The present invention relates generally to auto-injectors and prefilled syringes and more particularly to auto-injectors that store in a compact state and allow for formation or reconstitution of a therapeutic agent for injection.
Individuals who suffer from certain medical conditions are often required to keep an auto-injector or prefilled syringe nearby in order to address a medical need. A few examples of this are insulin pens for people with diabetes, epinephrine for those with food and insect stings allergies, and antidotes for soldiers at risk of exposure to chemical and/or biological toxins in the field. For example, an allergic reaction may occur in a location which is physically distant from the nearest hospital or medical facility. For example, bee stings, are more likely to occur outside than indoors. Food containing peanuts are more likely to be supplied to the individual away from a controlled home environment like at a baseball park. Having a portable epinephrine auto-injector nearby enables emergency intervention after an exposure to an allergen.
Size is an issue when it comes to auto-injectors. Many owners of the devices are hesitant to carry their injector with them if it represents a burden, by providing injectors in more compact sizes it will make it more likely that they will.
Shelf-life is also a large issue with respect to auto-injectors, which can be expensive and used fairly infrequently. For example a user who has intense allergic reactions to shellfish can go years between exposures and subsequent injections. In such a case it can be easy to forget to replace the auto-injector after expiration, whereupon in an emergency, the drugs contained therein have expired and are either ineffective or have a greatly reduced effectiveness due to decomposition of the drugs contained therein. As will be appreciated by those having skill in the art, the shelf life can be increased by storing the desired medication in an unmixed and dry state and dissolved just prior to injection. This ability to store the wet and dry components separately within the device can increase the shelf life and thus increase the likelihood that the user will have an injector with effective dosages when an emergency arises.
In such devices it is required that the mixing and reconstitution processes are consistent and complete prior to injection.
It has been recognized that if a drug can be kept out of the liquid phase and stored as a dry medication, the shelf-life can be substantially increased and temperature susceptibility can be decreased substantially thus allowing the efficacy and potency of the drug to endure longer and through harsher environments.
It has been recognized that a smaller drug delivery device than a conventional epinephrine auto-injector, which could be attached to a key chain and/or easily fit in a person's pocket, would make the device easier to carry and more likely that the user will have it on their person when needed. Various structures are contemplated herein which address many of the problems discussed above through the use of mixing structures, and actuation devices which ensure proper storage integrity, and full mixing prior to injection.
Contemplated herein is a medication mixing and delivery device which can include a housing, a first chamber being located within the housing, the first chamber containing a first medicament component, and a second chamber located within the housing, the second chamber configured to selectively receive the first medicament component from the first chamber. A second medicament component stored can then be stored somewhere within the housing but outside the first chamber. A valve can then also be provided which is located within the housing between the first and second chamber, the valve being configurable so as to provide selective fluidic communication between the first chamber and the second chamber.
A first displacement mechanism can be provided in conjunction with the first chamber, and be configured so as to reduce the effective volume of the first chamber, the first displacement mechanism can further be configured so as to axially translate the second chamber with respect to the first chamber during a first actuation. Additionally, a second displacement mechanism configured to reduce the effective volume of the second chamber.
An actuation device having a pre-loaded energy source, such as a spring or compressed gas chamber can be utilized to drive the first and second displacement mechanisms or otherwise provide actuation of various actuation mechanisms within the housing.
In some embodiments the actuation device can be provided in mechanical communication with the valve, the actuation device being configured to change the valve between a closed state and an open state during a first actuation.
In yet alternative embodiments an intermediate support can be provided within the housing, wherein a rotation of the intermediate support about its axis effectuates the first actuation of the actuation device.
In some embodiments the first displacement mechanism can include at least one radial protrusion which is configurable to engage a channel formed in the intermediate support. In some such embodiments the channel has can include a first portion, a second portion, and an intermediate stop disposed between the first and second portions, wherein the second portion of the channel is offset from the first portion. In this manner the first actuation moves the at least one radial protrusion relative to the first portion of the channel so as to change relative states of the device.
In some embodiment a second trigger can be provided which is mechanically coupled to the at least one radial protrusion, wherein triggering the second trigger causes the at least one radial protrusion to engage with the second portion of the channel.
Also contemplated herein is a medication-mixing device which includes a housing, and a frame disposed within the housing, the frame having at least one channel on an inner surface thereof. A first chamber can then be provided which is located within the housing, the first chamber containing a first medicament component. A second chamber can then be provided which is also located within the housing, the second chamber configurable to selectively receive the first medicament component from the first chamber. A valve can then be provided and located within the housing, the valve configured to provide selective fluidic communication between the first chamber and the second chamber upon activation of a first displacement mechanism which is configured to reduce the effective volume of the first chamber displacing the first medicament component into the second chamber and thus mix with a second medicament component stored within the housing and outside the first chamber. A second displacement mechanism can then be provided and configured so as to reduce the effective volume of the second chamber and selectively eject the mixed medicament components.
