Pixel isolation elements, devices and associated methods

Information

  • Patent Grant
  • 9905599
  • Patent Number
    9,905,599
  • Date Filed
    Tuesday, June 23, 2015
    9 years ago
  • Date Issued
    Tuesday, February 27, 2018
    6 years ago
Abstract
Light trapping pixels, devices incorporating such pixels, and various associated methods are provided. In one aspect, for example, a light trapping pixel device can include a light sensitive pixel having a light incident surface, a backside surface opposite the light incident surface, and a peripheral sidewall disposed into at least a portion of the pixel and extending at least substantially around the pixel periphery. The pixel can also include a backside light trapping material substantially covering the backside surface and a peripheral light trapping material substantially covering the peripheral sidewall. The light contacting the backside light trapping material or the peripheral light trapping material is thus reflected back toward the pixel.
Description
BACKGROUND

Image sensors are typically formed on various forms of semiconductor materials such as, for example, silicon. Imagers can be incorporated into a variety of devices, including digital cameras, camcorders, computers, cell phones, etc. Due to the ever decreasing size (foot print) of these devices, image sensors have correspondingly seen a decrease in size. Backside illuminated (BSI) image sensors have increased in importance due to the small size of these imagers as compared to front side illuminated (FSI) image sensors. However, pixel size reduction can lead to a significant sacrifice in image quality. As pixel sizes continue to decrease, image signal to noise tends to decrease while electrical and optical cross-talk between adjacent sensor pixels tends to increase. Traditional attempts to reduce the impact of these effects have included adding microlenses above each image sensor in front side pixel sensors to focus the light on the active detector regions, thereby increasing efficiency and reducing cross-talk. Backside illuminated pixel sensors can present different design considerations. For example, significant cross-talk can be generated due to reflection off the often planar back surface of the device.


SUMMARY

The present disclosure provides for light trapping pixels, devices incorporating such pixels, photovoltaic solar cells, and other optoelectronic devices, including various associated methods. In one aspect, for example, a light trapping device can include at least one light sensitive pixel having a light incident surface, a backside surface opposite the light incident surface, and a peripheral sidewall disposed into at least a portion of the pixel and extending at least substantially around the pixel periphery. The pixel can also include a backside light trapping material substantially covering the backside surface and a peripheral light trapping material substantially covering the peripheral sidewall. The light contacting the backside light trapping material or the peripheral light trapping material is thus reflected back toward the pixel. In another aspect, the present disclosure additionally provides an array of light trapping pixels.


A variety of light trapping materials can be utilized and are contemplated, and any such material capable of being used to trap light in a pixel is considered to be within the present scope. In one aspect, at least one of the backside light trapping material and the peripheral light trapping material can include a high refractive index material sandwiched between two low refractive index materials. In another aspect, the backside light trapping material and the peripheral light trapping material includes a high refractive index material sandwiched between two low refractive index materials. It is contemplated that the two low refractive index materials have a refractive index of less than about 2.1. Non-limiting examples of low refractive index material can include nitrides, oxynitrides, gasses, at least a partial vacuum, and the like, including appropriate combinations thereof. Other non-limiting examples of low refractive index materials can include silicon oxide, silicon nitride, silicon dioxide, and the like. Furthermore, in another aspect a light trapping material can include a higher refractive index material sandwiched between two materials having a refractive index that is at least 0.2 lower as compared to the higher refractive index material. In this case, the materials are not limited by the definition of low vs. high refractive index outlined above, but are rather defined by the relative difference in refractive index.


Furthermore, it is contemplated that high refractive index materials have a refractive index of greater than or equal to about 2.1. Non-limiting examples of high refractive index material can include polycrystalline silicon, amorphous silicon, single crystal silicon, multicrystalline silicon, nanocrystalline silicon, germanium, and the like, including appropriate combinations thereof.


In one aspect, the peripheral sidewall can extend completely around the pixel periphery. In another aspect, the peripheral sidewall can extend from the light incident surface towards the backside surface.


In some aspects it is also contemplated that the light incident surface can include a frontside light trapping material at least partially covering the surface thereof. In one aspect, the frontside light trapping material can be an antireflective layer coating. In another aspect, the frontside light trapping material can be a reflective layer having an aperture to allow entry of light into the pixel, wherein the reflective layer is operable to reflect light impinging thereupon from inside the pixel back into the pixel. In some aspects it can be beneficial to include a lens functionally coupled to the aperture and operable to focus incident light through the aperture and into the pixel.


In another aspect the present disclosure additionally provides a substantially light trapping pixel device including a light sensitive pixel having a light incident surface, a backside surface opposite the light incident surface, and a peripheral sidewall extending from the light incident surface to the backside surface and extending around the pixel periphery. The pixel additionally includes a backside light trapping material substantially covering the backside surface, and a peripheral light trapping material substantially covering the peripheral sidewall. Furthermore, an internally reflective frontside light trapping material can cover at least a portion of the light incident surface that is operable to allow entrance of light into the pixel and is operable to reflect light impinging thereupon from inside the pixel back into the pixel, and the light contacting the backside light trapping material or the peripheral light trapping material is reflected back toward the pixel.


In yet another aspect, the present disclosure provides a method of making a light trapping device, including forming at least one pixel by forming a backside light trapping material on a semiconductor layer, the backside light trapping material including a high refractive index material sandwiched between two low refractive index materials, and forming a pixel device layer on the semiconductor layer opposite the light trapping material. The method can additionally include etching a trench circumscribing the pixel device layer and filling the trench with a light trapping material. In some aspects, the trench can be etched to a depth that contacts at least the first low refractive index material. In some aspects, an incident light trapping material can be applied to the pixel device layer. It is also noted that the light trapping material can be located anywhere in the backside region of the device, and that the current scope is not limited to the location of materials or the manufacturing method described above.


In another aspect, filling the trench with the light trapping material can further include depositing a low refractive index material into the trench to fill a portion of the trench from the trench walls inward, ceasing deposition of the low refractive index material to leave an internal space within the trench, and depositing a high refractive index material into the trench to fill the internal space.


In another aspect, the method can include forming a textured region on at least a portion of the semiconductor layer between the semiconductor layer and the first low refractive index prior to depositing the first low refractive index material onto the semiconductor layer. Non-limiting examples of techniques for forming the textured region include plasma etching, reactive ion etching, porous silicon etching, lasing, chemical etching, nanoimprinting, material deposition, selective epitaxial growth, the like, including appropriate combinations thereof. In one specific aspect, forming the textured region includes laser texturing.





BRIEF DESCRIPTION OF THE DRAWINGS

For a further understanding of the nature and advantage of the present disclosure, reference is being made to the following detailed description of embodiments and in connection with the accompanying drawings, in which:



FIG. 1 is a cross-sectional view of multiple image sensor pixels in accordance with an embodiment of the present disclosure;



FIG. 2 is a cross-sectional view of multiple image sensor pixels in accordance with another embodiment of the present disclosure;



FIG. 3 is a cross-sectional view of multiple image sensor pixels in accordance with another embodiment of the present disclosure;



FIG. 4 is a cross-sectional view of a light trapping pixel in accordance with another embodiment of the present disclosure;



FIG. 5 is a cross-sectional view of a light trapping pixel in accordance with another embodiment of the present disclosure;



FIG. 6 is a cross-sectional view of a light trapping pixel in accordance with another embodiment of the present disclosure; and



FIG. 7 is a depiction of a method of making a light trapping pixel in accordance with yet another aspect of the present disclosure.





DETAILED DESCRIPTION

Before the present disclosure is described herein, it is to be understood that this disclosure is not limited to the particular structures, process steps, or materials disclosed herein, but is extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting.


Definitions

The following terminology will be used in accordance with the definitions set forth below.


It should be noted that, as used in this specification and the appended claims, the singular forms “a,” and, “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a dopant” includes one or more of such dopants and reference to “the layer” includes reference to one or more of such layers.


As used herein, the terms “light” and “electromagnetic radiation” can be used interchangeably and can refer to electromagnetic radiation in the ultraviolet, visible, near infrared and infrared spectra. The terms can further more broadly include electromagnetic radiation such as radio waves, microwaves, x-rays, and gamma rays. Thus, the term “light” is not limited to electromagnetic radiation in the visible spectrum. Many examples of light described herein refer specifically to electromagnetic radiation in the visible and infrared (and/or near infrared) spectra. For purposes of this disclosure, visible range wavelengths are considered to be from approximately 350 nm to 800 nm and non-visible wavelengths are considered to be longer than about 800 nm or shorter than about 350 nm. Furthermore, the infrared spectrum is considered to include a near infrared portion of the spectrum including wavelengths of approximately 800 to 1100 nm, a short wave infrared portion of the spectrum including wavelengths of approximately 1100 nm to 3 micrometers, and a mid-to-long wavelength infrared (or thermal infrared) portion of the spectrum including wavelengths greater than about 3 micrometers up to about 30 micrometers. These are generally and collectively referred to herein as “infrared” portions of the electromagnetic spectrum unless otherwise noted.


As used herein, “quantum efficiency” (QE) is typically referring to “external quantum efficiency” (EQE) which is defined as the ratio of electrons collected per photons incident on an optoelectronic device. “Internal quantum efficiency” is defined as the ratio of electrons collected per photons absorbed by an optoelectronic device.


As used herein, the terms “3D” and “three dimensional” can be used interchangeably, and refer to obtaining distance information using electromagnetic radiation.


As used herein, the terms “disordered surface” and “textured surface” can be used interchangeably, and refer to a surface having a topology with nano- to micron-sized surface variations. Such a surface topology can be formed by the irradiation of a laser pulse or laser pulses, chemical etching, wet or dry etching including masked or maskless etching, lithographic patterning, interference of multiple simultaneous laser pulses, reactive ion etching, plasma etching or any other technique that can be used to form such a topology. While the characteristics of such a surface can be variable depending on the materials and techniques employed, in one aspect such a surface can be several hundred nanometers thick and made up of nanocrystallites (e.g. from about 10 to about 50 nanometers), nanopores, and the like. In another aspect, such a surface can include micron-sized structures (e.g. about 1 μm to about 60 μm). In yet another aspect, the surface can include nano-sized and/or micron-sized structures from about 5 nm and about 500 μm. A variety of criteria can be utilized to measure the size of such structures. For example, for cone-like structures the above ranges are intended to be measured from the peak of a structure to the valley formed between that structure and an adjacent neighboring structure. For structures such as nanopores, the above ranges are intended to be approximate diameters. Additionally, the surface structures can be spaced at various average distances from one another. In one aspect, neighboring structures can be spaced at a distance of from about 50 nm to about 50 μm. In another aspect, neighboring structures can be spaced at a distance of from about 50 nm to about 2 μm. Such spacing is intended to be from a center point of one structure to the center point of a neighboring structure.


As used herein, the term “fluence” refers to the amount of energy from a single pulse of laser radiation that passes through a unit area. In other words, “fluence” can be described as the energy density of one laser pulse.


As used herein, the term “target region” refers to an area of a semiconductor material that is intended to be doped or surface modified. The target region of a semiconductor material can vary as the surface modifying process progresses. For example, after a first target region is doped or surface modified, a second target region may be selected on the same semiconductor material.


As used herein, the term “absorptance” refers to the fraction of incident electromagnetic radiation absorbed by a material or device.


As used herein, the term “monolithic” refers to an electronic device in which electronic components are formed on the same substrate. For example, two monolithic pixel elements are pixel elements that are formed on the same semiconductor substrate.


As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. For example, a composition that is “substantially free of” particles would either completely lack particles, or so nearly completely lack particles that the effect would be the same as if it completely lacked particles. In other words, a composition that is “substantially free of” an ingredient or element may still actually contain such item as long as there is no measurable effect thereof.


As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.


As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.


Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually.


This same principle applies to ranges reciting only one numerical value as a minimum or a maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.


The Disclosure

The present disclosure provides semiconductor devices and associated methods that can exhibit various enhanced properties, such as, for example, enhanced light detection properties. More specifically, in one aspect the disclosure relates to image sensor pixels and elements for trapping light within such pixels. In other aspects, various light trapping elements can additionally isolate neighboring pixels in an image sensor. Isolation elements can be configured to optically and/or electrically isolate neighboring pixels from one another in addition to trapping light with in the pixel. It is additionally contemplated that the present disclosure is applicable to other optoelectronic devices such as solar cells, and that all such should be included in the present scope.


In various aspects, image sensors can be front side or backside illuminated, 3D sensors, or any other device or system that incorporate a unique isolation element configured to reduce cross-talk between pixel elements. For example, in one aspect an image sensor can be capable of detecting visible and infrared light, whereas an isolation element associated with such an imager can be designed and configured to reduce and in some cases eliminate electrical and/or optical cross-talk between neighboring pixels from straying visible and infrared light. In some cases, isolation elements can be doped with a dopant that enables the repelling of electrical carriers from the isolation elements or in other words from the side walls of the device. In other cases, isolation elements can include light trapping or reflective materials to optically isolate neighboring pixels. It is additionally contemplated that isolation elements can include both a dopant and a light trapping or reflective material to both electrically and optically isolate the pixels. Moreover, isolation elements can also include surface features formed thereon or associated therewith. Additionally, in some cases a pixel can include a textured region to enhance the detection of infrared light among other things.


In one aspect, a variety of optoelectronic devices are provided such as, without limitation, photosensitive diodes, pixels, and imagers capable of detecting visible and infrared light while exhibiting reduced optical and electrical cross-talk between neighboring pixels or diodes. It is also contemplated that the present scope include methods associated with such devices, including methods of making and using. The present devices can additionally exhibit enhanced absorption and quantum efficiencies. Such devices can also include a plurality of photodiodes or pixels. In some cases, the present devices can achieve a quantum efficiency of 10% for wavelengths at 1064 nm and having a thickness of less than 10 microns. In another embodiment, the present device can achieve a quantum efficiency of about 20% for wavelengths at 940 nm and a thickness of less than 10 microns.


