The use of a photocurable perfluoropolyether (PFPE) material for fabricating a solvent-resistant PFPE-based microfluidic device, methods of flowing a material and performing a chemical reaction in a solvent-resistant PFPE-based microfluidic device, and the solvent-resistant PFPE-based microfluidic devices themselves.
Microfluidic devices developed in the early 1990s were fabricated from hard materials, such as silicon and glass, using photolithography and etching techniques. See Ouellette. J., The Industrial Physicist 2003, August/September, 14-17; Scherer, A., et al., Science 2000, 290, 1536-1539. Photolithography and etching techniques, however, are costly and labor intensive, require clean-room conditions, and pose several disadvantages from a materials standpoint. For these reasons, soft materials have emerged as alternative materials for microfluidic device fabrication. The use of soft materials has made possible the manufacture and actuation of devices containing valves, pumps, and mixers. See, e.g., Ouellette. J., The Industrial Physicist 2003, August/September, 14-17; Scherer, A., et al., Science 2000, 290, 1536-1539; Unger, M. A., et al., Science 2000, 288, 113-116; McDonald, J. C., et al., Acc. Chem. Res. 2002, 35, 491-499; and Thorsen, T., et al., Science 2002, 298, 580-584. For example, one such microfluidic device allows for control over flow direction without the use of mechanical valves. See Zhao. B., et al., Science 2001, 291, 1023-1026.
The increasing complexity of microfluidic devices has created a demand to use such devices in a rapidly growing number of applications. To this end, the use of soft materials has allowed microfluidics to develop into a useful technology that has found application in genome mapping, rapid separations, sensors, nanoscale reactions, ink-jet printing, drug delivery, Lab-on-a-Chip, in vitro diagnostics, injection nozzles, biological studies, and drug screening. See, e.g., Ouellette. J., The Industrial Physicist 2003, August/September, 14-17; Scherer, A., et al., Science 2000, 290, 1536-1539; Unger, M. A., et al., Science 2000, 288, 113-116; McDonald. J. C., et al., Acc. Chem. Res. 2002, 35, 491-499; Thorsen, T., et al., Science 2002, 298, 580-584; and Liu, J., et al., Anal Chem. 2003, 75, 4718-4723.
Poly(dimethylsiloxane) (PDMS) is the soft material of choice for many microfluidic device applications. See Scherer, A., et al., Science 2000, 290, 1536-1539; Unger, M. A., et al., Science 2000, 288, 113-116; McDonald, J. C., et al., Acc. Chem. Res. 2002, 35, 491-499; Thorsen, T., et al., Science 2002, 298, 580-584; and Liu, J., et al., Anal. Chem. 2003, 75, 4718-4723. A PDMS material offers numerous attractive properties in microfluidic applications. Upon cross-linking, PDMS becomes an elastomeric material with a low Young's modulus, e.g., approximately 750 kPa. See Unger, M. A., et al., Science 2000, 288, 113-116. This property allows PDMS to conform to surfaces and to form reversible seals. Further, PDMS has a low surface energy, e.g., approximately 20 erg/cm2, which can facilitate its release from molds after patterning. See Scherer, A., et al., Science 2000, 290, 1536-1539; McDonald. J. C., et al., Acc. Chem. Res. 2002, 35, 491-499.
Another important feature of PDMS is its outstanding gas permeability. This property allows gas bubbles within the channels of a microfluidic device to permeate out of the device. This property also is useful in sustaining cells and microorganisms inside the features of the microfluidic device. The nontoxic nature of silicones, such as PDMS, also is beneficial in this respect and allows for opportunities in the realm of medical implants. McDonald. J. C., et al., Acc. Chem. Res. 2002, 35, 491-499.
Many current PDMS microfluidic devices are based on Sylgard® 184 (Dow Corning, Midland, Mich., United States of America). Sylgard® 184 is cured thermally through a platinum-catalyzed hydrosilation reaction. Complete curing of Sylgard® 184 can take as long as five hours. The synthesis of a photocurable PDMS material, however, with mechanical properties similar to that of Sylgard® 184 for use in soft lithography recently has been reported. See Choi, K. M., et al., J. Am. Chem. Soc. 2003, 125, 4060-4061.
Despite the aforementioned advantages, PDMS suffers from a drawback in microfluidic applications in that it swells in most organic solvents. Thus, PDMS-based microfluidic devices have a limited compatibility with various organic solvents. See Lee. J. N., et al., Anal. Chem. 2003, 75, 6544-6554. Among those organic solvents that swell PDMS are hexanes, ethyl ether, toluene, dichloromethane, acetone, and acetonitrile. See Lee. J. N., et al., Anal. Chem. 2003, 75, 6544-6554. The swelling of a PDMS microfluidic device by organic solvents can disrupt its micron-scale features, e.g., a channel or plurality of channels, and can restrict or completely shut off the flow of organic solvents through the channels. Thus, microfluidic applications with a PDMS-based device are limited to the use of fluids, such as water, that do not swell PDMS. As a result, those applications that require the use of organic solvents likely will need to use microfluidic systems fabricated from hard materials, such as glass and silicon. See Lee, J. N., et al., Anal. Chem. 2003, 75, 6544-6554. This approach, however, is limited by the disadvantages of fabricating microfluidic devices from hard materials.
Moreover, PDMS-based devices and materials are notorious for not being adequately inert enough to allow them to be used even in aqueous-based chemistries. For example, PDMS is susceptible to reaction with weak and strong acids and bases. PDMS-based devices also are notorious for containing extractables, in particular extractable oligomers and cyclic siloxanes, especially after exposure to acids and bases. Because PDMS is easily swollen by organics, hydrophobic materials, even those hydrophobic. materials that are slightly soluble in water, can partition into PDMS-based materials used to construct PDMS-based microfluidic devices.
Thus, an elastomeric material that exhibits the attractive mechanical properties of PDMS combined with a resistance to swelling in common organic solvents would extend the use of microfluidic devices to a variety of new chemical applications that are inaccessible by current PDMS-based devices. Accordingly, the, approach demonstrated by the presently disclosed subject matter uses an elastomeric material, more particularly a photocurable perfluoropolyether (PFPE) material, which is resistant to swelling in common organic solvents to fabricate a microfluidic device.
Photocurable PFPE materials represent a unique class of fluoropolymers that are liquids at room temperature, exhibit low surface energy, low modulus, high gas permeability, and low toxicity with the added feature of being extremely chemically resistant. See Scheirs. J., Modern Fluoropolymers; John Wiley & Sons, Ltd.: New York, 1997; pp 435-485. Further, PFPE materials exhibit hydrophobic and lyophobic properties. For this reason, PFPE materials are often used as lubricants on high-performance machinery operating in harsh conditions. The synthesis and solubility of PFPE materials in supercritical carbon dioxide has been reported. See Bunyard. W. et al., Macromolecules 1999, 32, 8224-8226.
The presently disclosed subject matter describes the use of a photocurable perfluoropolyether as a material for fabricating a solvent-resistant microfluidic device. The use of a photocurable perfluoropolyether as a material for fabricating a microfluidic device addresses the problems associated with swelling in organic solvents exhibited by microfluidic devices made from other polymeric materials, such as PDMS. Accordingly, PFPE-based microfluidic devices can be used to control the flow of a small volume of a fluid, such as an organic solvent, and to perform microscale chemical reactions that are not amenable to other polymeric microfluidic devices.
The presently disclosed subject matter describes the use of a photocurable PFPE material for fabricating a solvent-resistant microfluidic device. More particularly, in some embodiments, the presently disclosed subject matter describes a method of forming a patterned layer of a photocured PFPE material. In some embodiments, the method comprises coating a substrate, such as an etched silicon wafer, with a perfluoropolyether precursor and photocuring the perfluoropolyether precursor to form a patterned layer of a photocured perfluoropolyether.
In some embodiments, the presently disclosed subject matter describes a method of forming a multilayer patterned photocured perfluoropolyether material. In some embodiments, the method comprises overlaying a first patterned layer of the photocured perfluoropolyether on a second patterned layer of the photocured perfluoropolyether, wherein the patterns of the first and second layers of the photocured perfluoropolyether are aligned in a predetermined alignment, and then exposing the first and the second layers of the photocured perfluoropolyether to ultraviolet radiation for a period of time. This curing step causes the two layers to adhere to another, thereby creating a seal between the two patterned layers of the photocured perfluoropolyether.
In some embodiments, the multilayer patterned perfluoropolyether structure comprises a plurality of microscale channels, which can further comprise an integrated network of microscale channels. Accordingly, in some embodiments, the presently disclosed subject matter describes a method of flowing a material through an integrated network of microscale channels. In some embodiments, the method of flowing a material comprises actuating a valve structure within the microscale channels. In some embodiments, the method of flowing a material comprises a side-actuated valve structure. In some embodiments, the method of flowing a material comprises flow channels of different shapes and dimensions. In some embodiments, the method of flowing a material comprises actuating multiple valve structures simultaneously to control the flow through a multiplexed network of microscale channels.
