The instant invention relates to an improved electrode useful for modifying a substrate using corona or plasma treatment or coating a substrate using plasma enhanced chemical vapor deposition under atmospheric or near atmospheric pressure conditions.
Numerous prior art electrode configurations have been developed for atmospheric or near atmospheric pressure operation. The prior art configurations can be classified into two major types. The first type is intended to be used with a ground electrode positioned on the other side of the substrate from the working electrode. Examples of the first type of electrode are disclosed in WO 2006/049794 and WO 2006/049865. The second type uses a ground electrode position of the same side of the substrate as the working electrode. Examples of the second type of electrode are discussed in WO02/23960, U.S. Pat. No. 6,441,553 and U.S. Pat. No. 7,067,405.
Despite the significant advances provided by prior art electrodes, it would be an advance in the art if an electrode could be developed that permitted control of electric field intensity over a defined area, easily adjustable working gas velocity and flow characteristics and easy removal and replacement of the exposed working portion of the electrode.
The instant invention is a solution to the above-mentioned problems. The electrodes of the instant invention permit control of electric field intensity over a defined area provide easily adjustable working gas velocity and flow characteristics and easy removal and replacement of the exposed working portion(s) of the electrode. More specifically, in one embodiment the instant invention is an improved electrode useful for modifying a substrate using corona or plasma treatment or coating a substrate using plasma enhanced chemical vapor deposition under atmospheric or near atmospheric pressure conditions, the electrode comprising a body defining at least a first cavity therein, the body having at least one inlet passageway therein in gaseous communication with the first cavity so that a gas mixture can be flowed into the first cavity by way of the at least one inlet passageway, the electrode having at least one outlet passageway in gaseous communication with the first cavity so that a gas that is flowed into the first cavity can flow out of the first cavity by way of the at least one outlet passageway, wherein the improvement comprises the at least one outlet passageway being a slot, the body comprised of at least a first removable portion thereof, one edge of the first removable portion defining one side of the at least one outlet passageway.
In another embodiment, the instant invention is an improved method for modifying a substrate by plasma or corona treatment or for coating a substrate using plasma enhanced chemical vapor deposition under atmospheric or near atmospheric pressure conditions wherein a gas is flowed from an electrode and into an electric field region adjacent the electrode, the electrode being defined by a body defining at least a first cavity therein, the body having at least one inlet passageway therein in gaseous communication with the first cavity so that a gas mixture can be flowed into the first cavity by way of the at least one inlet passageway, the electrode having at least one outlet passageway in gaseous communication with the first cavity so that a gas that is flowed into the first cavity can flow out of the first cavity by way of the at least one outlet passageway, wherein the improvement comprises controlling the temperature of the body.
a, b, c and d show alternative cross section shapes for the removable electric field plate portions of
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring still to
Examples of suitable working gases include organosilicon compounds such as silanes, siloxanes, and silazanes generated from the headspace of a contained volatile liquid 52 of such material and carried by a carrier gas 49 from the headspace and merged with balance gas 53 to form the mixture of gases 48. Examples of silanes include dimethoxydimethylsilane, methyltrimethoxysilane, tetramethoxysilane, methyltriethoxysilane, diethoxydimethylsilane, methyltriethoxysilane, triethoxyvinylsilane, tetraethoxysilane, dimethoxymethylphenylsilane, phenyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacrylpropyltrimethoxysilane, diethoxymethylphenylsilane, tris(2-methoxyethoxy)vinylsilane, phenyltriethoxysilane, and dimethoxydiphenylilane. Examples of siloxanes include tetramethyldisiloxane, hexamethyldisiloxane, octamethyltrisiloxane, and tetraethylorthosilicate. Examples of silazanes include hexamethylsilazanes and tetramethylsilazanes. Siloxanes are preferred working gases, with tetramethyldisiloxane being especially preferred.
The working gas is preferably diluted with a carrier gas 49 such as air or nitrogen before being merged with the balance gas. The v/v concentration of the working gas in the carrier gas is related to the vapor pressure of the working gas, and is preferably not less than 1%, more preferably not less than 5%, and most preferably not less than 10%; and preferably not greater than 50%, more preferably not greater than 30%, and most preferably not greater than 20%.
Examples of suitable balance gases include air, oxygen, nitrogen, helium, and argon, as well as combinations thereof. The flow rate of the balance gas is sufficiently high to drive the plasma polymerizing working gas to the substrate to form a contiguous film, as opposed to a powder. Preferably the flow rate of the balance gas is such that the velocity of the balance gas passing through the slot of at least 1000 feet per minute, more preferably at least 2000 feet per minute, and most preferably at least 4000 feet per minute; and preferably not greater than 10000 feet per minute, more preferably not greater than 8000 feet per minute, and most preferably not greater than 6000 feet per minute. Control of the relative flow rates of the balance gas and the working gas also contributes to the quality of the coating formed on the substrate. Preferably, the flow rates are adjusted such that v/v ratio of balance gas to working gas is at least 0.002%, more preferably at least 0.02%, and most preferably at least 0.2%; and preferably not greater than 10%, more preferably not greater than 6%, and most preferably not greater than 1%. The actual numeral values for gas injection speed, concentrations, and compositions depends, of course, on the type of coating that is being put down on the substrate as is well understood in the art. It should be understood that the use of the instant invention is not restricted to the above-mentioned values.
Although it is possible to carry out the process of the present by applying a vacuum or partial vacuum in, for example and without limitation thereto, the corona discharge region, (i.e, the region where the corona discharge is formed) the process is preferably carried out so that the corona discharge region is not subject to any vacuum or partial vacuum, that is, carried out at atmospheric or near atmospheric pressure.
The substrate to be coated or treated by the electrodes of the instant invention is not limited. Examples of substrates include, polyolefins such as polyethylene and polypropylene, polystyrenes, polycarbonates, and polyesters such as polyethylene terephthalate and polybutylene terephthalate.
Referring again to
As discussed above, a flat or planar exterior surface is preferred for the electric field plates 30 and 31. A curved surface as shown in
Referring now to
In conclusion, it should be readily apparent that although the invention has been described above in relation with its preferred embodiments, it should be understood that the instant invention is not limited thereby but is intended to cover all alternatives, modifications and equivalents that are included within the scope of the invention as defined by the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/849,157, filed Oct. 3, 2006.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US07/20512 | 9/21/2007 | WO | 00 | 3/18/2009 |
Number | Date | Country | |
---|---|---|---|
60849157 | Oct 2006 | US |