*A*T*G*C*T*G*C*C*T*C*A*G*+G*+T*+G


283
A37288HI
CTGACAAGGATGCTGCCTC
+C*+T*+G*A*C*A*A*G*G*A*T*G*C*T*G*C*+C*+T*+C


284
A37289HI
AAGAGGTGGCGCTGAGGCA
+A*+A*+G*A*G*G*T*G*G*C*G*C*T*G*A*G*+G*+C*+A


285
A37290HI
GAATCTCCAGTTCTGAGTC
+G*+A*+A*T*C*T*C*C*A*G*T*T*C*T*G*A*+G*+T*+C


286
A37291HI
AGAATCTCCAGTTCTGAGT
+A*+G*+A*A*T*C*T*C*C*A*G*T*T*C*T*G*+A*+G*+T


287
A37292HI
GTGAGAGTCTTGTCCGGCA
+G*+T*+G*A*G*A*G*T*C*T*T*G*T*C*C*G*+G*+C*+A


288
A37293HI
TGTGAGAGTCTTGTCCGGC
+T*+G*+T*G*A*G*A*G*T*C*T*T*G*T*C*C*+G*+G*+C


289
A37294HI
CCTGTGAGAGTCTTGTCCG
+C*+C*+T*G*T*G*A*G*A*G*T*C*T*T*G*T*+C*+C*+G


290
A37295HI
TGCCACCTGTGAGAGTCTT
+T*+G*+C*C*A*C*C*T*G*T*G*A*G*A*G*T*+C*+T*+T


291
A37296HI
AGGCATCCTGGAATGAAGA
+A*+G*+G*C*A*T*C*C*T*G*G*A*A*T*G*A*+A*+G*+A


292
A37297HI
GAGGCATCCTGGAATGAAG
+G*+A*+G*G*C*A*T*C*C*T*G*G*A*A*T*G*+A*+A*+G


293
A37298HI
AACGCAGTGAATAGATCAG
+A*+A*+C*G*C*A*G*T*G*A*A*T*A*G*A*T*+C*+A*+G


294
A37299HI
CGAATGGCGAACGCAGTGA
+C*+G*+A*A*T*G*G*C*G*A*A*C*G*C*A*G*+T*+G*+A


295
A37300HI
CTCTTATTTATGCTCCTGC
+C*+T*+C*T*T*A*T*T*T*A*T*G*C*T*C*C*+T*+G*+C


296
A37301HI
AGCAGAGGCTCTTATTTAT
+A*+G*+C*A*G*A*G*G*C*T*C*T*T*A*T*T*+T*+A*+T


297
A37302HI
CACGGAGAAGTCAGTAAGG
+C*+A*+C*G*G*A*G*A*A*G*T*C*A*G*T*A*+A*+G*+G


298
A37303HI
AAGCACACGGAGAAGTCAG
+A*+A*+G*C*A*C*A*C*G*G*A*G*A*A*G*T*+C*+A*+G


299
A37304HI
TAATCCTCAGGACGCAGCC
+T*+A*+A*T*C*C*T*C*A*G*G*A*C*G*C*A*+G*+C*+C


300
A37305HI
GTCATGGAGGCCAGATGCA
+G*+T*+C*A*T*G*G*A*G*G*C*C*A*G*A*T*+G*+C*+A


301
A37306HI
TGTCATGGAGGCCAGATGC
+T*+G*+T*C*A*T*G*G*A*G*G*C*C*A*G*A*+T*+G*+C


302
A37307HI
AGTTATTGATTCTAGGTGA
+A*+G*+T*T*A*T*T*G*A*T*T*C*T*A*G*G*+T*+G*+A


303
A37308HI
GCTCCATCCTGCACGTCCA
+G*+C*+T*C*C*A*T*C*C*T*G*C*A*C*G*T*+C*+C*+A


304
A37309HI
CCGTGCAGAGATGAAGGCA
+C*+C*+G*T*G*C*A*G*A*G*A*T*G*A*A*G*+G*+C*+A


305
A37310HI
GCTTCCTGTACAGAGTCAC
+G*+C*+T*T*C*C*T*G*T*A*C*A*G*A*G*T*+C*+A*+C


306
A37311HI
CAACTCCTCACAGTCGTGT
+C*+A*+A*C*T*C*C*T*C*A*C*A*G*T*C*G*+T*+G*+T


307
A37312HI
GTCTTCCAACTCCTCACAG
+G*+T*+C*T*T*C*C*A*A*C*T*C*C*T*C*A*+C*+A*+G


308
A37313HI
AGAAGCGCACAGAAGAAGG
+A*+G*+A*A*G*C*G*C*A*C*A*G*A*A*G*A*+A*+G*+G


309
A37314HI
CCAGAAGCGCACAGAAGAA
+C*+C*+A*G*A*A*G*C*G*C*A*C*A*G*A*A*+G*+A*+A


310
A37315HI
TTCCAGAAGCGCACAGAAG
+T*+T*+C*C*A*G*A*A*G*C*G*C*A*C*A*G*+A*+A*+G


311
A37316HI
TTTCCAGAAGCGCACAGAA
+T*+T*+T*C*C*A*G*A*A*G*C*G*C*A*C*A*+G*+A*+A


312
A37317HI
CTTTCCAGAAGCGCACAGA
+C*+T*+T*T*C*C*A*G*A*A*G*C*G*C*A*C*+A*+G*+A


313
A37318HI
CATTACAGGACATTGCTTT
+C*+A*+T*T*A*C*A*G*G*A*C*A*T*T*G*C*+T*+T*+T


314
A37319HI
CAGAGAGACCGCATTACAG
+C*+A*+G*A*G*A*G*A*C*C*G*C*A*T*T*A*+C*+A*+G


315
A37320HI
CGCAGAGAGACCGCATTAC
+C*+G*+C*A*G*A*G*A*G*A*C*C*G*C*A*T*+T*+A*+C


316
A37321HI
CCTGGATCAAGTTAGATTT
+C*+C*+T*G*G*A*T*C*A*A*G*T*T*A*G*A*+T*+T*+T


317
A37322HI
AAGGTGAATATTCAGAAGT
+A*+A*+G*G*T*G*A*A*T*A*T*T*C*A*G*A*+A*+G*+T


318
A37323HI
AGGAAGGTGAATATTCAGA
+A*+G*+G*A*A*G*G*T*G*A*A*T*A*T*T*C*+A*+G*+A


319
A37324HI
TCTACTAGGAAGGTGAATA
+T*+C*+T*A*C*T*A*G*G*A*A*G*G*T*G*A*+A*+T*+A


320
A37325HI
CCTTGGCTGGTAGTGTCTA
+C*+C*+T*T*G*G*C*T*G*G*T*A*G*T*G*T*+C*+T*+A


321
A37326HI
TGCCTCCACCAACTGGCTG
+T*+G*+C*C*T*C*C*A*C*C*A*A*C*T*G*G*+C*+T*+G


322
A37327HI
CTGCCTCCACCAACTGGCT
+C*+T*+G*C*C*T*C*C*A*C*C*A*A*C*T*G*+G*+C*+T


323
A37328HI
CCTGACTTGATCTGTGCTG
+C*+C*+T*G*A*C*T*T*G*A*T*C*T*G*T*G*+C*+T*+G


324
A37329HI
CTCCTGACTTGATCTGTGC
+C*+T*+C*C*T*G*A*C*T*T*G*A*T*C*T*G*+T*+G*+C


325
A37330HI
GCTCCTGACTTGATCTGTG
+G*+C*+T*C*C*T*G*A*C*T*T*G*A*T*C*T*+G*+T*+G


326
A37331HI
TGCTCCTGACTTGATCTGT
+T*+G*+C*T*C*C*T*G*A*C*T*T*G*A*T*C*+T*+G*+T


327
A37332HI
TTTGCACACATTGGTGGAG
+T*+T*+T*G*C*A*C*A*C*A*T*T*G*G*T*G*+G*+A*+G


328
A37333HI
ATTTGCACACATTGGTGGA
+A*+T*+T*T*G*C*A*C*A*C*A*T*T*G*G*T*+G*+G*+A


329
A37334HI
CTGCTATTTATTTGCACAC
+C*+T*+G*C*T*A*T*T*T*A*T*T*T*G*C*A*+C*+A*+C


330
A37335HI
GGAAACTTAGCTGCTATTT
+G*+G*+A*A*A*C*T*T*A*G*C*T*G*C*T*A*+T*+T*+T


331
A37336HI
ATCTGTGCATTGTTCTTGT
+A*+T*+C*T*G*T*G*C*A*T*T*G*T*T*C*T*+T*+G*+T


332
A37337HI
CATCTGTGCATTGTTCTTG
+C*+A*+T*C*T*G*T*G*C*A*T*T*G*T*T*C*+T*+T*+G


333
A37338HI
CGACAGGACAATGGCCGCT
+C*+G*+A*C*A*G*G*A*C*A*A*T*G*G*C*C*+G*+C*+T


334
A37339HI
TGGCTAGGAAGTGCTAAGG
+T*+G*+G*C*T*A*G*G*A*A*G*T*G*C*T*A*+A*+G*+G


335
A37340HI
AGGAACAGAAGTCATCACG
+A*+G*+G*A*A*C*A*G*A*A*G*T*C*A*T*C*+A*+C*+G


336
A37341HI
GTGAGGAACAGAAGTCATC
+G*+T*+G*A*G*G*A*A*C*A*G*A*A*G*T*C*+A*+T*+C


337
A37342HI
GGTGAGGAACAGAAGTCAT
+G*+G*+T*G*A*G*G*A*A*C*A*G*A*A*G*T*+C*+A*+T


338
A37343HI
GCAGGTGAGGAACAGAAGT
+G*+C*+A*G*G*T*G*A*G*G*A*A*C*A*G*A*+A*+G*+T


339
A37344HI
ACAGGCAGGTGAGGAACAG
+A*+C*+A*G*G*C*A*G*G*T*G*A*G*G*A*A*+C*+A*+G


340
A37345HI
GGACTCGGCACAGAGCAGG
+G*+G*+A*C*T*C*G*G*C*A*C*A*G*A*G*C*+A*+G*+G


341
A37346HI
GCCTGAATGGAGGAAGATG
+G*+C*+C*T*G*A*A*T*G*G*A*G*G*A*A*G*+A*+T*+G


342
A37347HI
GCTCGCCTCCTTCACCTGC
+G*+C*+T*C*G*C*C*T*C*C*T*T*C*A*C*C*+T*+G*+C


343
A37348HI
CGCTCGCCTCCTTCACCTG
+C*+G*+C*T*C*G*C*C*T*C*C*T*T*C*A*C*+C*+T*+G


344
A37349HI
GGTTTGAAGTGACCTTGAG
+G*+G*+T*T*T*G*A*A*G*T*G*A*C*C*T*T*+G*+A*+G


345
A37350HI
CCTAGTGCCAACCTCACTG
+C*+C*+T*A*G*T*G*C*C*A*A*C*C*T*C*A*+C*+T*+G


346
A37351HI
TGACCAGGACCAACTCCTA
+T*+G*+A*C*C*A*G*G*A*C*C*A*A*C*T*C*+C*+T*+A


347
A37352HI
AGCAACCAGCTCAGAGGAG
+A*+G*+C*A*A*C*C*A*G*C*T*C*A*G*A*G*+G*+A*+G


348
A37353HI
TGACTCAAGGAGCAACCAG