In some embodiments, the presently disclosed subject matter describes a method of performing a chemical reaction in a microfluidic device, wherein the method comprises contacting a first reagent and a second reagent in the microfluidic device to form a reaction product. In some embodiments, the first reagent and the second reagent are independently selected from one of a nucleotide and a polynucleotide, wherein the reaction product comprises a polynucleotide. In some embodiments, the polynucleotide is DNA. In some embodiments, the presently disclosed subject matter describes a method of incorporating a microfluidic device into an integrated reaction or flow system.
Further, in some embodiments, the presently disclosed subject matter describes a method of screening a sample for a characteristic. In some embodiments, the presently disclosed subject matter describes a method of dispensing a material. In some embodiments, the presently disclosed subject matter describes a method of separating a material.
Certain objects of the presently disclosed subject matter having been stated hereinabove, which are addressed in whole or in part by the presently disclosed subject matter, other aspects and objects will become evident as the description proceeds when taken in connection with the accompanying Drawings and Examples as best described herein below.
The presently disclosed subject matter will now be described more fully hereinafter with reference to the accompanying Drawings and Examples, in which representative embodiments are shown. The presently disclosed subject matter can, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the embodiments to those skilled in the art.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this presently described subject matter belongs. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.
Throughout the specification and claims, a given chemical formula or name shall encompass all optical and stereoisomers, as well as racemic mixtures where such isomers and mixtures exist.
As used herein, the term “microfluidic device” generally refers to a device through which materials, particularly fluid borne materials, such as liquids, can be transported, in some embodiments on a micro-scale, and in some embodiments on a nano-scale. Thus, the microfluidic devices described by the presently disclosed subject matter can comprise microscale features, nanoscale features, and combinations thereof.
Accordingly, a microfluidic device typically comprises structural or functional features dimensioned on the order of a millimeter-scale or less, which are capable of manipulating a fluid at a flow rate on the order of a microliter/min or less. Typically, such features include, but are not limited to channels, fluid reservoirs, reaction chambers, mixing chambers, and separation regions. In some examples, the channels include at least one cross-sectional dimension that is in a range of from about 0.1 μm to about 500 μm. The use of dimensions on this order allows the incorporation of a greater number of channels in a smaller area, and utilizes smaller volumes of fluids.
A microfluidic device can exist alone or can be a part of a microfluidic system which, for example and without limitation, can include: pumps for introducing fluids, e.g., samples, reagents, buffers and the like, into the system and/or through the system; detection equipment or systems; data storage systems; and control systems for controlling fluid transport and/or direction within the device, monitoring and controlling environmental. conditions to which fluids in the device are subjected, e.g., temperature, current, and the like.
As used herein, the terms “channel,” “microscale channel,” and “microfluidic channel” are used interchangeably and can mean a recess or cavity formed in a material by imparting a pattern from a patterned substrate into a material or by any suitable material removing technique, or can mean a recess or cavity in combination with any suitable fluid-conducting structure mounted in the recess or cavity, such as a tube, capillary, or the like.
As used herein, the terms “flow channel” and “control channel” are used interchangeably and can mean a channel in a microfluidic device in which a material, such as a fluid, e.g., a gas or a liquid, can flow through. More particularly, the term “flow channel” refers to a channel in which a material of interest, e.g., a solvent or a chemical reagent, can flow through. Further, the term “control channel” refers to a flow channel in which a material, such as a fluid, e.g., a gas or a liquid, can flow through in such a way to actuate a valve or pump.
As used herein, the term “valve” unless otherwise indicated refers to a configuration in which two channels are separated by an elastomeric segment, e.g., a PFPE segment, that can be deflected into or retracted from one of the channels, e.g., a flow channel, in response to an actuation force applied to the other channel, e.g., a control channel.
As used herein, the term “pattern” can mean a channel or a microfluidic channel or an integrated network of microfluidic channels, which, in some embodiments, can intersect at predetermined points. A pattern also can comprise one or more of a microscale fluid reservoir, a microscale reaction chamber, a microscale mixing chamber, and a microscale separation region.
As used herein, the term “intersect” can mean to meet at a point, to meet at a point and cut through or across, or to meet at a point and overlap. More particularly, as used herein, the term “intersect” describes an embodiment wherein two channels meet at a point, meet at a point and cut through or across one another, or meet at a point and overlap one another. Accordingly, in some embodiments, two channels can intersect, i.e., meet at a point or meet at a point and cut through one another, and be in fluid communication with one another. In some embodiments, two channels can intersect, i.e., meet at a point and overlap one another, and not be in fluid communication with one another, as is the case when a flow channel and a control channel intersect.
As used herein, the term “communicate” (e.g., a first component “communicates with” or “is in communication with” a second component) and grammatical variations thereof are used to indicate a structural, functional, mechanical, electrical, optical, or fluidic relationship, or any combination thereof, between two or more components or elements. As such, the fact that one component is said to communicate with a second component is not intended to exclude the possibility that additional components can be present between, and/or operatively associated or engaged with, the first and second components.
In referring to the use of a microfluidic device for handling the containment or movement of fluid, the terms “in”, “on”, “into”, “onto”, “through”, and “across” the device generally have equivalent meanings.
As used herein, the term “monolithic” refers to a structure comprising or acting as a single, uniform structure.
As used herein, the term “non-biological organic materials” refers to organic materials, i.e., those compounds having covalent carbon-carbon bonds, other than biological materials. As used herein, the term “biological materials” includes nucleic acid polymers (e.g., DNA, RNA) amino acid polymers (e.g., enzymes) and small organic compounds (e.g., steroids, hormones) wherein the small organic compounds have biological activity, especially biological activity for humans or commercially significant animals, such as pets and livestock, and where the small organic compounds are used primarily for therapeutic or diagnostic purposes. While biological materials are of interest with respect to pharmaceutical and biotechnological applications, a large number of applications involve chemical processes that are enhanced by other than biological materials, i.e., non-biological organic materials.
Following long-standing patent law convention, the terms “a”, “an”, and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “a microfluidic channel” includes a plurality of such microfluidic channels, and so forth.
The presently disclosed subject matter describes a method of making a microfluidic device from a photocurable perfluoropolyether (PFPE) material. More particularly, the presently disclosed subject matter describes a method of forming a patterned layer of a photocurable PFPE material. A microfluidic device comprising at least one patterned layer of the photocurable PFPE material also is disclosed.
II.A. Method of Forming a Patterned Layer of a Photocurable Perfluoropolyether Material
In some embodiments, the presently disclosed subject matter provides a method of forming a patterned layer of a photocurable PFPE material. Referring now to
As best seen in
As shown in
Accordingly, in some embodiments, a method of forming a patterned layer of a photocured perfluoropolyether comprises:
In some embodiments, a method of forming a patterned layer of a photocured perfluoropolyether comprises:
In some embodiments, the patterned substrate comprises an etched silicon wafer. In some embodiments, the patterned substrate comprises a photoresist patterned substrate. For the purposes of the presently disclosed subject matter, the patterned substrate can be fabricated by any of the processing methods known in the art, including, but not limited to, photolithography, electron beam lithography, and ion milling.
In some embodiments, the coating step comprises a spin-coating step. In some embodiments, the perfluoropolyether precursor comprises poly(tetrafluoroethylene oxide-co-difluoromethylene oxide)a,w diol. In some embodiments, the photoinitiator comprises 2,2-dimethoxy-2-phenyl acetophenone. In some embodiments, the photocured perfluoropolyether comprises a perfluoropolyether dimethacrylate. In some embodiments, the photocured perfluoropolyether comprises a perfluoropolyether distyrenic.
As would be recognized by one of ordinary skill in the art, perfluoropolyethers (PFPEs) have been in use for over 25 years for many applications. Commercial PFPE materials are made by polymerization of perfluorinated monomers. The first member of this class was made by the cesium fluoride catalyzed polymerization of hexafluoropropene oxide (HFPO) yielding a series of branched polymers designated as Krytox® (DuPont, Wilmington, Del., United States of America). A similar polymer is produced by the UV catalyzed photo-oxidation of hexafluoropropene (Fomblin® Y) (Solvay Solexis, Brussels, Belgium). Further, a linear polymer (Fomblin® Z) (Solvay) is prepared by a similar process, but utilizing tetrafluoroethylene. Finally, a fourth polymer (Demnum®) (Daikin Industries, Ltd., Osaka, Japan) is produced by polymerization of tetrafluorooxetane followed by direct fluorination. Structures for these fluids are presented in Table I. Table II contains property data for some members of the PFPE class of lubricants. In addition to these commercially available PFPE fluids, a new series of structures are being prepared by direct fluorination technology. Representative structures of these new PFPE materials appear in Table Ill. Of the abovementioned PFPE fluids, only Krytox® and Fomblin® Z have been extensively used in applications. See Jones, W. R. Jr., The Properties of Perfluoropolyethers Used for Space Applications, NASA Technical Memorandum 106275 (July 1993), which is incorporated herein by reference in its entirety. Accordingly, the use of such PFPE materials is provided in the presently disclosed subject matter.
