The present disclosure relates generally to anti-counterfeit systems and more particularly to physical unclonable functions.
Counterfeit integrated circuit chips (“ICCs”) are a major concern in the electronic component supply industry because of reliability and security issues. Such counterfeit ICCs are impacting many industrial sectors, including computers, printing, telecommunications, automotive electronics, medical, banking, energy/smart-grid, aerospace, and military systems. The consequences can be dramatic when critical systems begin to fail or act maliciously due to the use of counterfeit or low-quality components causing minor, major, or mission failures, including health or safety concerns.
The National Defense Authorization Act (NDAA) of 2012, for example, is focused on defense contractors who do not screen their equipment for counterfeit parts. There can be civil and criminal liability for contractors who do not eliminate counterfeit electronic parts in military equipment, according to the Forbes article, “NDAA May Put Defense Contractors In Prison For Counterfeit Parts,” Feb. 14, 2012.
The tools and technologies utilized by counterfeiters have become extremely sophisticated and well financed. In turn, this also calls for more sophisticated methods to detect counterfeit electronic parts that enter the market. Hardware intrinsic security is a mechanism that can provide security based on inherent properties of an electronic device. A physical unclonable function (“PUF”) belongs to the realm of hardware intrinsic security.
In the printer industry, counterfeit printer supplies including ICCs are a problem for consumers. Counterfeit supplies may perform poorly and may damage printers. Printer manufacturers use authentication systems to deter counterfeiters. PUFs are a type of authentication system that implements a physical one-way function. Ideally, a PUF cannot be identically replicated and thus is difficult to counterfeit. Incorporating a PUF in electronic device packaging, including ICCs, deters counterfeiters.
In the invention described, magnetic field characteristics of randomly placed magnetized particles are exploited by using the magnetic field fluctuations produced by the particles as measured by a sensor, such as a Hall-effect sensor, or an array of such sensors. The invention consists of an ICC encased in or over-molded by a substrate that contains magnetic particles. The magnetized particles generate a complex magnetic field near the surface of the ICC that can be used as a “fingerprint.” The positioning and orientation of the magnetized particles is an uncontrolled process, and thus the interaction between the sensor and the particles is complex. Thus, it is difficult to duplicate the device such that the same magnetic pattern and particle physical location pattern will arise. The randomness of the magnetic field magnitude and direction near the surface of the material containing the magnetic particles can be used to obtain a unique identifier for an item such as an integrated circuit chip carrying the PUF. Further, the placement of the device in the top layer of an integrated circuit chip protects the underlying circuits from being inspected by an attacker, e.g., for reverse engineering. When a counterfeiter attempts to remove all or a portion of the coating, the magnetic field distribution must change, thus destroying the original unique identifier.
The invention, in one form thereof, is directed to an integrated circuit chip overlain or encapsulated by a PUF comprising randomly placed magnetic particles.
The invention, in another form thereof, is directed to an integrated circuit chip used in a printer or printer supply component, such as a toner cartridge, that is overlain or encapsulated by a PUF comprising randomly placed magnetic particles.
The invention, in yet another form thereof, is directed to an EMV (Europay, Mastercard, Visa) transaction chip or embedded microchip on a bank card overlain by a PUF comprising randomly placed magnetic particles.
The invention, in yet another form thereof, is directed to an apparatus having an EMV transaction chip mounted on substrate that forms the body of a bank card, where a plurality of magnetized particles are dispersed in the substrate to form a PUF.
The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present disclosure, and together with the description serve to explain the principles of the present disclosure.
In the following description, reference is made to the accompanying drawings where like numerals represent like elements. The embodiments are described in sufficient detail to enable those skilled in the art to practice the present disclosure. It is to be understood that other embodiments may be utilized and that process, electrical, and mechanical changes, etc., may be made without departing from the scope of the present disclosure. Examples merely typify possible variations. Portions and features of some embodiments may be included in or substituted for those of others. The following description, therefore, is not to be taken in a limiting sense and the scope of the present disclosure is defined only by the appended claims and their equivalents.
Referring now to the drawings and particularly to
Referring now to
The magnetic field profile near the surface of the ICC may be measured by an external magneto-resistive sensor, a Hall-effect sensor (not shown), or an array of such sensors, in close proximity to the top surface of the ICC. Since the sensing elements are typically around 0.3-0.5 mm below the surface of the sensing device, the average particle size diameter using Hall-effect sensor or magneto-resistive sensor is preferably greater than 0.1 mm. Note that the diameter of a non-spherical particle is the diameter of the smallest sphere that encloses the particle. Other sensor options include magneto-optical sensor technology, which is capable of working with smaller magnetic particle sizes, but is more costly to implement and subject to contamination problems.
