The present invention relates to various intravenous (IV) catheter devices having an integrated external needle safety mechanism, an internal blood control valve or septum, and integrated septum activator. More particularly, the present invention relates to an IV catheter assembly having a catheter adapter comprising a blood control septum, and a needle shield selectively coupled to a proximal end of the catheter adapter. The needle shield is configured to catch and retain the sharpened, distal point of an introducer needle following catheterization of a patient. The septum activator is advanced through the blood control septum to provide a fluid pathway therethrough. In some instances the septum activator is advanced through the blood control septum by inserting a Luer device into the catheter adapter as part of an infusion procedure. Some implementations of the present invention further comprise a needle shield that is tethered to a needle hub such that the needle hub, introducer needle, and needle shield form a unitary structure that is removed from the catheter adapter following a catheterization procedure.
Generally, vascular access devices are used for communicating fluid with the vascular system of patients. For example, catheters are used for infusing fluid, such as normal saline solution, various medicaments, and total parenteral nutrition, into a patient, withdrawing blood from a patient, or monitoring various parameters of the patient's vascular system.
A common type of intravenous (IV) catheter is an over-the-needle peripheral IV catheter. As its name implies, an over-the-needle catheter is mounted over an introducer needle having a sharp distal tip. At least the inner surface of the distal portion of the catheter tightly engages the outer surface of the needle to prevent peelback of the catheter and thus facilitate insertion of the catheter into the blood vessel. The catheter and the introducer needle are assembled so that the distal tip of the introducer needle extends beyond the distal tip of the catheter with the bevel of the needle facing up away from the patient's skin. The catheter and introducer needle are generally inserted at a shallow angle through the patient's skin into a blood vessel.
In order to verify proper placement of the needle and/or catheter in the blood vessel, the clinician generally confirms that there is “flashback” of blood in a flashback chamber of the catheter assembly. Once proper placement of the catheter into the blood vessel is confirmed, the clinician may apply pressure to the blood vessel by pressing down on the patient's skin over the blood vessel distal of the introducer needle and the catheter. This finger pressure occludes the vessel, minimizing further blood flow through the introducer needle and the catheter.
The clinician may then withdraw the introducer needle from the catheter. The introducer needle may be withdrawn into a needle tip shield device that covers the needle tip and prevents accidental needle sticks. In general, a needle shield includes a housing, a sleeve, or other similar device that is designed such that when the needle is withdrawn from the patient, the needle tip will be trapped/captured within the needle tip shield. The purpose of these needle tip shield devices is to house the tip of the needle in a secure location, thereby avoiding the possibility of needle sticks after the needle and needle shield device are separated from the catheter, which is left in place to provide intravenous access to the patient.
Various systems and methods are available that are designed to shield needle tips and then be separated from the remainder of a catheter assembly following catheterization. Some currently available tip shield systems locate the tip shield within the catheter assembly, thereby exposing various surfaces of the needle shield to blood present within the catheter assembly. Upon removal of the tip shield from the catheter assembly, blood may be flicked or splattered, thereby exposing the clinician to blood and blood borne pathogens. Accordingly, there is a need in the art for a catheter assembly having tip shielding features that overcomes the failings of present devices. Such a catheter assembly is provided herein.
The present invention has been developed in response to problems and needs in the art that have not yet been fully resolved by currently available vascular access systems and methods. Thus, these systems and methods are developed to provide more efficient vascular access systems and methods capable of ensuring proper needle tip shield function.
An extravascular system for accessing the vasculature of a patient may include a catheter adapter having a distal end supporting a catheter, and further comprising a proximal opening, wherein the catheter adapter includes a lumen extending therebetween. The extravascular system further includes a blood control septum disposed within the lumen of the catheter adapter and dividing the lumen into a proximal fluid chamber and a distal fluid chamber. In some instances, an extravascular system is provided having a septum activator slidably positioned within the proximal fluid chamber, wherein the septum activator includes a base and a probe end. The system further includes an external safety mechanism removably coupled to the proximal opening of the catheter adapter and comprising a safety clip configured to secure a sharpened tip of an introducer needle.
Some implementations of the present invention further include an external safety mechanism having a needle shield housing a safety clip that is configured to retain a sharpened tip of the introducer needle within the needle shield. The external safety mechanism may also include a needle hub having a first end for securing a proximal end of the introducer needle, and a second end configured to temporarily house the needle shield, wherein the needle shield is slidably housed within the second end. The needle hub may be temporarily coupled to the catheter adapter and configured to support an introducer needle, the introducer needle extending outwardly from the needle hub and through the catheter adapter, septum activator, blood control septum and catheter.
In some instances, the present invention includes a safety clip having a pawl or other structural feature configured to prevent the sharpened tip of the introducer needle from exiting a distal opening of the needle shield. The safety clip may also be configured to selectively interconnect the needle shield and the catheter adapter. In some instances, the external safety mechanism is configured to be removed from the proximal opening of the catheter adapter following removal of the sharpened tip of the introducer needle from the catheter and catheter adapter.