In some embodiments an actuation device can be provided which can include a pre-loaded energy source such as a spring or compressed air chamber. This actuation device can then be provided in mechanical communication with the valve, the actuation device also can be configured so as to change the valve between a closed state and an open state during a first actuation.
In this embodiment, at least one plunger protrusion can be provided and disposed about an outer circumference of the first displacement mechanism. This at least one plunger protrusion can be configured to engage the at least one channel of the frame. In such a case the first actuation can then be effectuated by moving the at least one plunger protrusion relative to and within its respective channel.
In some embodiments an intermediate support can be provided and disposed within the frame, the intermediate support can include at least one intermediate support protrusion which engages with the at least one channel of the frame.
In yet additional embodiments the frame can further include an intermediate stop formed in the at least one channel, the intermediate stop being configured to engage the intermediate support protrusion during an intermediate stage, wherein the intermediate stop temporarily prevents further actuation. In such an embodiment the plunger protrusion can be configured so as to rest upon the intermediate support protrusion in the intermediate stage.
In yet additional embodiments the mixing device can include a delivery assembly which can be configured to be in fluid communication with the second chamber during a second actuation, and wherein the delivery assembly can be extended during the second actuation of the actuation device.
In various embodiments a trigger can be provided which is in mechanical communication with the intermediate support, wherein depressing the trigger causes the intermediate support protrusion to be released from the intermediate stop in a respective channel.
In some embodiments a first actuation step can be configured so as to allow the first medicament component stored in the first chamber to be displaced by the first displacement mechanism and transfer at least partially into the second chamber, and mix with the second medicament component, and wherein a second actuation causes the second displacement mechanism to displace the mixed medicament through a delivery assembly.
Also contemplated herein is a medication mixing and delivery device which can include a housing, a first chamber being located within the housing, the first chamber containing a first medicament component, and a second chamber located within the housing, the second chamber configured to selectively receive the first medicament component from the first chamber. A second medicament component can be stored within the housing and outside the first chamber and be configured to be received in the second chamber and mixed with the first medicament component. A valve can also be provided and located within the housing, the valve configurable so as to provide selective fluidic communication between the first chamber and the second chamber;
Each of the first and second chambers can be provided with a respective first or second displacement mechanism which can be configured so as to reduce the effective volume of its respective chamber.
An actuation device can then be provided which can include a pre-loaded energy source such as a spring or compressed air chamber can be provided and selectively actuated by the actuation device so as to drive the components of the device and thus change between various states. The actuation device can also be provided in mechanical communication with the valve, the actuation device being configured to change the valve between a closed state and an open state during a first actuation.
In some embodiments a needle shield assembly can be provided which includes a needle shield having a cam ramp provided in a sidewall of the needle shield, wherein the cam ramp is in mechanical communication with the actuation device, and wherein a depression of the needle shield causes a second actuation. In some embodiments a depressing of the needle shield can cause the second actuation of the actuation device to release a second portion of energy that extends the delivery assembly and displaces a mixed medicament in the second chamber from the second chamber through the delivery assembly.
The various embodiments herein can further include a delivery assembly which is in fluid communication with the second chamber.
In yet additional embodiments a frame and intermediate support can be provided and disposed within the housing, wherein the intermediate support has an interface to engage the cam ramp, and wherein depressing the needle shield causes the intermediate support to translate axially within the frame.
In some embodiments the needle shield can be provided as a hollow shroud having a sidewall and an aperture on one end, and where a needle may pass through the aperture when the needle shield is not in a fully-extended state. In some such embodiments the needle shield assembly can further include a secondary spring which biases the needle shield and extends the needle shield beyond the needle after the needle has been removed from an injection site. In yet alternative such embodiments the needle shield assembly can further include a locking mechanism, which is triggered after the needle shield depression, and is configured to lock in the extended position.
Also contemplated herein is yet another embodiment of a medication mixing and delivery device which can include a housing, a first chamber having an aperture, the first chamber being located within the housing, the first chamber containing a first medicament component, and a second chamber located within the housing, the second chamber configured to selectively receive the first medicament component from the first chamber. A valve can then be located within the housing, the valve being configurable so as to provide selective fluidic communication between the first chamber and the second chamber.
A first displacement mechanism can be provided which is configurable so as to reduce the effective volume of the first chamber, along with a second displacement mechanism which can be configurable so as to reduce the effective volume of the second chamber.
In some embodiments a second medicament component can be stored within the housing and outside the first chamber, such as in a fluidic channel provided between the outlet of the first chamber and the inlet of the second chamber, or alternatively within the second chamber itself.