2 × 10−8
1 × 10−10
awherein x is any integer.
In some embodiments, the ultraviolet radiation has a wavelength of about 365 nanometers. In some embodiments, the period of time the coated, patterned substrate is exposed to the ultraviolet radiation ranges from about one second to about 300 seconds. In some embodiments, the period of time the coated, patterned substrate is exposed to the ultraviolet radiation ranges from about one second to about 100 seconds. In some embodiments, the period of time the coated, patterned substrate is exposed to the ultraviolet radiation is about six seconds. In some embodiments, the period of time the coated, patterned substrate is exposed to the ultraviolet radiation is about 60 seconds.
In some embodiments, the patterned layer of the photocured perfluoropolyether is between about 0.1 micrometers and about 100 micrometers thick. In some embodiments, the patterned layer of the photocured perfluoropolyether is between about 0.1 millimeters and about 10 millimeters thick. In some embodiments, the patterned layer of the photocured perfluoropolyether is between about one micrometer and about 50 micrometers thick. In some embodiments, the patterned layer of the photocured perfluoropolyether is about 20 micrometers thick. In some embodiments, the patterned layer of the photocured perfluoropolyether is about 5 millimeters thick.
In some embodiments, the patterned layer of the photocured perfluoropolyether comprises a plurality of microscale channels. In some embodiments, the channels have a width ranging from about 0.01 μm to about 1000 μm; a width ranging from about 0.05 μm to about 1000 μm; and/or a width ranging from about 1 μm to about 1000 μm. In some embodiments, the channels have a width ranging from about 1 μm to about 500 μm; a width ranging from about 1 μm to about 250 μm; and/or a width ranging from about 10 μm to about 200 μm. Exemplary channel widths include, but are not limited to, 0.1 μm, 1 μm, 2 μm, 5 μm, 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, 100 μm, 110 μm, 120 μm, 130 μm, 140 μm, 150 μm, 160 μm, 170 μm, 180 μm, 190 μm, 200 μm, 210 μm, 220 μm, 230 μm, 240 μm, and 250 μm.
In some embodiments, the channels have a depth ranging from about 1 μm to about 1000 μm; and/or a depth ranging from about 1 μm to 100 μm. In some embodiments, the channels have a depth ranging from about 0.01 μm to about 1000 μm; a depth ranging from about 0.05 μm to about 500 μm; a depth ranging from about 0.2 μm to about 250 μm; a depth ranging from about 1 μm to about 100 μm; a depth ranging from about 2 μm to about 20 μm; and/or,a depth ranging from about 5 μm to about 10 μm. Exemplary channel depths include, but are not limited to, 0.01 μm, 0.02 μm, 0.05 μm, 0.1 μm, 0.2 μm, 0.5 μm, 1 μm, 2 μm, 3 μm, 4 μm, 5 μm, 7.5 μm, 10 μm, 12.5 μm, 15 μm, 17.5 μm, 20 μm, 22.5 μm, 25 μm, 30 μm, 40 μm, 50 μm, 75 μm, 100 μm, 150 μm, 200 μm, and 250 μm.
In some embodiments, the channels have a width-to-depth ratio ranging from about 0.1:1 to about 100:1. In some embodiments, the channels have a width-to-depth ratio ranging from about 1:1 to about 50:1. In some embodiments, the channels have a width-to-depth ratio ranging from about 2:1 to about 20:1. In some embodiments, the channels have a width-to-depth ratio ranging from about 3:1 to about 15:1. In some embodiments, the channels have a width-to-depth ratio of about 10:1.
One of ordinary skill in the art would recognize that the dimensions of the channels of the presently disclosed subject matter are not limited to the exemplary ranges described hereinabove and can vary in width and depth to affect the magnitude of force required to flow a material through the channel and/or to actuate a valve to control the flow of the material therein. Further, as will be described in more detail herein below, channels of greater width are contemplated for use as a fluid reservoir, a reaction chamber, a mixing channel, a separation region and the like.
II.B. Method of Forming a Multilayer Patterned Photocurable Perfluoropolyether Material
In some embodiments, the presently disclosed subject matter describes a method of forming a multilayer patterned photocured perfluoropolyether material. In some embodiments, the multilayer patterned photocured perfluoropolyether material is used to fabricate a monolithic PFPE-based microfluidic device.
Referring now to
Continuing with reference to
Continuing with reference to
Accordingly, in some embodiments, the presently disclosed subject matter describes a method of forming a multilayer patterned photocured perfluoropolyether material, the method comprising:
In some embodiments, the first patterned layer of photocured PFPE material is cast at such a thickness to impart a degree of mechanical stability to the PFPE structure. Accordingly, in some embodiments, the first patterned layer of the photocured PFPE material is about 50 μm to several centimeters thick. In some embodiments, the first patterned layer of the photocured PFPE material is between 50 μm and about 10 millimeters thick. In some embodiments, the first patterned layer of the photocured PFPE material is 5 mm thick. In some embodiments, the first patterned layer of PFPE material is about 4 mm thick. Further, in some embodiments, the thickness of the first patterned layer of PFPE material ranges from about 0.1 μm to about 10 cm; from about 1 μm to about 5 cm; from about 10 μm to about 2 cm; and from about 100 μm to about 10 mm.
In some embodiments, the second patterned layer of the photocured PFPE material is between about 1 micrometer and about 100 micrometers thick. In some embodiments, the second patterned layer of the photocured PFPE material is between about 1 micrometer and about 50 micrometers thick. In some embodiments, the second patterned layer of the photocured material is about 20 micrometers thick.
Although
Accordingly, in some embodiments, a first and a second patterned layer of photocured perfluoropolyether material, or alternatively a first patterned layer of photocured perfluoropolyether material and a nonpatterned layer of photocured perfluoropolyether material, adhere to one another, thereby forming a monolithic PFPE-based microfluidic device.
In some embodiments, the presently disclosed subject matter describes a method of directing the flow of a material through a PFPE-based microfluidic device. In some embodiments, the method of directing the flow of a material through a PFPE-based microfluidic device comprises actuating a valve structure or a plurality of valve structures within the microfluidic device. In some embodiments, the valve structure comprises a portion of the microfluidic channel itself. In some embodiments, the valve structure further comprises a side-actuated valve.
III.A. Method of Actuating a Valve Structure Within a PFPE-Based Microfluidic Device
In some embodiments, the method of actuating a valve structure within a PFPE-based microfluidic device comprises closing a first flow channel by applying pressure to an abutting second flow channel (or “control channel”), thereby deflecting a thin membrane of PFPE material separating the two channels into the first flow channel.
Referring now to
In some embodiments, the membrane 314 of PFPE material separating overlapping channels 320 and 322 has a thickness between about 0.01 μm and 1000 μm, about 0.05 μm to 500 μm, 0.2 μm to 250 μm, 1 μm to 100 μm, 2 μm to 50 μm, and 5 μm to 40 μm. Exemplary membrane thicknesses include, but are not limited to, 0.01 μm, 0.02 μm, 0.03 μm, 0.05 μm, 0.1 μm, 0.2 μm, 0.3 μm, 0.5 μm, 1 μm, 2 μm, 3 μm, 5 μm, 7.5 μm, 10 μm, 12.5 μm, 15 μm, 17.5 μm, 20 μm, 22.5 μm, 25 μm, 30 μm, 40 μm, 50 μm, 75 μm, 100 μm, 150 μm, 200 μm, 250 μm, 300 μm, 400 μm, 500 μm, 750 μm, and 1000 μm.
Because such valves are actuated by moving a portion of the channels themselves (i.e., deflecting membrane 314) and do not require additional components, valves and pumps produced by this technique have a zero dead volume, and switching valves made by this technique have a dead volume approximately equal to the active volume of the valve, for example about 100 μm×100 μm×10 μm=100 pL. Such dead volumes and areas consumed by the moving membrane are approximately two orders of magnitude smaller than known conventional microvalves. Smaller and larger valves are provided in the presently disclosed subject matter, including, but not limited to, valves comprising a dead volume ranging from 1 aL to 1 μL; 100 aL to 100 nL; 1 fL to 1 nL; 100 fL to 1 nL; and 1 pL to 100 pL.