Some implementations of the present invention further include a tether that is configured to couple the needle shield to the needle hub. The tether includes a first end coupled to the needle hub and a second end coupled to the needle shield, the tether having a length that provides a maximum distance between the needle hub and the needle shield, wherein the maximum distance positions and retains the sharpened tip within the needle shield. Some implementations of the present invention further include a blood control septum having a self-sealing or self-closing opening, such as a slit. The blood control septum is further configured to control a flow of a fluid through the catheter adapter. The blood control septum may be activated or opened to selectively permit passage of fluids through the lumen of the catheter adapter.
Other implementations of the present invention comprise a catheter adapter having a proximal opening that is configured to receive a Luer adapter. Some embodiments include a proximal opening having a structural feature configured to receive a Luer adapter, such as a set of threads or a detent.
Some implementations of the present invention further include a septum activator or actuator that is configured to be selectively advanced through the blood control septum, to provide a fluid pathway therethrough. In some instances, the septum activator comprises a base configured to contact a Luer adapter that is inserted within the proximal opening of the catheter adapter. The septum activator is slidably inserted within the catheter adapter and configured for advancement through the blood control septum when contacted and advanced in a distal direction by the Luer adapter. The septum activator further comprises a pathway through which the introducer needle passes, and wherein the pathway provides fluid communication between the proximal and distal fluid chambers when the septum activator is advanced through the blood control septum.
Some implementations of the present invention further include a safety clip that is moveable between a first position and a second position, wherein the first position permits passage of the sharpened tip through a distal opening of the external safety mechanism, and the second position prevents passage of the sharpened tip through the distal opening of the external safety mechanism.
Some implementations of the present invention further include an access port that is coupled to, or forms a portion of the catheter adapter. The access port comprises an inner lumen that may be accessed via a needleless connector, such as a syringe or Luer adapter. The catheter adapter further includes a defeatable barrier that is seated within an annular groove formed on the inner surface of the catheter adapter and forms a sealed interface with the inner lumen of the access port. In some instances, the defeatable barrier is placed in the catheter adapter an immobilized solely via a friction fit. The defeatable barrier is defeated by inserted an external device into the inner lumen of the access port, whereby the external device contacts and temporarily defeats the barrier. In other instances, fluid pressure from the external device builds up within the access port until the barrier is defeated and the fluid is allowed to bypass the barrier and flow into the lumen of the catheter adapter. Once defeated, fluid communication is provided between the inner lumen of the access port and the lumen or fluid pathway of the catheter adapter. Upon removal of the external device, the resilient nature of the defeatable barrier causes the barrier to resume its tubular shape, thereby reestablishing its sealed interface with the inner lumen of the access port. The sealed interface prevents active fluid communication between the inner lumen and the lumen of the catheter adapter. In some instances, the defeatable barrier comprises a non-tubular shape or configuration.
Some implementations of the present invention include a method for manufacturing an extravascular system, wherein the method includes steps for: 1) providing a catheter adapter having a distal end supporting a catheter, and further comprising a proximal opening, the catheter adapter having a lumen; 2) disposing a blood control septum within the lumen of the catheter adapter, the blood control septum dividing the lumen into a proximal fluid chamber and a distal fluid chamber; 3) slidably positioning a septum activator within the proximal fluid chamber, the septum activator having a base and a probe end; and 4) removably coupling an external safety mechanism to the proximal opening of the catheter adapter, the external safety mechanism having a safety clip that is configured to secure a sharpened tip of an introducer needle.
These and other features and advantages of the present invention may be incorporated into certain embodiments of the invention and will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter. The present invention does not require that all the advantageous features and all the advantages described herein be incorporated into every embodiment of the invention.
In order that the manner in which the above-recited and other features and advantages of the invention are obtained will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. These drawings depict only typical embodiments of the invention and are not therefore to be considered to limit the scope of the invention.
The presently preferred embodiments of the present invention will be best understood by reference to the drawings, wherein like reference numbers indicate identical or functionally similar elements. It will be readily understood that the components of the present invention, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description, as represented in the figures, is not intended to limit the scope of the invention as claimed, but is merely representative of presently preferred embodiments of the invention.
Referring to
Catheter adapter 13 further comprises a proximal end 16 having an opening whereby to access an interior lumen of catheter adapter 13. In some embodiments, proximal end 16 further comprises structural features to accommodate attachment of various Luer devices to catheter adapter 13. For example, in some embodiments proximal end 16 comprises a set of threads. Proximal end 16 is further configured to compatibly and selectively receive needle assembly 20.