In one aspect, a device can include at least a semiconductor substrate having a first side for receiving incident light and a second side opposite the first side. Either or both the first or second sides can include at least one doped region. Furthermore, the image sensor can include at least one isolation element or feature for at least partially separating and isolating neighboring pixels. FIG. 1 illustrates a simplified drawing of an imager having a first pixel 102 and a second pixel 104, that are formed monolithically on a common semiconductor substrate 106 and are isolated from one another by an isolation element 114. Doped regions 108 and 110 can be disposed on either the first side 120 or second side 122 of the semiconductor substrate, or in some cases on opposite sides of the device. In the present figure, the device is configured such that the first side is capable of receiving incident light. A textured region 112 having surface features is shown on the second side 122 of the semiconductor substrate 106. This architecture having the texture region 112 on the back side 122 can enable enhanced detection and absorption of electromagnetic radiation having wavelengths in the range of about 600 nm to about 1200 nm. It should be noted that this architecture can be used in either a FSI or BSI image sensor architecture. Furthermore, the textured region can be located on the first side 120, the second side 122, or both the first and second sides.


In a typical FSI imager, incident light enters the semiconductor device by first passing by transistors and metal circuitry. The light, however, scatters off of the transistors and circuitry prior to entering the light sensing portion of the imager, thus causing optical loss and noise. A lens can be disposed on the topside of a FSI pixel to direct and focus the incident light to the light sensing active region of the device, thus partially avoiding the circuitry. BSI imagers, one the other hand, are configured to have the light sensing portion of the device opposite the circuitry. Incident light enters the device via the light sensing portion and is at least partially absorbed by the device prior to reaching the circuitry. BSI designs allow for smaller pixel architecture and a high fill factor for the imager. As mentioned, the devices according to aspects of the present disclosure can be adapted for either configuration. It should also be understood that devices according to aspects of the present disclosure can be incorporated into complimentary metal-oxide-semiconductor (CMOS) imager architectures or charge-coupled device (CCD) imager architectures, as well as other optoelectronic devices.


Regarding isolation elements, also referred to herein as trench isolation features or sidewalls, various processes can be employed to form the isolation elements. It is contemplated that the isolation features can extend from either the first surface or the second surface into the semiconductor material and depending on the depth of the trench can be considered either deep trench isolation or shallow trench isolation. The dimensions of the trench can vary, depending on the application. For example, trenches can have parallel walls, or they can have sloping walls, bottle neck architecture, or any other useful configuration. The depth of the trench isolation feature can be in the range of from about 100 nm to about 50 μm depending on the design of the device. The width can be in the range of from about 100 nm to about 10 μm. For simplicity, the figures in this disclosure show deep trench isolation but it should be understood that shallow trench isolation architectures can be utilized, and that deep trench isolation need not completely extend from one side to the other. The processes contemplated for forming trenches or other isolation features can include, reactive ion etch, isotropic plasma etch, wet chemical etch, laser irradiation, or any other known etch technique.


A variety of reflective materials can be utilized in constructing the isolation features in order to provide optical isolation, light trapping, and/or electrical isolation, and any such material capable of incorporation into a photosensitive device is considered to be within the present scope. Non-limiting examples of such materials include a Bragg reflector, a metal reflector, a metal reflector over a dielectric material, a transparent conductive oxide such as zinc oxide, indium oxide, or tin oxide, and the like, including combinations thereof. Non-limiting examples of metal reflector materials can include silver, aluminum, gold, platinum, reflective metal nitrides, reflective metal oxides, and the like, including combinations thereof. In one specific aspect, the dielectric layer can include an oxide layer and the reflecting region can include a metal layer. The surface of the metal layer on an oxide acts as a mirror-like reflector for the incident electromagnetic radiation. In addition, in some aspects trench isolation features can be doped to further affect the properties of the material with respect to electrical isolation.


In one specific aspect, a reflective region can include a transparent conductive oxide, an oxide, and a metal layer. The transparent oxide can be textured and a metal reflector deposited thereupon. The textured surface of the metal on a roughened transparent conductive oxide can act as a diffusive scattering site for the incident electromagnetic radiation.


In some cases, materials having disparate properties can be utilized in the trench isolation features in order to derive a useful combined interaction. As is shown in FIG. 2, for example, an imager having at least two pixels or photodiodes (202 and 204) and at least one isolation element 214. The pixels are shown formed monolithically on a common semiconductor substrate 206. Doped regions 208 and 210 can be disposed on either the first side 220 or second side 222 of the semiconductor substrate. A textured region 212 having surface features is created on the second side 222 of the semiconductor substrate 206.


In some aspects, the isolation element 214 can be designed to function as a Bragg reflector. In such cases, the isolation element 214 includes at least two layers 216 comprised of material having a lower refractive index (n) as compared to the material of the third layer 218 disposed or sandwiched therebetween. In other words, the isolation element includes a high refractive index material sandwiched between two low refractive index materials, and such a configuration forms a Bragg reflector. Additionally, in some aspects the low reflective index materials can be chosen to have a lower refractive index as compared to the semiconductor substrate 206.


Furthermore, in another aspect an isolation element or light trapping material can include a higher refractive index material sandwiched between two materials having a refractive index that is at least 0.2 lower as compared to the higher refractive index material. In this case, the materials are not limited by the definition of low vs. high refractive index outlined below, but are rather defined by the relative difference in refractive index. For example, in one aspect a light trapping material can include silicon dioxide/silicon nitride/silicon dioxide, each material of which would be considered to be a low refractive index material. There is, however, a greater than 0.2 difference in the refractive indexes between silicon dioxide and silicon nitride, and thus such an isolation element would be included within the present scope. It is also noted that the light trapping material can have greater than three layers. As one non-limiting example, a material can have silicon dioxide/silicon nitride/polysilicon/silicon nitride/silicon dioxide.


As has been described, in some aspects a Bragg reflector can be utilized as an isolation element to trap electromagnetic radiation within the pixel. A Bragg reflector is a structure formed from multiple layers of alternating materials with varying refractive indexes, or by a periodic variation of some characteristic (e.g. height) of a dielectric waveguide, resulting in periodic variation in the effective refractive index in the guide. Each layer boundary causes a partial reflection of an optical wave. For waves whose wavelength is close to four times the optical thickness of the layers, the many reflections combine with constructive interference, and the layers act as a high-quality reflector. Thus the coherent super-positioning of reflected and transmitted light from multiple interfaces in the structure interfere so as to provide the desired reflective, transmissive, and absorptive behavior. In one aspect, a Bragg reflector can be made as in FIG. 2, whereby a high refractive index material sandwiched between two low refractive index materials. In one specific aspect, for example, the Bragg reflector can be constructed of a layer of polysilicon sandwiched between two layers of silicon dioxide. Because of the high refractive index difference between silicon and silicon dioxide, and the thickness of these layers, this structure can be fairly low loss even in regions where bulk silicon absorbs appreciably. Additionally, because of the large refractive index difference, the optical thickness of the entire layer set can be thinner, resulting in a broader-band behavior and fewer fabrications steps.


In terms of optical isolation from pixel to pixel, the large index of refraction mismatch can result in total reflection at the trench side walls. To prevent excessive dark current in the pixels, a passivation layer may be disposed on the side walls of the trench to prevent the generation of carriers and leakage current. Silicon nitride deposited over a thin grown oxide layer is also commonly used, in this case the oxide may be a low temperature grown plasma oxide.


It can be shown through calculations that a low recombination velocity of silicon oxide and silicon nitride is the result of moderately high positive oxide charge (5×1011 to 1×1012 cm−2) and relatively low midgap interface state density (1×1010 to 4×1010 cm−2 eV−1). The addition of silicon oxide or nitride can reduce surface recombination and surface generation. Reducing the surface recombination can increase quantum efficiency of photon collection and surface generation can cause excessive dark current in the imagers thereby reducing the quality of the image.


Since the positive oxide charge of silicon nitride or silicon oxynitride is relatively low on silicon on insulator imagers a p-type layer can be adjacent the silicon oxide, silicon oxynitride and/or silicon nitride layers as an alternative embodiment. In this case the p-type layer will accumulate the surface or the backside of the p-type silicon layer and p-type sidewalls.


Other possible passivation techniques include a hot steam anneal of hydrogenated silicon nitride or the use of amorphous silicon.


Aluminum oxide can also be deposited in the trench to form an isolating barrier. Aluminum oxide can have low stress, a negative fixed charge and higher index of refraction than silicon oxide or low stress silicon oxynitride nitride. Low surface recombination velocities, as low as 10 cm/s can be obtained through various deposition processes of Al2O3 layers on the silicon substrate. Low surface recombination can be achieved by field induced surface passivation due to a high density of negative charges stored at the interface. PECVD aluminum oxide is described here for the backside passivation of the backside and backside trenches in backside illuminated image sensors.


The index of refraction of the aluminum oxide can be increased slightly as required by the addition of other metallic elements to make ternary insulators like Aluminum Oxynitride (AlON), Hafnium Aluminum Oxide (HfAlO), Zirconium Aluminum Oxide (ZrAlO), Lanthanum Aluminum Oxide (LaAlO), Titanium Aluminum Oxide (TiAlO) or quaternary dielectrics like Hafnium Aluminum Oxynitride (HfAlON), Tantalum Aluminum Oxynitride (TaAlON), Lanthanum Aluminum Oxynitride (LaAlON).


Low temperature PECVD deposition processes are contemplated for the backside passivation of the backside and backside trenches in backside illuminated image sensors. As previously mentioned the large index of refraction mismatch between silicon and the insulators in the trenches results in reflection of the incident light and provides optical isolation. The trenches also provide electrical isolation. Additionally, it can also be beneficial to dope the sidewalls to create a surface field that will improve electrical isolation between the pixels. In one aspect, it can also be beneficial to dope the low refractive index material of the Bragg-type reflectors to increase such electrical isolation.


Returning to FIG. 2, layers the silicon oxide and polysilicon can optically and electrically isolate the adjacent pixels, as well as function to trap light within the pixel. While any thicknesses capable of forming such a reflector are considered to be within the present scope, layer 216 can have a thickness in the range of from about 50 nm to about 500 nm. Layer 118 can have a thickness in the range of from about 5 nm to about 100 nm. Thus, the difference in refractive indexes and thickness can determine the intensity of the internal reflection of electromagnetic radiation. Notably, other materials such as metals, as well as other material not listed herein can be used to increase internal reflection of the light.


It is noted that, for the purposes of the present disclosure, in one aspect a low refractive index material can have a refractive index of less than about 2.1. In the case of the sandwiched materials, the two low refractive index materials can be the same or different materials having a refractive index of less than about 2.1. Non-limiting examples of low refractive index materials can include oxides, nitrides, oxynitrides, gasses, at least a partial vacuums, and the like, including appropriate combinations thereof. Non-limiting specific examples of such materials can include silicon oxide, silicon nitride, silicon oxynitride, and the like, including combinations thereof. Additionally, a high K dielectric material can also make a suitable low reflective index material due to their low refractive index properties and good dielectric properties, and as such, are considered to be within the present scope. One example is Hafnium oxide, which has a refractive index of about 1.9. Other examples of high K dielectrics include hafnium silicate, zirconium silicate, zirconium dioxide, and the like.


Additionally, in another aspect a high refractive index material can include a material having a refractive index of greater than or equal to about 2.1. Thus, in the case of the sandwiched materials, the high refractive index material disposed between the low refractive index materials has a refractive index of about 2.1 or greater. Non-limiting examples of high refractive index materials can include polycrystalline silicon, amorphous silicon, single crystal silicon, multicrystalline silicon, nanocrystalline silicon, germanium, and the like, including appropriate combinations thereof.


In still another aspect of the present disclosure, a photosensitive imager having at least two pixels (302 and 304) and at least one trench isolation region 314 is shown in FIG. 3. The pixels can include a semiconductor substrate 306, having a first and second surface, 320 and 322 respectively; at least two doped regions 308 and 310, and a textured region 312 formed at least on the opposite side of the light incident surface (i.e. the second side 322). The textured region 312 can have surface features configured to reflect and disperse light. Further, the sidewalls can include a texture region 312 to increase the internal reflections of light. Regarding the isolation element 314 in FIG. 3, the isolation element can include several layers of materials that can passivate the sidewalls and each have a different index of refraction, as was described in FIG. 2. Further, a textured region 312 can be formed on the side walls of the isolation element(s) 314.


The present disclosure additionally provides pixels and imager devices, including imager arrays, which trap light therewithin. In one aspect as is shown in FIG. 4, for example, a light trapping pixel device can include a light sensitive pixel or device 402 having a light incident surface 420, a backside surface 422 opposite the light incident surface 420, and a peripheral sidewall 424 disposed into at least a portion of the pixel 402 and extending at least substantially around the pixel periphery. It is noted that the pixel sidewall is also known as a trench. The pixel can also include a backside light trapping material 426 substantially covering, partially covering, or completely covering the backside surface 422. A peripheral light trapping material 428 can be substantially covering, partially covering, or completely covering the peripheral sidewall 424. As such, light contacting the backside light trapping material 426 or the peripheral light trapping material 428 is reflected back toward the pixel 402. Also shown in FIG. 4 are at least two doped regions 408 and 410 and an optional textured region 412. It is noted that, in addition to a single pixel as shown, pixel arrays are also contemplated and are to be included in the present scope.