In some embodiments an actuation device can be provided, which can include a pre-loaded energy source such as a spring or compressed gas chamber, wherein the actuation device is in mechanical communication with the valve, the actuation device being configurable so as to change the valve between a closed state and an open state and cause the first displacement mechanism to reduce the effective volume during a first actuation. In addition such an actuation device can additionally be configurable so as to cause the second displacement device to reduce the effective volume during a second actuation. In some such embodiments a rotatable and releasable mechanical stop can be provided and positioned within the housing so as to engage the actuation device at the end of the first actuation, and wherein the rotatable and releasable mechanical stop is configured to release the actuation device at the beginning of the second actuation. In some such embodiments a trigger assembly can be provided wherein a depression of the trigger assembly overcomes the rotatable and releasable mechanical stop so as to allow a second actuation of the actuation device.
In some such embodiments a delivery assembly can be provided which can be further selectively arranged so as to be in fluid communication with the second chamber.
In yet alternative embodiments an intermediate support can be provided and disposed within the housing and about at least a portion of an outer surface of the first chamber, wherein the intermediate support has a protrusion that forms a part of the rotatable and releasable mechanical stop.
Also contemplated herein is a method of mixing and delivering a medicament, the method including various steps, such as: displacing a first medicament stored in a first chamber through an outlet of the first chamber into an inlet of the second chamber through a valve, wherein the valve can alternate between a closed state and open state during a first actuation; triggering the first actuation by axially translating a first displacement device to displace a volume in a first chamber, wherein the first displacement device has a protrusion that interfaces with a channel formed in a sidewall of a frame of a housing that contains the first and second chambers; stopping the first actuation by preventing travel of the protrusion along the channel by a mechanically releasable stop; triggering a second actuation by releasing the mechanically releasable stop, wherein a first medicament displaced from the first chamber mixed with a second medicament stored outside the first chamber during the first actuation and stored in the second chamber, wherein the second actuation displaces the mixed medicament stored in the second chamber by a second displacement mechanism through a delivery assembly.
In alternative embodiments, the method can also include: extending the delivery assembly during the second actuation; and providing a needle shield assembly, wherein the needle shield assembly is formed about the delivery assembly, the needle shield assembly further including a needle shield that forms in part a trigger for triggering the second actuation.
These aspects of the invention are not meant to be exclusive and other features, aspects, and advantages of the present invention will be readily apparent to those of ordinary skill in the art when read in conjunction with the following description, appended claims, and accompanying drawings. Further, it will be appreciated that any of the various features, structures, steps, or other aspects discussed herein are for purposes of illustration only, any of which can be applied in any combination with any such features as discussed in alternative embodiments, as appropriate.
The foregoing and other objects, features, and advantages of the invention will be apparent from the following description of particular embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention, wherein:
It will be appreciated by those having skill in the area of fabrication and storage of drugs, that the lifespan and effectiveness of the drug can be increased substantially by keeping the medication in a dry state. Storage in a dry state also decreases the rate of degeneration as well as the degenerative effects of temperature, for example heat exposure. By keeping the drug in a dry state the breadth of environments where the device can be stored is increased while decreasing the frequency of required replacement.
The present invention illustrates various principles and devices which allow for the storage of a device having two or more components contained therein but which can quickly and reliably reconstitute, dissolve, fluidize, and/or put into a suspension, the components, i.e. mix them, immediately prior to delivery.
As such a system and method for storing and/or mixing a dry medicament component with a wet component for delivery to a user is contemplated herein. The system can include an auto-injector having various chambers therein, wherein the components of the drug are stored separately within the various chambers in various states so as to increase longevity, i.e. a dry drug component in one chamber, and a liquid, such as a solvent, in another. When the auto-injector is needed, the system can be actuated so as to mix the components, thus reconstituting, dissolving, fluidizing, and/or suspending a deliverable mixed drug, wherein the mixed drug can then be properly delivered to a patient. Examples of delivery can include, but are not limited to nebulization for inhalation, injection through a needle or cannula, topical application, etc.
With reference to
Referring to
In certain embodiments, the cap 14 can be configured such that separation of the cap 14 from the housing 100 can be delayed until the device has moved completely from a stowed state to a completely mixed state. In this manner it can be ensured that the needle end of the auto-injector 10 is not exposed until the device is completely ready for delivery. Such mechanisms can include a threaded interface between the cap 14 and the housing 100, or the components can be keyed such that separation is not possible until a certain degree of rotation has been achieved, etc. Once the cap is removed, the injection end of the housing can then be exposed and a second actuation device triggered so as to inject or otherwise deliver the mixed medicament to a delivery or injection site, for example by depressing the housing up against the delivery site.
In other embodiments, the delivery of the mixed medicament to the injection site can be configured in such a way that the second actuation step cannot be activated until the device has moved completely from a stowed state to a completely mixed state. In this manner it can be ensured that the needle end of the auto-injector 10, while exposed after removal of cap 14, cannot be activated until the device is ready. Such embodiments are enabled by features internal to the device, which will be described below. Once mixing is complete, a second actuation device can be triggered so as to inject or otherwise deliver the mixed medicament to a delivery or injection site, for example by depressing the housing up against the delivery site.