The magnetic field profile measurements may be taken within a defined area or along a defined path: straight, circular, or any arbitrarily selected and defined path, and recorded at the ICC foundry.
Referring now to
These embodiments may, for example, be implemented on an integrated circuit chip on a printer or printer supply component, such as a toner cartridge, that is used to authenticate the toner cartridge for whatever purpose, as well as to perform other functions such as toner level monitoring, sheet count, etc
A third embodiment of the invention is the application of the PUF authentication technology to bank cards and identification cards with an EMV transaction chip. Bank cards 6001, for example, are under constant attack by counterfeiters. For this reason an EMV transaction chip 6002 mounted on a substrate 6003 that replaced the easily counterfeited magnetic strip 7001 shown in
Bank cards with EMV transaction chips are mostly used in a contact-based form: the card is inserted into a reader, which creates a circuit that allows handshaking between the card and the payment terminal. A unique transaction is created that involves cryptographic data embedded in the chip.
For cards that require PINs, the transaction can't be completed without the code, which is not transmitted remotely as with debit and ATM transactions. Some cards are equipped with near-field communications (NFC) radios for contactless EMV transaction, and will work with point-of-sale systems.
A unique magnetic PUF signature of the analog magnetic intensity readings could replace the PIN requirement to authenticate the bank card. The PUF signature would be a second factor authentication for the bank card.
The substrate of a bank card may be fabricated where dispersed in the substrate is a plurality of magnetic particles. The particles are distributed randomly such that it is extremely difficult to reproduce the exact distribution and alignment of particles. Thus, the substrate and the particles of the bank card form a physical unclonable function. The magnetic field profile may be measured by an external sensor, such as a Hall-effect sensor (not shown) in close proximity to the bank card surface. Other sensor options include magneto-optical sensor technology. The magnetic field profile measurements may be taken within a defined area or along a defined path: straight, circular, or any arbitrarily selected and defined path, and recorded during manufacture of the bank card. The magnetic field profile data would be written to the EVM transaction chip's non-volatile memory.
When inserted into a card reader 8001, the reader could sweep a sensor arm across a portion of the bank card and one or more sensors, such as Hall-effect sensors, located on the sensor arm would measure the magnetic field in a defined area or along the defined path. A simple mechanical configuration with a drive cam would determine the path of the sensor arm sweep. Alternatively, as shown in
As an added layer of security, the EMV transaction chip on the card could contain information that would guide the card reader to read the magnetic “fingerprint” in a specific location on the bank card. This location could be different for different cards and would add yet another layer of complexity to the task of counterfeiting a bank card. A varying position of the magnetic “fingerprint” could also be configured to act as a rotating encryption key. This rotating key could change on a daily, weekly, or monthly basis. The rotating key could be as simple as two keys in which data is read off the “fingerprint” in a forward or reverse motion, which would be the least disruptive to current card reader configurations. Known algorithms could be utilized to determine when the “fingerprint” rotates.
In another embodiment, the bank card substrate to which the EMV transaction chip is mounted could be the location of a magnetic “fingerprint” such that removal or alteration of the EMV transaction chip would distort the substrate and thus alter the magnetic “fingerprint,” rendering the authentication inoperable. In a further embodiment, the bank card could be implemented in such a way as to cause tearing to the fingerprint if the chip is removed.
The card reader may initiate the bank card authentication by sending a request to the EMV transaction chip on the bank card for data. The bank card EMV transaction chip may challenge the card reader and wait for a proper response (authenticating the reader) before the bank card security chip transmits the magnetic “fingerprint” authentication data to the reader. This challenge and response protocol makes it more difficult for counterfeiters to acquire data from the bank card. In addition to using the magnetic “fingerprint” or signature of the bank card, capacitive sensing technology may be used to detect the presence of the randomly distributed magnetized particles in the bank card, which could provide yet another authentication step for validating the bank card.
If at least one face of the bank card is non-opaque, the presence of the magnetized particles could be detected optically by a digital camera chip or by an optical sensor. Similar to capacitive sensing, this could provide an additional authentication step for the bank card.
This technology could also be used in the same manner described above to authenticate access badges for secure facilities, or for other applications such as passports, government identification cards, driver licenses, etc. The PUF technology could stand alone as a security device, or in combination with a integrated circuit chip on the identification card or other security device having non-volatile memory.