+T*+G*+A*C*T*C*A*A*G*G*A*G*C*A*A*C*+C*+A*+G


349
A37354HI
ATGACTCAAGGAGCAACCA
+A*+T*+G*A*C*T*C*A*A*G*G*A*G*C*A*A*+C*+C*+A


350
A37355HI
GGCGGTGGTGATGACTCAA
+G*+G*+C*G*G*T*G*G*T*G*A*T*G*A*C*T*+C*+A*+A


351
A37356HI
GGTGACACAGAGACCAGGC
+G*+G*+T*G*A*C*A*C*A*G*A*G*A*C*C*A*+G*+G*+C


352
A37357HI
CGAGGTGACACAGAGACCA
+C*+G*+A*G*G*T*G*A*C*A*C*A*G*A*G*A*+C*+C*+A


353
A37358HI
CAGCGAGGTGACACAGAGA
+C*+A*+G*C*G*A*G*G*T*G*A*C*A*C*A*G*+A*+G*+A


354
A37359HI
CCAGCGAGGTGACACAGAG
+C*+C*+A*G*C*G*A*G*G*T*G*A*C*A*C*A*+G*+A*+G


355
A37360HI
CACTCAGTTCCGTCTCAGG
+C*+A*+C*T*C*A*G*T*T*C*C*G*T*C*T*C*+A*+G*+G


356
A37361HI
TCACTCAGTTCCGTCTCAG
+T*+C*+A*C*T*C*A*G*T*T*C*C*G*T*C*T*+C*+A*+G


357
A37362HI
TGTCACTCAGTTCCGTCTC
+T*+G*+T*C*A*C*T*C*A*G*T*T*C*C*G*T*+C*+T*+C


358
A37363HI
CTGTCACTCAGTTCCGTCT
+C*+T*+G*T*C*A*C*T*C*A*G*T*T*C*C*G*+T*+C*+T


359
A37364HI
GCACCAACACAGGCGCTTA
+G*+C*+A*C*C*A*A*C*A*C*A*G*G*C*G*C*+T*+T*+A


360
A37365HI
GGAGGCACCAACACAGGCG
+G*+G*+A*G*G*C*A*C*C*A*A*C*A*C*A*G*+G*+C*+G


361
A37366HI
CTGAAACATATGCCTGCCA
+C*+T*+G*A*A*A*C*A*T*A*T*G*C*C*T*G*+C*+C*+A


362
A37367HI
CCTGAAACATATGCCTGCC
+C*+C*+T*G*A*A*A*C*A*T*A*T*G*C*C*T*+G*+C*+C


363
A37368HI
GACCTCCTGAAACATATGC
+G*+A*+C*C*T*C*C*T*G*A*A*A*C*A*T*A*+T*+G*+C


364
A37369HI
ACAAGGACCTCCTGAAACA
+A*+C*+A*A*G*G*A*C*C*T*C*C*T*G*A*A*+A*+C*+A


365
A37370HI
CCAAGACAAGGACCTCCTG
+C*+C*+A*A*G*A*C*A*A*G*G*A*C*C*T*C*+C*+T*+G


366
A37371HI
ACTCGGATGTGGACAGACA
+A*+C*+T*C*G*G*A*T*G*T*G*G*A*C*A*G*+A*+C*+A


367
A37372HI
TGACTCGGATGTGGACAGA
+T*+G*+A*C*T*C*G*G*A*T*G*T*G*G*A*C*+A*+G*+A


368
A37373HI
ATTGACTCGGATGTGGACA
+A*+T*+T*G*A*C*T*C*G*G*A*T*G*T*G*G*+A*+C*+A


369
A37374HI
CATTGACTCGGATGTGGAC
+C*+A*+T*T*G*A*C*T*C*G*G*A*T*G*T*G*+G*+A*+C


370
A37375HI
ATGCTTCAGAGACGAGATG
+A*+T*+G*C*T*T*C*A*G*A*G*A*C*G*A*G*+A*+T*+G


371
A37376HI
GATGCTTCAGAGACGAGAT
+G*+A*+T*G*C*T*T*C*A*G*A*G*A*C*G*A*+G*+A*+T


372
A37377HI
GCAAAGATGCTTCAGAGAC
+G*+C*+A*A*A*G*A*T*G*C*T*T*C*A*G*A*+G*+A*+C


373
A37378HI
TAGAGCTCACAGCAAAGAT
+T*+A*+G*A*G*C*T*C*A*C*A*G*C*A*A*A*+G*+A*+T


374
A37379HI
CTAGAGCTCACAGCAAAGA
+C*+T*+A*G*A*G*C*T*C*A*C*A*G*C*A*A*+A*+G*+A


375
A37380HI
ACTAGAGCTCACAGCAAAG
+A*+C*+T*A*G*A*G*C*T*C*A*C*A*G*C*A*+A*+A*+G


376
A37381HI
GACTAGAGCTCACAGCAAA
+G*+A*+C*T*A*G*A*G*C*T*C*A*C*A*G*C*+A*+A*+A


377
A37382HI
GGACTAGAGCTCACAGCAA
+G*+G*+A*C*T*A*G*A*G*C*T*C*A*C*A*G*+C*+A*+A


378
A37383HI
CCTGTCTGCACTGCTCTGG
+C*+C*+T*G*T*C*T*G*C*A*C*T*G*C*T*C*+T*+G*+G


379
A37384HI
CCTGATTTCCTACTAAGAG
+C*+C*+T*G*A*T*T*T*C*C*T*A*C*T*A*A*+G*+A*+G


380
A37385HI
TTCCTTCTACGTGAGGCTG
+T*+T*+C*C*T*T*C*T*A*C*G*T*G*A*G*G*+C*+T*+G


381
A37386HI
GCCTCTTCCTTCTACGTGA
+G*+C*+C*T*C*T*T*C*C*T*T*C*T*A*C*G*+T*+G*+A


382
A37387HI
TGCAGAGCCTCTTCCTTCT
+T*+G*+C*A*G*A*G*C*C*T*C*T*T*C*C*T*+T*+C*+T


383
A37388HI
TCATTGAGAAGTCTCTGCT
+T*+C*+A*T*T*G*A*G*A*A*G*T*C*T*C*T*+G*+C*+T


384
A37389HI
GTCATTGAGAAGTCTCTGC
+G*+T*+C*A*T*T*G*A*G*A*A*G*T*C*T*C*+T*+G*+C


385
A37390HI
AGCTGGAATGTCATTGAGA
+A*+G*+C*T*G*G*A*A*T*G*T*C*A*T*T*G*+A*+G*+A


386
A37391HI
CTAGAGGACAGAGATGCCG
+C*+T*+A*G*A*G*G*A*C*A*G*A*G*A*T*G*+C*+C*+G


387
A37392HI
GCTAGAGGACAGAGATGCC
+G*+C*+T*A*G*A*G*G*A*C*A*G*A*G*A*T*+G*+C*+C


388
A37393HI
CAGAGCTAGAGGACAGAGA
+C*+A*+G*A*G*C*T*A*G*A*G*G*A*C*A*G*+A*+G*+A


389
A37394HI
CAGTGGATCATGCAGGAAA
+C*+A*+G*T*G*G*A*T*C*A*T*G*C*A*G*G*+A*+A*+A


390
A37395HI
TATAATAGAATGTGAGTCC
+T*+A*+T*A*A*T*A*G*A*A*T*G*T*G*A*G*+T*+C*+C


391
A37396HI
CCGCAGGCAGGCACATATG
+C*+C*+G*C*A*G*G*C*A*G*G*C*A*C*A*T*+A*+T*+G


392
A37397HI
GATAAGAAATGACCAAGCC
+G*+A*+T*A*A*G*A*A*A*T*G*A*C*C*A*A*+G*+C*+C


393
A37398HI
TGTAAGATAAGAAATGACC
+T*+G*+T*A*A*G*A*T*A*A*G*A*A*A*T*G*+A*+C*+C


394
A37399HI
CTCCTGTCTCCAATGTAAG
+C*+T*+C*C*T*G*T*C*T*C*C*A*A*T*G*T*+A*+A*+G


395
A37400HI
CTCTCCTGTCTCCAATGTA
+C*+T*+C*T*C*C*T*G*T*C*T*C*C*A*A*T*+G*+T*+A


396
A37401HI
GCTCTCCTGTCTCCAATGT
+G*+C*+T*C*T*C*C*T*G*T*C*T*C*C*A*A*+T*+G*+T


397
A37402HI
AGCTCTCCTGTCTCCAATG
+A*+G*+C*T*C*T*C*C*T*G*T*C*T*C*C*A*+A*+T*+G


398
A37403HI
AAGCTCTCCTGTCTCCAAT
+A*+A*+G*C*T*C*T*C*C*T*G*T*C*T*C*C*+A*+A*+T


399
A37404HI
CAAGCTCTCCTGTCTCCAA
+C*+A*+A*G*C*T*C*T*C*C*T*G*T*C*T*C*+C*+A*+A


400
A37405HI
TCAAGCTCTCCTGTCTCCA
+T*+C*+A*A*G*C*T*C*T*C*C*T*G*T*C*T*+C*+C*+A


401
A37406HI
TCTTGCAGATTTAGGATTC
+T*+C*+T*T*G*C*A*G*A*T*T*T*A*G*G*A*+T*+T*+C


402
A37407HI
TTCTTGCAGATTTAGGATT
+T*+T*+C*T*T*G*C*A*G*A*T*T*T*A*G*G*+A*+T*+T


403
A37408HI
TGGCATTCTTGCAGATTTA
+T*+G*+G*C*A*T*T*C*T*T*G*C*A*G*A*T*+T*+T*+A


404
A37409HI
CTGGCATTCTTGCAGATTT
+C*+T*+G*G*C*A*T*T*C*T*T*G*C*A*G*A*+T*+T*+T


405
A37410HI
CCTGGCATTCTTGCAGATT
+C*+C*+T*G*G*C*A*T*T*C*T*T*G*C*A*G*+A*+T*+T


406
Neg1

+C*+G*+T*T*T*A*G*G*C*T*A*T*G*T*A*+C*+T*+T


407
R01011

+G*+A*+T*C*A*T*T*C*G*C*G*G*A*C*+A*+A*+C


408
R1019

+G*+A*+C*T*C*G*T*T*A*A*A*C*C*G*+A*+T*+A






Table 1: List of antisense oligonucleotides hybridizing with human PD-1 for example of SEQ ID NO.1; Neg1, R01011 and R1019 are antisense oligonucleotides representing negative controls which are not hybridizing with PD-1 of SEQ ID NO.1. Some of these antisense oligonucleotides do not only hybridize with exons of human PD-1 pre-mRNA (H), some of these only with introns of human PD-1 pre-mRNA (HI) and some of these with exons of human and of mouse PD-1 pre-mRNA (HM), respectively.