The small volume of materials, such as a fluid, capable of being delivered by pumps and valves in accordance with the presently disclosed subject matter represent a substantial advantage over pumps and valves known in the art. For example, the smallest known volume of a fluid capable of being manually metered is about 0.1 μL. Further, the smallest known volume of a fluid capable of being metered by automated systems is about 1 μL. Using pumps and valves in accordance with the presently disclosed subject matter, a volume of a fluid comprising 10 nL or smaller can be metered and dispensed. The accurate metering of extremely small volumes of fluid enabled by the presently disclosed subject matter can be extremely valuable in a large number of biological applications, including microscale synthesis of biological materials, such as DNA, and diagnostic tests and assays.
As described in U.S. Pat. No. 6,408,878 to Unger et al., which is incorporated herein by reference in its entirety, the deflection of an elastomeric membrane in response to a pressure is a function of: the length, width, and thickness of the membrane, the flexibility of the membrane, e.g., as provided by its Young's modulus, and the applied actuation force. Because each of these parameters will vary depending on the dimensions and physical composition of a particular elastomeric device, e.g., a PFPE device in accordance with the presently disclosed subject matter, a wide range of membrane thicknesses, channel widths, and actuation forces are provided.
Pressure can be applied to actuate the membrane of the device by passing a fluid or a gas, such as air, through, for example, a first piece of tubing connected to a second, narrower piece of tubing, such as a hypodermic tubing, e.g., a metal hypodermic needle, wherein the metal hypodermic needle is placed into contact with the flow channel by insertion into the PFPE block in a direction normal to the flow channel.
Accordingly, in some embodiments, the method of actuating a PFPE-based microfluidic device further comprises forming a plurality of holes in at least one patterned layer of the photocured perfluoropolyether material. In some embodiments, as shown in
Further, such an embodiment addresses a number of problems posed by connecting a conventional microfluidic device to an external fluid source. One such problem is the fragility of the connection between the microfluidic device and the external fluid source. Conventional microfluidic devices comprise hard, inflexible materials, such as silicon, to which tubing providing a connection to an external element must be joined. The rigidity of conventional materials creates a physical stress at the points of contact with the external tubing, rendering conventional microfluidic devices prone to fracture and leakage at these contact points.
By contrast, the PFPE material of the presently described subject matter is flexible and can be penetrated for external connection by a rigid tube, such as a metal hypodermic needle, comprising a hard material. For example, in a PFPE structure fabricated using the method shown in
Between these steps, a portion of the flow channel is exposed to the user's view and is accessible to insertion of the hypodermic needle and proper positioning of the hole. Following completion of fabrication of the device, the metal hypodermic needle is inserted into the hole to complete the fluid connection to the external fluid source. Moreover, the PFPE material of the presently disclosed subject matter will flex in response to physical strain at the point of contact with an external connection, rendering the external physical connection more robust. This flexibility substantially reduces the chance of leakage or fracture of the presently described microfluidic device.
Another disadvantage of conventional microfluidic devices is the difficulty in establishing an effective seal between the device and its connections to an external fluid flow. Because of the narrow diameter of the channels that is typical of these microfluidic devices, achieving even moderate rates of fluid flow can require input high pressures. Accordingly, unwanted leakage at the point of contact between the device and an external connection can result. The flexibility of the PFPE material from which the presently described microfluidic device is fabricated aids in preventing leakage related to high input pressures. More particularly, the flexible PFPE material conforms to the shape of inserted tubing to form a substantially pressure resistant seal.
While control of the flow of material through the device has so far been described using an applied gas pressure, other fluids can be used. A gas is compressible, and thus experiences some finite delay between the time of application of pressure by, for example, an external solenoid valve and the time that this pressure is experienced by the membrane separating the flow channels of the microfluidic device. Accordingly, in some embodiments of the presently disclosed subject matter, pressure is applied from an external source to a noncompressible fluid, such as water or a hydraulic oil, resulting in a near-instantaneous transfer of applied pressure to the membrane. If the displaced volume of the membrane is large or the flow channel is narrow, higher viscosity of the control fluid can contribute to delay in actuation. Therefore, the optimal medium for transferring pressure will depend on the particular application and device configuration. Accordingly, the use of both gaseous and liquid media to actuate the deflectable membrane is provided by the presently disclosed subject matter.
In some embodiments, the external pressure is applied by a pump and tank system through a pressure regulator and external valve. As will be understood by one of ordinary skill in the art, other methods of applying external pressure are provided by the presently disclosed subject matter, including gas tanks, compressors, piston systems, and columns of liquid. Also provided for use in the presently disclosed subject matter are naturally occurring pressure sources, such as those found inside living organisms, including blood pressure, gastric pressure, the pressure present in the cerebro-spinal fluid, pressure present in the intra-ocular space, and the pressure exerted by muscles during normal flexure. Other methods of regulating external pressure also are provided by the presently disclosed subject matter, including miniature valves, pumps, macroscopic peristaltic pumps, pinch valves, and other types of fluid regulating equipment such as is known in the art.
In some embodiments, the response of the microfluidic valves in accordance with the presently disclosed subject matter is nearly linear over a substantial portion of its range of travel, with minimal hysteresis. See U.S. Pat. No. 6,408,878 to Unger et al., which is incorporated herein by reference in its entirety. Accordingly, the valves in accordance with the presently disclosed subject matter are ideally suited for microfluidic metering and fluid control.
While the valves and pumps of the presently disclosed subject matter do not require linear actuation to open and close, a linear response facilitates the use of the valves as metering devices. In some embodiments, the opening of the valve is used to control a flow rate by being partially actuated to a known degree of closure. Linear valve actuation also facilitates the determination of the amount of actuation force required to close the valve to a desired degree of closure. Another benefit of linear actuation is that the force required for valve actuation can be determined from the pressure in the flow channel. Accordingly, if actuation is linear, an increased pressure in the flow channel can be countered by adding the same pressure (force per unit area) to the actuated portion of the valve. Thus, high pressures in the flow channel (i.e., back pressure) can be countered by increasing the actuation pressure.
Linearity of the response of a valve depends on the structure, composition, and method of actuation of the valve structure. Further, whether linearity is a desirable characteristic in a valve depends on the application. Therefore, both linearly and non-linearly actuatable valves are provided in the presently disclosed subject matter, and the pressure ranges over which a valve is linearly actuatable will vary with the specific embodiment.
In addition to the pressure-based actuation systems described hereinabove, electrostatic and magnetic actuation systems also are provided by the presently disclosed subject matter. For example, electrostatic actuation can be accomplished by forming oppositely charged electrodes (which will tend to attract one another when a voltage differential is applied to them) directly into the monolithic PFPE structure. Referring again to
For the membrane electrode to be sufficiently conductive to support electrostatic actuation, but not so mechanically stiff so as to impede the membrane's motion, a sufficiently flexible electrode must be provided in or over membrane 314. Such a sufficiently flexible electrode can be provided by depositing a thin metallization layer on membrane 314, doping the polymer with conductive material, or making the surface layer out of a conductive material.
In some embodiments, the electrode present at the deflecting membrane is provided by a thin metallization layer, which can be provided, for example, by sputtering a thin layer of metal, such as 20 nm of gold. In addition to the formation of a metallized membrane by sputtering, other metallization approaches, such as chemical epitaxy, evaporation, electroplating, and electroless plating, also are available. Physical transfer of a metal layer to the surface of the elastomer also is available, for example by evaporating a metal onto a flat substrate to which it adheres poorly, and then placing the elastomer onto the metal and peeling the metal off of the substrate.
The conductive electrode 330A also can be formed by depositing carbon black (e.g., Vulcan® XC72R Cabot Corporation, Boston, Mass., United States of America) on the elastomer surface. Alternatively, the electrode 330A can be formed by constructing the entire structure 300 out of elastomer doped with conductive material (i.e., carbon black or finely divided metal particles). The electrode also can be formed by electrostatic deposition, or by a chemical reaction that produces carbon.
The lower electrode 330B, which is not required to move, can be either a compliant electrode as described above, or a conventional electrode, such as evaporated gold, a metal plate, or a doped semiconductor electrode.
In some embodiments, magnetic actuation of the flow channels can be achieved by fabricating the membrane separating the flow channels with a magnetically polarizable material, such as iron, or a permanently magnetized material, such as polarized NdFeB.
In embodiments wherein the membrane is fabricated with a magnetically polarizable material, the membrane can be actuated by attraction in response to an applied magnetic field. In embodiments wherein the membrane is fabricated with a material capable of maintaining permanent magnetization, the material can first be magnetized by exposure to a sufficiently high magnetic field, and then actuated either by attraction or repulsion in response to the polarity of an applied inhomogeneous magnetic field.