The field data may be measured while moving the PUF relative to a stationary magnetic field sensor(s) 5001, 5002, 5003 or by moving the magnetic field sensor(s) 5001, 5002, 5003 next to a stationary PUF, etc. The sensors are shown in varying orientations, but such a varied orientation is not necessary. Multiple sensors may be used to reduce the movement and time required to measure the magnetic field over a desired area.
The magnetizable particles may be of any shape, and may contain neodymium and iron and boron. Alternatively, the magnetizable particles may contain samarium and cobalt. Preferably, the magnetized particles generate a sufficiently strong magnetic field to be detected with a low-cost detector.
Suitable substrate materials are used that allow formed aggregate pellets of the substrate material and particles to be magnetized. The magnetizable particles are magnetized by, for example, subjecting the pellets to a strong magnetic field. After magnetization, the magnetic particles do not clump together because the pellet carrier material is a solid. During the molding process, the pellets are heated and melted prior to molding.
The substrate carrier is then solidified in an ICC, overlaying an ICC, encasing an ICC, in the body of a bank card, or in the section of a bank card beneath the section of a bank card beneath the position of an EVM transaction chip. In an alternate embodiment the carrier may be, for example, a liquid that is caused to become solid by adding a chemical, subjecting to ultraviolet light, increasing its temperature, etc. Causing the carrier to become solid locks the distribution and orientation of the particles. In this case a high viscosity liquid is preferred so that the particles may be magnetized shortly before the material is molded. The high viscosity retards the movement of the magnetic particles toward each other while the material is in a liquid state and minimizes clumping of the magnetized particles. Clumping could cause failures of the over-molding process.
Magnetizing the particles in pellet form yields a more random magnetic field pattern, and is therefore more difficult to clone. Further, the application of a magnetizing field with patterned or randomized orientation may be applied to a formed substrate with random particle positions in order to cause greater diversity of magnetic field orientation.
The foregoing description illustrates various aspects and examples of the present disclosure. It is not intended to be exhaustive. Rather, it is chosen to illustrate the principles of the present disclosure and its practical application to enable one of ordinary skill in the art to utilize the present disclosure, including its various modifications that naturally follow. All modifications and variations are contemplated within the scope of the present disclosure as determined by the appended claims. Relatively apparent modifications include combining one or more features of various embodiments with features of other embodiments.
This application claims priority and benefit as a continuation application of U.S. patent application Ser. No. 15/808,573, entitled “Physical Unclonable Functions in Integrated Circuit Chip Packaging for Security,” filed on Nov. 9, 2017.
Number | Name | Date | Kind |
---|---|---|---|
3675367 | Amburn | Jul 1972 | A |
4190548 | Baermann | Feb 1980 | A |
4218674 | Brosow | Aug 1980 | A |
4462919 | Saito | Jul 1984 | A |
4734695 | Goldman | May 1988 | A |
5424917 | Hiruta | Jun 1995 | A |
5451759 | Hoshino | Sep 1995 | A |
5602381 | Hoshino | Feb 1997 | A |
5792380 | Wen | Aug 1998 | A |
5857129 | Harris | Jan 1999 | A |
5958283 | Schmid | Sep 1999 | A |
5981053 | Naylor | Nov 1999 | A |
6063647 | Chen | May 2000 | A |
6432559 | Tompkins | Aug 2002 | B1 |
6812707 | Yonezawa | Nov 2004 | B2 |
7005733 | Kommerling | Feb 2006 | B2 |
