The present disclosure relates to semiconductor processing apparatuses, and more specifically to a pedestal disposed in a semiconductor chamber for supporting a wafer.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
A layered heater typically includes a plurality of functional layers applied on a substrate by layered processes. The plurality of functional layers may include a dielectric layer on the substrate, a resistive heating layer on the dielectric layer, and a protective layer on the resistive heating layer. The materials for the different functional layers and the substrate are carefully chosen to have compatible coefficient of thermal expansion (CTE) to reduce shear stress generated at the joining interfaces at elevated temperatures. The shear stress may cause generation of cracks or delamination at the joining interfaces, resulting in heater failure.
Only a limited number of materials can be used to form the different functional layers by a specific layered process, thereby limiting the selection of materials for the substrate, which should have a CTE matching the CTE of the dielectric layer applied on the substrate or matching the CTE of the heating layer. For example, when alumina ceramic is used to form the dielectric layer, titanium or molybdenum is generally used to form the substrate due to its chemical and CTE compatibility with the alumina ceramic.
The layered heater may need to be joined to a heating target in some applications. For example, the layered heater may be joined to an electrostatic chuck to form a heated electrostatic chuck. However, the limited selection of materials for the substrate makes joining the layered heater to the electrostatic chuck difficult. When the substrate of the layered heater has a CTE that does not match the CTE of the chuck body, the heated electrostatic chuck is likely to fail due to generation of cracks or delamination at the joining interface at elevated temperatures.
Moreover, the heated electrostatic chuck may be bonded to a top of a pedestal layered heater so that the heated electrostatic chuck is disposed at a predetermined height inside a processing chamber. The pedestal is typically made of a metallic material, and is bonded to the substrate of the layered heater, which may be formed of a ceramic material. Similarly, a limited number of materials can be used to form the pedestal due to the compatibility of the metallic materials with the ceramic material.
The limited number of metals may include, for example, molybdenum, titanium, aluminum-silicon alloys and others. Using these materials to form the pedestal may increase manufacturing costs due to difficulty in manufacturing and machining. Moreover, the metal pedestal, which is exposed to processing gases in the processing chamber, may contaminate the wafer to be processed, if the exposed surface of the metal pedestal is not properly treated.
In one form of the present disclosure, a support assembly for use in semiconductor processing is provided and includes an application substrate, a heater layer disposed directly on the application substrate, an insulation layer disposed on the heater layer, and a second substrate disposed on the insulation layer. The heater layer is disposed by a layered process such that the heater layer is in direct contact with the application substrate. The application substrate defines a material having a relatively low coefficient of thermal expansion that is matched to a coefficient of thermal expansion of the heater layer. A periphery of the second substrate extends beyond a periphery of the application substrate.
In another form, the support assembly for use in semiconductor processing is provided and includes an application substrate, a heater layer disposed directly on the application substrate, an insulation layer disposed on the heater layer, and a second substrate disposed on the insulation layer. The heater layer is disposed by a layered process such that the heater layer is in direct contact with the application substrate. The application substrate defines a material having a relatively low coefficient of thermal expansion that is matched to a coefficient of thermal expansion of the heater layer. The second substrate includes a base portion and a peripheral portion surrounding the base portion. The peripheral portion extends vertically and upwardly from the base portion, and a top surface of the peripheral portion is lower than a top surface of the application substrate and is exposed from the top surface of the application substrate.
In still another form, a support assembly for use in semiconductor processing is provided and includes a tubular pedestal, a gas-distributing substrate connected to the tubular pedestal, a heater layer provided on the gas-distributing substrate for heating a wafer, and an application substrate disposed on the heater layer. The application substrate includes controlled expansion alloy that has a variable composition with a coefficient of thermal expansion compatible with that of the heater layer. A periphery of the gas-distributing substrate extends beyond a periphery of the application substrate.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
In order that the invention may be well understood, there will now be described an embodiment thereof, given by way of example, reference being made to the accompanying drawing, in which:
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.
Referring to
A gas conduit 30 may be received in the tubular pedestal structure 28 to provide purge gas to the second substrate 20. A vacuum conduit 31 is also received in the tubular pedestal structure 28 and connects to the application substrate 12 to provide vacuum clamping of the wafer. A temperature sensor 32 is also received in the tubular pedestal structure 28 and connects to the application substrate. Electric wires 33 (shown in
Referring to
Referring to
The application substrate 12 is made of a material that has a relatively low coefficient of thermal expansion matched to a CTE of the heater layer 14 and matched to a CTE of the substrate to be bonded thereon. As an example, the heater layer 14, when formed by thermal spray, may have a CTE about 7 μm/mK. The application substrate 12 may have a CTE in the range of 5 to 8 μm/mK. The application substrate 12 may be made of Osprey™ Controlled
Expansion (CE) alloy, which is an aluminum silicon alloy. The Osprey™ Controlled Expansion (CE) alloy provides a tailored CTE by changing the compositions of the aluminum silicon alloy. When the silicon in the alloy is from 30 to 70% by weight, the CTE ranges from 17 to 7 ppm/° C.