The antisense oligonucleotides of the present invention hybridize for example with exons and/or introns of the pre-mRNA of human PD-1 of SEQ ID NO.1. Such antisense oligonucleotides are called PD-1 antisense oligonucleotides. In some embodiments, the oligonucleotides hybridize within a hybridizing active area which is one or more region(s) on the PD-1 pre-mRNA, e.g., of SEQ ID NO.1, where hybridization with an oligonucleotide highly likely results in a potent knockdown of the PD-1 expression. In the present invention surprisingly several hybridizing active areas were identified for example selected from hybridizing active areas shown in the following Table 2 (in bold) and examples of antisense oligonucleotides of the present invention hybridizing with these areas:











Hybridizing active area (in bold)
First position on >NG_012110.1:5001-14026 Homo sapiens programmed cell death 1 (PDCD1), RefSeqGene on chromosome 2


0-299





A37001H (SEQ ID NO.2)
38


A37002H (SEQ ID NO.2)
38


A37003H (SEQ ID NO.2)
38


A37091H (SEQ ID NO.86)
9


A37092H (SEQ ID NO.87)
29


A37093H (SEQ ID NO.88)
59


A37094H (SEQ ID NO.89)
125


A37168HI (SEQ ID NO. 163)
285









300-599





A37023HI (SEQ ID NO.21)
588


A37169HI (SEQ ID NO. 164)
473


A37170HI (SEQ ID NO. 165)
474


A37171HI (SEQ ID NO. 166)
500


A37172HI (SEQ ID NO. 167)
560


A37173HI (SEQ ID NO. 168)
561


A37174HI (SEQ ID NO. 169)
584


A37175HI (SEQ ID NO. 170)
585


A37176HI (SEQ ID NO.171)
587


A37177HI (SEQ ID NO. 172)
591


A37275HI (SEQ ID NO.270)
492


A37276HI (SEQ ID NO.271)
499


A37277HI (SEQ ID NO.272)
559








600-899





A37024HI (SEQ ID NO.22)
642


A37025HI (SEQ ID NO.23)
714


A37026HI (SEQ ID NO.24)
851


A37178HI (SEQ ID NO.173)
636


A37179HI (SEQ ID NO. 174)
637


A37180HI (SEQ ID NO.175)
638


A37181HI (SEQ ID NO. 176)
639


A37182HI (SEQ ID NO. 177)
702


A37183HI (SEQ ID NO. 178)
703


A37184HI (SEQ ID NO. 179)
705


A37185HI (SEQ ID NO. 180)
709


A37186HI (SEQ ID NO.181)
711


A37187HI (SEQ ID NO. 182)
712


A37188HI (SEQ ID NO. 183)
713


A37189HI (SEQ ID NO. 184)
714


A37190HI (SEQ ID NO. 185)
715


A37191HI (SEQ ID NO. 186)
809


A37192HI (SEQ ID NO. 187)
811


A37278HI (SEQ ID NO.273)
638


A37279HI (SEQ ID NO.274)
656


A37280HI (SEQ ID NO.275)
662


A37281HI (SEQ ID NO.276)
704


A37282HI (SEQ ID NO.277)
713


A37283HI (SEQ ID NO.278)
714


A37284HI (SEQ ID NO.279)
715


A37285HI (SEQ ID NO.280)
809








900-1199





A37193HI (SEQ ID NO. 188)
1021


A37286HI (SEQ ID NO.281)
1020








1200–1499





A37027HI (SEQ ID NO.25)
1458


A37194HI (SEQ ID NO. 189)
1256


A37287HI (SEQ ID NO.282)
1218


A37288HI (SEQ ID NO.283)
1223


A37289HI (SEQ ID NO.284)
1255


A37290HI (SEQ ID NO.285)
1298


A37291HI (SEQ ID NO.286)
1299








1500–1799





A37028HI (SEQ ID NO.26)
1558


A37029HI (SEQ ID NO.26)
1558


A37030HI (SEQ ID NO.27)
1567


A37031HI (SEQ ID NO.28)
1733


A37032HI (SEQ ID NO.29)
1742


A37195HI (SEQ ID NO. 190)
1517


A37196HI (SEQ ID NO. 191)
1519


A37197HI (SEQ ID NO. 192)
1527


A37198HI (SEQ ID NO. 193)
1557


A37199HI (SEQ ID NO. 194)
1566


A37200HI (SEQ ID NO. 195)
1567


A37201HI (SEQ ID NO. 196)
1569


A37202HI (SEQ ID NO. 197)
1703


A37203HI (SEQ ID NO. 198)
1727


A37204HI (SEQ ID NO. 199)
1731


A37205HI (SEQ ID NO.200)
1732


A37206HI (SEQ ID NO.201)
1733


A37207HI (SEQ ID NO.202)
1737


A37208HI (SEQ ID NO.203)
1738


A37209HI (SEQ ID NO.204)
1739


A37210HI (SEQ ID NO.205)
1740


A37211HI (SEQ ID NO.206)
1741


A37292HI (SEQ ID NO.287)
1566


A37293HI (SEQ ID NO.288)
1567


A37294HI (SEQ ID NO.289)
1569


A37295HI (SEQ ID NO.290)
1574


A37296HI (SEQ ID NO.291)
1702


A37297HI (SEQ ID NO.292)
1703


A37298HI (SEQ ID NO.293)
1731


A37299HI (SEQ ID NO.294)
1740








1800–2099





A37033HI (SEQ ID NO. 30)
1934


A37212HI (SEQ ID NO.207)
1897


A37213HI (SEQ ID NO.208)
1955


A37214HI (SEQ ID NO.209)
2010


A37215HI (SEQ ID NO.210)
2012


A37300HI (SEQ ID NO.295)
1855


A37301HI (SEQ ID NO.296)
1863


A37302HI (SEQ ID NO.297)
1955


A37303HI (SEQ ID NO.298)
1960


A37304HI (SEQ ID NO.299)
2009








2100–2399





A37305HI (SEQ ID NO. 300)
2342


A37306HI (SEQ ID NO.301)
2343








2400–2699





A37034HI (SEQ ID NO.31)
2542


A37035HI (SEQ ID NO. 32)
2543


A37216HI (SEQ ID NO.211)
2465


A37217HI (SEQ ID NO.212)
2466


A37307HI (SEQ ID NO. 302)
2465


A37308HI (SEQ ID NO.303)
2594








2700–2999





A37036HI (SEQ ID NO.33)
2946


A37218HI (SEQ ID NO.213)
2840


A37219HI (SEQ ID NO.214)
2858


A37220HI (SEQ ID NO.215)
2859


A37221HI (SEQ ID NO.216)
2912


A37309HI (SEQ ID NO. 304)
2839


A37310HI (SEQ ID NO.305)
2858








3000–3299





A37037HI (SEQ ID NO. 34)
3168


A37038HI (SEQ ID NO.35)
3264


A37222HI (SEQ ID NO.217)
3049


A37223HI (SEQ ID NO.218)
3064


A37224HI (SEQ ID NO.219)
3228


A37225HI (SEQ ID NO.220)
3231


A37226HI (SEQ ID NO.221)
3235


A37227HI (SEQ ID NO.222)
3253


A37228HI (SEQ ID NO.223)
3259


A37229HI (SEQ ID NO.224)
3260


A37230HI (SEQ ID NO.225)
3261


A37231HI (SEQ ID NO.226)
3262


A37311HI (SEQ ID NO. 306)
3049


A37312HI (SEQ ID NO.307)
3055


A37313HI (SEQ ID NO. 308)
3228


A37314HI (SEQ ID NO. 309)
3230


A37315HI (SEQ ID NO.310)
3232


A37316HI (SEQ ID NO.311)
3233


A37317HI (SEQ ID NO.312)
3234


A37318HI (SEQ ID NO.313)
3249


A37319HI (SEQ ID NO.314)
3260


A37320HI (SEQ ID NO.315)
3262








3300–3599





A37039HI (SEQ ID NO. 36)
3387


A37232HI (SEQ ID NO.227)
3448


A37233HI (SEQ ID NO.228)
3504


A37321HI (SEQ ID NO.316)
3447


A37322HI (SEQ ID NO.317)
3480


A37323HI (SEQ ID NO.318)
3483


A37324HI (SEQ ID NO.319)
3489


A37325HI (SEQ ID NO.320)
3504








3600–3899





A37040HI (SEQ ID NO.37)
3873


A37234HI (SEQ ID NO.229)
3662


A37235HI (SEQ ID NO.230)
3881


A37236HI (SEQ ID NO.231)
3882


A37326HI (SEQ ID NO.321)
3702


A37327HI (SEQ ID NO.322)
3703


A37328HI (SEQ ID NO.323)
3878


A37329HI (SEQ ID NO. 324)
3880


A37330HI (SEQ ID NO.325)
3881


A37331HI (SEQ ID NO.326)
3882








3900–4199





A37041HI (SEQ ID NO. 38)
4000


A37237HI (SEQ ID NO.232)
3931


A37238HI (SEQ ID NO.233)
4093


A37332HI (SEQ ID NO.327)
3906


A37333HI (SEQ ID NO.328)
3907


A37334HI (SEQ ID NO.329)
3916


A37335HI (SEQ ID NO.330)
3926


A37336HI (SEQ ID NO.331)
3949


A37337HI (SEQ ID NO.332)
3950


A37338HI (SEQ ID NO.333)
3998


A37339HI (SEQ ID NO.334)
4046


A37340HI (SEQ ID NO.335)
4089


A37341HI (SEQ ID NO.336)
4092


A37342HI (SEQ ID NO.337)
4093


A37343HI (SEQ ID NO.338)
4096


A37344HI (SEQ ID NO.339)
4100








4200–4499





A37042HI (SEQ ID NO. 39)
4481


A37345HI (SEQ ID NO. 340)
4241


A37346HI (SEQ ID NO.341)
4351








4500–4799





A37043HI (SEQ ID NO.40)
4645


A37044HI (SEQ ID NO.40)
4645


A37045HI (SEQ ID NO.41)
4762


A37239HI (SEQ ID NO.234)
4626


A37240HI (SEQ ID NO.235)
4635


A37241HI (SEQ ID NO.236)
4644


A37242HI (SEQ ID NO.237)
4758


A37243HI (SEQ ID NO.238)
4771


A37347HI (SEQ ID NO. 342)
4633


A37348HI (SEQ ID NO. 343)
4634


A37349HI (SEQ ID NO. 344)
4706


A37350HI (SEQ ID NO. 345)
4751


A37351HI (SEQ ID NO. 346)
4766








4800–5099





A37244HI (SEQ ID NO.239)
4878


A37245HI (SEQ ID NO.240)
4881


A37246HI (SEQ ID NO.241)
4882


A37247HI (SEQ ID NO.242)
4891


A37248HI (SEQ ID NO.243)
4973


A37249HI (SEQ ID NO.244)
5008


A37250HI (SEQ ID NO.245)
5009


A37251HI (SEQ ID NO.246)
5011








5100–5399





A37252HI (SEQ ID NO.247)
5012


A37352HI (SEQ ID NO. 347)
4870


A37353HI (SEQ ID NO. 348)
4880


A37354HI (SEQ ID NO. 349)
4881


A37355HI (SEQ ID NO.350)
4891


A37356HI (SEQ ID NO.351)
4966


A37357HI (SEQ ID NO.352)
4969


A37358HI (SEQ ID NO.353)
4972


A37359HI (SEQ ID NO.354)
4973


A37360HI (SEQ ID NO.355)
5007


A37361HI (SEQ ID NO.356)
5008


A37362HI (SEQ ID NO.357)
5010


A37363HI (SEQ ID NO.358)
5011


A37046HI (SEQ ID NO.42)
5116


A37253HI (SEQ ID NO.248)
5116


A37254HI (SEQ ID NO.249)
5142


A37255HI (SEQ ID NO.250)