The light trapping materials of FIG. 4 can be as described above, either single or multiple layer structures. In one aspect, for example, at least one of the backside light trapping material 426 and the peripheral light trapping material 428 includes a high refractive index material sandwiched between two low refractive index materials. In another aspect, the backside light trapping material 426 and the peripheral light trapping material 428 includes a high refractive index material sandwiched between two low refractive index materials. It is noted that these light trapping materials are shown in FIG. 4 as a single layer for clarity, and that multiple layers are contemplated. Furthermore, the peripheral sidewall can extend for a portion, a substantial portion, or completely around the pixel periphery. Additionally, as has been described herein, the peripheral sidewall can extend partially into the pixel, substantially through the pixel, or completely through the pixel to the backside surface. Thus, both deep and shallow trenches are contemplated.


In another aspect, as is shown in FIG. 5, a pixel 502 can include a frontside light trapping material 530 that at least partially covers, substantially covers, or completely covers the light incident surface 520. The frontside light trapping material 530 can be multiple layer of materials have a variety of properties and uses, including passivation, antireflection, light trapping, and the like, including combinations thereof. Note that numerical indicators in FIG. 5 from previous figures are intended to reflect the previous descriptions for those elements, and as such, reference is made to FIG. 4.


In another aspect, as is shown in FIG. 6, a pixel 602 can include a frontside light trapping material 632 associated with the light incident surface 620 that is an internal reflective layer having an aperture 634 to allow entry of light 690 into the pixel 602. The frontside light trapping material 632 is thus operable to reflect light impinging thereupon from inside the pixel 602 back into the pixel. Additionally, in some aspects a lens 636 can be functionally coupled to the aperture 634 to focus incident light 690 through the aperture 634 and into the pixel 602. The effective surface area of the aperture compared to the frontside surface area of the pixel can vary depending on the design of the device and the presence, absence, or particular properties of a lens. In one aspect, however, the aperture can be large enough to accept and trap incoming light to a degree that increases the efficiency of the pixel. In one specific aspect, the aperture has an effective surface area of less than about 90% of the incident light surface total surface area. It is noted that various elements such as the doped regions and the optional textured layer are not shown in FIG. 6 for clarity. Furthermore, numerical indicators in FIG. 6 from previous figures are intended to reflect the previous descriptions for those elements, and as such, reference is made to FIG. 4.


The frontside light trapping material can be made of a variety of materials including metals as have been described herein with respect to other light trapping materials. As such, any material that can be applied to the light incident surface and that is internally reflective toward the inside of the pixel is considered to be within the present scope. Thus, the aforementioned pixel is reflective on 6 internal sides, and as such, light entering the pixel that is not absorbed will interact with and be reflected internally be either the backside, peripheral sidewall, or frontside light trapping materials. Light is thus effectively maintained inside the pixel until it is absorbed.


In another aspect of the present disclosure, a method of making a light trapping pixel device is provided. Such a method can include, as is shown in FIG. 7, 702 forming a pixel by: 704 forming a backside light trapping material on a semiconductor layer, the backside light trapping material including a high refractive index material sandwiched between two low refractive index materials, and 706 forming a pixel device layer on the semiconductor layer opposite the light trapping material. The method can additionally include 708 etching a trench circumscribing the pixel device layer and 710 filling the trench with a light trapping material. Further details regarding the wafer bonding and wafer-bonded structures described can be found in copending U.S. application Ser. No. 13/069,135, filed on Mar. 22, 2011, which is incorporated herein by reference.


The formation of the backside light trapping material can be accomplished by a variety of techniques, all of which are considered to be within the present scope. In one aspect, for example, depositing a first low refractive index material onto the semiconductor layer, bonding the first low refractive index material to a high refractive index material having a second low refractive index material coupled thereto such that the high refractive index material is sandwiched in between the first and second low refractive index materials. In some cases the second low refractive index material can be coupled to a carrier wafer. In another aspect, the first low refractive index can be deposited onto the semiconductor layer followed by deposition of the high refractive index material and then the second low refractive index material. In another aspect, the layered structure can be formed on a carrier wafer, and the outermost low refractive index material can then be bonded to the semiconductor layer. The carrier wafer can then be optionally removed. In yet another aspect, the first refractive index material can be deposited onto the semiconductor layer, the second refractive index material can be deposited onto a carrier wafer, and the high refractive index material can be deposited onto either the first or second refractive index material, followed by bonding of the structure together.


As has been described, the trench can be a shallow trench or a deep trench. In one aspect, however, etching the trench circumscribing the pixel device layer can further include etching the trench to a depth that contacts at least the first low refractive index material. Furthermore, the method can also include applying an incident light trapping material to the pixel device layer.


In some aspects the various trenches can be filled with a material, or they can be gas filled or have a partial vacuum applied thereto. For those aspects whereby the trenches will be filled in with a non-gas material, a variety of deposition techniques are contemplated and all are considered to be within the present scope. In one aspect, however, the trench can be filled with a high refractive index material and a low refractive index material in a sandwich structure as has been described. In one exemplary technique, the filling of the trench with such light trapping material can include depositing a low refractive index material into the trench to fill a portion of the trench from the trench walls inward, ceasing deposition of the low refractive index material to leave an internal space within the trench, and depositing a high refractive index material into the trench to fill the internal space. As such, the sandwiched layer of low-high-low refractive index materials is thus created in the trench.


In another aspect, the method can also include forming a textured region on at least a portion of the semiconductor layer between the semiconductor layer and the first low refractive index prior to depositing the first low refractive index material onto the semiconductor layer. Non-limiting examples of texture formation techniques can include plasma etching, reactive ion etching, porous silicon etching, lasing, chemical etching, nanoimprinting, material deposition, selective epitaxial growth, and combinations thereof. In one specific aspect, the textured region includes laser texturing.


A device design having a textured region located on, for example, the back surface of a photodetector, provides significant performance benefits. The textured region can have surface features that can lead to higher recombination of photocarriers for short wavelengths (e.g. in the blue green part of the spectrum) due to the very shallow penetration of those wavelengths into the detecting volume of the device. By physically locating the textured on the back surface of the device, a pristine surface is provided for the collection of short wavelengths on the top surface (i.e. the light incident surface), and the longer wavelengths that penetrate deep into or through the detecting region of the semiconductor material are collected by or with the help of the textured region opposite the light incident surface.


The textured region can be of various thicknesses, depending on the desired use of the material. In one aspect, for example, the textured region has a thickness of from about 500 nm to about 100 μm. In another aspect, the textured region has a thickness of from about 500 nm to about 15 μm. In yet another aspect, the textured region has a thickness of from about 500 nm to about 2 μm. In a further aspect, the textured region has a thickness of from about 500 nm to about 1 μm. In another aspect, the textured region has a thickness of from about 200 nm to about 2 μm.


The textured region can function to diffuse electromagnetic radiation, to redirect electromagnetic radiation, and/or to absorb electromagnetic radiation, thus increasing the quantum efficiency of the device. The textured region can include surface features to further increase the effective absorption length of the device. Non-limiting examples of shapes and configurations of surface features include cones, pillars, pyramids, microlenses, quantum dots, inverted features, gratings, protrusions, sphere-like structures, and the like, including combinations thereof. Additionally, surface features can be micron-sized, nano-sized, or a combination thereof. For example, cones, pyramids, protrusions, and the like can have an average height within this range. In one aspect, the average height would be from the base of the feature to the distal tip of the feature. In another aspect, the average height would be from the surface plane upon which the feature was created to the distal tips of the feature. In one specific aspect, a feature (e.g. a cone) can have a height of from about 50 nm to about 2 μm. As another example, quantum dots, microlenses, and the like can have an average diameter within the micron-sized and/or nano-sized range.


In addition to or instead of surface features, the textured region can include a textured film layer. In one aspect, for example, the textured region can include a substantially conformal textured film layer. Such a textured film layer can have an average thickness of from about 1 nm to about 20 μm. In those aspects where the textured region includes surface features, the conformal textured film layer can have a varying thickness relative to the location on the surface features upon which is deposited. In the case of cones, for example, the conformal textured film layer can become thinner toward the tips of the cones. Such a conformal film layer can include various materials, including, without limitation, SiO2, Si3N4, amorphous silicon, polysilicon, a metal or metals, and the like, including combinations thereof. The conformal textured film layer can also be one or more layers of the same or different materials, and can be formed during the creation of surface features or in a separate process.


Textured regions according to aspects of the present disclosure can allow a photosensitive device to experience multiple passes of incident electromagnetic radiation within the device, particularly at longer wavelengths (i.e. infrared). Such internal reflection increases the effective absorption length to be greater than the thickness of the semiconductor layer. This increase in absorption length increases the quantum efficiency of the device, leading to an improved signal to noise ratio.


The texturing process can texture the entire substrate to be processed or only a portion of the substrate. In one aspect, for example, a substrate such as the semiconductor layer can be textured and patterned by an appropriate technique over an entire surface to form the texture region. In another aspect, a substrate such as the semiconductor layer can be textured and patterned across only a portion of a surface by using a selective etching technique, such as a mask, photolithography, and an etch or a laser process to define a specific structure or pattern.


In addition to surface features, the textured region can have a surface morphology that is designed to focus or otherwise direct electromagnetic radiation. For example, in one aspect the textured region has a surface morphology operable to direct electromagnetic radiation into the semiconductor layer. Non-limiting examples of various surface morphologies include sloping, pyramidal, inverted pyramidal, spherical, square, rectangular, parabolic, asymmetric, symmetric, and the like, including combinations thereof.


The textured region, including surface features as well as surface morphologies, can be formed by various techniques, including plasma etching, reactive ion etching, porous silicon etching, lasing, chemical etching (e.g. anisotropic etching, isotropic etching), nanoimprinting, material deposition, selective epitaxial growth, and the like.


One effective method of producing a textured region is through laser processing. Such laser processing allows discrete target areas of a substrate to be textured, as well as entire surfaces. A variety of techniques of laser processing to form a textured region are contemplated, and any technique capable of forming such a region should be considered to be within the present scope. Laser treatment or processing can allow, among other things, enhanced absorption properties and thus increased electromagnetic radiation focusing and detection.


In one aspect, for example, a target region of the substrate to be textured can be irradiated with laser radiation to form a textured region. Examples of such processing have been described in further detail in U.S. Pat. Nos. 7,057,256, 7,354,792 and 7,442,629, which are incorporated herein by reference in their entireties. Briefly, a surface of a substrate material is irradiated with laser radiation to form a textured or surface modified region. Such laser processing can occur with or without a dopant material. In those aspects whereby a dopant is used, the laser can passed through a dopant carrier and onto the substrate surface. In this way, dopant from the dopant carrier is introduced into the target region of the substrate material. Such a region incorporated into a substrate material can have various benefits in accordance with aspects of the present disclosure. For example, the textured region typically has a textured surface that increases the surface area and increases the probability of radiation absorption. In one aspect, such a textured region is a substantially textured surface including micron-sized and/or nano-sized surface features that have been generated by the laser texturing. In another aspect, irradiating the surface of a substrate material includes exposing the laser radiation to a dopant such that irradiation incorporates the dopant into the substrate. Various dopant materials are known in the art, and are discussed in more detail herein.


Thus the surface of the substrate at the target region is thus chemically and/or structurally altered by the laser treatment, which may, in some aspects, result in the formation of surface features appearing as structures or patterned areas on the surface and, if a dopant is used, the incorporation of such dopants into the substrate material. In some aspects, the features or structures can be on the order of 50 nm to 20 μm in size and can assist in the absorption of electromagnetic radiation. In other words, the textured surface can increase the probability of incident radiation being absorbed.


A variety of semiconductor materials are contemplated for use with the pixel devices and methods according to aspects of the present disclosure. Such materials can be utilized as the semiconductor layer and/or the semiconductor substrate, as well as for the secondary semiconductor layer and the epitaxially grown semiconductor layer. Non-limiting examples of such semiconductor materials can include group IV materials, compounds and alloys comprised of materials from groups II and VI, compounds and alloys comprised of materials from groups III and V, and combinations thereof. More specifically, exemplary group IV materials can include silicon, carbon (e.g. diamond), germanium, and combinations thereof. Various exemplary combinations of group IV materials can include silicon carbide (SiC) and silicon germanium (SiGe). In one specific aspect, the semiconductor material can be or include silicon. Exemplary silicon materials can include amorphous silicon (a-Si), microcrystalline silicon, multicrystalline silicon, and monocrystalline silicon, as well as other crystal types. In another aspect, the semiconductor material can include at least one of silicon, carbon, germanium, aluminum nitride, gallium nitride, indium gallium arsenide, aluminum gallium arsenide, and combinations thereof.


Exemplary combinations of group II-VI materials can include cadmium selenide (CdSe), cadmium sulfide (CdS), cadmium telluride (CdTe), zinc oxide (ZnO), zinc selenide (ZnSe), zinc sulfide (ZnS), zinc telluride (ZnTe), cadmium zinc telluride (CdZnTe, CZT), mercury cadmium telluride (HgCdTe), mercury zinc telluride (HgZnTe), mercury zinc selenide (HgZnSe), and combinations thereof.