Needle assembly 20 comprises a needle hub 21 having a distal opening 22 that is configured to compatibly and selectively receive proximal end 16 of catheter adapter 13. Needle hub 21 further comprises a distal end 23 that is configured to support and permanently retain a proximal end of an introducer needle 40. Introducer needle 40 further comprises a sharpened distal end 41 that is threaded through catheter adapter 13 and catheter 15 to provide extravascular system 10. Once fully assembled, sharpened distal end 41 of needle 40 extends distally beyond the tip 17 of catheter 15. As thus configured, sharpened distal end 41 is exposed and may be used to provide an opening through the skin and soft tissues of the patient, thus providing an opening through which tip 17 of catheter 15 may be inserted into the vasculature of the patient.
Referring now to
Catheter adapter 13 further comprises a septum activator 50 that is configured to be slidably advanced through blood control septum 18, thereby providing a fluid pathway through septum 18. Septum activator 50 is slidably positioned within the proximal fluid chamber. Septum activator 50 comprises a base 51 that is oriented towards proximal end 16 and is accessible via proximal end 16. Septum activator 50 further comprises a probe end 52 that is oriented towards, and proximal to blood control septum 18. Septum activator 50 is advanced through blood control septum 18 by inserting a Luer device through the opening of proximal end 16, as will be discussed in greater detail below.
Septum activator 50 may comprise any material or combination of materials that are compatible for use in an intravenous device. Generally, septum activator 50 comprises a rigid material. For example, in some embodiments septum activator 50 comprises a nylon material. Septum activator 50 may further comprise an antibacterial coating or anticoagulant coating to provide further benefits to the extravascular assembly 10.
With continued reference to
In some embodiments, needle shield 30 is coupled to needle hub 21 via a tether 25. Tether 25 is configured to permit needle shield 30 to be slid distally along introducer needle 40, but prevents needle shield 30 from being completely removed from needle 40, as shown in
Referring now to
Tether 25 is unraveled from the distal opening of needle hub 21 as needle hub 21 moves in proximal direction 100, as shown in
In some embodiments, safety clip 32 is repositioned within needle shield 30 to block and prevent sharpened tip 41 from exiting needle shield 30 once tip 41 has been drawn proximally past safety clip 32, as shown in
In some embodiments, safety clip 32 is further configured to securely retain the connection between needle shield 30 and catheter proximal end 16 of catheter adapter 13. In some instances, safety clip 32 further comprises a pawl or other feature that selectively and/or temporarily interconnects with a surface of proximal end 16 when safety clip 32 is held in a first position. The first position of safety clip 32 is maintained by contact between introducer needle 40 and safety clip 32. When introducer needle 40 is withdrawn past safety clip 32 in proximal direction 100, safety clip 32 is released from the first position and is repositioned to block sharpened tip 41 from exiting needle shield distally. When safety clip 32 is repositioned, the pawl or other feature releases the surface of proximal end 16, thereby permitting physical separation of catheter adapter 13 from needle shield 30, as shown.
Referring now to
Some embodiments of the present invention provide a single use septum activator, wherein the septum activator maintains a pathway through the blood control septum following removal of a Luer device from the catheter adapter. In other embodiments, the present invention provides a multiple use septum activator, wherein the septum activator is automatically removed from the blood control septum following removal of a Luer device from the catheter adapter, thereby closing a pathway through the blood control septum.
For example, in some embodiments upon removal of Luer adapter 110 from proximal end 16, septum activator 50 is moved in proximal direction 100 as slit 19 of septum 18 resumes its closed position. Thus, fluid in the distal fluid chamber and catheter 15 are prevented from bypassing septum 18 when Luer adapter 110 is disconnected. In other embodiments, upon removal of Luer adapter 110 from proximal end 16, septum activator 50 remains positioned within slit 19 of septum 18, thereby maintaining a fluid pathway through septum 18.
The various components and parts disclosed herein may comprise any shape or configuration that may be desired or necessary to achieve the benefits of the present invention. For example, needle shield 30 may achieve integrated tip protection using a transverse barrier containing a washer-like hole in the proximal end of safety clip 32 to catch a feature on the exterior surface of introducer needle 40, such as a crimp or a ferrule. Safety clip 32 may alternatively be divided into two or more pieces. For example, a first piece of clip 32 may provide the interlocking action between the needle shield 30 and catheter adapter 13. The second piece of clip 32 may provide the function of blocking sharpened tip 41 from exiting needle shield 40 in distal direction 200. Alternatively, the second piece of clip 32 may comprise a hole having a diameter that is greater than an outer diameter of needle 40, yet less than an outer diameter of a feature on the outer surface of the needle 40. As such, the second piece of clip 32 may prevent complete separation of needle shield 30 from needle 40, thereby trapping sharpened tip 41 within needle shield 30. Clip 32 may further include a non-friction coating to reduce drag forces on needle 40 when withdrawing needle 40 from catheter adapter 13 in proximal direction 100.