5144


A37256HI (SEQ ID NO.251)
5225


A37257HI (SEQ ID NO.252)
5232


A37258HI (SEQ ID NO.253)
5281


A37259HI (SEQ ID NO.254)
5285


A37260HI (SEQ ID NO.255)
5286


A37261HI (SEQ ID NO.256)
5310


A37262HI (SEQ ID NO.257)
5330


A37364HI (SEQ ID NO.359)
5144


A37365HI (SEQ ID NO. 360)
5148


A37366HI (SEQ ID NO.361)
5225


A37367HI (SEQ ID NO. 362)
5226


A37368HI (SEQ ID NO.363)
5231


A37369HI (SEQ ID NO. 364)
5236


A37370HI (SEQ ID NO.365)
5241


A37371HI (SEQ ID NO. 366)
5282


A37372HI (SEQ ID NO.367)
5284


A37373HI (SEQ ID NO. 368)
5286


A37374HI (SEQ ID NO. 369)
5287


A37375HI (SEQ ID NO.370)
5309


A37376HI (SEQ ID NO.371)
5310


A37377HI (SEQ ID NO.372)
5315


A37378HI (SEQ ID NO.373)
5326


A37379HI (SEQ ID NO.374)
5327


A37380HI (SEQ ID NO.375)
5328


A37381HI (SEQ ID NO.376)
5329


A37382HI (SEQ ID NO. 377)
5330








5400–5699





A37263HI (SEQ ID NO.258)
5427


A37264HI (SEQ ID NO.259)
5662


A37383HI (SEQ ID NO.378)
5553


A37384HI (SEQ ID NO.379)
5669








5700-5999





A37004H (SEQ ID NO. 3)
5970


A37005H (SEQ ID NO.4)
5971


A37006H (SEQ ID NO. 5)
5975


A37047HI (SEQ ID NO.43)
5724


A37053H (SEQ ID NO. 48)
5970


A37054H (SEQ ID NO.49)
5973


A37055H (SEQ ID NO. 50)
5993


A37056H (SEQ ID NO.51)
5994


A37095H (SEQ ID NO.90)
5971


A37096H (SEQ ID NO.91)
5972


A37097H (SEQ ID NO.92)
5993


A37098H (SEQ ID NO.93)
5994


A37265HI (SEQ ID NO.260)
5724


A37266HI (SEQ ID NO.261)
5725


A37267HI (SEQ ID NO.262)
5730


A37268HI (SEQ ID NO.263)
5800


A37385HI (SEQ ID NO. 380)
5725


A37386HI (SEQ ID NO.381)
5730


A37387HI (SEQ ID NO. 382)
5736


A37388HI (SEQ ID NO.383)
5793


A37389HI (SEQ ID NO. 384)
5794


A37390HI (SEQ ID NO.385)
5803








6000–6299





A37007H (SEQ ID NO.6)
6024


A37008H (SEQ ID NO.7)
6027


A37009H (SEQ ID NO.8)
6035


A37010H (SEQ ID NO.9)
6038


A37011H (SEQ ID NO. 10)
6043


A37012HM (SEQ ID NO.11)
6068


A37013H (SEQ ID NO. 12)
6126


A37014H (SEQ ID NO.13)
6203


A37015HM (SEQ ID NO. 14)
6240


A37057H (SEQ ID NO. 52)
6021


A37058H (SEQ ID NO.53)
6023


A37059H (SEQ ID NO. 54)
6027


A37060H (SEQ ID NO.55)
6035


A37061H (SEQ ID NO. 56)
6036


A37062H (SEQ ID NO.57)
6037


A37063H (SEQ ID NO. 58)
6043


A37064H (SEQ ID NO. 59)
6044


A37065H (SEQ ID NO.60)
6066


A37066H (SEQ ID NO.61)
6067


A37067H (SEQ ID NO.62)
6127


A37068H (SEQ ID NO.63)
6133


A37069H (SEQ ID NO. 64)
6134


A37070H (SEQ ID NO.65)
6158


A37071H (SEQ ID NO.66)
6160


A37072H (SEQ ID NO.67)
6203


A37073H (SEQ ID NO.68)
6239


A37074H (SEQ ID NO.69)
6240


A37075H (SEQ ID NO.70)
6243


A37076H (SEQ ID NO.71)
6249


A37077H (SEQ ID NO.72)
6250


A37099H (SEQ ID NO. 94)
6002


A37100H (SEQ ID NO.95)
6006


A37101H (SEQ ID NO.96)
6008


A37102H (SEQ ID NO.97)
6010


A37103H (SEQ ID NO.98)
6011


A37104H (SEQ ID NO.99)
6021


A37105H (SEQ ID NO. 100)
6022


A37106H (SEQ ID NO.101)
6026


A37107H (SEQ ID NO. 102)
6027


A37108H (SEQ ID NO. 103)
6029


A37109H (SEQ ID NO. 104)
6035


A37110H (SEQ ID NO. 105)
6036


A37111H (SEQ ID NO. 106)
6042


A37112H (SEQ ID NO. 107)
6043


A37113H (SEQ ID NO. 108)
6044


A37114H (SEQ ID NO. 109)
6065


A37115H (SEQ ID NO.110)
6066


A37116H (SEQ ID NO.111)
6067


A37117H (SEQ ID NO.112)
6126


A37118H (SEQ ID NO.113)
6130


A37119H (SEQ ID NO. 114)
6133


A37120H (SEQ ID NO.115)
6134


A37121H (SEQ ID NO. 116)
6158


A37122H (SEQ ID NO.117)
6166


A37123H (SEQ ID NO.118)
6203


A37124H (SEQ ID NO. 119)
6239


A37125H (SEQ ID NO. 120)
6240


A37126H (SEQ ID NO. 121)
6248








6300–6599





A37269HI (SEQ ID NO.264)
6431


A37270HI (SEQ ID NO.265)
6439


A37391HI (SEQ ID NO. 386)
6438


A37392HI (SEQ ID NO.387)
6439


A37393HI (SEQ ID NO. 388)
6443








6600–6899





A37016HM (SEQ ID NO.15)
6622


A37048HI (SEQ ID NO.44)
6870


A37078H (SEQ ID NO.73)
6621


A37079H (SEQ ID NO. 74)
6622


A37127H (SEQ ID NO. 122)
6621


A37128H (SEQ ID NO. 123)
6622


A37129H (SEQ ID NO. 124)
6656


A37271HI (SEQ ID NO.266)
6867








6900–7199





A37272HI (SEQ ID NO.267)
6973


A37394HI (SEQ ID NO. 389)
6973


A37395HI (SEQ ID NO. 390)
7050








7200–7499





A37273HI (SEQ ID NO.268)
7251


A37274HI (SEQ ID NO.269)
7335


A37396HI (SEQ ID NO.391)
7250


A37397HI (SEQ ID NO. 392)
7321


A37398HI (SEQ ID NO.393)
7326


A37399HI (SEQ ID NO. 394)
7339


A37400HI (SEQ ID NO.395)
7341


A37401HI (SEQ ID NO. 396)
7342


A37402HI (SEQ ID NO.397)
7343


A37403HI (SEQ ID NO. 398)
7344


A37404HI (SEQ ID NO. 399)
7345


A37405HI (SEQ ID NO. 400)
7346


A37406HI (SEQ ID NO.401)
7379


A37407HI (SEQ ID NO.402)
7380


A37408HI (SEQ ID NO.403)
7385


A37409HI (SEQ ID NO. 404)
7386


A37410HI (SEQ ID NO.405)
7387








7500–7799





A37017H (SEQ ID NO. 16)
7711


A37018H (SEQ ID NO.17)
7738


A37049HI (SEQ ID NO.45)
7513


A37050HI (SEQ ID NO.45)
7513


A37051HI (SEQ ID NO. 46)
7514


A37052HI (SEQ ID NO.47)
7518


A37080H (SEQ ID NO.75)
7624


A37081H (SEQ ID NO.76)
7634


A37082H (SEQ ID NO. 77)
7635


A37083H (SEQ ID NO.78)
7636


A37084H (SEQ ID NO.79)
7667


A37085H (SEQ ID NO.80)
7709


A37086H (SEQ ID NO.81)
7737


A37130H (SEQ ID NO. 125)
7624


A37131H (SEQ ID NO. 126)
7625


A37132H (SEQ ID NO. 127)
7630


A37133H (SEQ ID NO. 128)
7633


A37134H (SEQ ID NO. 129)
7634


A37135H (SEQ ID NO. 130)
7635


A37136H (SEQ ID NO.131)
7662


A37137H (SEQ ID NO. 132)
7663


A37138H (SEQ ID NO.133)
7709


A37139H (SEQ ID NO. 134)
7719


A37140H (SEQ ID NO.135)
7722


A37141H (SEQ ID NO. 136)
7723


A37142H (SEQ ID NO.137)
7724


A37143H (SEQ ID NO. 138)
7734








7800–8099





A37019H (SEQ ID NO. 18)
7939


A37087H (SEQ ID NO.82)
7845


A37088H (SEQ ID NO.83)
8022


A37089H (SEQ ID NO. 84)
8023


A37144H (SEQ ID NO. 139)
7843


A37145H (SEQ ID NO. 140)
7844


A37146H (SEQ ID NO.141)
7859


A37147H (SEQ ID NO. 142)
7899


A37148H (SEQ ID NO. 143)
7903


A37149H (SEQ ID NO. 144)
8016


A37150H (SEQ ID NO. 145)
8018


A37151H (SEQ ID NO. 146)
8022








8100–8399





A37020H (SEQ ID NO. 19)
8195


A37152H (SEQ ID NO. 147)
8100


A37153H (SEQ ID NO. 148)
8121


A37154H (SEQ ID NO. 149)
8144


A37155H (SEQ ID NO. 150)
8253


A37156H (SEQ ID NO.151)
8254


A37157H (SEQ ID NO. 152)
8257


A37158H (SEQ ID NO.153)
8392








8400–8699





A37159H (SEQ ID NO. 154)
8460


A37160H (SEQ ID NO.155)
8511


A37161H (SEQ ID NO. 156)
8575


A37162H (SEQ ID NO.157)
8577


8700–8999



A37021H (SEQ ID NO.20)
8823


A37022H (SEQ ID NO.20)
8823


A37163H (SEQ ID NO. 158)
8870


A37164H (SEQ ID NO. 159)
8877








9000–9299





A37090H (SEQ ID NO.85)
9008


A37165H (SEQ ID NO. 160)
9005


A37166H (SEQ ID NO.161)
9006


A37167H (SEQ ID NO. 162)
9007






In some embodiments, the antisense oligonucleotide of the present invention inhibits for example at least about 25 % to 99 %, 30 % to 95 %, 35 % to 90 %, 40 % to 85 %, 45 % to 80 %, 50 % to 75 %, 55 % to 70 %, e.g., 30 %, 35 %, 40 %, 45 %, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or 100% of PD-1 expression such as the, e.g., human, rat or murine PD-1 expression for example in comparison to an untreated cell, tissue, organ, subject. Thus, the antisense oligonucleotides of the present invention are for example immunosuppression-reverting oligonucleotides which inhibit and revert immunosuppression, respectively, for example in a cell, tissue, organ, or a subject. The antisense oligonucleotide of the present invention inhibits the expression of PD-1 at a nanomolar or micromolar concentration for example in a concentration of 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 nM, or 1, 10 or 100 µM.


The antisense oligonucleotide of the present invention is for example used in a concentration of 1, 3, 5, 9, 10, 15, 27, 30, 40, 50, 75, 82, 100, 250, 300, 500, or 740 nM, or 1, 2.2, 3, 5, 6.6 or 10 µM.