The mixing assembly 200 can be retained within the frame using a frame cap 114 which can be formed separately or unitarily with the frame 110. The frame cap 114 prevents the mixing assembly 200 from pushing through the frame 110 and exiting the housing 100 completely upon injection.
A needle shield 150 and needle shield spring 154 can be provide between the frame 110 and the housing 100 at an injection end of the housing 100. The needle shield spring 154 can be configured to bias the needle shield 150 axially downward so as to continuously restrict inappropriate exposure of the needle 310 prior to, during, and after injection.
The frame 110 and portions of the mixing assembly 200 can be configured to rotate together within the housing when an axially torsional force is applied between the cap 14 and the housing 100. The cap 14 can thus be coupled in a radially fixed manner to the frame 110 which is in turn coupled to certain components of the mixing assembly 200, and a driver interface 118 can also be provided which is rigidly coupled to the housing 100 as well as coupled in a radially fixed manner to alternative portions of the mixing assembly 200 such as to the inner plunger shaft 212. In this manner the axially torsional force and counter force applied between the cap and the housing can be transferred into and caused to actuate certain components of the mixing assembly 200.
The mixing assembly can include an inner plunger shaft 212 and an inner plunger 214 which together form a first displacement mechanism. The first displacement mechanism can be configured to reduce the effective volume of the first chamber, which will initially contain the wet solvent or other liquid component of the medicament.
The plunger is configured to interface with an inner vial 210 which forms the first chamber. The inner vial can be housed within a vial sleeve 220, or alternatively the vial sleeve 220 and the inner vial 210 can be formed unitarily of a single material.
The vial sleeve 220 can then interface with a rotational valve seal 230 which sits within an intermediate support 240. The intermediate support 240 can have a second displacement mechanism 250, i.e. a second plunger, which is coupled thereto, the second plunger being configured to reduce the effective volume of a second chamber located within a second vial 270.
The second vial 270 can then be provided with a delivery assembly 300 affixed thereto which can include a needle 310 or cannula as well as a needle guard 314 or other barrier configured to maintain sterility of the delivery assembly prior to use.
Dry medication can be kept in a recess 258 formed about an inlet of the second chamber within the second vial 270, such that fluid passing through the fluidic channel passes through or at least in close proximity to the dry medicament stored therein. It will be appreciated that the dry medication can also be stored in the fluidic channel connecting the first and second chambers, or merely kept in any portion of the second chamber wherein a specific recess is not provided.
In this stowed state the second chamber has its effective volume initially reduced to near zero by the second displacement device or plunger 250 so as to further decrease the space occupied by the auto-injector device 10, which decreased space occupation aides in allowing the device to be incrementally smaller, and thus easier to carry.
In this state the needle 310 and assembly, or other deliver mechanism, is retracted so as to prevent premature injection. The needle 310 is also still within the needle guard 314 so as to preserve sterility until the auto-injector is ready for injection.
It will be appreciated that the cap is not shown in these views for purposes of simplicity, however, the cap can, and will usually be, on for the stowed state.
In this embodiment, the respective rotation causes the outlet 224 of the first chamber or inner vial 210 which outlet is formed in the rotational valve seal 230 rotate about a central axis until it is aligned with the inlet fluidic channel 254. In some embodiments the rotational valve seal 230 can be configured to form the bottom wall of the inner vial 210, or the inner vial 210 and rotational valve seal 230 can be formed separately and distinctly.
As seen in
In this state the second chamber still has its effective volume near zero by the second displacement device or plunger 250. Additionally, in this state the needle 310 or other deliver mechanism and assembly is still retracted so as to prevent premature injection as mixing has not yet occurred. The needle 310 is also still within the needle guard 314 so as to preserve sterility until the auto-injector is ready for injection and the needle shield 150 is still extended to prevent premature injection.
The axial alignment between the plunger shaft protrusions allows axial translation of the plunger shaft 212 into the inner vial 210. Once this alignment has been achieved, the plunger shaft 212 is allowed to translate axially downward thus depressing the inner plunger 214 into the inner vial 210 which acts to displace the fluid contained therein through the outlet 224 through the fluidic channel 254 and into the second chamber contained within the second vial 270. The second vial 270 is permitted to expand its effective volume by being free to translate downward slightly within the frame and housing. As the second chamber expands to receive the fluid being displaced from the first chamber, the fluid passes through or into the recess 258, which contains the dry medicament, the fluid dissolves the dry component and mixes with the fluid as it enters the second chamber. In another embodiment, the fluid passes into the second chamber 270, without a recess 258, and with the powder being located elsewhere in the second chamber 270. The expanding volume of the second chamber still allows for sufficient mixing with the dry medicament to achieve appropriate mixing.