In some instances, blood control septum 18 further comprises various air vents and other features to permit controlled flashback in catheter 15 during catheterization. For example, in some embodiments catheter adapter 13 comprises a recessed surface configured to receive and retain septum 18. In some instances, the recessed surface further comprises a plurality of grooves that form air channels between the outer, circumferential surface of septum 18 and the recessed surface. Further, in some instances the plurality of grooves interconnect the distal and proximal fluid chambers, thereby permitting air pressure in the distal fluid chamber to be released into the proximal fluid chamber by passing through the plurality of grooves. As such, excess buildup of air pressure in the distal fluid chamber is prevented, thereby allowing blood to enter into the distal fluid chamber as flashback during catheterization. Alternatively, the outer, circumferential surface of septum 18 may comprises a plurality of grooves, thereby forming a plurality of air channels between the outer surface of the septum and the recessed surface of catheter adapter 13.
Referring now generally to
Referring now to
In some instances, system 10 further comprises a flashback chamber 110 that is in fluid communication with the proximal end of introducer needle 40. Flashback chamber 110 comprises a clear material that is capable of being used with biological fluids, such as blood. Introducer needle 40 further comprises a window 43 that is positioned near sharpened distal tip 41. When sharpened tip 41 is inserted into the vasculature of the patient, blood flows through window 43 and into the space between the outer surface of needle 40 and the inner wall surface of catheter 15. This blood may be seen through the clear wall of the catheter, thereby providing a visual signal to the caregiver that the sharpened tip 41 is in the patient's vein. Excess blood travels through the hollow interior of introducer needle 40 and into flashback chamber 110. Flashback chamber 110 collects the excess blood, providing further confirmation of accurate needle and catheter placement into the vessel, and preventing undesired exposure to the caregiver. In some instances, flashback chamber 110 is coupled to needle hub 21 via a vented fitting whereby gas or air within flashback chamber 110 is vented as liquid enters from the proximal end and opening of needle 40.
In some instances, excess blood collected in flashback chamber 110 is preserved for clinical testing or other types of diagnostic procedures. For these instances, flashback chamber 110 may be selectively removed from needle hub 23 prior to disposal of needle 40 and the remaining disposable components of system 10.
In some embodiments, needle shield 30 comprises a washer 33 that forms the proximal aperture through which needle 40 is threaded. Needle 40 may further comprise a crimp or ferrule proximate to sharpened distal tip 41 that has a diameter that is greater than the diameter of the opening in washer 33. As such, the crimp or ferrule is prevented from passing through washer 33 in proximal direction 100. In some embodiments, the distance between sharpened tip 41 and the crimp or ferrule is configured so that sharpened tip 41 is entirely positioned within needle shield 30 when the crimp or ferrule contacts washer 33.
Referring now to
In some instances, a pawl 45 or other structure of clip 32 intersects and securely retains a portion of catheter adapter 13 when in the compressed configuration. For example, in some instances pawl 45 intersects the proximal rim of catheter adapter 13. When clip 32 is released following withdrawal of tip 41 into needle shield 30, pawl 45 of clip 32 releases catheter adapter 13, thereby permitting separation of the two components. Thus, needle shield 30 and catheter adapter 13 are securely interconnected prior to withdrawing distal tip 41, and capable of being separated once distal tip 41 is securely shielded within needle shield 30.
As discussed previously, in some embodiments blood control septum 18 comprises one or more air vents 181 which are formed in the outer circumferential surface of septum 18. Vents 181 provide a fluid and/or an air pathway between the inner surface of catheter adapter 13 and the outer surface of septum 18. Alternatively, air vents may be provided by grooving the inner surface of catheter adapter 13 at the position where septum 18 is seated.
Blood control septum 18 may further comprise blood wicking apertures 183 formed on distal face of the septum. Apertures 183 are positioned and configured to wick excess blood from the outer surface of introducer needle 40 when needle 40 is being withdrawn from catheter adapter 13. Apertures 183 may also wick excess blood that leaks into catheter adapter 13 as flashback during catheterization.
Septum activator 50 comprises a proximal end 51 that is configured to be contacted and advanced though slit or opening 19 of septum 18 when an external object is inserted into the proximal opening of catheter adapter 13. Septum activator 50 comprises a distal end 53 that is positioned proximate to septum 18, and is sized to permit partial or complete penetration of slit 19. In some instances, distal end 53 merely contacts and deforms septum 18, which thereby causes slit 19 to be biased into an open conformation.
In some instances, septum activator 50 is incapable of being removed from septum 18 following insertion through slit 19. Once inserted, septum activator 50 provides and/or opens a permanent pathway through septum 18. Thus, septum activator 50 may be configured for one-time use. In other instances, septum activator 50 is configured automatically be removed from or backed out of slit 19 when septum activator 50 is not actively advanced in distal direction 200, or held in place via an external device. For example, in some instances septum activator 50 is prevented from fully penetrating slit 19. Thus, when the external device is removed from catheter adapter 13, the elastic properties of septum 18 self-closes slit 19 thereby backing distal end 53 out of slit 19. Thus, septum activator 50 may be configured for multiple-time usage.