The present invention refers for example to a pharmaceutical composition comprising an antisense oligonucleotide of the present invention and a pharmaceutically acceptable carrier, excipient and/or dilutant. In some embodiments, the pharmaceutical composition further comprises a chemotherapeutic, another disease specific active agent such as another oligonucleotide of the present invention or a different oligonucleotide hybridizing with the PD-1 mRNA or a different target, an antibody, a HERA fusion protein, a ligand trap, a Fab fragment, a nanobody, a BiTe, a small molecule or a combination thereof which is for example effective in preventing and/or treating a malignant tumor, a benign tumor and/or an infectious disease. The pharmaceutical composition is likewise used in cell therapy. It is added to an isolated immune cell for example in the ex vivo step of a cell therapy.


The oligonucleotide or the pharmaceutical composition of the present invention is for example for use in a method of preventing and/or treating a disorder such as a malignant tumor and/or a benign tumor. In some embodiments, the use of the oligonucleotide or the pharmaceutical composition of the present invention in a method of preventing and/or treating a disorder is combined with radiotherapy. The radiotherapy may be further combined with a chemotherapy (e.g., platinum, gemcitabine). The disorder is for example characterized by a PD-1 imbalance, i.e., the PD-1 level is increased in comparison to the level in a normal, healthy cell, tissue, organ or subject. The PD-1 level is for example increased by an increased PD-1 expression, function and/or activity. The PD-1 level can be measured by any standard method known to a person skilled in the art such as immunohistochemistry, western blot, quantitative real time PCR or QuantiGene assay.


An antisense oligonucleotide or a pharmaceutical composition of the present invention is administered locally or systemically for example orally, sublingually, nasally, subcutaneously, intravenously, intraperitoneally, intramuscularly, intratumoral, intrathecal, transdermal, and/or rectal. The oligonucleotide is administered alone or in combination with another antisense oligonucleotide of the present invention and optionally in combination with another compound such as another oligonucleotide, an antibody, a HERA fusion protein, a ligand trap, a Fab fragment, a nanobody, a BiTe, a small molecule and/or a chemotherapeutic (e.g., platinum, gemcitabine) and/or another disease specific agent such as a PD-1 antibody. In some embodiments, the other oligonucleotide (i.e., not being part of the present invention), the antibody, a HERA fusion protein, a ligand trap, a Fab fragment, a nanobody, a BiTe, and/or the small molecule are effective in preventing and/or treating an autoimmune disorder, an immune disorder, diabetes, artheriosclerosis, a nephrological disorder and/or cancer. Alternatively or in addition, the antisense oligonucleotide is used in ex vivo treatment of an immune cell such as a T cell.


For example the antisense oligonucleotide of the present invention and a compound selected from the group consisting of a chemotherapeutic, another oligonucleotide of the present invention or a different oligonucleotide hybridizing with the PD-1 mRNA or a different target, an antibody, a HERA fusion protein, a ligand trap, a Fab fragment, a nanobody, a BiTe, a small molecule or a combination thereof are for use in cell therapy, wherein the antisense oligonucleotide is administered to an isolated immune cell in an ex vivo step of a cell therapy and the compound is administered to a subject, for example suffering from a disease caused by PD-1 imbalance, receiving cell therapy. Alternatively or in addition, the immune cell donor is under treatment with a compound selected from the group consisting of a chemotherapeutic, another disease specific active agent such as another oligonucleotide of the present invention or a different oligonucleotide hybridizing with the PD-1 mRNA or a different target, an antibody, a HERA fusion protein, a ligand trap, a Fab fragment, a nanobody, a BiTe, a small molecule or a combination thereof.


An antisense oligonucleotide or a pharmaceutical composition of the present invention is used for example in a method of preventing and/or treating a solid tumor or a hematologic tumor. Examples of cancers preventable and/or treatable by use of the oligonucleotide or pharmaceutical composition of the present invention are breast cancer, lung cancer, malignant melanoma, lymphoma, skin cancer, bone cancer, prostate cancer, liver cancer, brain cancer, cancer of the larynx, gall bladder, pancreas, testicular, rectum, parathyroid, thyroid, adrenal, neural tissue, head and neck, colon, stomach, bronchi, kidneys, basal cell carcinoma, squamous cell carcinoma, metastatic skin carcinoma, osteo sarcoma, Ewing’s sarcoma, reticulum cell sarcoma, liposarcoma, myeloma, giant cell tumor, small-cell lung tumor, islet cell tumor, primary brain tumor, meningioma, acute and chronic lymphocytic and granulocytic tumors, acute and chronic myeloid leukemia, hairy-cell tumor, adenoma, hyperplasia, medullary carcinoma, intestinal ganglioneuromas, Wilm’s tumor, seminoma, ovarian tumor, leiomyomater tumor, cervical dysplasia, retinoblastoma, soft tissue sarcoma, malignant carcinoid, topical skin lesion, rhabdomyosarcoma, Kaposi’s sarcoma, osteogenic sarcoma, malignant hypercalcemia, renal cell tumor, polycythermia vera, adenocarcinoma, anaplastic astrocytoma, glioblastoma multiforma, leukemia, or epidermoid carcinoma.


Further examples of diseases preventable and/or treatable by use of the oligonucleotide or pharmaceutical composition of the present invention other than cancer are for example an infectious disease.


The infectious disease is for example selected from the group consisting of a Hepatitis B infection, a Hepatitis A infection, a Cytomegalovirus infection, an Epstein-Barr-Virus infection, an Adenovirus infection or a combination thereof.


All these diseases are for example caused or influenced by a PD-1 imbalance.


For example two or more antisense oligonucleotides of the present invention are administered together, at the same time point for example in a pharmaceutical composition or separately, or on staggered intervals. In other embodiments, one or more oligonucleotides of the present invention are administered together with another compound such as another oligonucleotide (i.e., not being part of the present invention), an antibody, a HERA fusion protein, a ligand trap, a Fab fragment, a nanobody, a BiTe, a small molecule and/or a chemotherapeutic, at the same time point for example in a pharmaceutical composition or separately, or on staggered intervals. In some embodiments of these combinations, the antisense oligonucleotide of the present invention inhibits the expression, function and/or activity of an immune suppressive factor and the other oligonucleotide (i.e., not being part of the present invention), the antibody, a HERA fusion protein, a ligand trap, a Fab fragment, a nanobody, a BiTe and/or small molecule inhibits (antagonist) or stimulates (agonist) the same and/or another immune suppressive factor and/or an immune stimulatory factor. The immune suppressive factor is for example selected from the group consisting of IDO1, IDO2, CTLA-4, PD-1, PD-L1, LAG-3, 2B4, CD304, PQR-prot, PERK, FOXP3, GMCSF, INFg, TNFa, TGFb, IL-1, IL-2, IL-6, IL-10, IL-12, IL-17, IL-9, STAT3, IL-6 receptor, VISTA, A2AR, CD39, CD73, STAT3, TDO2, TIM-3, TIGIT, TGF-beta, BTLA, MICA, NKG2A, KIR, CD160, Chop, Xbp1 and a combination thereof. The immune stimulatory factor is for example selected from the group consisting of 4-1BB, Ox40, KIR, GITR, CD27, 2B4 and a combination thereof or encodes a protein that affects expansion and/or survival of the immune cell selected from the group consisting of BID, BIM, BAD, NOXA, PUMA, BAX, BAK, BOK, BCL-rambo, BCL-Xs, Hrk, Blk, BMf, p53 and a combination thereof.