In the embodiment shown the intermediate support 240 includes similar protrusions resting on an intermediate stop of the frame, and the plunger protrusions of the plunger shaft come to rest on the bottom of the intermediate support channel which indicates full depression of the first plunger into the inner vial, which also signifies that mixing is complete and that the device is ready for the injection step.
In this state the needle 310 or other deliver mechanism and assembly is still retracted so as to prevent premature injection as mixing has not yet occurred. The needle 310 is also still within the needle guard 314 so as to preserve sterility until the auto-injector is ready for injection and the needle shield 150 is still extended to prevent premature injection. However, the needle shield 150, which forms part of a second trigger, is ready to be depressed and thus trigger injection. The functionality of the needle shield 150 will be discussed in greater detail below.
Once this alignment has been achieved, a second portion of energy stored within the pre-stored energy source which causes the entire mixing assembly to be pushed downward such that the needle guard 314 comes into contact with the frame cap 114 to stop the needle guard 314 such that the needle 310 punctures needle guard 314 and is extended through the needle guard 314. The needle 310 then extends further past the needle shield 150, and the needle 310 is thus extended into or about a delivery site, further as the second vial or chamber 270 hits the bottom portion of the frame cap 114, the second plunger 250 is depressed into the second vial or chamber 270 reducing its effective volume and causes the fluid to be ejected through the delivery assembly and into the patient or onto the delivery site.
In particular,
In order to translate axially downward to eject the fluid through the delivery assembly the intermediate support 240, vial sleeve 230 and the inner plunger must rotate together so as to be aligned with a second frame channel so as to allow for a second portion of energy to be released from the pre-loaded energy source thus driving the mixing assembly downward, with the delivery assembly affixed to the bottom end thus effectuation injection or delivery. To move from the mixed state and begin injection the upper support protrusions 242 along with the plunger shaft protrusions 216 are rotated radially into a second frame channel 138 as seen best between the positions illustrated in
In particular,
In the embodiment shown in
As the needle shield 150 translates upward, the lower support protrusions 244 of the intermediate support interface with a needle shield cam ramp 162. As the needle shield 150 continues to travel upward relative to the intermediate support, the lower support protrusions 244 slide on the needle shield cam ramps 162 and a rotation of the entire mixing assembly 200 is induced as shown in
In the embodiment shown the frame cap 114 can be provided with a plurality of protrusions, both lock protrusions 116 for interfacing with one or more needle shield guide channels 166 and needle shield extension lock tabs 170 which interface with the interior of the frame or housing. The guide channels can have space for allowing initial depression whereupon the extension lock protrusions can slide up and then interferingly engage with the lock tabs in a fully extended state after injection. The tabs can prevent pulling the needle shield 150 completely free from the housing as well as prevent a secondary depression of the needle shield 150 which would expose the extended needle.
With reference to
Referring to
In certain embodiments, the cap 414 can be configured such that separation of the cap 14 from the housing 402 can be delayed until the device has moved completely from a stowed state to a completely mixed state. In other embodiments the cap can act merely as a contaminant barrier and actuation is effectuated after removing the cap. The embodiment shown illustrates the first, wherein removal of the cap effectuates initiation of, and completion of, the mixing step. In this manner it can be ensured that the needle end of the auto-injector 400 is not exposed until the device is completely ready for delivery.
With regard to the cap 414 and in reference to
The cap 414 can also include a pair of retaining clips 418 which can interface with a pair of indents on the frame of housing so as to prevent premature rotation of the cap and associated activation of the auto injector.
A needle shield 550 and needle shield spring 554 can be provide between the frame 510 and the housing 402 at an injection end of the housing. The needle shield spring 554 can be configured to bias the needle shield axially downward so as to continuously restrict open and inappropriate exposure of the needle prior to, during, and after injection.
The frame 510 and portions of the mixing assembly 600 can be configured to rotate together within the housing when an axially torsional force is applied between the cap 414 and the housing 402. The cap 414 can thus be coupled in a radially fixed manner to the frame 510 which is in turn coupled to certain components of the mixing assembly 600. In this manner the axially torsional force applied between the cap 414 and the housing 510 can be transferred into and caused to actuate certain components of the mixing assembly 600 using actuation means which will be discussed in more detail below.
The mixing assembly 600 can include an inner plunger shaft 612 and an inner plunger 614 which together form a first displacement mechanism which can be configured to reduce the effective volume of the first chamber, which will initially contain the wet solvent or component of the end injectable medicament.
The plunger 614 is configured to interface with an inner vial 610 which forms the first chamber. The inner vial can be housed within a vial sleeve 620, or alternatively, the vial sleeve 620 and the inner vial 610 can be formed unitarily of a single material.
The intermediate support 640 can have a second displacement mechanism 650, i.e. a second plunger, which is coupled thereto, the second plunger being configured to reduce the effective volume of a second chamber located within a second vial 670.