The magnetic field causing actuation of the membrane can be generated in a variety of ways. In some embodiments, the magnetic field is generated by a small inductive coil formed in or proximate to the elastomer membrane. The actuation effect of such a magnetic coil is localized, thereby allowing actuation of an individual pump and/or valve structure. In some embodiments, the magnetic field is generated by a larger, more powerful source, in which case actuation is not localized and can actuate multiple pump and/or valve structures simultaneously.
It is further possible to combine pressure actuation with electrostatic or magnetic actuation. More particularly, a bellows structure in fluid communication with a recess and/or channel could be electrostatically or magnetically actuated to change the pressure in the recess and/or channel and thereby actuate a membrane structure adjacent to the recess and/or channel.
In addition to electrical or magnetic actuation as described above, electrolytic and electrokinetic actuation systems also are provided by the presently disclosed subject matter. For example, in some embodiments, actuation pressure on the membrane arises from an electrolytic reaction in a recess and/or channel overlying the membrane. In such an embodiment, electrodes present in the recess and/or channel apply a voltage across an electrolyte in the recess and/or channel. This potential difference causes electrochemical reaction at the electrodes and results in the generation of gas species, giving rise to a pressure differential in the recess and/or channel.
In some embodiments, actuation pressure on the membrane arises from an electrokinetic fluid flow in the control channel. In such an embodiment, electrodes present at opposite ends of the control channel apply a potential difference across an electrolyte present in the control channel. Migration of charged species in the electrolyte to the respective electrodes gives rise to a pressure differential.
In some embodiments, it is possible to actuate the device by causing a fluid flow in the control channel based upon the application of thermal energy, either by thermal expansion or by production of a gas from a liquid. Similarly, chemical reactions generating gaseous products can produce an increase in pressure sufficient for membrane actuation.
III.B. Method of Actuating a Valve Structure Within a PFPE-Based Microfluidic Device Comprising Flow Channels of Different Cross Sectional Sizes and Shapes
In some embodiments, the presently disclosed subject matter describes flow channels comprising different cross sectional sizes and shapes, offering different advantages depending on their desired application, in particular, advantages with regard to sealing a flow channel. For example, the cross sectional shape of the lower flow channel can have a curved upper surface, either along its entire length or in the region disposed under an upper cross channel.
Referring now to
Referring again to
Referring again to
Another advantage of having a curved upper flow channel surface at membrane 314 is that the membrane can more readily conform to the shape and volume of the flow channel in response to actuation. More particularly, when a rectangular flow channel is employed, the entire perimeter (2×flow channel height, plus the flow channel width) must be forced into the flow channel. When a curved flow channel is used, a smaller perimeter of material (only the semi-circular arched portion) must be forced into the channel. In this manner, the membrane requires less change in perimeter for actuation and is therefore more responsive to an applied actuation force to close the flow channel.
In some embodiments, (not illustrated), the bottom of flow channel 320 is rounded such that its curved surface mates with the curved upper surface 314A as seen in
In summary, the actual conformational change experienced by the membrane upon actuation will depend on the configuration of the particular PFPE structure. More particularly, the conformational change will depend on the length, width, and thickness profile of the membrane, its attachment to the remainder of the structure, and the height, width, and shape of the flow and control channels and the material properties of the PFPE material used. The conformational change also can depend on the method of actuation, as actuation of the membrane in response to an applied pressure will vary somewhat from actuation in response to a magnetic or electrostatic force.
Moreover, the desired conformational change in the membrane will also vary depending on the particular application for the PFPE structure. In the embodiments described above, the valve can either be open or closed, with metering to control the degree of closure of the valve.
Many membrane thickness profiles and flow channel cross-sections are provided by the presently disclosed subject matter, including rectangular, trapezoidal, circular, ellipsoidal, parabolic, hyperbolic, and polygonal, as well as sections of the aforementioned shapes. More complex cross-sectional shapes, such as the embodiment with protrusions discussed immediately above or an embodiment comprising concavities in the flow channel, also are provided by the presently disclosed subject matter.
III.C. Method of Actuating a Side-Actuated Valve Structure
In some embodiments, the presently disclosed subject matter comprises a side-actuated valve structure. Referring now to
While a side-actuated valve structure actuated in response to pressure is shown in
III.D. Method of Actuating an Integrated Network of Microscale Channels Comprising a PFPE-Based Microfluidic Device
In some embodiments, the predetermined alignment of the first and second layers of the photocured perfluoropolyether material forms a plurality of microscale channels. In some embodiments, the plurality of microscale channels comprises an integrated network of microscale channels. In some embodiments, the microscale channels of the integrated network intersect at predetermined intersecting points.
Referring now to
Referring now to
The downward deflection of membranes separating the respective flow channels from a control line passing thereabove (for example, membranes 314A, 314B, and 314C in
At the locations where the respective control line is wide, its pressurization causes the membrane 314 separating the flow channel and the control line (as shown in
For example, when control line 322A is pressurized, it blocks flows F1, F3, and F5 in flow channels 320A, 320C, and 320E, respectively. Similarly, when control line 322C is pressurized, it blocks flows F1, F2, F5, and F6 in flow channels 320A, 320B, 320E, and 320F, respectively. As will be appreciated by one of ordinary skill in the art upon review of the present disclosure, more than one control line can be actuated at the same time. For example, control lines 322A and 322C can be pressurized simultaneously to block all fluid flow except F4 (with control line 322A blocking F1, F3, and F5; and control line 322C blocking F1, F2, F5, and F6).
By selectively pressurizing different control lines 322A-D both together and in various sequences, a degree of fluid flow control can be achieved. Moreover, by extending the present system to more than six parallel flow channels 320A-F and more than four parallel control lines 322A-D, and by varying the positioning of the wide and narrow regions of the control lines, complex fluid flow control systems can be fabricated.
In some embodiments, the presently disclosed subject matter describes a method of flowing a material and/or performing a chemical reaction in a PFPE-based microfluidic device. In some embodiments, the presently disclosed subject matter describes a method of synthesizing a biopolymer, such as DNA. In some embodiments, the presently disclosed subject matter describes a method of screening a sample for a characteristic. In some embodiments, the presently disclosed subject matter disclosed a method of dispensing a material. In some embodiments, the presently disclosed subject matter discloses a method of separating a material.
IV.A. Method of Flowing a Material and/or Performing a Chemical Reaction in a PFPE-Based Microfluidic Device
In some embodiments, the presently disclosed subject mater describes a method of flowing a material and/or performing a chemical reaction in a PFPE-based microfluidic device. Referring now to
Continuing with reference to
Continuing with reference to
Continuing, then, with reference to
Continuing with
Continuing with reference to
The flow of a material can be directed through the integrated network 830 of microscale channels, including channels, fluid reservoirs, and reaction chambers, by the method described in
Accordingly, in some embodiments, the presently disclosed subject matter comprises a method of flowing a material in a microfluidic device, the method comprising: (a) providing a microfluidic device comprising at least one patterned layer of a photocured perfluoropolyether, wherein the patterned layer of the photocured perfluoropolyether comprises at least one microscale channel; and (b) flowing a material in the microscale channel.
In some embodiments, the method comprises disposing a material in the microfluidic device. In some embodiments, as is best shown in
In some embodiments, the pressurized fluid has a pressure between about 10 psi and about 40 psi. In some embodiments, the pressure is about 25 psi. In some embodiments, the material comprises a fluid. In some embodiments, the fluid comprises a solvent. In some embodiments, the solvent comprises an organic solvent. In some embodiments, the material flows in a predetermined direction along the microscale channel.
Further, in some embodiments, the presently disclosed subject matter describes a method of performing a chemical reaction, the method comprising:
In some embodiments, the patterned layer of the photocured perfluoropolyether comprises a plurality of microscale channels. In some embodiments, at least one of the microscale channels comprises a fluid reservoir. In some embodiments, at least one of the microscale channels comprises a fluid reaction chamber in fluid communication with the fluid reservoir.
In some embodiments, the method further comprises flowing the first reagent and the second reagent in a predetermined direction in the microfluidic device. In some embodiments, the contacting of the first reagent and the second reagent is performed in a microscale reaction chamber. In some embodiments, the method further comprises flowing the reaction product in a predetermined direction in the microfluidic device.
In some embodiments, the method further comprises recovering the reaction product. In some embodiments, the method further comprises flowing the reaction product to an outlet aperture of the microfluidic device.
In some embodiments, the method further comprises contacting the reaction product with a third reagent to form a second reaction product. In some embodiments, the first reagent and the second reagent comprise an organic solvent, including, but not limited to, hexanes, ethyl ether, toluene, dichloromethane, acetone, and acetonitrile.
IB. Method of Synthesizing a Biopolymer in a PFPE-Based Microfluidic Device
In some embodiments, the presently disclosed PFPE-based microfluidic device can be used in biopolymer synthesis, for example, in synthesizing oligonucleotides, proteins, peptides, DNA, and the like. In some embodiments, such biopolymer synthesis systems comprise an integrated system comprising an array of reservoirs, fluidic logic for selecting flow from a particular reservoir, an array of channels, reservoirs, and reaction chambers in which synthesis is performed, and fluidic logic for determining into which channels the selected reagent flows.