7218589 | Wisnudel | May 2007 | B2 |
7353994 | Farrall | Apr 2008 | B2 |
7427020 | Haraszti | Sep 2008 | B2 |
7704438 | Barlog | Apr 2010 | B2 |
7865722 | Moran | Jan 2011 | B2 |
8421625 | Cowburn | Apr 2013 | B2 |
8497983 | Cowburn | Jul 2013 | B2 |
8502668 | Cowburn | Aug 2013 | B2 |
8742891 | Greene | Jun 2014 | B2 |
8761639 | Leemhuis | Jun 2014 | B1 |
9292717 | Moran | Mar 2016 | B2 |
9454125 | Bejat et al. | Sep 2016 | B1 |
9502356 | Parvarandeh | Nov 2016 | B1 |
9524456 | Ahne | Dec 2016 | B1 |
9542576 | Ahne | Jan 2017 | B1 |
9553582 | Booth | Jan 2017 | B1 |
9665748 | Ahne | May 2017 | B1 |
20010033012 | Kommerling | Oct 2001 | A1 |
20020021909 | Harumoto | Feb 2002 | A1 |
20030040129 | Shah | Feb 2003 | A1 |
20030059050 | Hohberger | Mar 2003 | A1 |
20040114944 | Urabe | Jun 2004 | A1 |
20050017082 | Moran | Jan 2005 | A1 |
20050111342 | Wisnudel | May 2005 | A1 |
20050116307 | De Jongh | Jun 2005 | A1 |
20050258962 | Phipps | Nov 2005 | A1 |
20060056021 | Yeo | Mar 2006 | A1 |
20070199991 | Haraszti | Aug 2007 | A1 |
20070222604 | Phipps | Sep 2007 | A1 |
20080052518 | Newton | Feb 2008 | A1 |
20080199667 | Cho | Aug 2008 | A1 |
20080210757 | Burden | Sep 2008 | A1 |
20080231418 | Ophey | Sep 2008 | A1 |
20080256600 | Schrijen | Oct 2008 | A1 |
20090061226 | Banin | Mar 2009 | A1 |
20090141410 | Jogo | Jun 2009 | A1 |
20090218401 | Moran | Sep 2009 | A1 |
20100038598 | Bastiaansen | Feb 2010 | A1 |
20100061772 | Hayashi | Mar 2010 | A1 |
20100196056 | Ohkawa et al. | Aug 2010 | A1 |
20100215406 | Ozawa | Aug 2010 | A1 |
20100219251 | Decoux | Sep 2010 | A1 |
20110038649 | Miyabe | Feb 2011 | A1 |
20110099117 | Schepers | Apr 2011 | A1 |
20110121498 | Irie | May 2011 | A1 |
20110229211 | Ohashi | Sep 2011 | A1 |
20110234346 | Honkura | Sep 2011 | A1 |
20120020678 | Wilsher | Jan 2012 | A1 |
20120076543 | Rapkin | Mar 2012 | A1 |
20120104097 | Moran et al. | May 2012 | A1 |
20120163872 | Hayashi et al. | Jun 2012 | A1 |
20130029112 | Bargin | Jan 2013 | A1 |
20130277425 | Sharma | Oct 2013 | A1 |
20130287267 | Varone | Oct 2013 | A1 |
20130320087 | Moran | Dec 2013 | A1 |
20140270857 | Harpur | Sep 2014 | A1 |
20140283146 | Obukhov | Sep 2014 | A1 |
20150071432 | Zhu | Mar 2015 | A1 |
20160105220 | Kim et al. | Apr 2016 | A1 |
20160245878 | Hwang et al. | Aug 2016 | A1 |
20170103791 | Booth | Apr 2017 | A1 |
20170104600 | Booth | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
1 475 242 | Nov 2004 | EP |
04257203 | Sep 1992 | JP |
2005112009 | Nov 2005 | WO |
2012020263 | Feb 2012 | WO |
WO201319536 | Sep 2013 | WO |
WO2013139536 | Sep 2013 | WO |
Entry |
---|
Non-final Office Action dated Apr. 21, 2017; U.S. Appl. No. 15/440,590. |
Amendment entered Jul. 19, 2017; U.S. Appl. No. 15/440,590. |
Final Office Action dated Sep. 11, 2017; U.S. Appl. No. 15/440,590. |
International Search Report dated Jan. 6, 2017 PCT/US16/63832. |
International Written Opinion dated Jan. 6, 2017 PCT/US16/63832. |
International Search Report dated Jan. 23, 2017; PCT/US16/61063. |
International Written Report dated Jan. 23, 2017; PCT/US16/61063. |
Non-final office action dated Jun. 22 2016; U.S. Appl. No. 14/879,335. |
Non-final office action dated Jun. 17, 2016; U.S. Appl. No. 14/879,344. |
Roel Maes, Ingrid Verbauwhede, “Physically unclonable functions: A study on the state of the art and future research directions”, article, 2010. |
Pappu Srinivasa Ravikanth, “Physical One-Way Functions”, thesis, Mar. 2001, MIT. |
“About Bonded Neo Powders”, Magnequench Technical Resource Website, https://mqitechnology.com/support-contact/history/, Revised 2017, Accessed Jun. 22, 2019 (Year: 2017). |
Material Safety Data Sheet for MQP-B by Magnequench. Revised Jun. 2, 2017. (Year: 2017). |
Number | Date | Country | |
---|---|---|---|
20190157219 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15808573 | Nov 2017 | US |
Child | 15809081 | US |