Exemplary combinations of group III-V materials can include aluminum antimonide (AlSb), aluminum arsenide (AlAs), aluminum nitride (AlN), aluminum phosphide (AlP), boron nitride (BN), boron phosphide (BP), boron arsenide (BAs), gallium antimonide (GaSb), gallium arsenide (GaAs), gallium nitride (GaN), gallium phosphide (GaP), indium antimonide (InSb), indium arsenide (InAs), indium nitride (InN), indium phosphide (InP), aluminum gallium arsenide (AlGaAs, AlxGa1-xAs), indium gallium arsenide (InGaAs, InxGa1-xAs), indium gallium phosphide (InGaP), aluminum indium arsenide (AlInAs), aluminum indium antimonide (AlInSb), gallium arsenide nitride (GaAsN), gallium arsenide phosphide (GaAsP), aluminum gallium nitride (AlGaN), aluminum gallium phosphide (AlGaP), indium gallium nitride (InGaN), indium arsenide antimonide (InAsSb), indium gallium antimonide (InGaSb), aluminum gallium indium phosphide (AlGaInP), aluminum gallium arsenide phosphide (AlGaAsP), indium gallium arsenide phosphide (InGaAsP), aluminum indium arsenide phosphide (AlInAsP), aluminum gallium arsenide nitride (AlGaAsN), indium gallium arsenide nitride (InGaAsN), indium aluminum arsenide nitride (InAlAsN), gallium arsenide antimonide nitride (GaAsSbN), gallium indium nitride arsenide antimonide (GaInNAsSb), gallium indium arsenide antimonide phosphide (GaInAsSbP), and combinations thereof.


The semiconductor material can be of any thickness that allows the desired property or functionality of the semiconductor device, and thus any such thickness of semiconductor material is considered to be within the present scope. The textured region can increase the efficiency of the device such that, in some aspects, the semiconductor material can be thinner than has previously been possible. Decreasing the thickness reduces the amount of semiconductor material used to make such a device. In one aspect, for example, a semiconductor material such as the semiconductor layer has a thickness of from about 500 nm to about 50 μm. In another aspect, the semiconductor material has a thickness of less than or equal to about 500 μm. In yet another aspect, the semiconductor material has a thickness of from about 1 μm to about 10 μm. In a further aspect, the semiconductor material can have a thickness of from about 5 μm to about 750 μm. In yet a further aspect, the semiconductor material can have a thickness of from about 5 μm to about 100 μm.


Additionally, various configurations of semiconductor materials are contemplated, and any such material configuration that can be incorporated into a semiconductor device is considered to be within the present scope. In one aspect, for example, the semiconductor material can include monocrystalline materials. In another aspect, the semiconductor material can include multicrystalline materials. In yet another aspect, the semiconductor material can include microcrystalline materials. It is also contemplated that the semiconductor material can include amorphous materials.


As has been described, the semiconductor substrate can be of any size, shape, and material capable of supporting the semiconductor layer and associated components during manufacture and/or use. The semiconductor substrate can be made from various materials, including the semiconductor materials described above, as well as non-semiconductor materials. Non-limiting examples of such materials can include metals, polymeric materials, ceramics, glass, and the like. In some aspects, the semiconductor substrate and the semiconductor layer have the same or substantially the same thermal expansion properties.


Furthermore, the semiconductor material according to aspects of the present disclosure can comprise multiple layers. In some aspects, layers can vary in majority carrier polarity (i.e. donor or acceptor impurities). The donor or acceptor impurities are typically determined by the type of dopant/impurities introduced into the device either through a growth process, deposition process, epitaxial process, implant process, lasing process or other known process to those skilled in the art. In some aspects such semiconductor materials can include an n-type layer, an intrinsic (i-type) layer, and a p-type layer, thus forming a p-i-n semiconductor material stack that creates a junction and/or depletion region. A semiconductor material devoid of an i-type layer is also contemplated in accordance with the present disclosure. In other aspects the semiconductor material may include multiple junctions. Additionally, in some aspects, variations of n(−−), n(−), n(+), n(++), p(−−), p(−), p(+), or p(++) type semiconductor layers can be used. The minus and positive signs are indicators of the relative magnitude of the doping of the semiconductor material.


A variety of dopant materials are contemplated for both the formation of doped regions in the semiconductor layer and for doping of the textured region, and any dopant that can be used in such processes to modify a material is considered to be within the present scope. It should be noted that the particular dopant utilized can vary depending on the material being doped, as well as the intended use of the resulting material.


A dopant can be either a charge donating or a charge accepting dopant species. More specifically, an electron donating or a hole donating species can cause a region to become more positive or negative in polarity as compared to the substrate upon which the rests. In one aspect, for example, the doped region can be p-doped. In another aspect the doped region can be n-doped.


In one aspect, non-limiting examples of dopant materials can include S, F, B, P, N, As, Se, Te, Ge, Ar, Ga, In, Sb, and combinations thereof. It should be noted that the scope of dopant materials should include, not only the dopant materials themselves, but also materials in forms that deliver such dopants (i.e. dopant carriers). For example, S dopant materials includes not only S, but also any material capable being used to dope S into the target region, such as, for example, H2S, SF6, SO2, and the like, including combinations thereof. In one specific aspect, the dopant can be S. Sulfur can be present at an ion dosage level of from about 5×1014 to about 3×1020 ions/cm2. Non-limiting examples of fluorine-containing compounds can include ClF3, PF5, F2SF6, BF3, GeF4, WF6, SiF4, HF, CF4, CHF3, CH2F2, CH3F, C2F6, C2HF5, C3F8, C4F8, NF3, and the like, including combinations thereof. Non-limiting examples of boron-containing compounds can include B(CH3)3, BF3, BCl3, BN, C2B10H12, borosilica, B2H6, and the like, including combinations thereof. Non-limiting examples of phosphorous-containing compounds can include PF5, PH3, POCl3, P2O5, and the like, including combinations thereof. Non-limiting examples of chlorine-containing compounds can include Cl2, SiH2Cl2, HCl, SiCl4, and the like, including combinations thereof. Dopants can also include arsenic-containing compounds such as AsH3 and the like, as well as antimony-containing compounds. Additionally, dopant materials can include mixtures or combinations across dopant groups, i.e. a sulfur-containing compound mixed with a chlorine-containing compound. In one aspect, the dopant material can have a density that is greater than air. In one specific aspect, the dopant material can include Se, H2S, SF6, or mixtures thereof. In yet another specific aspect, the dopant can be SF6 and can have a predetermined concentration range of about 5.0×10−8 mol/cm3 to about 5.0×10−4 mol/cm3. As one non-limiting example, SF6 gas is a good carrier for the incorporation of sulfur into a substrate via a laser process without significant adverse effects on the material. Additionally, it is noted that dopants can also be liquid solutions of n-type or p-type dopant materials dissolved in a solution such as water, alcohol, or an acid or basic solution. Dopants can also be solid materials applied as a powder or as a suspension dried onto the wafer.


In another aspect, the band structure optimization can be realized by forming a heterojunction along a modified semiconductor interface. For example, a layer of amorphous silicon can be deposited on the textured region interface, thus forming a heterojunction that bends the minority carrier band towards the desired energy direction.

Claims
  • 1. A light trapping device, comprising: at least one light sensitive pixel having a light incident surface, a backside surface opposite the light incident surface, and a peripheral sidewall extending at least partially around the pixel periphery;a backside light trapping material at least partially covering the backside surface;a peripheral light trapping material substantially covering the peripheral sidewall, wherein said peripheral light trapping material is doped with a dopant to create a surface field; anda reflective layer coupled to the light incident side and having an aperture to allow entry of light into the pixel;wherein the reflective layer is operable to reflect at least a portion of light impinging thereupon from inside the pixel back into the pixel back into the pixel.
  • 2. The device of claim 1, wherein at least one of the backside light trapping material and the peripheral light trapping material reflects light incident thereon back into the pixel.
  • 3. The device of claim 1, wherein said peripheral light trapping material has a refractive index of less than about 2.1.
  • 4. The device of claim 1, wherein said peripheral light trapping material includes a member selected from the group consisting of an oxide, a nitride, oxynitrides, a gas, at least a partial vacuum, and combinations thereof.
  • 5. The device of claim 4, wherein said peripheral light trapping material is selected from the group consisting of silicon oxide, silicon nitride, silicon dioxide, and combinations thereof.
  • 6. The device of claim 1, wherein the dopant is boron or antimony.
  • 7. The device of claim 1, wherein the peripheral sidewall extends completely around the pixel periphery.
  • 8. The device of claim 1, wherein the peripheral sidewall extends from the light incident surface to the backside surface.
  • 9. The device of claim 1, wherein said aperture has an effective surface area of less than about 90% of total area of the incident light surface.
  • 10. The device of claim 1, further comprising a lens functionally coupled to the aperture and operable to focus incident light through the aperture and into the pixel.
  • 11. The device of claim 1, wherein at least one of the backside light trapping material and the peripheral light trapping material is a metal layer.
  • 12. The device of claim 1, further comprising a textured region positioned to interact with light incident thereon to increase quantum efficiency of the device.
  • 13. The device of claim 12, wherein said textured region comprises a textured film layer.
  • 14. The device of claim 13, wherein said textured film layer comprises any of silicon dioxide, silicon nitride, amorphous silicon, polysilicon, a metal and combinations thereof.
  • 15. The device of claim 1, wherein the peripheral light trapping material comprises any of aluminum oxide and hafnium oxide.
  • 16. The device of claim 1, wherein the backside light trapping material substantially covers the backside surface.
  • 17. The device of claim 1, wherein the backside light trapping material completely covers the backside surface.
  • 18. The device of claim 1, wherein said peripheral sidewall extends through the pixel substantially from the light incident surface to the backside surface.
  • 19. A light trapping device, comprising: at least one light sensitive pixel having a light incident surface, a backside surface opposite the light incident surface, and a peripheral sidewall extending at least partially around the pixel periphery;a backside light trapping material at least partially covering the backside surface;a peripheral light trapping material substantially covering the peripheral sidewall;a textured region positioned to interact with light incident thereon to increase quantum efficiency of the device; anda reflective layer coupled to the light incident side and having an aperture to allow entry of light into the pixel;wherein the reflective layer is operable to reflect at least a portion of light impinging thereupon from inside the pixel back into the pixel back into the pixel.
  • 20. The device of claim 19, wherein at least one of the backside light trapping material and the peripheral light trapping material reflects light incident thereon back into the pixel.
  • 21. The device of claim 19, wherein said peripheral light trapping material has a refractive index of less than about 2.1.
  • 22. The device of claim 19, wherein said peripheral light trapping material includes a member selected from the group consisting of an oxide, a nitride, oxynitrides, a gas, at least a partial vacuum, and combinations thereof.
  • 23. The device of claim 22, wherein said peripheral light trapping material is selected from the group consisting of silicon oxide, silicon nitride, silicon dioxide, and combinations thereof.
  • 24. The device of claim 19, wherein said peripheral light trapping material is doped with a dopant to create a surface field.
  • 25. The device of claim 24, wherein the dopant is boron or antimony.
  • 26. The device of claim 19, wherein the peripheral sidewall extends completely around the pixel periphery.
  • 27. The device of claim 19, wherein the peripheral sidewall extends from the light incident surface to the backside surface.
  • 28. The device of claim 19, wherein said aperture has an effective surface area of less than about 90% of total area of the incident light surface.
  • 29. The device of claim 19, further comprising a lens functionally coupled to the aperture and operable to focus incident light through the aperture and into the pixel.
  • 30. The device of claim 19, wherein at least one of the backside light trapping material and the peripheral light trapping material is a metal layer.
  • 31. The device of claim 19, wherein said textured region comprises a textured film layer.
  • 32. The device of claim 31, wherein said textured film layer comprises any of silicon dioxide, silicon nitride, amorphous silicon, polysilicon, a metal and combinations thereof.
  • 33. The device of claim 19, wherein the peripheral light trapping material comprises any of aluminum oxide and hafnium oxide.
  • 34. The device of claim 19, wherein the backside light trapping material substantially covers the backside surface.
  • 35. The device of claim 19, wherein the backside light trapping material completely covers the backside surface.
  • 36. The device of claim 19, wherein said peripheral sidewall extends through the pixel substantially from the light incident surface to the backside surface.
PRIORITY DATA

This application is a continuation of U.S. patent application Ser. No. 13/841,120, filed Mar. 15, 2013, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/614,275, filed on Mar. 22, 2012, each of which are incorporated herein by reference.