The second vial 670 can have a delivery assembly 700 affixed thereto which can include a needle 710 or cannula as well as a needle guard 714 or other barrier configured to maintain sterility of the delivery assembly prior to use. The needle 710 can be affixed to the second vial 670 using a bonding interface 716, which can be provided as a crimp, adhesive, curing epoxy, or any other number of suitable interfaces.
Dry medication can be kept within the fluidic channel between the two chambers, or alternatively the dry medication can be stored within the second chamber within the second vial 470.
In this state the needle 710 or other deliver mechanism and assembly is retracted so as to prevent premature injection. The needle 710 is also still within the needle guard 714 so as to preserve sterility until the auto-injector is ready for injection.
It will be appreciated that the cap is not shown in these views for purposes of simplicity, however, the cap can and will usually be on for the stowed state.
This respective rotation causes an alignment of an outlet of the first chamber 610 with a fluidic channel extending into the second chamber 670.
In this state the needle 710 or other deliver mechanism and assembly is still retracted so as to prevent premature injection as mixing has not yet occurred. The needle 710 is also still within the needle guard 714 so as to preserve sterility until the auto-injector is ready for injection and the needle shield 550 is still extended to prevent premature injection.
In this state the needle 710 or other deliver mechanism and assembly is still retracted so as to prevent premature injection as mixing has not yet occurred. The needle 710 is also still within the needle guard 714 so as to preserve sterility until the auto-injector is ready for injection and the needle shield 550 is still extended to prevent premature injection.
However, the needle shield 550, which forms part of a second trigger, is ready to be depressed and thus trigger injection. The functionality of the needle shield 550 will be discussed in greater detail below.
It will be understood that this embodiment also works using a rotational style valve which utilizes selective alignment of an outlet 624 of the first chamber 610 with the inlet of the fluidic channel, wherein the selective alignment corresponds with an open configuration when aligned and a closed configuration when misaligned.
In this state the needle 710 or other deliver mechanism and assembly are extended such that the needle 710 penetrates the needle guard 714 and is extended past the needle shield 750.
In order to translate axially downward to eject the fluid through the delivery assembly the intermediate support 640, vial sleeve 630 and the inner plunger 612 must rotate together so as to be aligned with a second frame channel so as to allow for a second portion of energy to be released from the pre-loaded energy source thus driving the mixing assembly downward, with the delivery assembly affixed to the bottom end thus effectuation injection or delivery. To move from the mixed state and begin injection, and as discussed above with reference to
In the embodiment shown the housing 402 can be provided with a plurality of protrusions 516 for interfacing with an upper locking edge 566 of the needle shield. Once the needle shield 550 has been extended a certain degree the protrusions 516 engage with the upper locking edge 566 and prevent subsequent depression of the needle shield. The needle shield hook 558 which previously prevented the premature rotation of the intermediate support can now act as an extension prevention mechanism and can interface with the protrusion 644 of the intermediate support 640 so as to prevent complete removal of the needle shield 550 and thus expose the contaminated needle.
It will be appreciated that, with respect to gasses, most fluids are considered incompressible. In order to facilitate upward motion of the first plunger 1214 and the fluid contained within the first chamber 1210, a third plunger 1215 and a squeeze chamber 1004 can be provided wherein a compressible gas is provided within the squeeze chamber 1004 or the gas contained therein is permitted to exit the squeeze chamber 1004. The upward translation of the first plunger 1214 allows it to travel into a portion of the first chamber 1210 which is provided with a fluidic bypass 1255 in the sidewall. In this bypass portion, the fluidic bypass 1255 allows the first chamber 1210 to be compressed and the fluid to travel around the first plunger 1214 through the fluidic bypass 1255 and into and through a fluidic channel 1254 so as to enter into the second chamber 1270 so as to mix with the dry medicament provided within the fluidic channel 1254 or within the second chamber 1270. In the embodiment shown, the plunger 1214 can be provided with a radially disposed slot on its bottom surface so as to allow fluid to travel from the bypass channel 1255 which is located about the perimeter of the chamber, to the inlet of the fluidic channel 1254 which is located about a central portion.
In this embodiment the intermediate support 1240 can support the second plunger 1250 such that the upward translation of the first plunger 1214 also causes the second chamber 1270 to push away from the second plunger 1250 simultaneously as the first chamber 1210 is compressed so as to expand and accordingly receive the fluid as it travels through the bypass 1255, through a channel formed in the bottom of the first plunger 1214, through the fluidic channel 1254, and into the second chamber 1270.