Septum activator 50 may further comprise one or more flow disrupting features 55. Features 55 are configured to provide disruption to fluid passing though catheter adapter 13 in proximity to septum activator 50. In some instances, septum activator 50 comprises one or more fins and/or windows 55 that divert fluid between the interior and exterior surfaces or surroundings of septum activator 50. Fins 55 may further be configured to slidably seat within an annular groove 57 on the inner surface of catheter adapter 13. The interaction between fins 55 and annular groove 57 prevents septum activator 50 from being removed from the proximal opening of catheter adapter 13. Annular groove 57 may also be configured to prevent over-insertion of distal end 53 through septum 18.
In some instances, needle shield 30 comprises a clip 32 having a distal end configured to block a distal aperture of shield 30, and further comprises a proximal end forming washer 33, as shown in
In some instances, clip 32 may be divided into two or more pieces. For example, a first piece may be configured to providing an interlocking action to release catheter adapter 13, and a second piece may be configured to trap a ferrule or crimp on needle 40, thereby preventing proximal of distal movement of needle 40. Referring now to
In some instances, clip 32 is used with a second member as a housing. Clip 32 may also be used as only a safety mechanism, while the second member provides an interlocking feature. For example, in some embodiments a second member comprises a plurality of fingers that are configured to overlap the Luer connector of catheter adapter 13 to interlock catheter adapter 13 and needle shield 30 via a friction interface.
Any of the embodiments of the present invention may further comprise an access port 302, as shown in
In some embodiments, system 300 further comprises a defeatable barrier 310 that is seated into an annular groove formed on the inner surface of catheter adapter 313 and interposed between inner lumen 304 and the fluid pathway of catheter adapter 313. In some instances, barrier 310 comprises a tubular valve having an outer surface that forms an interface with inner lumen 304. Barrier 310 is defeated when an external device is inserted into inner lumen 304 and contacts the outer, exposed surface of barrier 310. When contacted by the external device, the tubular structure of barrier 310 slightly collapses thereby breaking the interface between the outer surface of barrier 310 and inner lumen 304. A fluid may then be added to the fluid pathway or lumen of catheter adapter 313. Alternatively, in some instances fluid pressure from the external device builds up within access port 302 until the interface between the outer surface of barrier 310 and inner lumen 304 is defeated. The fluid within access port 302 is then added to the fluid pathway or lumen of catheter adapter 313 via the temporarily defeated barrier 310. Upon removal of the external device, the resilient defeatable barrier 310 resumes its original shape thereby reestablishing the sealed interface with inner lumen 304.
Referring now to
In other embodiments, system 300 comprises a blood control septum 18 that is placed within catheter adapter 313 at a position that is upstream from access port 302, as shown in
System 300 may include any combination of external needle shield, internal blood control septum, and septum activator as disclosed herein. Examples of various acceptable combinations are shown in
In some instances, system 300 may include a crimp or ferrule retention washer 33, as shown in