The immune suppressive factor is a factor whose expression, function and/or activity is for example increased in a cell, tissue, organ or subject. The immune stimulatory factor is a factor whose level is increased or decreased in a cell, tissue, organ or subject depending on the cell, tissue, organ or subject and its individual conditions.


An antibody in combination with the antisense oligonucleotide or the pharmaceutical composition of the present invention is for example an anti-PD-1 antibody (e.g., Cemiplimab, CT-011, Nivolumab, Pembrolizumab), an anti-PD-L1 antibody (e.g., Atezolizumab, Avelumab, Durvalumab), a CTLA-4 antibody (e.g., Ipilimumab) or a bispecific antibody. A small molecule in combination with the antisense oligonucleotide or the pharmaceutical composition of the present invention are for example Epacadostat, Vemurafenib, or a tyrosine kinase inhibitor.


A subject of the present invention is for example a human being for example of any genetic background; non-human animal comprises mammalian such as horse, cattle, pig, lamb, cat, dog, guinea pig, hamster etc.; fish such as trout, salmon, zander; bird such as goose, duck, ostrich etc. for example of any genetic background.


Moreover, the antisense oligonucleotide of the present invention is used in a cell therapy such as a T cell therapy. The antisense oligonucleotide is highly advantageous for example over an antibody, siRNA and sdRNA, respectively. The antisense oligonucleotide is administered in vivo as well as ex vivo without any delivery system such as a delivery agent or electroporation. Consequently, it does not have any negative effects on cell viability for example resulting in negative side effects of a cell therapy.


The present invention further relates to a method for reducing expression, function and/or activity of PD-1 in an isolated cell such as an immune cell in preparation for cell therapy. The method comprises the steps of incubating the isolated cell such as an immune cell comprising the PD-1 RNA with an antisense oligonucleotide without use of a transfection means such as gymnotic transfection. The antisense oligonucleotide is administered to the isolated cell such as an immune cell at least once in a time period of day 0 to day 21. The antisense oligonucleotide hybridizes with the PD-1 RNA and reduces the expression, function and/or activity of PD-1 up to 8 weeks from day 0 of the incubation with the antisense oligonucleotide. As the administration of the antisense oligonucleotides does not permanently block the expression, function and/or activity of PD-1, side effects are avoided which are based on permanent blocking of RNA expression, function and/or activity. Additionally, administration of an antisense oligonucleotide without transfection means significantly reduces the stress on a cell and reduces or even avoids side effects caused by other transfection means.


The isolated cell is for example an immune cell, a stem cell, a pluripotent stem cell such as an induced pluripotent stem cell, an embryonic stem cell, a skin stem cell, a cord blood stem cell, a mesenchymal stem cell, a neural stem cell or a combination thereof. The immune cell is for example selected from the group consisting of a T cell, a dendritic cell, a natural killer (NK) cell, a peripheral blood mononuclear cell (PBMC), a hematopoietic stem cell, a B cell and a combination thereof. T cells are for example genetically modified to express an antigen-specific receptor such as a chimeric antigen receptor or a T cell receptor. Those cells can exert their anti-tumor function by recognizing an antigen on the surface of a tumor cell via the antigen-specific receptor, which leads to activation of the T cell. The activated T cell releases cytokines and toxic molecules that lead to destruction of the tumor cell.


The PD-1 RNA is for example mRNA, pre-mRNA, lncRNA, and/or miRNA. The oligonucleotide hybridizes with a specific sequence of the PD-1 RNA and reduces the expression, function and/or activity of the PD-1 (e.g., RNA or protein) consisting of or comprising this sequence.


The cell used in the method of reducing expression of PD-1 RNA is for example isolated from a human or non-human animal. The human animal is for example a human being for example of any genetic background; non-human animal comprises mammalian such as horse, cattle, pig, lamb, cat, dog, guinea pig, hamster etc.; fish such as trout, salmon, zander; bird such as goose, duck, ostrich etc. for example of any genetic background.


The isolated cell is optionally genetically modified by a gene transfer technology including 1) transfection by (bio)chemical methods, 2) transfection by physical methods and 3) virus-mediated transduction. (Bio)chemical methods are for example calcium phosphate transfection, transfection with DEAE-dextran, or lipofection; physical methods are for example electroporation, nucleofection, microinjection, transfection by particle bombardment or transfection by ultrasound; and virus-mediated transduction uses for example adenoviruses for short-term infections with high-level transient expression, herpesviruses for long-term expression, or retroviruses or lentivirus for stable integration of DNA into the host cell genome. Following the genetic modification the cell is expanded. The genetic modification is for example permanent or transient.


The isolated cell is for example incubated with the antisense oligonucleotide of the present invention before or after the genetic modification and/or before or after the expansion of the genetically modified cell. Optionally, the isolated cell is purified, e.g., by one or more washing steps, before and/or after incubation with the antisense oligonucleotide.


The method of the present invention optionally comprises a concentrating step, wherein the isolated cell is concentrated via any concentration method of the art before and/or after the incubation with the antisense oligonucleotide. An antisense oligonucleotide is for example administered to the isolated cell again after the concentrating step.


Further, the isolated cell is for example cryopreserved when incubated with the antisense oligonucleotide, before incubation with the antisense oligonucleotide and/or after incubation with the antisense oligonucleotide, after any purification step, after any concentrating step or a combination thereof.


Isolation according to the present invention means obtaining cells from a source, e.g., immune cells from blood, stem cell from bone marrow or blood of the umbilical cord etc., and/or obtaining a subpopulation of cells from previously isolated cells or a cell population.


The method of reducing expression of PD-1 RNA optionally comprises an activation step, wherein the isolated cell is activated via any activation method of the art for example by stimulating the cell using monoclonal antibodies specific for CD3 and CD23 on the surface of T cells before and/or after the incubation with the antisense oligonucleotide of the present invention. The antisense oligonucleotide is for example administered to the isolated cell again after the activation step.


The method of reducing expression of PD-1 RNA optionally comprises an expansion step, wherein the isolated cells is expanded via any expansion method of the art for example by adding basic fibroblast growth factor (FGF2) to mesenchymal stem cells before and/or after the incubation with the oligonucleotide or by adding interleukin-2 (IL-2) and/or interleukin-15 (IL-15) to NK cells before and/or after the incubation with the oligonucleotide.


The isolated cell is incubated with the PD-1 antisense oligonucleotide for a time period (incubation period) of for example day 0 to day 21, of day 0 to day 20, of day 0 to day 19, of day 0 to day 18, of day 0 to day 17, of day 0 to day 16, of day 0 to day 15, of day 0 to day 14, of day 0 to day 13, of day 0 to day 12, of day 0 to day 11, of day 0 to day 10, of day 0 to day 9, of day 0 to day 8, of day 0 to day 7, of day 0 to day 6, of day 0 to day 5, of day 0 to day 4, of day 0 to day 3, of day 0 to day 2 or of day 0 to day 1. Day 0 is the day when the first antisense oligonucleotide is added the first time to the isolated cell. The PD-1 antisense oligonucleotide is for example added only once to the isolated cell, or every day during the time period or every second day, every third day, every fourth day, every fifth day, every sixth day, every seventh day, every eighth day, every ninth day, every tenth day of the time period or only on the first and the last day of the time period, which represent administration patterns. During the incubation period any administration pattern can be combined, e.g., the incubation period is day 0 to day 9, where the PD-1 antisense oligonucleotide is administered for five days every day and for four days every second day. After the time period the oligonucleotide is for example removed from the isolated cell. The PD-1 antisense oligonucleotide is added to the isolated cell in a nanomolar or micromolar range for example 0.1 nmol to 1000 µmol, 0.5 nmol to 900 µmol, 1 nmol to 800 µmol, 50 nmol to 700 µmol, 100 nmol to 600 µmol, 200 nmol to 500 µmol, 300 nmol to 400 µmol, 500 nmol to 300 µmol, 600 nmol to 200 µmol, 700 nmol to 100 µmol, or 800 nmol to 50 µmol.


The PD-1 antisense oligonucleotide reduces the expression of the target RNA for example for at least 10 weeks, for at least 8 weeks, for at least 6 weeks, for at least 4 weeks, or for at least 2 weeks from day 0 of the incubation period. The antisense oligonucleotide of the present invention reduces PD-1 RNA expression for example up to 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 21 days in a cell, tissue, organ or subject after removal of the antisense oligonucleotide from the cell or up to 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 21 days in a cell, tissue, organ or subject after addition of the antisense oligonucleotide. The reduction of the expression of the PD-1 RNA is for example independent of the incubation period with the oligonucleotide. These reduction terms of the expression of the PD-1 RNA are reached with each of the above mentioned incubation periods.


The isolated cell is for example incubated with one or more, e.g., 2, 3, 4, 5, 6, 7, 8, 9 or 10 different antisense oligonucleotides of the present invention or of the present invention in combination with any other oligonucleotide hybridizing with the same (PD-1) or a different target. The different oligonucleotides are administered to the isolated cell at the same time point for the same time period, at the same time point for different time periods, at different time points for the same period or at different time points for different time periods.


Alternatively or in addition, the PD-1 target RNA is one or more target RNAs, i.e., the same antisense oligonucleotide of the present invention for example reduces the expression of more than one target RNA, different oligonucleotides reduce the expression of different target RNAs, e.g., in parallel or subsequently having a direct and/or indirect effect on the factor of interest.


The present invention is further directed to the isolated cell obtainable by the method of reducing expression of PD-1 RNA. The isolated cell is for example for use in a method of preventing and/or treating a disease. The cell is for example isolated from a patient suffering from the disease or from a healthy subject and the isolated cell is incubated ex vivo with the antisense oligonucleotide or the pharmaceutical composition of the present invention hybridizing with the PD-1 RNA according to the method of the present invention. After incubating the isolated cell with the antisense oligonucleotide, the isolated cell is reintroduced into the patient from whom it was isolated. Alternatively, the cell isolated from a healthy subject and incubated ex vivo with the antisense oligonucleotide of the present invention hybridizing with the PD-1 RNA according to the method of reducing expression of PD-1 RNA is introduced into a patient suffering from a disease based on PD-1 imbalance. Thus, the present invention comprises allogenic cell therapy. The antisense oligonucleotide treated immune cell is for example reintroduced or introduced into the patient intravenously, intraperitoneally, intramuscularly and/or subcutaneously.