US Referenced Citations (528)
Number Name Date Kind
3487223 St. John Dec 1969 A
3922571 Smith Nov 1975 A
3973994 Redfield Aug 1976 A
3994012 Warner, Jr. Nov 1976 A
4017887 Davies et al. Apr 1977 A
4149174 Shannon Apr 1979 A
4176365 Kroger Nov 1979 A
4201450 Trapani May 1980 A
4242149 King et al. Dec 1980 A
4253882 Dalal Mar 1981 A
4277793 Webb Jul 1981 A
4322571 Stanbery Mar 1982 A
4419533 Czubatyj et al. Dec 1983 A
4452826 Shields et al. Jun 1984 A
4493942 Sheng et al. Jan 1985 A
4514582 Tiedje et al. Apr 1985 A
4536608 Sheng et al. Aug 1985 A
4568960 Petroff et al. Feb 1986 A
4593303 Dyck et al. Jun 1986 A
4593313 Nagasaki Jun 1986 A
4617593 Dudley Oct 1986 A
4630082 Sakai Dec 1986 A
4648936 Ashby et al. Mar 1987 A
4663188 Kane May 1987 A
4672206 Suzuki Jun 1987 A
4673770 Mandelkorn Jun 1987 A
4679068 Lillquist et al. Jul 1987 A
4751571 Lillquist Jun 1988 A
4775425 Guha et al. Oct 1988 A
4777490 Sharma et al. Oct 1988 A
4829013 Yamazaki May 1989 A
4883962 Elliott Nov 1989 A
4886958 Merryman Dec 1989 A
4887255 Handa et al. Dec 1989 A
4894526 Bethea et al. Jan 1990 A
4910568 Taki et al. Mar 1990 A
4910588 Kinoshita et al. Mar 1990 A
4964134 Westbrook et al. Oct 1990 A
4965784 Land et al. Oct 1990 A
4968372 Maass Nov 1990 A
4999308 Nishiura et al. Mar 1991 A
5021100 Ishihara et al. Jun 1991 A
5021854 Huth Jun 1991 A
5080725 Green et al. Jan 1992 A
5081049 Green et al. Jan 1992 A
5100478 Kawabata Mar 1992 A
5101260 Nath Mar 1992 A
5114876 Weiner May 1992 A
5127964 Hamakawa et al. Jul 1992 A
5164324 Russell et al. Nov 1992 A
5208822 Haus et al. May 1993 A
5223043 Olson et al. Jun 1993 A
5234790 Lang et al. Aug 1993 A
5244817 Hawkins et al. Sep 1993 A
5296045 Banerjee et al. Mar 1994 A
5309275 Nishimura et al. May 1994 A
5322988 Russell et al. Jun 1994 A
5346850 Kaschmitter et al. Sep 1994 A
5351446 Langsdorf Oct 1994 A
5370747 Noguchi et al. Dec 1994 A
5373182 Norton Dec 1994 A
5381431 Zayhowski Jan 1995 A
5383217 Uemura Jan 1995 A
5390201 Tomono et al. Feb 1995 A
5413100 Barthelemy et al. May 1995 A
5449626 Hezel Sep 1995 A
5454347 Shibata et al. Oct 1995 A
5502329 Pezzani Mar 1996 A
5523570 Hairston Jun 1996 A
5559361 Pezzani Sep 1996 A
5569615 Yamazaki et al. Oct 1996 A
5578858 Mueller et al. Nov 1996 A
5580615 Itoh et al. Dec 1996 A
5589008 Kepper Dec 1996 A
5589704 Levine Dec 1996 A
5597621 Hummel et al. Jan 1997 A
5600130 VanZeghbroeck Feb 1997 A
5626687 Campbell May 1997 A
5627081 Tsuo et al. May 1997 A
5635089 Singh et al. Jun 1997 A
5640013 Ishikawa et al. Jun 1997 A
5641362 Meier Jun 1997 A
5641969 Cooke et al. Jun 1997 A
5705413 Harkin et al. Jan 1998 A
5705828 Noguchi et al. Jan 1998 A
5708486 Miyawaki et al. Jan 1998 A
5710442 Watanabe et al. Jan 1998 A
5714404 Mititsky et al. Feb 1998 A
5727096 Ghirardi et al. Mar 1998 A
5731213 Ono Mar 1998 A
5751005 Wyles et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5766964 Rohatgi et al. Jun 1998 A
5773820 Osajda et al. Jun 1998 A
5779631 Chance Jul 1998 A
5781392 Clark Jul 1998 A
5792280 Ruby et al. Aug 1998 A
5808350 Jack et al. Sep 1998 A
5859446 Nagasu et al. Jan 1999 A
5861639 Bernier Jan 1999 A
5923071 Saito Jul 1999 A
5935320 Graf et al. Aug 1999 A
5942789 Morikawa Aug 1999 A
5943584 Shim et al. Aug 1999 A
5963790 Matsuno et al. Oct 1999 A
5977603 Ishikawa Nov 1999 A
6071796 Voutsas Jun 2000 A
6072117 Matsuyama et al. Jun 2000 A
6080988 Ishizuya et al. Jun 2000 A
6082858 Grace et al. Jul 2000 A
6097031 Cole Aug 2000 A
6106689 Matsuyama Aug 2000 A
6107618 Fossum et al. Aug 2000 A
6111300 Cao et al. Aug 2000 A
6147297 Wettling et al. Nov 2000 A
6160833 Floyd et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6194722 Fiorini et al. Feb 2001 B1
6204506 Akahori et al. Mar 2001 B1
6229192 Gu May 2001 B1
6252256 Ugge et al. Jun 2001 B1
6290713 Russell Sep 2001 B1
6291302 Yu Sep 2001 B1
6313901 Cacharelis Nov 2001 B1
6320296 Fujii et al. Nov 2001 B1
6327022 Nishi Dec 2001 B1
6331445 Janz et al. Dec 2001 B1
6331885 Nishi Dec 2001 B1
6340281 Haraguchi Jan 2002 B1
6372591 Mineji et al. Apr 2002 B1
6372611 Horikawa Apr 2002 B1
6379979 Connolly Apr 2002 B1
6420706 Lurie et al. Jul 2002 B1
6429036 Nixon et al. Aug 2002 B1
6429037 Wenham et al. Aug 2002 B1
6465860 Shigenaka et al. Oct 2002 B2
6475839 Zhang et al. Nov 2002 B2
6483116 Kozlowski et al. Nov 2002 B1
6483929 Marakami et al. Nov 2002 B1
6486522 Bishay et al. Nov 2002 B1
6493567 Krivitski et al. Dec 2002 B1
6498336 Tian et al. Dec 2002 B1
6500690 Yamagishi et al. Dec 2002 B1
6504178 Carlson et al. Jan 2003 B2
6580053 Voutsas Jun 2003 B1
6583936 Kaminsky et al. Jun 2003 B1
6597025 Lauter et al. Jul 2003 B2
6607927 Ramappa et al. Aug 2003 B2
6624049 Yamazaki Sep 2003 B1
6639253 Duane et al. Oct 2003 B2
6667528 Cohen et al. Dec 2003 B2
6677655 Fitzergald Jan 2004 B2
6677656 Francois Jan 2004 B2
6683326 Iguchi et al. Jan 2004 B2
6689209 Falster et al. Feb 2004 B2
6753585 Kindt Jun 2004 B1
6759262 Theil et al. Jul 2004 B2
6790701 Shigenaka et al. Sep 2004 B2
6800541 Okumura Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6803555 Parrish et al. Oct 2004 B1
6815685 Wany Nov 2004 B2
6818535 Lu et al. Nov 2004 B2
6822313 Matsushita Nov 2004 B2
6825057 Heyers et al. Nov 2004 B1
6864156 Conn Mar 2005 B1
6864190 Han et al. Mar 2005 B2
6867806 Lee et al. Mar 2005 B1
6900839 Kozlowski et al. May 2005 B1
6907135 Gifford Jun 2005 B2
6911375 Guarini et al. Jun 2005 B2
6919587 Ballon et al. Jul 2005 B2
6923625 Sparks Aug 2005 B2
6927432 Holm et al. Aug 2005 B2
6984816 Holm et al. Jan 2006 B2
7008854 Forbes Mar 2006 B2
7041525 Clevenger et al. May 2006 B2
7057256 Carey, III et al. Jun 2006 B2
7075079 Wood Jul 2006 B2
7091411 Falk et al. Aug 2006 B2
7109517 Zaidi Sep 2006 B2
7126212 Enquist et al. Oct 2006 B2
7132724 Merrill Nov 2006 B1
7202102 Yao Apr 2007 B2
7211501 Liu et al. May 2007 B2
7235812 Chu et al. Jun 2007 B2
7247527 Shimomura et al. Jul 2007 B2
7247812 Tsao Jul 2007 B2
7256102 Nakata et al. Aug 2007 B2
7271445 Forbes Sep 2007 B2
7271835 Iizuka et al. Sep 2007 B2
7285482 Ochi Oct 2007 B2
7314832 Kountz et al. Jan 2008 B2
7354792 Carey, III et al. Apr 2008 B2
7358498 Geng et al. Apr 2008 B2
7375378 Manivannan et al. May 2008 B2
7390689 Mazur et al. Jun 2008 B2
7432148 Li et al. Oct 2008 B2
7442629 Mazur et al. Oct 2008 B2
7446359 Lee et al. Nov 2008 B2
7446807 Hong Nov 2008 B2
7456452 Wells et al. Nov 2008 B2
7482532 Yi et al. Jan 2009 B2
7498650 Lauxtermann Mar 2009 B2
7504325 Koezuka et al. Mar 2009 B2
7504702 Mazur et al. Mar 2009 B2
7511750 Murakami Mar 2009 B2
7521737 Augusto Apr 2009 B2
7528463 Forbes May 2009 B2
7542085 Altice, Jr. et al. Jun 2009 B2
7547616 Fogel et al. Jun 2009 B2
7551059 Farrier Jun 2009 B2
7560750 Niira et al. Jul 2009 B2
7564631 Li et al. Jul 2009 B2
7582515 Choi et al. Sep 2009 B2
7592593 Kauffman et al. Sep 2009 B2
7595213 Kwon et al. Sep 2009 B2
7605397 Kindem et al. Oct 2009 B2
7615808 Pain et al. Nov 2009 B2
7618839 Rhodes Nov 2009 B2
7619269 Ohkawa Nov 2009 B2
7629582 Hoffman et al. Dec 2009 B2
7648851 Fu et al. Jan 2010 B2
7649156 Lee Jan 2010 B2
7705879 Kerr et al. Apr 2010 B2
7731665 Lee et al. Jun 2010 B2
7741666 Nozaki et al. Jun 2010 B2
7745901 McCaffrey et al. Jun 2010 B1
7763913 Fan et al. Jul 2010 B2
7772028 Adkisson et al. Aug 2010 B2
7781856 Mazur et al. Aug 2010 B2
7800192 Venezia et al. Sep 2010 B2
7800684 Tatani Sep 2010 B2
7816220 Mazur et al. Oct 2010 B2
7828983 Weber et al. Nov 2010 B2
7847253 Carey et al. Dec 2010 B2
7847326 Park et al. Dec 2010 B2
7855406 Yamaguchi et al. Dec 2010 B2
7875498 Elbanhawy et al. Jan 2011 B2
7880168 Lenchenkov Feb 2011 B2
7884439 Mazur et al. Feb 2011 B2
7884446 Mazur et al. Feb 2011 B2
7897942 Bareket Mar 2011 B1
7910964 Kawahito et al. Mar 2011 B2
7923801 Tian et al. Apr 2011 B2
7968834 Veeder Jun 2011 B2
8008205 Fukushima et al. Aug 2011 B2
8013411 Cole Sep 2011 B2
8030726 Sumi Oct 2011 B2
8035343 Seman, Jr. Oct 2011 B2
8058615 McCaffrey Nov 2011 B2
8080467 Carey et al. Dec 2011 B2
8088219 Knerer et al. Jan 2012 B2
8093559 Rajavel Jan 2012 B1
RE43169 Parker Feb 2012 E
8164126 Moon et al. Apr 2012 B2
8207051 Sickler et al. Jun 2012 B2
8247259 Grolier et al. Aug 2012 B2
8259293 Andreou et al. Sep 2012 B2
8288702 Veeder Oct 2012 B2
8470619 Bour Jun 2013 B2
8476681 Haddad et al. Jul 2013 B2
8564087 Yamamura et al. Oct 2013 B2
8603902 Mazer et al. Dec 2013 B2
8629485 Yamamura et al. Jan 2014 B2
8680591 Haddad et al. Mar 2014 B2
8742528 Yamamura et al. Jun 2014 B2
8884226 Miyazaki et al. Nov 2014 B2
8906670 Gray Dec 2014 B2
8916945 Sakamoto et al. Dec 2014 B2
8994135 Yamamura et al. Mar 2015 B2
9184204 Hu Nov 2015 B2
9190551 Yamamura et al. Nov 2015 B2
9369641 Hu Jun 2016 B2
9419159 Sakamoto et al. Aug 2016 B2
20010017344 Aebi Aug 2001 A1
20010022768 Takahashi Sep 2001 A1
20010044175 Barret et al. Nov 2001 A1
20010044266 Katsuoka Nov 2001 A1
20020020893 Lhorte Feb 2002 A1
20020024618 Imai Feb 2002 A1
20020056845 Iguchi et al. May 2002 A1
20020060322 Tanabe et al. May 2002 A1
20020079290 Holdermann Jun 2002 A1
20020117699 Francois Aug 2002 A1
20020148964 Dausch et al. Oct 2002 A1
20020182769 Campbell Dec 2002 A1
20030029495 Mazur et al. Feb 2003 A1
20030030083 Lee et al. Feb 2003 A1
20030045092 Shin Mar 2003 A1
20030057357 Uppal et al. Mar 2003 A1
20030111106 Nagano et al. Jun 2003 A1
20030210332 Frame Nov 2003 A1
20030213515 Sano et al. Nov 2003 A1
20030214595 Mabuchi Nov 2003 A1
20030228883 Kusakari et al. Dec 2003 A1
20040014307 Shin et al. Jan 2004 A1
20040016886 Ringermacher et al. Jan 2004 A1
20040041168 Hembree et al. Mar 2004 A1
20040046224 Rossel et al. Mar 2004 A1
20040077117 Ding et al. Apr 2004 A1
20040080638 Lee Apr 2004 A1
20040130020 Kuwabara et al. Jul 2004 A1
20040161868 Hong Aug 2004 A1
20040222187 Lin Nov 2004 A1
20040252931 Belleville et al. Dec 2004 A1
20050040440 Murakami Feb 2005 A1
20050051822 Manning Mar 2005 A1
20050062041 Terakawa et al. Mar 2005 A1
20050088634 Kosugi Apr 2005 A1
20050093100 Chen May 2005 A1
20050101100 Kretchmer et al. May 2005 A1
20050101160 Garg et al. May 2005 A1
20050127401 Mazur et al. Jun 2005 A1
20050134698 Schroeder et al. Jun 2005 A1
20050150542 Madan Jul 2005 A1
20050158969 Binnis et al. Jul 2005 A1
20050211996 Krishna et al. Sep 2005 A1
20050227390 Shtein et al. Oct 2005 A1
20060006482 Rieve et al. Jan 2006 A1
20060011954 Ueda et al. Jan 2006 A1
20060011955 Baggenstoss Jan 2006 A1
20060060848 Chang et al. Mar 2006 A1
20060071254 Rhodes Apr 2006 A1
20060079062 Mazur et al. Apr 2006 A1
20060086956 Furukawa et al. Apr 2006 A1
20060097172 Park May 2006 A1
20060118781 Rhodes Jun 2006 A1
20060121680 Tanaka Jun 2006 A1
20060128087 Bamji et al. Jun 2006 A1
20060132633 Nam et al. Jun 2006 A1