The present invention may be embodied in other specific forms without departing from its structures, methods, or other essential characteristics as broadly described herein and claimed hereinafter. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of U.S. patent application Ser. No. 14/295,953 filed on Jun. 4, 2014, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/832,512, filed Jun. 7, 2013. The disclosures of all of these applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3585996 | Reynolds et al. | Jun 1971 | A |
4332249 | Joslin | Jun 1982 | A |
4387879 | Tauschinski | Jun 1983 | A |
4424817 | Williams | Jan 1984 | A |
4524805 | Hoffman | Jun 1985 | A |
4622964 | Flynn | Nov 1986 | A |
4762516 | Luther et al. | Aug 1988 | A |
4809679 | Shimonaka et al. | Mar 1989 | A |
4842591 | Luther | Jun 1989 | A |
4850961 | Wanderer et al. | Jul 1989 | A |
4871356 | Haindl | Oct 1989 | A |
4917668 | Haindl | Apr 1990 | A |
4946133 | Johnson et al. | Aug 1990 | A |
4948092 | Kasper et al. | Aug 1990 | A |
4978344 | Dombrowski et al. | Dec 1990 | A |
5000740 | Ducharme et al. | Mar 1991 | A |
5032116 | Peterson et al. | Jul 1991 | A |
5053014 | Van Heugten | Oct 1991 | A |
5084023 | Lemieux | Jan 1992 | A |
5092845 | Chang | Mar 1992 | A |
5098405 | Peterson | Mar 1992 | A |
5108380 | Herlitze et al. | Apr 1992 | A |
5156596 | Balbierz | Oct 1992 | A |
5215528 | Purdy et al. | Jun 1993 | A |
5228453 | Sepetka | Jul 1993 | A |
5290246 | Yamamoto et al. | Mar 1994 | A |
5300045 | Plassche, Jr. | Apr 1994 | A |
5322518 | Schneider et al. | Jun 1994 | A |
5328482 | Sircom et al. | Jul 1994 | A |
5348544 | Sweeney et al. | Sep 1994 | A |
5391152 | Patterson | Feb 1995 | A |
5405323 | Rogers et al. | Apr 1995 | A |
5419766 | Chang et al. | May 1995 | A |
5423766 | Di Cesare | Jun 1995 | A |
5458658 | Sircom | Oct 1995 | A |
5501675 | Erskine | Mar 1996 | A |
5538508 | Steyn | Jul 1996 | A |
5558651 | Crawford et al. | Sep 1996 | A |
5575777 | Cover et al. | Nov 1996 | A |
5584809 | Gaba | Dec 1996 | A |
5596996 | Johanson | Jan 1997 | A |
5662610 | Sircom | Sep 1997 | A |
5697907 | Gaba | Dec 1997 | A |
5718688 | Wozencroft | Feb 1998 | A |
5749857 | Cuppy | May 1998 | A |
5772636 | Brimhall et al. | Jun 1998 | A |
5817069 | Arnett | Oct 1998 | A |
5851196 | Arnett | Dec 1998 | A |
5858002 | Jesch | Jan 1999 | A |
5911710 | Berry et al. | Jun 1999 | A |
5954698 | Pike | Sep 1999 | A |
5967490 | Pike | Oct 1999 | A |
6001080 | Kuracina et al. | Dec 1999 | A |
6042876 | Deem | Mar 2000 | A |
6117108 | Woehr et al. | Sep 2000 | A |
6213978 | Voyten | Apr 2001 | B1 |
6221047 | Greene et al. | Apr 2001 | B1 |
6224569 | Brimhall et al. | May 2001 | B1 |
6379333 | Brimhall et al. | Apr 2002 | B1 |
6425884 | Wemmert et al. | Jul 2002 | B1 |
6506181 | Meng et al. | Jan 2003 | B2 |
6595981 | Huet | Jul 2003 | B2 |
6616630 | Woehr et al. | Sep 2003 | B1 |
6652486 | Bialecki et al. | Nov 2003 | B2 |
6709419 | Woehr | Mar 2004 | B2 |
6749588 | Howell et al. | Jun 2004 | B1 |
6972002 | Thone | Dec 2005 | B2 |
RE38996 | Crawford et al. | Feb 2006 | E |
7008404 | Nakajima | Mar 2006 | B2 |
7029492 | Mitsudou et al. | Apr 2006 | B1 |
7226434 | Carlyon et al. | Jun 2007 | B2 |
7267661 | Susi | Sep 2007 | B2 |
7500965 | Menzi et al. | Mar 2009 | B2 |
7597681 | Sutton et al. | Oct 2009 | B2 |
7632245 | Cowan et al. | Dec 2009 | B1 |
7651476 | Kohler | Jan 2010 | B2 |
7682340 | Funamura et al. | Mar 2010 | B2 |
7722569 | Soderholm et al. | May 2010 | B2 |
7736332 | Carlyon et al. | Jun 2010 | B2 |
7736339 | Woehr et al. | Jun 2010 | B2 |
7744567 | Glowacki et al. | Jun 2010 | B2 |
7935080 | Howell | May 2011 | B2 |
7988664 | Fiser et al. | Aug 2011 | B2 |
8062261 | Adams | Nov 2011 | B2 |
8308691 | Woehr et al. | Nov 2012 | B2 |
8328762 | Woehr et al. | Dec 2012 | B2 |
8333735 | Woehr et al. | Dec 2012 | B2 |
8337463 | Woehr et al. | Dec 2012 | B2 |
8348893 | Carlyon | Jan 2013 | B2 |
8357119 | Stout et al. | Jan 2013 | B2 |
8361020 | Stout | Jan 2013 | B2 |