The cell such as an immune cell for use in a method of preventing and/or treating a disease comprises isolated cells from a patient, a healthy subject or a combination thereof, which have been incubated ex vivo with the antisense oligonucleotide of the present invention hybridizing with the PD-1 target RNA according to the present invention. In the method of reducing expression of PD-1 RNA either the antisense oligonucleotide and/or the pharmaceutical composition comprising such antisense oligonucleotide is used.


EXAMPLES

The following examples illustrate different embodiments of the present invention, but the invention is not limited to these examples. The following experiments are performed on cells endogenously expressing PD-1, i.e., the cells do not represent an artificial system comprising transfected reporter constructs. Such artificial systems generally show a higher degree of inhibition and lower IC50 values than endogenous systems which are closer to therapeutically relevant in vivo systems. Further, in the following experiments no transfecting agent is used, i.e., gymnotic delivery is performed. Transfecting agents are known to increase the activity of an antisense oligonucleotide which influences the IC50 value (see for example Zhang et al., Gene Therapy, 2011, 18, 326-333; Stanton et al., Nucleic Acid Therapeutics, Vol. 22, No. 5, 2012). As artificial systems using a transfecting agent are hard or impossible to be translated into therapeutic approaches and no transfection formulation has been approved so far for antisense oligonucleotides, the following experiments are performed without any transfecting agent.


Example 1: Design of Human Programmed Death Ligand 1 (PD-1) Antisense Oligonucleotides (ASOs)

For the design of ASOs with specificity for human PD-1 the PD-1 pre-mRNA sequence of SEQ ID NO.1 was used. 15, 16, 17, 18 and 19 mers were designed according to in house criteria, negl (described in WO2014154843 A1), R01011 or R01019 (both designed in house) were used as control oligonucleotides (Table 1).


Example 2: Efficacy Screen of PD-1-Specific ASOs in Human Cancer Cell Lines

In order to investigate the knockdown efficacy of the in silico designed PD-1 ASOs, efficacy screens were performed in activated human T cells from two different donors. Therefore, T cells were isolated, activated with CD3/CD28 antibodies and were treated with the respective ASO or the control oligonucleotide neg1 at a concentration of 5 µM for three days without the addition of a transfection reagent. Cells were lyzed after the three days treatment period, PD-1 and HPRT1 mRNA expression were analyzed using the QuantiGene Singleplex assay (ThermoFisher) and the PD-1 expression values were normalized to HPRT1 values. As depicted in FIG. 2A and Table 3, treatment of activated human T cells from donor 1 with the ASOs A37017H (SEQ ID NO.16), A37030HI (SEQ ID NO.27), A37024HI (SEQ ID NO.22), A37023HI (SEQ ID NO.21), A37046HI (SEQ ID NO.42), A37025HI (SEQ ID NO.23), A37012HM (SEQ ID NO.11), A37015HM (SEQ ID NO.14), A37004H (SEQ ID NO.3), A37016HM (SEQ ID NO.15), A37037HI (SEQ ID NO.34), A37032HI (SEQ ID NO.29) and A37022H (SEQ ID NO.22) resulted in a residual PD-1 mRNA expression of <0.5. The control oligonucleotide negl had only a minimal effect on the PD-1 mRNA expression in this experiment. Selected ASOs were furthermore screened in activated human T cells from donor 2 with regard to their PD-1 knockdown efficacy. As shown in FIG. 3 and Table 4, treatment with the ASOs A37030HI (SEQ ID NO.27), A37024HI (SEQ ID NO.22), A37032HI (SEQ ID NO.29) and A37019H (SEQ ID NO.18) resulted in a residual PD-1 mRNA expression of <0.5, whereas the control oligonucleotide neg1 had no effect.





TABLE 3





List of the mean PD-1 mRNA expression values in ASO-treated activated human T cells from donor 1. PD-1 expression values were normalized for HPRT1 expression values. Residual PD-1 mRNA expression as compared to mock-treated cells is shown.


ASO
Residual PD-1 mRNA expression (normalized for HPRT1, compared to mock-treated cells)




A37017H
0.25


A37030HI
0.25


A37024HI
0.28


A37023HI
0.30


A37046HI
0.35


A37025HI
0.36


A37012HM
0.38


A37015HM
0.40


A37004H
0.45


A37016HM
0.46


A37037HI
0.47


A37032HI
0.47


A37022H
0.48


A37052HI
0.50


A37044HI
0.52


A37042HI
0.53


A37009H
0.53


A37014H
0.53


A37019H
0.54


A37005H
0.57


A37026HI
0.60


A37021H
0.60


A37047HI
0.61


A37040HI
0.64


A37018H
0.64


A37011H
0.69


A37045HI
0.70


A37038HI
0.72


A37006H
0.73


A37020H
0.73


A37008H
0.77


A37001H
0.77


neg1
0.77


A37007H
0.78


neg1
0.83


A37031HI
0.87


A37049HI
0.88


A37041HI
0.88


A37051HI
0.90


A37034HI
0.93


A37028HI
0.94


A37043HI
0.94


A37027HI
0.95


A37029HI
0.98


A37048HI
0.99


A37002H
1.02


A37035HI
1.03


A37013H
1.03


A37010H
1.04


A37036HI
1.12


A37050HI
1.14


A37039HI
1.25


A37033HI
1.32


A37003H
1.49









TABLE 4





List of the mean PD-1 mRNA expression values in ASO-treated activated human T cells from donor 2. PD-1 expression values were normalized for HPRT1 expression values. Residual PD-1 mRNA expression as compared to mock-treated cells is shown.


ASO
Residual PD-1 mRNA expression (normalized for HPRT1, compared to mock-treated cells)




A37030HI
0.34


A37024HI
0.46


A37032HI
0.46


A37019H
0.48


A37021H
0.54


A37017H
0.56


A37015HM
0.58


A37037HI
0.62


A37046HI
0.63


A37022H
0.64


A37025HI
0.67


A37044HI
0.72


A37004H
0.82


A37009H
0.82


A37040HI
0.86


A37023HI
0.87


A37042HI
0.88


A37012HM
0.91


A37016HM
0.91


A37052HI
0.95


A37047HI
0.97


A37011H
1.00


A37005H
1.01


A37038HI
1.07


A37010H
1.09


negl
1.11


A37014H
1.47






Example 3: Determination of IC50 Values of selected PD-1 ASOs in Activated Human T Cells

The dose-dependent knockdown of PD-1 mRNA expression by PD-1 ASOs in activated human T cells was investigated and the respective IC50 values were calculated. Therefore, T cells were isolated, activated and treated for three days with the respective ASO at the following concentrations: 10 µM, 5 µM, 2.5 µM, 1.25 µM, 625 nM, 313 nM, 156 nM. After the treatment period, cells were lyzed, PD-1 and HPRT1 mRNA expression was analyzed using the QuantiGene Singleplex assay (ThermoFisher) and the PD-1 expression values were normalized to HPRT1 values. Residual PD-1 mRNA expression as compared to mock-treated cells is depicted. A dose-dependent knockdown of PD-1 mRNA (FIG. 3 and Table 5) with IC50 values of 839 nM and 704 nM was observed.





TABLE 5












Dose-dependent inhibition of PD-1 mRNA expression in activated human T cells by two selected PD-1 ASOs and respective IC50 values.


Inhibition (%)


ASO
IC50 (nM)
10 µM
51 µM
2.5 µM
1.25 µM
625 nM
313 nM
156 nM




A37024HI (SEQ ID NO.22)
839
88
85
76
61
41
45
26


A37030HI (SEQ ID NO.27)
704
89
81
79
66
43
26
24






Example 4: Time-Dependency of PD-1 Knockdown in Activated Human T Cells After Treatment with Selected PD-1 ASOs

Furthermore, the time-dependency of PD-1 knockdown in activated human T cells after treatment with the PD-1-specific ASOs A37024HI (SEQ ID NO.22) and A37030HI (SEQ ID NO.27) was investigated. Therefore, T cells were isolated, activated and either not treated with an ASO (mock), treated with the control oligonucleotide R01019 or one of the PD-1-specific ASOs A37024HI (SEQ ID NO.22) and A37030HI (SEQ ID NO.27) at a final concentration of 5 µM. PD-1 mRNA and protein expression was assessed on day 1, 2, 3, 4, 5, and 7 after start of ASO treatment. As shown in FIG. 4A and Table 6, residual PD-1 mRNA expression was potently reduced from day 2 to day 7 after start of treatment by the PD-1-specific ASOs A37024HI (SEQ ID NO.22) and A37030HI (SEQ ID NO.27), whereas the control oligonucleotide R01019 had no negative impact on PD-1 mRNA expression. FIGS. 4B and 4C and Table 7 show that PD-1 protein expression (as assessed by flow cytometry) was also potently reduced in activated human T cells that had been treated with the PD-1-specific ASOs A37024HI (SEQ ID NO.22) or A37030HI (SEQ ID NO.27).





TABLE 6







Time-dependency of PD-1 mRNA knockdown in activated human T cells after treatment with selected PD-1 ASOs.



Inhibition (%) of PD-1 mRNA expression



R01019
A37024HI
A37030HI




Day 1
9.54
30.75
36.34


Day 2
4.80
75.65
85.41


Day 3
-3.25
81.32
81.48


Day 4
-54.20
76.98
69.89


Day 7
-38.85
77.82
62.09









TABLE 7







Time-dependency of reduction of PD-1+ cells in Life gate in activated human T cells after treatment with selected PD-1 ASOs.



Reduction (%) of PD-1+ cells in Lifegate



R01019
A37024HI
A37030HI




Day 1
-8.43
-6.93
5.42


Day 2
-2.93
8.62
20.00


Day 3
-17.09
51.37
62.45


Day 4
-11.29
72.54
75.00


Day 7
-37.38
81.19
54.42






Example 5: Persistency of PD-1 Target Knockdown in Activated Human T Cells After ASO Treatment, Stringent Washing and Re-Stimulation

Next the persistency of PD-1 target knockdown in activated human T cells was investigated. Therefore, T cells were isolated and activated. Three days later, no ASO was added to cells (mock), the control oligonucleotide R01011 or the PD-1-specific ASOs A37024HI (SEQ ID NO.22) or A37030HI (SEQ ID NO.27) were added to a final concentration of 5 µM. Three days after addition of ASOs, cells were harvested, stringently washed and reseeded. In order to induce the expression of PD-1, cells were re-stimulated with CD3/CD28 antibodies. PD-1 mRNA and protein expression were assessed on the day of re-stimulation (day 0), and on day 1, 2, 3, and 4 after re-stimulation. As shown in FIG. 5A and Table 8, PD-1 mRNA expression was potently reduced after treatment with the PD-1-specific ASOs A37024HI (SEQ ID NO.22) and A37030HI (SEQ ID NO.27) on day 0, 1, 2, 3 and - only after treatment with A37024HI (SEQ ID NO.22) - also on day 4. Accordingly, as shown in FIG. 5B and Table 9, protein expression was potently reduced on day 0, 1, 2, 3, and day 4 when cells had been treated with A37024HI (SEQ ID NO.22) and on day 0, 1, and 2 when cells had been treated with A37030HI (SEQ ID NO.27).