In one embodiment an initial tensile force can be applied at two ends of the housing so as to be pulled or telescoped axially apart thus causing a first telescoping effect which causes the movable body 1450 to be displace upwards into the first chamber 1410 and force the fluid from the first chamber 1410, through the fluidic channel 1454 and into the second chamber 1470. This motion of the movable body upwards causes the second chamber 1470 to simultaneously expand so as to facilitate in the receipt of the fluid being displaced and thus facilitate mixing of the fluid with a dry medicament stored either within the fluidic channel 1454 or within the second chamber 1470. Once the fluid and the dry medicament are fully mixed the device can be pulled or telescoped axially apart further, which telescoping causes a pin 1314 disposed within the housing 1310 to pull away from a lock mechanism 1304, wherein a trigger device causes protrusions of the locking mechanism to translate radially inward and release through a hole, wherein translation was previously restricted by the pin 1314, wherein the trigger also allows a pre-loaded energy source 1322, i.e. a spring to be released, and push the entire mixing assembly 1350 in an axial direction toward the needle assembly. This trigger device can also be provided as a bump switch or needle guard depression switch similar to those disclosed with reference to the embodiments disclosed above. Once the needle is extended from the housing a bottom portion of the second chamber 1470 will engage the housing 1310 and cause the movable body 1450 to displace the fluid in the second chamber 1470 out through the needle 1490 and into the delivery site.
For purposes of the sliding valve of
It will be further understood by those in possession of this disclosure that the chambers and respective plungers can be movable with respect to one another. As such, in some cases, and as shown here, translating the plunger into the vial which forms the respective chamber can be one method of reducing the effective volume and displacing fluid contained therein. In other embodiments the vials themselves may be displaced onto, or with respect to, a stationary plunger so as to provide the displacement force. In yet other embodiments a combination of the two can be utilized so as to provide the displacement effect.
It will be appreciated that the needle has both a distal or injection end and a proximal end. The distal end can be configured to enter into a patient at an injection site and the proximal or inlet end being configured to pierce and ultimately penetrate the septum. It will be further appreciated that in
As shown in
In order to provide penetration of the septum 1612 by the needle 1610, the needle can be carried by a translating needle carrier 1620. The needle carrier 1620 can have a translating body which is allowed to translate axially along the needle axis with respect to the second chamber 1670 and the septum 1612. The degree of translation can be limited or controlled by providing abutting shoulders which interfere with one another at certain points along the relative travel distance between the carrier and the second chamber. In one instance the shoulders can engage to prevent the needle from being released from the system and sliding out of the auto injector entirely, and in another instance the shoulders can engage to provide the axial translation and puncture force of the needle through the septum when pushed down just prior to injection. In the cross sectional view of
While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention.
This application is a continuation of U.S. patent application Ser. No. 15/035,132 filed on May 6, 2016, which claims the benefit of PCT Application PCT/US15/45768 filed Aug. 18, 2015 which claims priority to and the benefit of U.S. Patent Application No. 62/038,386 filed on Aug. 18, 2014; U.S. Patent Application No. 62/126,011 filed on Feb. 27, 2015; U.S. Patent Application No. 62/204,940 filed on Aug. 13, 2015; U.S. Patent Application No. 62/061,664 filed on Oct. 8, 2014; U.S. Patent Application No. 62/120,792 filed on Feb. 25, 2015 which are all herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3680558 | Kapelowitz | Aug 1972 | A |
3946732 | Hurscham | Mar 1976 | A |
4031892 | Hurschman | Jun 1977 | A |
4060082 | Lindberg et al. | Nov 1977 | A |
4529403 | Kamstra | Jul 1985 | A |
4643721 | Brunet | Feb 1987 | A |
4755169 | Samoff et al. | Jul 1988 | A |
5360410 | Wacks | Nov 1994 | A |