Referring now to
In some embodiments, instead of starting from the desired base A, C, T, and G, a reagent selected from one of a nucleotide and a polynucleotide is disposed in at least one of reservoir 910A, 910B, 910C, and 910D. In some embodiments, the reaction product comprises a polynucleotide. In some embodiments, the polynucleotide is DNA.
Accordingly, after a review of the present disclosure, one of ordinary skill in the art would recognize that the presently disclosed PFPE-based microfluidic device can be used to synthesize biopolymers, as described in U.S. Pat. No. 6,408,878 to Unger et al. and U.S. Pat. No. 6,729,352 to O'Conner et al., and/or in a combinatorial synthesis system as described in U.S. Pat. No. 6,508,988 to van Dam et al., each of which is incorporated herein by reference in its entirety.
IV.C. Method of Incorporating a PFPE-Based Microfluidic Device into an Integrated Fluid Flow System.
In some embodiments, the method of performing a chemical reaction or flowing a material within a PFPE-based microfluidic device comprises incorporating the microfluidic device into an integrated fluid flow system. Referring now to
In the schematic of
Continuing with reference to
Continuing with reference to
IV.D. Rerresentative Applications of a PFPE-Based Microfluidic Device
In some embodiments, the presently disclosed subject matter discloses a method of screening a sample for a characteristic. In some embodiments, the presently disclosed subject matter discloses a method of dispensing a material. In some embodiments, the presently disclosed subject matter discloses a method of separating a material. Accordingly, one of ordinary skill in the art would recognize that the PFPE-based microfluidic device described herein can be applied to many applications, including, but not limited to, genome mapping, rapid separations, sensors, nanoscale reactions, ink-jet printing, drug delivery, Lab-on-a-Chip, in vitro diagnostics, injection nozzles, biological studies, high-throughput screening technologies, such as for use in drug discovery and materials science, diagnostic and therapeutic tools, research tools, and the biochemical monitoring of food and natural resources, such as soil, water, and/or air samples collected with portable or stationary monitoring equipment.
IV.D.1. Method of Screening a Sample for a Characteristic
In some embodiments, the presently disclosed subject matter discloses a method of screening a sample for a characteristic, the method comprising:
Referring once again to
In some embodiments, the method comprises disposing the target material in at least one of the plurality of channels. Referring once again to
In some embodiments, the method comprises disposing a plurality of samples in at least one of the plurality of channels. In some embodiments, the sample is selected from the group consisting of a therapeutic agent, a diagnostic agent, a research reagent, a catalyst, a metal ligand, a non-biological organic material, an inorganic material, a foodstuff, soil, water, and air. In some embodiments, the sample comprises one or more members of one or more libraries of chemical or biological compounds or components. In some embodiments, the sample comprises one or more of a nucleic acid template, a sequencing reagent, a primer, a primer extension product, a restriction enzyme, a PCR reagent, a PCR reaction product, or a combination thereof. In some embodiments, the sample comprises one or more of an antibody, a cell receptor, an antigen, a receptor ligand, an enzyme, a substrate, an immunochemical, an immunoglobulin, a virus, a virus binding component, a protein, a cellular factor, a growth factor, an inhibitor, or a combination thereof.
In some embodiments, the target material comprises one or more of an antigen, antibody, an enzyme, a restriction enzyme, a dye, a fluorescent dye, a sequencing reagent, a PCR reagent, a primer, a receptor, a ligand, a chemical reagent, or a combination thereof.
In some embodiments, the interaction comprises a binding event. In some embodiments, the detecting of the interaction is performed by at least one or more of a spectrophotometer, a fluorometer, a photodiode, a photomultiplier tube, a microscope, a scintillation counter, a camera, a CCD camera, film, an optical detection system, a temperature sensor, a conductivity meter, a potentiometer, an amperometric meter, a pH meter, or a combination thereof.
Accordingly, after a review of the present disclosure, one of ordinary skill in the art would recognize that the presently disclosed PFPE-based microfluidic device can be used in various screening techniques, such as those described in U.S. Pat. No. 6,749,814 to Berch et al., U.S. Pat. No. 6,737,026 to Bergh et al., U.S. Pat. No. 6,630,353 to Parce et al., U.S. Pat. No. 6,620,625 to Wolk et al., U.S. Pat. No. 6,558,944 to Parce et al., U.S. Pat. No. 6,547,941 to Kopf-Sill et al., U.S. Pat. No. 6,529,835 to Wada et al., U.S. Pat. No. 6,495,369 to Kercso et al., and U.S. Pat. No. 6,150,180 to Parce et al., each of which is incorporated by reference in its entirety. Further, after a review of the present disclosure, one of ordinary skill in the art would recognize that the presently disclosed PFPE-based microfluidic device can be used, for example, to detect DNA, proteins, or other molecules associated with a particular biochemical system, as described in U.S. Pat. No. 6,767,706 to Quake et al., which is incorporated herein by reference in its entirety.
IV.D.2. Method of Dispensing a Material
In some embodiments, the presently disclosed subject matter describes a method of dispensing a material, the method comprising:
Referring once again to
In some embodiments, the material comprises a drug. In some embodiments, the method comprises metering a predetermined dosage of the drug. In some embodiments, the method comprises dispensing the predetermined dosage of the drug.
In some embodiments, the material comprises an ink composition. In some embodiments, the method comprises dispensing the ink composition on a substrate. In some embodiments, the dispensing of the ink composition on a substrate forms a printed image.
Accordingly, after a review of the present disclosure, one of ordinary skill in the art would recognize that the presently disclosed PFPE-based microfluidic device can be used for microfluidic printing as described in U.S. Pat. No. 6,334,676 to Kaszczuk et al., U.S. Pat. No. 6,128,022 to DeBoer et al., and U.S. Pat. No. 6,091,433 to Wen, each of which is incorporated herein by reference in its entirety.
IV.D.3 Method of Separating a Material
In some embodiments, the presently disclosed subject matter describes a method of separating a material, the method comprising:
Referring once again to
In some embodiments, the separation region comprises a chromatographic material. In some embodiments, the chromatographic material is selected from the group consisting of a size-separation matrix, an affinity-separation matrix; and a gel-exclusion matrix, or a combination thereof.
In some embodiments, the first or second material comprises one or more members of one or more libraries of chemical or biological compounds or components. In some embodiments, the first or second material comprises one or more of a nucleic acid template, a sequencing reagent, a primer, a primer extension product, a restriction enzyme, a PCR reagent, a PCR reaction product, or a combination thereof. In some embodiments, the first or second material comprises one or more of an antibody, a cell receptor, an antigen, a receptor ligand, an enzyme, a substrate, an immunochemical, an immunoglobulin, a virus, a virus binding component, a protein, a cellular factor, a growth factor, an inhibitor, or a combination thereof.
In some embodiments, the method comprises detecting the separated material. In some embodiments, the detecting of the separated material is performed by at least one or more of a spectrophotometer, a fluorometer, a photodiode, a photomultiplier tube, a microscope, a scintillation counter, a camera, a CCD camera, film, an optical detection system, a temperature sensor, a conductivity meter, a potentiometer, an amperometric meter, a pH meter, or a combination thereof.
Accordingly, after a review of the present disclosure, one of ordinary skill in the art would recognize that the presently disclosed PFPE-based microfluidic device can be used to separate materials, as described in U.S. Pat. No. 6,752,922 to Huang et al., U.S. Pat. No. 6,274,089 to Chow et al., and U.S. Pat. No. 6,444,461 to Knapp et al., each of which is incorporated herein by reference in its entirety.
The following Examples have been included to illustrate modes of the presently disclosed subject matter. Certain aspects of the following Examples are described in terms of techniques and procedures found or contemplated to work well in the practice of the presently disclosed subject matter. In light of the present disclosure and the general level of skill in the art, those of skill can appreciate that the following Examples are intended to be exemplary only and that numerous changes, modifications, and alterations can be employed without departing from the scope of the presently disclosed subject matter.
A representative scheme for the synthesis and photocuring of a functionalized perfluoropolyether is provided in Scheme 1.
This method is based on a previously reported procedure. See Priola. A., et al., Macromol Chem. Phys. 1997, 198, 1893-1907. The reaction involves the methacrylate functionalization of a commercially available PFPE diol ((Mn) 3800 g/mol) with isocyanatoethyl methacrylate. Subsequent photocuring of the material is accomplished through blending with 1 wt % of 2,2-dimethoxy-2-phenylacetophenone and exposure to UV radiation (λ=365 nm).