TABLE 8







Persistency of PD-1 mRNA knockdown in activated human T cells after ASO treatment, stringent washing and re-stimulation.



Inhibition (%) of PD-1 mRNA expression


After re-stimulation
R01011
A37024HI
A37030HI




Day 0
-28.33
84.12
76.93


Day 1
12.91
85.50
73.85


Day 2
31.32
85.26
74.79


Day 3
17.48
61.91
36.64


Day 4
-18.97
53.92
2.02









TABLE 9







Persistency of PD-1 protein knockdown in activated human T cells after ASO treatment, stringent washing and re-stimulation.



Reduction (%) of PD-1+ cells in Lifegate


After re-stimulation
R01011
A37024HI
A37030HI




Day 0
-12.98
79.18
74.96


Day 1
-23.05
41.66
28.58


Day 2
-1.30
61.14
28.86


Day 3
0.54
53.18
4.13


Day 4
-0.25
53.80
24.20






Example 6: Comparison of the Effects of a PD-1-Specific ASO and a PD-1-Specific Self-Delivering Small Interfering RNA in Activated Human T Cells

The potent PD-1-specific ASO A37024HI (SEQ ID NO.22) was compared to a commercially available PD-1-specific self-delivering small interfering RNA (sdRNA) in activated human T cells. Therefore, T cells were isolated, activated and either not treated or treated with A37024HI to a final concentration of 5 µM or a PD-1-specific sdRNA to a final concentration of 2 µM. PD-1 mRNA expression was assessed three days after start of treatment and we assessed intracellular adenosine triphosphate (ATP) content as a measure for cellular viability four days after start of treatment. As shown in FIG. 6A and Table 10, both compounds reduced PD-1 mRNA expression to a similar extend. In strong contrast, while A37024HI (SEQ ID NO.22) had no impact on cellular viability, the PD-1 sdRNA reduced viability by >50% as compared to mock-treated cells (FIG. 6B and Table 11). In conclusion, PD-1-specific ASOs potently inhibit PD-1 expression without cytotoxic effects in human activated T cells.





TABLE 10





Comparison of the inhibition (%) of PD-1 mRNA expression by a PD-1-specific ASO and a PD-1-specific sdRNA in activated human T cells.


Compound
Inhibition (%) of PD-1 mRNA expression




A37024HI
64.55


PD-1 sdRNA
71.05









TABLE 11





Comparison of the reduction (%) of cellular viability by a PD-1-specific ASO and a PD-1-specific sdRNA in activated human T cells.


Compound
Reduction (%) of viability




A37024HI
1.35


PD-1 sdRNA
51.04





Claims
  • 1. Antisense oligonucleotide comprising 10 to 25 nucleotides, wherein at least one of the nucleotides is modified, and the antisense oligonucleotide hybridizes with a nucleic acid sequence of Programmed Cell Death 1 (PD-1) of SEQ ID NO.1, wherein the antisense oligonucleotide inhibits at least 30% of the PD1 expression in a cell compared to an untreated cell.
  • 2. Antisense oligonucleotide according to claim 1, wherein the modified nucleotide is selected from the group consisting of a bridged nucleic acid such as LNA, cET, ENA, 2′Fluoro modified nucleotide, 20-Methyl modified nucleotide and a combination thereof.
  • 3. Antisense oligonucleotide according to claim 1 or 2, wherein the oligonucleotide hybridizes within the region of from position 600 to position 899 of SEQ ID NO.1, within the region of from position 1500 to position 1799 of SEQ ID NO.1, within the region of from position 7800 to position 8099 of SEQ ID NO.1, within the region of from position 8700 to position 8999 of SEQ ID NO.1, within the region of from position 7500 to position 7799 of SEQ ID NO.1, within the region of from position 6000 to position 6299 of SEQ ID NO.1, within the region of from position 3000 to position 3299 of SEQ ID NO.1, within the region of from position 5100 to position 5399 of SEQ ID NO.1, within the region of from position 4500 to position 4799 of SEQ ID NO.1, within the region of from position 0 to position 299 of SEQ ID NO.1, within the region of from position 300 to position 599 of SEQ ID NO.1, within the region of from position 900 to position 1199 of SEQ ID NO.1, within the region of from position 1200 to position 1499 of SEQ ID NO.1, within the region of from position 1800 to position 2099 of SEQ ID NO.1, within the region of from position 2100 to position 2399 of SEQ ID NO.1, within the region of from position 2400 to position 2699 of SEQ ID NO.1, within the region of from position 2700 to position 2999 of SEQ ID NO.1, within the region of from position 3300 to position 3599 of SEQ ID NO.1, within the region of from position 3600 to position 3899 of SEQ ID NO.1, within the region of from position 3900 to position 4199 of SEQ ID NO.1, within the region of from position 4200 to position 4499 of SEQ ID NO.1, within the region of from position 4800 to position 5099 of SEQ ID NO.1, within the region of from position 5400 to position 5699 of SEQ ID NO.1, within the region of from position 5700 to position 5999 of SEQ ID NO.1, within the region of from position 6300 to position 6599 of SEQ ID NO.1, within the region of from position 6600 to position 6899 of SEQ ID NO.1, within the region of from position 6900 to position 7199 of SEQ ID NO.1, within the region of from position 7200 to position 7499 of SEQ ID NO.1, within the region of from position 8100 to position 8399 of SEQ ID NO.1, within the region of from position 8400 to position 8699 of SEQ ID NO.1 or within the region of from position 9000 to position 9299 of SEQ ID NO.1 or a combination thereof.
  • 4. Antisense oligonucleotide according to any one of claims 1 to 3, wherein the modified nucleotide(s) is/are located at the 5′- or 3′-end, at the 5′- and 3′-end of the oligonucleotide, within the antisense oligonucleotide or a combination thereof.
  • 5. Antisense oligonucleotide according to any one of claims 1 to 4, wherein the oligonucleotide comprises a sequence selected from the group consisting of SEQ ID NO. 22, SEQ ID NO.27, SEQ ID NO.29, SEQ ID NO.18, SEQ ID NO.20, SEQ ID NO.16, SEQ ID NO.14, SEQ ID NO.34, SEQ ID NO.42, SEQ ID NO.20, SEQ ID NO.23, SEQ ID NO.40 and a combination thereof.
  • 6. Antisense oligonucleotide according to any one of claims 1 to 5, wherein the oligonucleotide is selected from the group consisting of
  • 7. Pharmaceutical composition comprising the oligonucleotide according to any one of claims 1 to 6 and a pharmaceutically acceptable excipient.
  • 8. Antisense oligonucleotide according to any one of claims 1 to 6 or the pharmaceutical composition according to claim 7 for use in T cell therapy.
  • 9. Antisense oligonucleotide according to any one of claims 1 to 6 or the pharmaceutical composition according to claim 7 for use in a method of preventing and/or treating a malignant tumor, a benign tumor and/or an infectious disease.
  • 10. Antisense oligonucleotide or pharmaceutical composition for use according to claim 8 or 9, wherein the tumor is selected from the group consisting of solid tumors, blood born tumors, leukemias, tumor metastasis, hemangiomas, acoustic neuromas, neurofibromas, trachomas, pyogenic granulomas, psoriasis, astrocytoma, blastoma, Ewing’s tumor, craniopharyngioma, ependymoma, medulloblastoma, glioma, hemangioblastoma, Hodgkin’s lymphoma, mesothelioma, neuroblastoma, non-Hodgkin’s lymphoma, pinealoma, retinoblastoma, sarcoma, seminoma, and Wilms’ tumor, bile duct carcinoma, bladder carcinoma, brain tumor, breast cancer, bronchogenic carcinoma, carcinoma of the kidney, cervical cancer, choriocarcinoma, choroid carcinoma, cystadenocarcinoma, embryonal carcinoma, epithelial carcinoma, esophageal cancer, cervical carcinoma, colon carcinoma, colorectal carcinoma, endometrial cancer, gallbladder cancer, gastric cancer, head cancer, liver carcinoma, lung carcinoma, medullary carcinoma, neck cancer, non-small-cell bronchogenic/lung carcinoma, ovarian cancer, pancreas carcinoma, papillary carcinoma, papillary adenocarcinoma, prostate cancer, small intestine carcinoma, prostate carcinoma, rectal cancer, renal cell carcinoma, skin cancer, small-cell bronchogenic/lung carcinoma, squamous cell carcinoma, sebaceous gland carcinoma, testicular carcinoma, uterine cancer or a combination thereof, or wherein the infectious disease is selected from the group consisting of a Hepatitis B infection, a Hepatitis A infection, a Cytomegalovirus infection, an Epstein-Barr-Virus infection, an Adenovirus infection or a combination thereof.
  • 11. Use of the antisense oligonucleotide according to any one of claims 1 to 6 or the pharmaceutical composition according to claim 7 for reducing expression of PD-1 in an isolated immune cell in preparation for cell therapy.
  • 12. Method for reducing expression of PD-1 RNA in an isolated immune cell in preparation for cell therapy, comprising: incubating the isolated immune cell comprising the PD-1 RNA with an antisense oligonucleotide according to any one of claims 1 to 6 or the pharmaceutical composition according to claim 7 without use of a transfection means, wherein the antisense oligonucleotide is administered to the isolated immune cell at least once in a time period of day 0 to day 21, the antisense oligonucleotide hybridizes with the PD-1 RNA and reduces the expression of PD-1, reduces the function and/or activity of the PD-1, or a combination thereof up to 2 weeks from day 0 of the incubation with the antisense oligonucleotide.
  • 13. Method according to claim 12, wherein the isolated immune cell is genetically modified by a gene transfer technology before or after incubating the immune cell with the antisense oligonucleotide, for example wherein the immune cell is permanently or transiently modified.
  • 14. Method according to claim 12 or 13, wherein the isolated, genetically modified immune cell is expanded before or after incubating the immune cell with the antisense oligonucleotide.
  • 15. Method according to any one of claims 12 to 14, wherein the immune cell is selected from the group consisting of a T cell, a dendritic cell, a natural killer (NK) cell, a peripheral blood mononuclear cell (PBMC), a hematopoietic stem cell, a B cell and a combination thereof.
Priority Claims (1)
Number Date Country Kind
20172314.5 Apr 2020 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2021/061380 4/30/2021 WO