5569193 | Hofstetter et al. | Oct 1996 | A |
5704918 | Higashikawa | Jan 1998 | A |
5899881 | Grimard et al. | May 1999 | A |
6149628 | Szapiro et al. | Nov 2000 | A |
6309372 | Fischer et al. | Oct 2001 | B1 |
6641561 | Hill et al. | Nov 2003 | B1 |
6656150 | Hill et al. | Dec 2003 | B2 |
6770052 | Hill et al. | Aug 2004 | B2 |
6793646 | Giambattista et al. | Sep 2004 | B1 |
6852103 | Fowles et al. | Feb 2005 | B2 |
6953445 | Wilmot et al. | Oct 2005 | B2 |
7449012 | Young et al. | Nov 2008 | B2 |
7544189 | Griffiths | Jun 2009 | B2 |
7556614 | Griffiths et al. | Jul 2009 | B2 |
7608055 | Griffiths et al. | Oct 2009 | B2 |
7621887 | Griffiths et al. | Nov 2009 | B2 |
7678073 | Griffiths et al. | Mar 2010 | B2 |
7749190 | Griffiths et al. | Jul 2010 | B2 |
7757370 | Griffiths | Jul 2010 | B2 |
7776015 | Sadowski et al. | Aug 2010 | B2 |
7947742 | Batycky et al. | May 2011 | B2 |
8057427 | Griffiths et al. | Nov 2011 | B2 |
8092420 | Bendek et al. | Jan 2012 | B2 |
8123719 | Edwards et al. | Feb 2012 | B2 |
8177758 | Brooks et al. | May 2012 | B2 |
8187220 | Griffiths et al. | May 2012 | B2 |
8251947 | Kramer et al. | Aug 2012 | B2 |
8496619 | Kramer et al. | Jul 2013 | B2 |
8506526 | Griffiths et al. | Aug 2013 | B2 |
8568367 | Griffiths et al. | Oct 2013 | B2 |
8613720 | Bendek et al. | Dec 2013 | B2 |
8632504 | Young | Jan 2014 | B2 |
RE44847 | Sadowski et al. | Apr 2014 | E |
8696618 | Kramer et al. | Apr 2014 | B2 |
8784372 | Hoggatt | Jul 2014 | B1 |
8814834 | Sund et al. | Aug 2014 | B2 |
8870827 | Young et al. | Oct 2014 | B2 |
8945053 | Vogt et al. | Feb 2015 | B2 |
9364610 | Kramer et al. | Jun 2016 | B2 |
9364611 | Kramer et al. | Jun 2016 | B2 |
20020042592 | Wilmot et al. | Apr 2002 | A1 |
20020046563 | Wakui et al. | Apr 2002 | A1 |
20020049406 | Hill et al. | Apr 2002 | A1 |
20020049407 | Hill et al. | Apr 2002 | A1 |
20050074498 | Tarara et al. | Apr 2005 | A1 |
20050148933 | Raven et al. | Jul 2005 | A1 |
20050177100 | Harper et al. | Aug 2005 | A1 |
20060079834 | Tennican et al. | Apr 2006 | A1 |
20070116729 | Palepu | May 2007 | A1 |
20070202163 | Rawas-Qalaji et al. | Aug 2007 | A1 |
20070293582 | Hill | Dec 2007 | A1 |
20080103490 | Edwards et al. | May 2008 | A1 |
20080281271 | Griffiths et al. | Nov 2008 | A1 |
20090171311 | Genosar et al. | Jul 2009 | A1 |
20100228190 | Griffiths et al. | Sep 2010 | A1 |
20100318035 | Edwards et al. | Dec 2010 | A1 |
20110092906 | Böttger et al. | Apr 2011 | A1 |
20110092917 | Wei et al. | Apr 2011 | A1 |
20110237681 | Batycky et al. | Sep 2011 | A1 |
20120016296 | Charles | Jan 2012 | A1 |
20120130318 | Young | May 2012 | A1 |
20120179137 | Rush et al. | Jul 2012 | A1 |
20120302989 | Kramer et al. | Nov 2012 | A1 |
20130018310 | Boyd et al. | Jan 2013 | A1 |
20130018313 | Kramer et al. | Jan 2013 | A1 |
20130023822 | Edwards et al. | Jan 2013 | A1 |
20130060232 | Adlon et al. | Mar 2013 | A1 |
20130178823 | Buchine et al. | Jul 2013 | A1 |
20130274707 | Wilmot et al. | Oct 2013 | A1 |
20130289791 | Kerrigan et al. | Oct 2013 | A1 |
20130317477 | Edwards et al. | Nov 2013 | A1 |
20130331788 | Kramer et al. | Dec 2013 | A1 |
20140088512 | Quinn | Mar 2014 | A1 |
20140276385 | Buchine et al. | Sep 2014 | A1 |
20140276430 | Baker et al. | Sep 2014 | A1 |
20140336589 | Sund et al. | Nov 2014 | A1 |
20150011975 | Anderson et al. | Jan 2015 | A1 |
20150174323 | Edwards et al. | Jun 2015 | A1 |
20150367073 | Standley et al. | Dec 2015 | A1 |
20150374925 | Standley et al. | Dec 2015 | A1 |
20160220764 | Durvasula et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
0961612 | Dec 1999 | EP |
2741810 | Feb 1998 | FR |
9208506 | May 1992 | WO |
2005032523 | Apr 2005 | WO |
2008114035 | Sep 2008 | WO |
2008154092 | Dec 2008 | WO |
2009118754 | Dec 2009 | WO |
2010022870 | Mar 2010 | WO |
2010068415 | Jun 2010 | WO |
2011060541 | May 2011 | WO |
2011109340 | Sep 2011 | WO |
2012090168 | Jul 2012 | WO |
2012099898 | Jul 2012 | WO |
2013063707 | May 2013 | WO |
2014026694 | Feb 2014 | WO |
2014066731 | May 2014 | WO |
2014080020 | May 2014 | WO |
2014060563 | Jul 2014 | WO |
2014195183 | Dec 2014 | WO |
2014205463 | Dec 2014 | WO |
2015071289 | May 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20180126076 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62204940 | Aug 2015 | US | |
62126011 | Feb 2015 | US | |
62120792 | Feb 2015 | US | |
62061664 | Oct 2014 | US | |
62038386 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15035132 | US | |
Child | 15832441 | US |