Alternatively, the materials of the application substrate 12 may be selected based on the materials to be attached to the application substrate 12. The suitable materials for the application substrate 12 may include aluminum matrix materials containing ceramic particles such as silicon (Si), silicon carbide (SiC), aluminum oxides (Al2O3). Low-expansion metals, such as titanium, molybdenum, niobium, or sintered ceramics, such as aluminum oxides (Al2O3), aluminum nitride (AlN) may be used. When metallic materials are used to form the application substrate 12, a chemically isolating layer 39 is provided on top of the application substrate 12 to avoid contamination to the wafer to be processed. The chemically isolating layer 39 may be a thermally-sprayed ceramic material, a thin-film deposited ceramic material, a conversion coating, or an adhesively bonded sintered ceramic component.
The application substrate 12 can serve as a substrate on which a heater layer 14 is formed. The application substrate 12 also serves as an application interface to be bonded to a heating target/substrate. To form the heater layer 14 on the application substrate 12, the heater layer 14 may be formed directly on the application substrate by a layered process, such as thick film, thin film, thermal spray and sol-gel. For example, a dielectric layer 24 may be first formed on the application substrate 12 by thermally-spraying a dielectric material, followed by thermally-spraying a resistive material on the dielectric layer 24 to form the resistive layer 26.
To form the heating target on the application substrate 12, the heating target may be secured to the application substrate 12 by metal inert gas welding (MIG), tungsten inert gas welding (TIG), laser welding, electron beam welding, brazing, diffusion bonding or adhesive bonding.
As shown in
Referring to
As shown, the base portion 36 of the second substrate 20 defines a central opening 62 in communication with a chamber 64 of the tubular pedestal structure 28. Therefore, the electric wires 33, gas conduit 30, and vacuum conduit 31 (and temperature sensor 32 not shown) can extend to top of the base portion 36 of the second substrate 20 to provide electric power to the heater layer 14, to provide gases to the purge gas distribution channels 40, and to produce a vacuum in the vacuum clamping channels 50 of the application substrate 12.
The resistive layer 26 includes circuit patterns depending on applications and may be formed on the dielectric layer 24 by a layered process such as a thermal spray, thick film, thin film and sol-gel.
The application substrate 12 is made of a low CTE material. Therefore, a semiconductor processing device, such as a layered heater, an electrostatic chuck, or a ceramic heater, which generally has a low-CTE substrate, can be bonded directly to the application substrate 12, making it relatively easy or less expensive to manufacture. The heater or an electrostatic chuck can be bonded to the underside, the top side, or both sides of the application substrate 12. The heater or electrostatic chuck can be bonded to the application substrate 12 by, for example, MIG, TIG, laser, and electron beam welding, brazing, diffusion bonding, and adhering.
The heater can be more closely coupled to the wafer. Therefore, the entire support assembly 10 can be manufactured with reduced costs and with improved performance, such as improved responsiveness, heater tenability and reliability.
Moreover, the application substrate 12 can function as a chemical and physical barrier between the wafer to be processed and the metal pedestal structure. Therefore, contamination to the bottom of the wafer by the pedestal can be avoided. A lower-cost metal can be used to form the tubular pedestal structure. Further, intensive structural features, such as edge purge distribution channels 40 can be formed in the peripheral portion 38 of the second substrate 20. Structural features can be machined in common metal components, such as aluminum, stainless steel. Therefore, the manufacturing costs can be further reduced.
The description of the disclosure is merely exemplary in nature and, thus, variations that do not depart from the substance of the disclosure are intended to be within the scope of the disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the disclosure.
The present application is a continuation application of U.S. application Ser. No. 13/836,373, filed on Mar. 15, 2013, which claims the benefit of U.S. Provisional Application Ser. No. 61/770,910, filed on Feb. 28, 2013 and also is a continuation-in-part application of U.S. application Ser. No. 13/541,006, filed on Jul. 3, 2012, the contents of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61770910 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13836373 | Mar 2013 | US |
Child | 15484374 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13541006 | Jul 2012 | US |
Child | 13836373 | US |