8361038 | McKinnon et al. | Jan 2013 | B2 |
8382718 | Woehr | Feb 2013 | B2 |
8388583 | Stout et al. | Mar 2013 | B2 |
8414539 | Kuracina et al. | Apr 2013 | B1 |
8419688 | Woehr et al. | Apr 2013 | B2 |
8444605 | Kuracina et al. | May 2013 | B2 |
8460247 | Woehr et al. | Jun 2013 | B2 |
8469928 | Stout et al. | Jun 2013 | B2 |
8496623 | Burkholz | Jul 2013 | B2 |
8523828 | Callahan | Sep 2013 | B2 |
8540728 | Woehr et al. | Sep 2013 | B2 |
8545454 | Kuracina et al. | Oct 2013 | B2 |
8591467 | Walker et al. | Nov 2013 | B2 |
8591468 | Woehr et al. | Nov 2013 | B2 |
8597249 | Woehr et al. | Dec 2013 | B2 |
8679063 | Stout et al. | Mar 2014 | B2 |
8740859 | McKinnon et al. | Jun 2014 | B2 |
8764711 | Kuracina et al. | Jul 2014 | B2 |
8926564 | King et al. | Jan 2015 | B2 |
8939938 | Funamura et al. | Jan 2015 | B2 |
8951230 | Tanabe et al. | Feb 2015 | B2 |
9056188 | Hager et al. | Jun 2015 | B2 |
9089671 | Stout et al. | Jul 2015 | B2 |
9114241 | Stout et al. | Aug 2015 | B2 |
9149625 | Woehr et al. | Oct 2015 | B2 |
9149626 | Woehr et al. | Oct 2015 | B2 |
8932259 | Stout et al. | Nov 2015 | B2 |
9358364 | Isaacson et al. | Jun 2016 | B2 |
9370641 | Woehr et al. | Jun 2016 | B2 |
9408632 | Erskine | Aug 2016 | B2 |
9592152 | Griffis et al. | Mar 2017 | B2 |
9717886 | Kuehn et al. | Aug 2017 | B2 |
10729890 | Harding et al. | Aug 2020 | B2 |
20010053895 | Vaillancourt | Dec 2001 | A1 |
20020128604 | Nakajima | Sep 2002 | A1 |
20020169418 | Menzi et al. | Nov 2002 | A1 |
20030057392 | Ito | Mar 2003 | A1 |
20030060774 | Woehr et al. | Mar 2003 | A1 |
20030195471 | Woehr et al. | Oct 2003 | A1 |
20040116856 | Woehr et al. | Jun 2004 | A1 |
20040204689 | Lynn | Oct 2004 | A1 |
20040225260 | Villa et al. | Nov 2004 | A1 |
20050010176 | Dikeman et al. | Jan 2005 | A1 |
20050043684 | Basta et al. | Feb 2005 | A1 |
20050075609 | Latona | Apr 2005 | A1 |
20050107740 | Jensen et al. | May 2005 | A1 |
20050113755 | Greene et al. | May 2005 | A1 |
20060074384 | Kohler | Apr 2006 | A1 |
20060155245 | Woehr | Jul 2006 | A1 |
20060178635 | Callaway | Aug 2006 | A1 |
20060200080 | Abulhaj | Sep 2006 | A1 |
20060264828 | Woehr et al. | Nov 2006 | A1 |
20070038186 | Sutton et al. | Feb 2007 | A1 |
20070083162 | O'Reagan et al. | Apr 2007 | A1 |
20070129689 | Woehr et al. | Jun 2007 | A1 |
20070176414 | McBee et al. | Aug 2007 | A1 |
20070233007 | Adams | Oct 2007 | A1 |
20070270754 | Soderholm | Nov 2007 | A1 |
20080065015 | Fisher et al. | Mar 2008 | A1 |
20080097343 | Woehr | Apr 2008 | A1 |
20080140004 | Thorne | Jun 2008 | A1 |
20080140011 | Hager et al. | Jun 2008 | A1 |
20080147009 | Nilsson | Jun 2008 | A1 |
20080208132 | Funamura et al. | Aug 2008 | A1 |
20080243086 | Hager et al. | Oct 2008 | A1 |
20090157013 | Wong | Jun 2009 | A1 |
20090163861 | Carlyon | Jun 2009 | A1 |
20090182280 | Glowacki et al. | Jul 2009 | A1 |
20090281499 | Harding et al. | Nov 2009 | A1 |
20090312711 | Brimhall | Dec 2009 | A1 |
20100137803 | Funamura et al. | Jun 2010 | A1 |
20100191189 | Harding et al. | Jul 2010 | A1 |
20100204648 | Stout et al. | Aug 2010 | A1 |
20100204660 | McKinnon et al. | Aug 2010 | A1 |
20100217208 | Snow | Aug 2010 | A1 |
20100222746 | Burkholz | Sep 2010 | A1 |
20110046570 | Stout et al. | Feb 2011 | A1 |
20110054403 | Tanabe et al. | Mar 2011 | A1 |
20110160662 | Stout et al. | Jun 2011 | A1 |
20110213307 | Kawai et al. | Sep 2011 | A1 |
20110288482 | Farrell et al. | Nov 2011 | A1 |
20120065612 | Stout | Mar 2012 | A1 |
20120078200 | Woehr et al. | Mar 2012 | A1 |
20120123354 | Woehr | May 2012 | A1 |
20120136311 | Knutsson | May 2012 | A1 |
20120220957 | Kuracina et al. | Aug 2012 | A1 |
20120238966 | Kuracina et al. | Sep 2012 | A1 |
20120277679 | Steube | Nov 2012 | A1 |
20130030370 | Walker et al. | Jan 2013 | A1 |