20060138396 Lin et al. Jun 2006 A1
20060145148 Hirai et al. Jul 2006 A1
20060145176 Lee Jul 2006 A1
20060160343 Chong et al. Jul 2006 A1
20060166475 Mantl Jul 2006 A1
20060175529 Harmon et al. Aug 2006 A1
20060180885 Rhodes Aug 2006 A1
20060181627 Farrier Aug 2006 A1
20060210122 Cleveland Sep 2006 A1
20060214121 Schrey et al. Sep 2006 A1
20060228897 Timans Oct 2006 A1
20060231914 Carey et al. Oct 2006 A1
20060238632 Shah Oct 2006 A1
20060244090 Roy et al. Nov 2006 A1
20060255340 Manivannan et al. Nov 2006 A1
20060257140 Seger Nov 2006 A1
20070035849 Li et al. Feb 2007 A1
20070035879 Hall et al. Feb 2007 A1
20070051876 Sumi et al. Mar 2007 A1
20070052050 Dierickx Mar 2007 A1
20070076481 Tennant Apr 2007 A1
20070103580 Noto May 2007 A1
20070115554 Breitung et al. May 2007 A1
20070123005 Hiura et al. May 2007 A1
20070138590 Wells et al. Jun 2007 A1
20070145505 Kim et al. Jun 2007 A1
20070178672 Tanaka et al. Aug 2007 A1
20070187670 Hsu et al. Aug 2007 A1
20070189583 Shimada et al. Aug 2007 A1
20070194356 Moon et al. Aug 2007 A1
20070194401 Nagai et al. Aug 2007 A1
20070195056 Lloyd Aug 2007 A1
20070200940 Gruhlke et al. Aug 2007 A1
20070201859 Sarrat Aug 2007 A1
20070235827 Altice Oct 2007 A1
20070237504 Nakashiba Oct 2007 A1
20070247414 Roberts Oct 2007 A1
20070262366 Baek et al. Nov 2007 A1
20070290283 Park et al. Dec 2007 A1
20070296060 Tanabe et al. Dec 2007 A1
20080002863 Northcott Jan 2008 A1
20080020555 Shimomura et al. Jan 2008 A1
20080026550 Werner et al. Jan 2008 A1
20080036022 Hwang et al. Feb 2008 A1
20080044943 Mazur et al. Feb 2008 A1
20080076240 Veschtti et al. Mar 2008 A1
20080099804 Venezia May 2008 A1
20080121280 Carnel et al. May 2008 A1
20080121805 Tweet et al. May 2008 A1
20080142686 Konno et al. Jun 2008 A1
20080158398 Yaffe et al. Jul 2008 A1
20080170173 Park et al. Jul 2008 A1
20080173620 Grek Jul 2008 A1
20080174685 Shan et al. Jul 2008 A1
20080178932 Den Boer et al. Jul 2008 A1
20080179762 Cho et al. Jul 2008 A1
20080191310 Wu et al. Aug 2008 A1
20080192132 Bechtel et al. Aug 2008 A1
20080192133 Abiru et al. Aug 2008 A1
20080196761 Nakano et al. Aug 2008 A1
20080198251 Xu et al. Aug 2008 A1
20080202576 Hieslmair Aug 2008 A1
20080213936 Hatai Sep 2008 A1
20080223436 den Boer et al. Sep 2008 A1
20080242005 Dozen et al. Oct 2008 A1
20080257409 Li et al. Oct 2008 A1
20080258604 Mazur et al. Oct 2008 A1
20080266434 Sugawa et al. Oct 2008 A1
20080266435 Agranov et al. Oct 2008 A1
20080281174 Dietiker Nov 2008 A1
20080284884 Makino et al. Nov 2008 A1
20080309913 Fallon Dec 2008 A1
20090002528 Manabe et al. Jan 2009 A1
20090014056 Hockaday Jan 2009 A1
20090027640 Shibazaki Jan 2009 A1
20090038669 Atanackovic Feb 2009 A1
20090039397 Chao Feb 2009 A1
20090050944 Hong Feb 2009 A1
20090056797 Barnett et al. Mar 2009 A1
20090057536 Hirose Mar 2009 A1
20090065051 Chan et al. Mar 2009 A1
20090078316 Khazeni et al. Mar 2009 A1
20090095887 Saveliev Apr 2009 A1
20090097290 Chandrasekaran Apr 2009 A1
20090101197 Morikawa Apr 2009 A1
20090109305 Dai et al. Apr 2009 A1
20090114630 Hawryluk May 2009 A1
20090142879 Isaka et al. Jun 2009 A1
20090146240 Carey, III et al. Jun 2009 A1
20090160983 Lenchenkov Jun 2009 A1
20090180010 Adikisson et al. Jul 2009 A1
20090194671 Nozaki et al. Aug 2009 A1
20090200454 Barbier et al. Aug 2009 A1
20090200586 Mao et al. Aug 2009 A1
20090200626 Qian et al. Aug 2009 A1
20090200631 Tai et al. Aug 2009 A1
20090206237 Shannon et al. Aug 2009 A1
20090211627 Meier et al. Aug 2009 A1
20090213883 Mazur et al. Aug 2009 A1
20090218493 McCaffrey et al. Sep 2009 A1
20090223561 Kim et al. Sep 2009 A1
20090227061 Bateman et al. Sep 2009 A1
20090242032 Yamazaki et al. Oct 2009 A1
20090242933 Hu et al. Oct 2009 A1
20090256156 Hsieh Oct 2009 A1
20090256226 Tatani Oct 2009 A1
20090261255 Nakamura et al. Oct 2009 A1
20090283807 Adkisson et al. Nov 2009 A1
20090294787 Nakaji et al. Dec 2009 A1
20090308450 Adibi et al. Dec 2009 A1
20090308457 Smith et al. Dec 2009 A1
20100000597 Cousins Jan 2010 A1
20100013036 Carey Jan 2010 A1
20100013039 Qian et al. Jan 2010 A1
20100013593 Luckhardt Jan 2010 A1
20100024871 Oh et al. Feb 2010 A1
20100032008 Adekore Feb 2010 A1
20100037952 Lin Feb 2010 A1
20100038523 Venezia et al. Feb 2010 A1
20100038542 Carey et al. Feb 2010 A1
20100040981 Kiesel et al. Feb 2010 A1
20100044552 Chen Feb 2010 A1
20100051809 Onat et al. Mar 2010 A1
20100052088 Carey Mar 2010 A1
20100053382 Kuniba Mar 2010 A1
20100055887 Piwczyk Mar 2010 A1
20100059385 Li Mar 2010 A1
20100059803 Gidon et al. Mar 2010 A1
20100072349 Veeder Mar 2010 A1
20100074396 Schmand et al. Mar 2010 A1
20100083997 Hovel Apr 2010 A1
20100084009 Carlson et al. Apr 2010 A1
20100096718 Hynecek et al. Apr 2010 A1
20100097609 Jaeger et al. Apr 2010 A1
20100102206 Cazaux et al. Apr 2010 A1
20100109060 Mao et al. May 2010 A1
20100116312 Peumans et al. May 2010 A1
20100117181 Kim et al. May 2010 A1
20100118172 McCarten et al. May 2010 A1
20100128937 Yoo et al. May 2010 A1
20100133635 Lee et al. Jun 2010 A1
20100140733 Lee et al. Jun 2010 A1
20100140768 Zafiropoulo Jun 2010 A1
20100143744 Gupta Jun 2010 A1
20100147383 Carey et al. Jun 2010 A1
20100200658 Olmstead et al. Aug 2010 A1
20100219506 Gupta Sep 2010 A1
20100224229 Pralle et al. Sep 2010 A1
20100240169 Petti et al. Sep 2010 A1
20100245647 Honda et al. Sep 2010 A1
20100258176 Kang et al. Oct 2010 A1
20100264473 Adkisson et al. Oct 2010 A1
20100289885 Lu et al. Nov 2010 A1
20100290668 Friedman et al. Nov 2010 A1
20100300505 Chen Dec 2010 A1
20100300507 Heng et al. Dec 2010 A1
20100313932 Kroll et al. Dec 2010 A1
20110019050 Yamashita Jan 2011 A1
20110056544 Ji et al. Mar 2011 A1
20110073976 Vaillant Mar 2011 A1
20110095387 Carey et al. Apr 2011 A1
20110104850 Weidman et al. May 2011 A1
20110127567 Seong Jun 2011 A1
20110140221 Venezia et al. Jun 2011 A1
20110220971 Haddad Sep 2011 A1
20110227138 Haddad Sep 2011 A1
20110251478 Wieczorek Oct 2011 A1
20110260059 Jiang et al. Oct 2011 A1
20110266644 Yamamura et al. Nov 2011 A1
20110292380 Bamji Dec 2011 A1
20110303999 Sakamoto et al. Dec 2011 A1
20120024363 Dimer et al. Feb 2012 A1
20120024364 Carey, III et al. Feb 2012 A1
20120038811 Ellis-monaghan et al. Feb 2012 A1
20120043637 King et al. Feb 2012 A1
20120049242 Atanackovic et al. Mar 2012 A1
20120111396 Saylor et al. May 2012 A1
20120171804 Moslehi et al. Jul 2012 A1
20120187190 Wang et al. Jul 2012 A1
20120222396 Clemen Sep 2012 A1
20120291859 Vineis et al. Nov 2012 A1
20120300037 Laudo Nov 2012 A1
20120305063 Moslehi et al. Dec 2012 A1
20120312304 Lynch et al. Dec 2012 A1
20120313204 Haddad et al. Dec 2012 A1
20120313205 Haddad et al. Dec 2012 A1
20120326008 Mckee et al. Dec 2012 A1
20130001553 Vineis et al. Jan 2013 A1
20130082343 Fudaba et al. Apr 2013 A1
20130135439 Kakuko et al. May 2013 A1
20130168792 Haddad et al. Jul 2013 A1
20130168803 Haddad et al. Jul 2013 A1
20130200251 Velichko Aug 2013 A1
20130207214 Haddad et al. Aug 2013 A1
20130285130 Ting Oct 2013 A1
20140247378 Sharma et al. Sep 2014 A1
Foreign Referenced Citations (83)
Number Date Country
3666484 Jun 1985 AU
101404307 Apr 2009 CN
19838439 Apr 2000 DE
0473439 Mar 1992 EP
0566156 Oct 1993 EP
1630871 Jan 2006 EP
1873840 Jan 2008 EP
2073270 May 2012 EP
2509107 Oct 2012 EP
2827707 Jan 2003 FR
2030766 Apr 1980 GB
S5771188 May 1982 JP
S57173966 Oct 1982 JP
S63116421 May 1988 JP
H02152226 Jun 1990 JP
H02237026 Sep 1990 JP
H03183037 Aug 1991 JP
H04318970 Nov 1992 JP
H06104414 Apr 1994 JP
6244444 Sep 1994 JP
H06267868 Sep 1994 JP
H06275641 Sep 1994 JP
H07235658 May 1995 JP
H07183484 Jul 1995 JP
9148594 Jun 1997 JP
H09298308 Nov 1997 JP
11077348 Mar 1999 JP
11097724 Apr 1999 JP
2000164914 Jun 2000 JP
2001007381 Jan 2001 JP
2001024936 Jan 2001 JP
2001189478 Jul 2001 JP
2001257927 Sep 2001 JP
2001339057 Dec 2001 JP
2002043594 Feb 2002 JP
2002134640 May 2002 JP
2003163360 Jun 2003 JP
2003242125 Aug 2003 JP
2003258285 Sep 2003 JP
2003308130 Oct 2003 JP
2004047682 Feb 2004 JP
2004273886 Sep 2004 JP
2004273887 Sep 2004 JP
2005339425 Dec 2005 JP
2006033493 Feb 2006 JP
2006147991 Jun 2006 JP
2006173381 Jun 2006 JP
2006210701 Aug 2006 JP
2006255430 Sep 2006 JP
2006261372 Sep 2006 JP
2007165909 Jun 2007 JP
2007180642 Jul 2007 JP
2007180643 Jul 2007 JP
2007305675 Nov 2007 JP
2008187003 Aug 2008 JP
2008283219 Nov 2008 JP
2009021479 Jan 2009 JP
2009152569 Jul 2009 JP
2010278472 Dec 2010 JP
2011091128 May 2011 JP
20010061058 Apr 2001 KR
2005039273 Apr 2005 KR
100825808 Apr 2008 KR
20090077274 Jul 2009 KR
20100118864 Nov 2010 KR
20060052278 May 2016 KR
WO 9114284 Sep 1991 WO
0031967 Jun 2000 WO
WO 0241363 May 2002 WO
WO 03059390 Jul 2003 WO
WO 2006086014 Aug 2006 WO
WO 2008091242 Jul 2008 WO
WO 2008099524 Aug 2008 WO
WO 2008145097 Dec 2008 WO
2009016846 Feb 2009 WO
WO 2009100023 Aug 2009 WO
WO 2009147085 Dec 2009 WO
WO 2010033127 Mar 2010 WO
WO 2011003871 Jan 2011 WO
WO 2011035188 Mar 2011 WO
WO 2011119618 Mar 2011 WO
WO 2012174752 Dec 2012 WO
WO 2014110484 Jul 2014 WO
Non-Patent Literature Citations (146)
Entry
International Search Report, mailed Aug. 18, 2014, in corresponding PCT/US2014/024964 (3 pages).
International Preliminary Report on Patentability and Written Opinion, mailed Aug. 18, 2014, in corresponding PCT/US2014/0024964 (6 pages).
A. Arndt, J.F. Allison, J.G. Haynos, and A. Meulenberg, Jr., “Optical Properties of the COMSAT Non-reflective Cell,” 11th IEEE Photovoltaic Spec. Conf., p. 40, 1975.
Asom et al., Interstitial Defect Reactions in Silicon; Appl. Phys. Lett.; Jul. 27, 1987; pp. 256-258; vol. 51(4); American Institute of Physics.
Berger, Michael; Moth Eyes Inspire Self-Cleaning Antireflection Nanotechnology Coatings; 2008; 3 pages; Nanowerk LLC.
Berger, O., Inns, D. and Aberle, A.E. “Commercial White Paint as Back Surface Reflector for Thin-Film Solar Cells”, Solar Energy Materials & Solar Cells, vol. 91, pp. 1215-1221,2007.
Betta et al.; Si-PIN X-Ray Detector Technology; Nuclear Instruments and Methods in Physics Research; 1997; pp. 344-348; vol. A, No. 395; Elsevier Science B.V. cited by applicant.
Boden, S.A. et al.; Nanoimprinting for Antireflective Moth-Eye Surfaces; 4 pages; 2008.
Bogue: “From bolometers to beetles: the development of the thermal imaging sensors;” sensor Review; 2007; pp. 278-281; Emerald Group Publishing Limited (ISSN 0260-2288).
Borghesi et al.; “Oxygen Precipitation in Silicon,” J. Appl. Phys., v. 77(9), pp. 4169-4244 (May 1, 1995).
Born, M. and E.Wolf, “Princip les of Optics, 7th Ed.”, Cambridge University Press, 1999, pp. 246-255.
Brieger,S., O.Dubbers, S.Fricker, A.Manzke, C.Pfahler, A.Plettl, and P.Zlemann, “An Approach for the Fabrication of Hexagonally Ordered Arrays of Cylindrical Nanoholes in Crystalline and Amorphous Silicon Based on the Self-Organization of Polymer Micelles”, Nanotechnology, vol. 17, pp. 4991-4994, 2006, doi:10.1088/0957-4884/17/19/036.