Poly(tetrafluoroethylene oxide-co-difluoromethylene oxide)a,w diol (ZDOL, Average Mn ca. 3,800 g/mol, 95% Aldrich Chemical Company, Milwaukee, Wis., United States of America), 2-Isocyanatoethyl methacrylate (EIM, 99% Aldrich), 2,2-Dimethoxy-2-phenyl acetophenone (DMPA, 99% Aldrich), Dibutyltin diacetate (DBTDA, 99% Aldrich), and 1,1,2-trichlorotrifluoroethane (Freon 113, 99% Aldrich) were used as received.
In a typical synthesis, ZDOL (5.7227 g, 1.5 mmol) was added to a dry 50 mL round bottom flask and purged with argon for 15 minutes. EIM (0.43 mL, 3.0 mmol) was then added via syringe along with Freon 113 (2 mL), and DBTDA (50 μL). The solution was immersed in an oil bath and allowed to stir at 50° C. for 24 h. The solution was then passed through a chromatographic column (alumina, Freon 113, 2 cm=5 cm). Evaporation of the solvent yielded a clear, colorless, viscous oil, which was further purified by passage through a 0.22-μm polyethersulfone filter. 1H-NMR (ppm): 2.1, s (3H); 3.7, q (2H); 4.4, t (2H); 4.7, t (2H); 5.3, m (1H); 5.8, s (1H); 6.3, s (1H).
In a typical cure, 1 wt % of DMPA (0.05 g, 2.0 mmol) was added to PFPE DMA (5 g, 1.2 mmol) along with 2 mL Freon 113 until a clear solution was formed. After removal of the solvent, the cloudy viscous oil was passed through a 0.22-μm polyethersulfone filter to remove any DMPA that did not disperse into the PFPE DMA. The filtered PFPE DMA was then irradiated with a UV source (Electro-lite UV curing chamber model no. 81432-ELC-500, Danbury, Conn., United States of America, λ=365 nm) while under a nitrogen purge for 10 min, yielding a clear, slightly yellow, rubbery material.
In a typical fabrication, PFPE DMA containing photoinitiator (as described in Example 4) was spin coated to a thickness of 20 μm (800 rpm) onto a Si wafer containing the desired photoresist pattern. This wafer was then placed into the UV curing chamber and irradiated for 6 s. Separately, a thick layer (˜5 mm) of the material was produced by pouring the PFPE DMA containing photoinitiator into a mold surrounding the Si wafer containing the desired photoresist pattern. This wafer was irradiated with UV light for 1 min. Following this step, the thick layer was removed and inlet holes were carefully punched in specific areas of the device. The thick layer was then carefully placed on top of the thin layer such that the patterns in the two layers were precisely aligned, and then the entire device was irradiated for 10 min. Once complete, the entire device was peeled from the wafer with both layers adhered together. These curing times were determined to be the optimal exposure times to achieve a good balance between structure failure and proper adhesion of the two layers.
Swelling experiments were performed by soaking fully cured PFPE DMA and fully cured Sylgard® 184 (Dow Corning, Midland, Mich., United States of America) in dichloromethane. The % Swelling was determined using the following equation:
% Swelling=100% * (Wt−W0)/W0
where Wt is the weight of the material immediately after soaking in dichloromethane for time t and being patted dry with a paper tissue, and W0 is the original weight of the material.
Viscosities of the two elastomer precursors (PFPE DMA and Sylgard® 184) were measured on a TA Instruments AR2000 Rheometer (New Castle, Del., United States of America). Measurements were taken on approximately 3-5 mL of material. Measurements on the Sylgard® 184 precursors were taken immediately after mixing the two components. The shear rate for Sylgard® 184 was varied from 0.03 s−1 to 0.70 s−1 and resulted in a constant viscosity at each shear rate. The shear rate for PFPE DMA was varied from 0.28 s−1 to 34.74 s−1 and also resulted in a constant viscosity regardless of the shear rate. Viscosities were obtained by taking an average of the viscosity values over all measured shear rates on a logarithmic plot. The raw data for these experiments are shown in
Modulus measurements were taken on a PerkinElmer DMA 7e Dynamic Mechanical Analyzer (Boston, Mass., United States of America). Samples were cut into 4-mm×8-mm×0.5-mm (width×length×thickness) rectangles. The initial static force on each of the two samples was 5 mN and the load was increased at rate of 500 mN/min until the sample ruptured or it reached 6400 mN. The tensile moduli were obtained from the initial slope (up to approximately 20% strain) of the stress/strain curves.
Thermal transitions of the two elastomers were obtained on a Seiko DMS 210 Dynamic Mechanical Thermal Analyzer (Seiko Instruments, Inc., Chiba, Japan). Samples were cut into 4-mm×20-mm×0.5-mm (width×length×thickness) rectangles. The following settings were used: Lamp=10, Min Tension/Compression force=10.000 g, Tension/Compression correction=1.2; Force amplitude=100. The temperature sweep ranged from −140° C. to 50° C. Tg's were obtained from the corresponding temperature at the maxima in a plot of E″ (loss modulus) vs. temperature.
Static contact angles were measured using a KSV Instruments CAM 200 Optical Contact Angle Meter (KSV Instruments, Ltd., Helsinki, Finland). Droplets were placed on each of the fully cured elastomers using a 250-μL screw-top syringe.
To measure solvent resistance, tests using classical swelling measurements were performed on both the cross-linked PFPE DMA and Sylgard® 184, a PDMS. Rubinstein, M., et al., Polymer Physics; Oxford University Press: New York, 2003; p 398. Sample weight was compared before and after immersion in dichloromethane for several hours. The data show that after 94 h the PDMS network had swelled to 109% by weight, while the PFPE network showed negligible swelling (<3%).
The PDMS and PFPE precursor materials and the fully cured networks have similar processing and mechanical properties. Rheology experiments showed the viscosity of the uncured PFPE DMA at 25° C. to be 0.36 Pa·s, which is significantly lower than that of 3.74 Pa·s for the uncured Sylgard® 184. Because both materials are viscous oils at room temperature, however, standard PDMS device fabrication methods also could be used with the PFPE materials.
Said another way, the PFPE materials of the presently disclosed subject matter exhibit low viscosities and are pourable. These properties distinguish PFPE materials from other fluoroelastomers, such as Kalrez® (DuPont Dow Elastomers, L.L.C., Wilmington, Del., United States of America) and Viton® (DuPont Dow Elastomers, L.L.C., Wilmington, Del., United States of America), which have high viscosities. For example, the viscosity of Viton® is 7800 Pa·s at 160° C. Further, Kalrez® and Viton® are each cured thermally only.
Dynamic mechanical thermal analysis (DMTA) was performed on the fully cured materials. Both the PFPE and PDMS networks exhibited low temperature transitions (−112° C. and −128° C., respectively) as evidenced by maxima in the loss modulus E″ (see
As provided in Table IV, the PFPE DMA elastomer showed a higher contact angle than Sylgard® 184 for water and methanol. Toluene and dichloromethane instantly swelled Sylgard® 184 on contact, which prevented measurements to be taken. Contact angle values for these solvents were obtained for the PFPE DMA material, however, as no swelling occurred.
aA (—) indicates that the solvent swelled the material and no accurate measurement could be taken.
In some embodiments, device fabrication was accomplished according to the procedure illustrated in
To compare the solvent compatibility of devices made from the two materials, a dyed solution containing dichloromethane, acetonitrile, and methanol was introduced into a PFPE channel and a PDMS channel by capillary action (see
It will be understood that various details of the presently disclosed subject matter can be changed without departing from the scope of the presently disclosed subject matter. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/505,384, filed Sep. 23, 2003, and U.S. Provisional Patent Application Ser. No. 60/524,788, filed Nov. 21, 2003; the disclosure of each of which is incorporated herein by reference in their entireties.