20130090607 | McKinnon | Apr 2013 | A1 |
20130090609 | Sonderegger et al. | Apr 2013 | A1 |
20130178807 | Baid | Jul 2013 | A1 |
20130184645 | Baid | Jul 2013 | A1 |
20130226141 | King et al. | Aug 2013 | A1 |
20130245587 | Tremblay | Sep 2013 | A1 |
20130253443 | Woehr et al. | Sep 2013 | A1 |
20130324930 | Fuchs et al. | Dec 2013 | A1 |
20140012203 | Woehr et al. | Jan 2014 | A1 |
20140018738 | Steube | Jan 2014 | A1 |
20140276434 | Woehr et al. | Sep 2014 | A1 |
20140364809 | Isaacson et al. | Dec 2014 | A1 |
20150151088 | Lim et al. | Jun 2015 | A1 |
20160015941 | Tanabe et al. | Jan 2016 | A1 |
20160106959 | Woehr | Apr 2016 | A1 |
20160114137 | Woehr et al. | Apr 2016 | A1 |
20160158503 | Woehr | Jun 2016 | A1 |
20160158526 | Woehr | Jun 2016 | A1 |
20170348518 | Ma et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2006203664 | Feb 2008 | AU |
2133053 | Mar 1995 | CA |
1758929 | Apr 2006 | CN |
1871043 | Nov 2006 | CN |
101791447 | Aug 2010 | CN |
202005932 | Oct 2011 | CN |
202682467 | Jan 2013 | CN |
106470607 | Mar 2017 | CN |
0352928 | Jan 1990 | EP |
1558311 | Aug 2008 | EP |
2204204 | Jul 2010 | EP |
2228093 | Sep 2010 | EP |
2319556 | May 2011 | EP |
2343095 | Jul 2011 | EP |
2489393 | Aug 2012 | EP |
2566543 | Mar 2013 | EP |
2617447 | Jul 2013 | EP |
1656168 | Dec 2013 | EP |
2803376 | Nov 2014 | EP |
2508570 | Jun 2014 | GB |
H1057497 | Mar 1998 | JP |
2001-514943 | Sep 2001 | JP |
2002126080 | May 2002 | JP |
2002-263197 | Sep 2002 | JP |
3786312 | Mar 2006 | JP |
2008-173206 | Jul 2008 | JP |
2009538187 | Nov 2009 | JP |
2010510038 | Apr 2010 | JP |
2010510039 | Apr 2010 | JP |
4518609 | May 2010 | JP |
2010099534 | May 2010 | JP |
2014528330 | Oct 2010 | JP |
2011-115630 | Jun 2011 | JP |
3170612 | Sep 2011 | JP |
2012-517326 | Aug 2012 | JP |
2013115630 | Jun 2013 | JP |
2013-192868 | Sep 2013 | JP |
2014528331 | Oct 2014 | JP |
2015-160061 | Sep 2015 | JP |
2015-173972 | Oct 2015 | JP |
2017533770 | Nov 2017 | JP |
173383 | Aug 2011 | SG |
WO-1993005840 | Apr 1993 | WO |
WO-1995022364 | Aug 1995 | WO |
9924092 | May 1999 | WO |
WO-2001012249 | Feb 2001 | WO |
0193940 | Dec 2001 | WO |
0195958 | Dec 2001 | WO |
WO-2001093940 | Dec 2001 | WO |
WO-2003011381 | Feb 2003 | WO |
WO-2004004819 | Jan 2004 | WO |
WO-2005042073 | May 2005 | WO |
WO-2007139740 | Dec 2007 | WO |
2008064332 | May 2008 | WO |
WO-2008052791 | May 2008 | WO |
WO-2008064332 | May 2008 | WO |
2009154824 | Dec 2009 | WO |
WO-2010093791 | Aug 2010 | WO |
WO-2012009028 | Jan 2012 | WO |
WO-2012020633 | Feb 2012 | WO |
WO-2012133428 | Oct 2012 | WO |
WO-2013014639 | Jan 2013 | WO |
2013052666 | Apr 2013 | WO |
WO-2013051242 | Apr 2013 | WO |
WO-2013052661 | Apr 2013 | WO |
WO-2013052665 | Apr 2013 | WO |
2013137348 | Sep 2013 | WO |
2013162461 | Oct 2013 | WO |
WO-2014054166 | Apr 2014 | WO |
2014126865 | Aug 2014 | WO |
2014197656 | Dec 2014 | WO |
WO-2015024904 | Feb 2015 | WO |
2015161296 | Oct 2015 | WO |
2016077234 | May 2016 | WO |
2014162377 | Feb 2017 | WO |
Entry |
---|
Singapore Office Action dated Jan. 29, 2020 in Singapore Patent Application No. 11201708370P. |
Japanese Office Action dated Jan. 28, 2020 in Japanese Patent Application No. 2017-554341. |
US 5,755,409, 08/1979, Sigmund (withdrawn) |
Dual Protection Safety I.V. Catheter Supercath (TM) 5, a New Generation of Safety I.V. Catheter, www.medikit.co.jp/english/. |
Singapore Office Action dated Nov. 12, 2019 in Singapore Patent Application No. 11201708371S. |
Brazilian Office Action dated Feb. 4, 2020 in Brazilian Patent Application No. 112015030658-6. |
Number | Date | Country | |
---|---|---|---|
20200094026 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
61832512 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14295953 | Jun 2014 | US |
Child | 16678650 | US |