Buttgen, B.; “Demodulation Pixel Based on Static Drift Fields”; IEEE Transactions on Electron Devices, vol. 53, No. 11, Nov. 2006.
Carey et al., “Femtosecond-Laser-Assisted Microstructuring of Silicon Surfaces”, Optics and Photonics News, 2003. 14, 32-36.
Carey, et al. “Femtosecond Laser-Assisted Microstructuring of Silicon for Novel Detector, Sensing and Display Technologies”, LEOS 2003, 481-482, Tuscon, AR.
Carey, et al. “Femtosecond Laser-Assisted Microstructuring of Silicon for Novel Detector, Sensing and Display Technologies”, LEOS; 2002, 97-98, Glasgos, Scotland, 2002.
Carey, et al., “Fabrication of Micrometer-Sized Conical Field Emitters Using Femtosecond Laser-Assisted Etching of Silicon,” Proc. IVMC 2001, 75-76, UC Davis, Davis, CA.
Carey, et al., “Field Emission from Silicon. Microstructures Formed by Femtosecond Laser Assisted Etching,” Proc. CLEO 2001 (Baltimore, MD 2001) 555-557.
Carey, et al., “High Sensitivity Silicon-Based VIS/NIR Photodetectors”, Optical Society of America (2003) 1-2.
Carey, III; “Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices”; Harvard University, Jul. 2004; (Thesis).
Chang, S.W., V.P.Chuang, S.T.Boles, and C.V.Thompson, “Metal-Catalyzed Etching of Vertically Aligned Polysilicon and Amorphous Silicon Nanowire Arrays by Etching Direction Confinement”, Advanced Functional Materials, vol. 20, No. 24, pp. 4364-4370, 2010.
Chen, Q. et al.; Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting; Applied Physics Letters 94; pp. 263118-1-263118-3; 2009; American Institute of Physics.
Chien et al, “Pulse Width Effect in Ultrafast Laser Processing of Materials,” Applied Physics A, 2005, 1257-1263, 81, Springer Berlin, Heidelberg, Germany.
Chiang, Wen Jen Et al., “Silicon Nanocrystal-Based Photosensor on Low-Temperature Polycrystalline-Silicone Panels”, Applied Physics Letters, 2007, 51120-1-51120-3, Ltt. 91, American Inst. Of Physics, Melville, NY.
Chichkiv, B.N. et al, “Femtosecond, picosecond and nanosecond laser ablation of solids” Appl. Phys. A 63, 109-115; 1996.
Cilingiroglu et al., “An evaluation of MOS Interface-Trap Charge Pump as and Ultralow Constant-Current Generator,” IEEE Journal of Solid-State Circuit, 2003, vol. 38, No. 1, Jan. 2003, 71-83.
Cmosis; “Global Shutter Image Sensors for Machine Vision Application”; Image Sensors Europe 2010, Mar. 23-25, 2010; .COPYRGT. copyright 2010.
Cotter, Jeffrey E.; Optical intensity of light in layers of silicon with rear diffuse reflectors; Journal of Applied Physics; Jul. 1, 1998; pp. 618-624; vol. 84, No. 1; American Institute of Physics.
Crouch et al., “Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon” Appl. Phys. Lett., 2004, 84,1850-1852.
Crouch et al., “Infrared Absorption by Sulfur-Doped Silicon Formed by Femtosecond Laser Irradiation”, Appl. Phys. A, 2004, 79, 1635-1641.
Despeisse, et al.; “Thin Film Silicon Solar Cell on Highly Textured Substrates for High Conversion Efficiency”; 2004.
Detection of X-ray and Gamma-ray Photons Using Silicon Diodes; Dec. 2000; Detection Technology, Inc.; Micropolis, Finland.
Dewan, Rahul et al.; Light Trapping in Thin-Film Silicon Solar Cells with Submicron Surface Texture; Optics Express; vol. 17, No. 25; Dec. 7, 2009; Optical Society of America.
Deych et al.; Advances in Computed Tomography and Digital Mammography; Power Point; Nov. 18, 2008; Analogic Corp.; Peabody, MA.
Dobie, et al.; “Minimization of reflected light in photovoltaic modules”; Mar. 1, 2009.
Dobrzanski, L.A. et al.; Laser Surface Treatment of Multicrystalline Silicon for Enhancing Optical Properties; Journal of Materials Processing Technology; p. 291-296; 2007; Elsevier B.V.
Dolgaev et al., “Formation of Conical Microstructures Upon Laser Evaporation of Solids”, Appl. Phys. A, 2001, 73, 177-181.
Duerinckx, et al.; “Optical Path Length Enhancement for >13% Screenprinted Thin Film Silicon Solar Cells”; 2006.
Dulinski, Wojciech et al.; Tests of backside illumincated monolithic CMOS pixel sensor in an HPD set-up; Nuclear Instruments and methods in Physics Research; Apr. 19, 2005; pp. 274-280; Elsevier B.V.
Forbes; “Texturing, reflectivity, diffuse scattering and light trapping in silicon solar cells”; 2012.
Forbes, L. and M.Y. Louie, “Backside Nanoscale Texturing to Improve IR Response of Silicon Photodetectors and Solar Cells,” Nanotech, vol. 2, pp. 9-12, Jun. 2010.
Fowlkes et al., “Surface Microstructuring and Long-Range Ordering of Silicon Nanoparticles”, Appl. Phys. Lett., 2002, 80 (20), 3799-3801.
Gjessing, J. et al.; 2D back-side diffraction grating for impored light trapping in thin silicon solar cells; Optics Express; vol. 18, No. 6; pp. 5481-5495; Mar. 15, 2010; Optical Society of America.
Gjessing, J. et al.; 2D blazed grating for light trapping in thin silicon solar cells; 3 pages; 2010; Optical Society of America.
Gloeckler et al. Band-Gap Grading in Cu(in,Ga)Se2 Solar Cells, Journal of Physics and Chemistry of Solids; 2005; pp. 189-194; vol. 66.
Goetzberger, et al.; “Solar Energy Materials & Solar Cells”; vol. 92 (2008) pp. 1570-1578.
Han et al., “Evaluation of a Small Negative Transfer Gate Bias on the Performance of 4T CMOS Image Sensor Pixels,” 2007 International Image Sensor Workshop, 238-240, Ogunquit, Maine.
Haug, et al.; “Light Trapping effects in thin film silicon solar cells”; 2009.
Her et al., “Microstructuring of Silicon with Femtosecond Laser Pulses,” Applied Physics Letters, 1998, 1673-1675, vol. 73, No. 12, American Institute of Physics.
Her et al., “Novel Conical Microstructures Created in Silicon With Femtosecond Laser Pulses”, CLEO 1998, 511-512, San Francisco, CA.
Her, et al., “Femtosecond laser-induced formation of spikes on silicon,” Applied Physics A, 2000, 70, 383-385.
Hermann, S. et al.; Impact of Surface Topography and Laser Pulse Duration for Laser Ablation of Solar Cell Front Side Passivating SiNx Layers; Journal of Applied Physics; vol. 108, No. 11; pp. 114514-1-114514-8; 2010; American Institute of Physics.
High-Performance Technologies for Advanced Biomedical Applications; .Copyrgt. 2004Brochure; pp. 1-46; PerkinElmerOptoelectronics.
Holland; Fabrication of Detectors and Transistors on High-Resistivity Silicon; Nuclear Instruments and Methods in Physics Research, vol. A275, pp. 537-541 (1989).
Hong et al., “Cryogenic processed metal-semiconductor-metal (MSM) photodetectors on MBE grown ZnSe,”, 1999, IEEE Transactions on Electron Devices, vol. 46, No. 6, pp. 1127-1134.
Hsieh et al., “Focal-Plane-Arrays and CMOS Readout Techniques of Infrared Imaging Systems,” IEE Transactions on Circuits and Systems for Video Technology, 1997, vol. 7, No. 4, Aug. 1997, 594-605.
Hu et al., “Solar Cells from Basic to Advanced Systems,” McGraw Hill Book Co., 1983, 39, New York, New York.
Huang, et al.; “Microstructured silicon photodetector”; Applied Physics Letters 89, 033506; 2006 American Institute of Physics; 2006.
Hüpkes, J. et al.; Light Scattering and Trapping in Different Thin Film Photovoltaic Devices; 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany (Sep. 21-25, 2009); pp. 2766-2769.
Igalson et al. Defect States in the CIGS Solar cells by Photocapacitance and Deep Level Optical Spectroscopy; Bulletin of the Polish Academy of Sciences Technical Sciences; 2005; pp. 157-161; vol. 53(2).
“Infrared Absorption by Sulfur-Doped Silicon formed by Femtosecond Laser Irradiation”; Springer Berline/Heidelberg, vol. 79, Nov. 2004.
Job et al., “Doping of Oxidized Float Zone Silincon by Thermal Donors—A low Thermal Budget Doping Method for Device Applications?” Mat. Res. Soc. Symp. Pro.; v. 719, F9.5.1-F9.5.6 (2002).
Joy, T. et al.; Development of a Production-Ready, Back-Illuminated CMOS Image Sensor with Small Pixels; Electron Devices Meeting; pp. 1007-1010; 2007; IEEE.
Juntunen et al.; Advanced Photodiode Detector for Medical CT Imaging: Design and Performance; 2007; pp. 2730-2735; IEEE.
Kim et al.; “Strong Sub-Band-Gap Infrared Absorption in Silicon Supersaturated with Sulfur”; 2006 Appl. Phys. Lett. 88, 241902-1-241902-3.
Kolasinski et al., “Laser Assisted and Wet Chemical Etching of Silicon Nanostructures,” J. Vac. Sci. Technol., A 24(4), Jul./Aug. 2006, 1474-1479.
Konstantatos et al., “Engineering the Temproal Response of Photoconductive Photodetectors via Selective Introduction of Surface Trap States,” Nano Letters, v. 8(5), pp. 1446-1450 (Apr. 2, 2008).
Konstantatos et al., “PbS Colloidal Quantum Dot Photoconductive Photodetectors: Transport, Traps, and Gain,” Appl. Phys. Lett., v. 91, pp. 173505-1-173505-3 (Oct. 23, 2007).
Kray, D. et al.; Laser-doped Silicon Soalr Cells by Laser Chemical Processing (LCP) exceeding 20% Efficiency; 33rd IEEE Photovoltaic Specialist Conference; 3 pages; May 2008; IEEE.
Kroning et al.; X-ray Imaging Systems for NDT and General Applications; 2002; Fraunhofer Institute for Nondestructive Testing; Saarbrucken and Dresden, Germany.
Kryski; A High Speed 4 Megapixel Digital CMOS Sensor; 2007 International Image Sensor Workshop; Jun. 6-10, 2007.
Li, “Design and Simulation of an Uncooled Double-Cantilever Microbolometer with the Potential for .about.mK NETD,” 2004, Sensors and Actuators A, 351-359, vol. 112, Elsevier B.V.
Li et al., “Gettering in High Resistive Float Zone Silicon Wafers,” Transaction on Nuclear Science, vol. 36(1), pp. 290-294 (Feb. 1, 1989).
Li, Hongsong et al.; An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces; Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies II; 2005; pp. 25780V-1-25780V-15; vol. 5878; SPIE Bellingham, WA.
Lin, A. et al.; Optimization of Random Diffraction Gratings in Thin-Film Solar Cells Using Genetic Algorithms; 2007; 1 page; SSEL Annual Report. cited by applicant.
Low Dose Technologies; Power Point.
Madzharov, et al.; “Light trapping in thin-firm silicon solar cells for superstrate and substrate configuration” Abstract #1614, 218.sup.th ECS Meeting .COPYRGT. 2010 the Electrochemical Society.
“Masimo Rainbow SET Pulse CO-Oximetry,” 2010, Masimo Corporation, Irvine, California, http://www.masimo.com/Rainbow/about.htm.
Mateus; C.F.R. et al.; Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating; Photonics Technology Letters; vol. 16, Issue No. 2; pp. 518-520; Feb. 2004; IEEE.
Matsuno, Shigeru et al.; Advanced Technologies for High Efficiency Photovoltaic Systems; Mitsubishi Electric Advance; vol. 122; pp. 17-19; Jun. 2008.
Meynants, et al.; “Backside illuminated global shutter COMOS image sensors”; 2011 International Image Sensor Workshop; Jun. 11, 2011.