A portion of this invention was made with U.S. Government support from the Office of Naval Research Grant No. N00014-02-1-0185. The U.S. Government has certain rights to that portion of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2004/031274 | 9/23/2004 | WO | 00 | 5/16/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/030822 | 4/7/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3810874 | Mitsch et al. | May 1974 | A |
4352874 | Land et al. | Oct 1982 | A |
4353977 | Gerber et al. | Oct 1982 | A |
4356257 | Gerber | Oct 1982 | A |
4359526 | Walworth | Nov 1982 | A |
4512848 | Deckman et al. | Apr 1985 | A |
4567073 | Larson et al. | Jan 1986 | A |
4614667 | Larson et al. | Sep 1986 | A |
4663274 | Slafer et al. | May 1987 | A |
4681925 | Strepparola et al. | Jul 1987 | A |
4818801 | Rice et al. | Apr 1989 | A |
4830910 | Larson | May 1989 | A |
5041359 | Kooi | Aug 1991 | A |
5175030 | Lu et al. | Dec 1992 | A |
5189135 | Cozzi et al. | Feb 1993 | A |
5259926 | Kuwabara et al. | Nov 1993 | A |
5279689 | Shvartsman | Jan 1994 | A |
5368789 | Kamitakahara et al. | Nov 1994 | A |
5425848 | Haisma et al. | Jun 1995 | A |
5512131 | Kumar et al. | Apr 1996 | A |
5512374 | Wallace et al. | Apr 1996 | A |
5593130 | Hansson et al. | Jan 1997 | A |
5630902 | Galarneau et al. | May 1997 | A |
5753150 | Martin et al. | May 1998 | A |
5772905 | Chou | Jun 1998 | A |
5817242 | Biebuyck et al. | Oct 1998 | A |
5965631 | Nicolson et al. | Oct 1999 | A |
5994133 | Meijs et al. | Nov 1999 | A |
6015609 | Chaouk | Jan 2000 | A |
6027595 | Suleski | Feb 2000 | A |
6027630 | Cohen | Feb 2000 | A |
6183829 | Daecher | Feb 2001 | B1 |
6204296 | Weers et al. | Mar 2001 | B1 |
6207758 | Brinati et al. | Mar 2001 | B1 |
6228318 | Nakamae et al. | May 2001 | B1 |
6247986 | Chiu et al. | Jun 2001 | B1 |
6280808 | Fields | Aug 2001 | B1 |
6284072 | Ryan et al. | Sep 2001 | B1 |
6294450 | Chen et al. | Sep 2001 | B1 |
6300042 | Mancini et al. | Oct 2001 | B1 |
6306563 | Xu et al. | Oct 2001 | B1 |
6334960 | Willson et al. | Jan 2002 | B1 |
6335224 | Peterson et al. | Jan 2002 | B1 |
6355198 | Kim et al. | Mar 2002 | B1 |
6375870 | Visovsky et al. | Apr 2002 | B1 |
6403539 | Marchionni et al. | Jun 2002 | B1 |
6408878 | Unger | Jun 2002 | B2 |
6422528 | Domeier et al. | Jul 2002 | B1 |
6451403 | Daecher | Sep 2002 | B1 |
6508988 | Van Dam | Jan 2003 | B1 |
6517995 | Jacobson et al. | Feb 2003 | B1 |
6518189 | Chou | Feb 2003 | B1 |
6555221 | Komiyama et al. | Apr 2003 | B1 |
6607683 | Harrington | Aug 2003 | B1 |
6645432 | Anderson et al. | Nov 2003 | B1 |
6649715 | Smith et al. | Nov 2003 | B1 |
6653030 | Mei et al. | Nov 2003 | B2 |
6656308 | Hougham et al. | Dec 2003 | B2 |
6656398 | Birch et al. | Dec 2003 | B2 |
6660192 | Kim et al. | Dec 2003 | B1 |
6663820 | Arias et al. | Dec 2003 | B2 |
6686184 | Anderson | Feb 2004 | B1 |
6689900 | Wang et al. | Feb 2004 | B2 |
6696220 | Bailey et al. | Feb 2004 | B2 |
6699347 | Lehrter et al. | Mar 2004 | B2 |
6705357 | Jeon | Mar 2004 | B2 |
6719868 | Schueller | Apr 2004 | B1 |
6737489 | Linert et al. | May 2004 | B2 |
6752942 | Kim et al. | Jun 2004 | B2 |
6753131 | Rogers et al. | Jun 2004 | B1 |
6755984 | Lee et al. | Jun 2004 | B2 |
6759182 | Ikeda et al. | Jul 2004 | B2 |
6767706 | Quake | Jul 2004 | B2 |
6770721 | Kim | Aug 2004 | B1 |
6783717 | Hougham et al. | Aug 2004 | B2 |
6793753 | Unger | Sep 2004 | B2 |
6808646 | Jeans | Oct 2004 | B1 |
6809356 | Chou | Oct 2004 | B2 |
6828244 | Chou | Dec 2004 | B2 |
6829050 | Ikeda et al. | Dec 2004 | B2 |
6841079 | Dunbar et al. | Jan 2005 | B2 |
6844623 | Peterson | Jan 2005 | B1 |
6849558 | Schaper | Feb 2005 | B2 |
6860956 | Bao et al. | Mar 2005 | B2 |
6869557 | Wago et al. | Mar 2005 | B1 |
6900881 | Sreenivasan et al. | May 2005 | B2 |
6923930 | Ling et al. | Aug 2005 | B2 |
6929030 | Unger | Aug 2005 | B2 |
6929899 | Pottebaum et al. | Aug 2005 | B2 |
6932934 | Choi et al. | Aug 2005 | B2 |
6936181 | Bulthaup et al. | Aug 2005 | B2 |
6936194 | Watts | Aug 2005 | B2 |
6953653 | Smith et al. | Oct 2005 | B2 |
6956283 | Peterson | Oct 2005 | B1 |
6964793 | Willson et al. | Nov 2005 | B2 |
6976424 | Bruno et al. | Dec 2005 | B2 |
7040338 | Unger | May 2006 | B2 |
7070406 | Jeans | Jul 2006 | B2 |
7117790 | Kendale et al. | Oct 2006 | B2 |
7294294 | Wago et al. | Nov 2007 | B1 |
20020160139 | Huang et al. | Oct 2002 | A1 |
20030006527 | Rabolt et al. | Jan 2003 | A1 |
20030062334 | Lee et al. | Apr 2003 | A1 |
20030071016 | Shih et al. | Apr 2003 | A1 |
20030139521 | Linert et al. | Jul 2003 | A1 |
20030205552 | Hansford et al. | Nov 2003 | A1 |
20040028804 | Anderson et al. | Feb 2004 | A1 |
20040046271 | Watts | Mar 2004 | A1 |
20040053009 | Ozin et al. | Mar 2004 | A1 |
20040065252 | Sreenivasan et al. | Apr 2004 | A1 |
20040084402 | Ashmead | May 2004 | A1 |
20040110856 | Young et al. | Jun 2004 | A1 |
20040137734 | Chou et al. | Jul 2004 | A1 |
20040202865 | Homola et al. | Oct 2004 | A1 |
20040217085 | Jeans | Nov 2004 | A1 |
20040219246 | Jeans | Nov 2004 | A1 |
20050038180 | Jeans | Feb 2005 | A1 |
20050048581 | Chiu | Mar 2005 | A1 |
20050061773 | Choi et al. | Mar 2005 | A1 |
20050120902 | Adams et al. | Jun 2005 | A1 |
20050255003 | Summersgill et al. | Nov 2005 | A1 |
20050265675 | Welker et al. | Dec 2005 | A1 |
20050266582 | Modlin | Dec 2005 | A1 |
20060009805 | Jensen | Jan 2006 | A1 |
20060021533 | Jeans | Feb 2006 | A1 |
20060022131 | Tojo | Feb 2006 | A1 |
20060070653 | Elrod et al. | Apr 2006 | A1 |
20060077221 | Vaideeswaran | Apr 2006 | A1 |
20060083971 | DeSimone et al. | Apr 2006 | A1 |
20060188598 | Jeans | Aug 2006 | A1 |
20070012891 | Maltezos | Jan 2007 | A1 |
20070275193 | DeSimone et al. | Nov 2007 | A1 |
20080038398 | Wago et al. | Feb 2008 | A1 |
20090165320 | DeSimone et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
0393263 | Oct 1990 | EP |
1 551 066 | Jul 2005 | EP |
WO9116966 | Nov 1991 | WO |
WO 96017266 | Jun 1996 | WO |
WO 9631548 | Oct 1996 | WO |
WO 9631791 | Oct 1996 | WO |
WO9807069 | Feb 1998 | WO |
WO 0214078 | Feb 2002 | WO |
WO0229397 | Apr 2002 | WO |
WO02053290 | Jul 2002 | WO |
WO02093125 | Nov 2002 | WO |
WO 03005124 | Jan 2003 | WO |
WO03011443 | Feb 2003 | WO |
WO03015890 | Feb 2003 | WO |
WO 03031096 | Apr 2003 | WO |
WO 03072625 | Sep 2003 | WO |
WO03101888 | Dec 2003 | WO |
WO 2004002627 | Jan 2004 | WO |
WO 2004022233 | Mar 2004 | WO |
WO2005028108 | Mar 2004 | WO |
WO2004074818 | Sep 2004 | WO |
WO2004079364 | Sep 2004 | WO |
WO2004084402 | Sep 2004 | WO |
WO 2005030822 | Apr 2005 | WO |
WO2005046997 | May 2005 | WO |
WO2005060748 | Jul 2005 | WO |
WO2006071470 | Jul 2006 | WO |
WO 2006083311 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070254278 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60505384 | Sep 2003 | US | |
60524788 | Nov 2003 | US |