Moloney, A.M. et al.; Novel Black Silicon PIN Photodiodes; 8 pages; Jan. 25, 2006; SPIE.
Moon et al. Selective emitter using porous silicon for crystalline silicon solar cells. Solar Energy Materials & Solar Cells, v. 93, pp. 846-850 (2009).
Moses; Nuclear Medical Imaging—Techniques and Challenges; Power Point; Feb. 9, 2005; Lawrence Berkeley National Laboratory Department of Functional Imaging.
Murkin, JM and Arangol, M, “Near Infrared spectroscopy as an index of rain and tissue oxygenation,” Bri. J. of Anathesia (BJA/PGA Supplement):13-iI3 (2009).
Munday, J.N. et al.; Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings; Nano Letters; vol. 11, No. 6; pp. 2195-2201; Oct. 14, 2010; American Chemical Society.
Myers, Richard et al., “Enhancing Near-IR Avalanche Photodiodes Performance by Femtosecond Laser Microstructuring” Harvard Dept. Of Physics.
Nauka et al., Intrinsic Gettering in Oxygen-Free Silicon; App. Phys. Lett., vol. 46(7), Apr. 4, 1985.
Nauka et al., “New Intrinsic Gettering Process in Silicon Based on Interactions of Silicon Interstitials,” J. App. Phys., vol. 60(2), pp. 615-621, Jul. 15, 1986.
Nayak et al, “Semiconductor Laesr Crystallization of a—Si:H,” SPIE Digital Library, 2003, 277-380, vol. 4977, Bellingham, Washington. 2003.
Nayak et al, “Ultrafast-Laser-Assisted Chemical Restructuring of Silicon and Germanium Surfaces,” Applied Surface Science, 2007, 6580-6583, vol. 253, Issue 15, Elsevier B.V.
Nayak et al, “Semiconductor Laser Crystallization of a—Si:H on Conducting Tin-Oxide-Coated Glass for Solar Cell and Display Applications,” Applied Physics A, 2005, 1077-1080, 80, Springer Berlin, Heidelberg, Germany.
Nayak, B.K. et al.; Ultrafast Laser Textured Silicon Solar Cells; Mater. Res. Soc. Symp. Proc.; vol. 1123; 6 pages; 2009; Materials Research Society.
Nayak, et al.; “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures”; Progress in Photovoltaics: Research and Applications; 2011.
Oden, et al.; “Optical and Infrared Detection Using Microcantilevers;” SPIE Digital Library on Oct. 13, 2010; vol. 2744; 10 pages.
Pain, Bedabrata; Backside Illumination Technology for SOI-CMOS Image Sensors; 2009 IISW Symposium on Backside Illujination of Solid-State Image Sensors, Bergen Norway; Jun. 25, 2009; pp. 1-23.
Pain, Bedabrata; “A Back-Illuminated Megapixel CMOS Image Sensor”; http://hdl.handle.net/2014/39312; May 1, 2005.
Palm et al. CIGSSe Thin Film PB Modules: From Fundamental Investigators to Advanced Performance and Stability; Thin Solid Films; 2004; pp. 544-551; vol. 451-2.
Payne, D.N.R. et al.; Characterization of Experimental Textured ZnO:Al Films for Thin Film Solar Cell Applications and Comparison with Commercial and Plasmonic Alternatives; Photovoltaic Specialists Conference (PVSC); pp. 1560-1564; 2010; IEEE.
Pedraza et al., “Silicon Microcolumn Arrays Grown by Nanosecond Pulsed-Excimer Laser Irradiation”, Appl. Phys. Lett., 1999, 74 (16), 2322-2324, American Institute of Physics. cited by applicant.
Pedraza et al., “Surface Nanostructuring of Silicon”, Appl. Phys. A, 2003, 77, 277-284.
Rashkeev et al., “Hydrogen passivation and Activation of Oxygen Complexes in Silicon,” American Institute of Physics, vol. 78(11), pp. 1571-1573 (Mar. 12, 2001).
Russell, et al.; “Nanosecond Eximer Laser Processing for Novel Microelectronic Fabrication”; Nanosecond Excimer Laser Processing; 6 pages; 1989.
Russell, Ramirez and Kelley, “Nanosecond Excimer Laser Processing for Novel Microelectronic Devices,” US Navy, SPAWAR, San Diego, Techical Report, 2003.
Russell, Ramirez, Kelley, “Nanosecond Excimer Laser Processing for Novel Microelectronic Fabrication,” SSC Pacific Technical Reports , pp. 228-233, 2003, vol. 4, US Navy.
Sai, H. et al.; Enhancement of Light Trapping in Thin-Film Hydrogenated Microcrystalline Si Solar Cells Using Back Reflectors with Self-Ordered Dimple Pattern; Applied Physics Letters; vol. 93; 2008; American Institute of Physics.
Sanchez et al., “Whiskerlike Structure Growth on Silicon Exposed to ArF Excimer Laser Irradiation”, Appl. Phys. Lett., 1996, 69 (5), 620-622.
Sanchez et al., “Dynamics of the Hydrodynamical Growth of Columns on Silicon Exposed to ArF Excimer-Laser Irradiation ”, Appl. Phys. A, 66, 83-86 (1998). cited by other.
Sarnet et al.; “Femtosecond laser for black silicon and photovoltaic cells”; Feb. 21, 2008, Proc. Of SPIE; vol. 6881; pags 1-15.
Senoussaoui, N. et al.; Thin-Film Solar Cells with Periodic Grating Coupler; Thin Solid Films; pp. 397-401; 2003; Elsevier B.V.
Serpenguzel et al., “Temperature Dependence of Photluminescence in Non-Crystalline Silicon”, Photonics West (San Jose, CA, 2004) 454-462.
Shen et al., “Formation of Regular Arrays of Silicon Micorspikes by Femotsecond Laser Irradiation Through a Mask”, Appl. Phys. Lett., 82, 1715-1717 (2003).
Solar Energy Research Institute, “Basic Photovoltaic Principles and Methods,” Van Nostrand Reinhold Co., NY 1984, pp. 45-47 and 138-142.
Solhusvik, J. et al. “A 1280x960 3.75um pixel CMOS imager with Triple Exposure HDR,” Proc. of 2009 International Image Sensor Workshop, Bergen, Norway, Jun. 22-28, 2009.
Stone et al.; The X-ray Sensitivity of Amorphous Selenium for Mammography;.Am. Assoc. Phys. Med.; Mar. 2002; pp. 319-324; vol. 29 No. 3; Am. Assoc. Phys. Med.
Szlufcik, J. et al.; Simple Integral Screenprinting process for selective emitter polycrystalline silicon solar cells; Applied Physics Letters; vol. 59, No. 13; Sep. 23, 1991; American Institute of Physics.
Tabbal et al., “Formation of Single Crystal Sulfur Supersaturated Silicon Based Junctions by Pulsed Laser Melting”. 2007, J. Vac. Sci. Technol. B25(6), 1847-1852.
Takayanagi, et al.; “A 600.times.600 Pixel, 500, fps CMOS Image Sensor with a 4.4 jum Pinned Photodiode 5-Transistor Global Shutter Pixel”; 2007 International Image Sensor Workshop; Jun. 6-10, 2007.
Tower, John R. et al.; Large Format Backside Illuminated CCD Imager for Space Surveillance; IEEE Transactions on Electron Devices, vol. 50, No. 1; Jan. 2003; pp. 218-224.
Tull; “Femtosecond Laser Ablation of Silicon: Nanoparticles, Doping and Photovotaics”; Harvard University, Jun. 2007 (Thesis).
Uehara et al., “A High-Sensitive Digital Photosensor Using MOS Interface-Trap Charge Pumping,” IEICE Electronics Express, 2004, vol. 1, No. 18, 556-561.
Wilson, “Depth Distributions of Sulfur Implanted Into Silicon as a Function of Ion energy, Ion Fluence, and Anneal Temperature,” 1984, Appl. Phys. 55(10, 3490-3494.
Winderbaum, S. et al.; Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells; Solar Energy Materials and Solar Cells; 1997; pp. 239-248; Elsevier Science B.V.
Wu et al., “Black Silicon” Harvard UPS 1999.
Wu et al., “Black Silicon: A New Light Absorber,” APS Centennial Meeting (Mar. 23, 1999).
Wu et al., “Femtosecond laser-gas-solid interactions,” Thesis presented to the Department of Physics at Harvard University, pp. 1-113, 126-136, Aug. 2000.
Wu et al., “Visible Luminescence From Silicon Surfaces Microstructured in Air”. Appl. Phys. Lett., vol. 81, No. 11, 1999-2001 (2002).
Wu, et al “Near-Unity Below-Band-Gap Absorption by Microstructured Silicon,” 2001, Applied Physics Letters, 1850-1852, vol. 78, No. 13, American Institute of Physics.
Xu, Y., et al, “Infrared Detection Using Thermally Isolated Diode,” Sensors and Actuators A, Elsevier Sequoia S.A., 1993, vol. 36, 209-217, Lausanne, Switzerland.
Yablonovitch, et al.; “Intensity Enhancement in Textured Optical Sheets for Solar Cells”; .COPYRGT. 1982 IEEE.
Yamamoto, K. et al.; NIR Sensitivity Enhancement by Laser Treatment for Si Detectors; Nuclear Instruments and Methods in Physics Research A; pp. 520-523; Mar. 31, 2010; Elsevier.
Yan, B.; Light Trapping Effect from Randomized Textures of Ag/ZnO Back Reflector on Hyrdrogenated Amorphous and Nanocrystalline Silicon Based Solar Cells; Thin Film Solar Technology II; vol. 7771; 2010; SPIE.
Yasutomi, et al.; “Two-Stage Charge Transfer Pixel Using Pinned Diodes for Low-Noise Global Shutter Imaging”; 2009 International Image Sensor Workshop; Mar. 28, 2009.
Younkin et al., “Infrared Absorption by Conical Silicon Microstructures Made in a Variety of Background Gases Using Femtosecond-Laser Pulses”, J. Appl. Phys., 93, 2626-2629 (2003).
Younkin, “Surface Studies and Microstructure Fabrication Using Femtosecond Laser Pulses,” Thesis presented to the Division of Engineering & Applied sciences at Harvard University (Aug. 2001).
Yuan, et al.; “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules”; American Institute of Physics; Applied Physics Letters 95. 1230501 (2009) 3 pages.
Zaidi, S.H. et al.; Diffraction Grating Structures in Solar Cells; Photovoltaic Specialists Conference, 2000; 4 pages; Sep. 2000; IEEE.
Zhang et al, “Ultra-Shallow P+-Junction Formation in Silicon by Excimer Laser Doping: a Heat and Mass Transfer Perspective,” Int. J. Heat Mass Transfer, 1996, 3835-3844, vol. 39, No. 18, Elsevier Science Ltd., Great Britain.
Zhu et al., “Evolution of Silicon Surface Microstructures by Picosecond and Femtosecond Laser Irradiations,” Applied Surface Science, 2005, 102-108, Elsevie, Amsterdam, NL.Ultra-Shallow P+-Junction Formation in Silicon by Excimer Laser Doping: a Heat and Mass Transfer Perspective, Int. J. Heat Mass Transfer, 1996, 3835-3844, vol. 39, No. 18, Elsevier Science Ltd., Great Britain.
Huang, et al.; “Key Technique for texturing a uniform pyramid structure with a layer of silicon nitride on monocrystalline silicon wafer” Applied Surface Science; 2013 pp. 245-249.
Jansen, H. et al., “The Black Silicon Method: a universal method for determining the parameter setting of a flourine-based reactive ion etcher in deep silicon trench etching with profile control”,J. Micromech. Microeng. vol. 5, 1995 pp. 115-120.
Koh et al., “Simple nanostructuring on silicon surface by means of focused beam patterning and wet etching”, Applied Surface Science, 2000 pp. 599-603.
Zhong, S. et al. “Excellent Light Trapping in Ultrathin Solar Cells,” AFM-Journal, May 2016 pp. 1-11.
Carey, P.G. et al., “In-situ Doping of Silicon Using Gas Immersion Laser Doping (GILD) Process,” Appl. Surf. Sci. 43, 325-332 (1989).
Gibbons, J., “Ion Implantation in Semiconductors-Part II; Damage Production and Annealing”, proceedings of the IEEE vol. 60, No. 9 pp. 1062-1096. Jun. 1972.
Ziou et al., “Depth from defocus using the hermite transform”, Image Processing, 1998. ICIP 98. Intl. Conference on Chicago, IL. Oct. 1998 pp. 958-962.
Related Publications (1)
Number Date Country
20150372040 A1 Dec 2015 US
Provisional Applications (1)
Number Date Country
61614275 Mar 2012 US
Continuations (1)
Number Date Country
Parent 13841120 Mar 2013 US
Child 14747875 US