The present invention relates to a positioning control system for an actuator for reducing rotational output of a motor via a wave gear device and outputting the reduced output from a load shaft. More specifically, the present invention relates to a positioning control system for an actuator provided with a wave gear device, designed so that an exact linearization method can be used to suppress the loss of positioning control precision for a load shaft due to nonlinear spring characteristics, relative rotation-synchronous components, and nonlinear friction of the wave gear device.
Certain actuators use a wave gear device as a reducer for reducing and outputting the rotation of a motor. A known example of a controller for controlling the positioning of an actuator of this configuration is a semi-closed loop control system in which the rotational position and rotational speed of a motor shall are detected by an encoder attached to the motor shall, and are used as a basis for controlling the rotation of a load shaft, which is the output shall of the reducer. In a semi-closed loop control system, the characteristics of the wave gear device have a great effect on the positioning control characteristics of the load shaft because the driving of the motor is not controlled by directly detecting the rotational information of the load shaft.
The wave gear device has nonlinear spring characteristics and nonlinear friction that come with hysteresis due to a unique structure that uses the elastic deformation of the gear thereof. The vibration or angular transmission error (relative rotation-synchronous component) that occurs synchronously with rotation due to gear machining errors or assembly errors causes steady state deviation or vibration, particularly in the load position of the semi-closed loop control system. Therefore, a control system that can uniformly compensate such nonlinear characteristics is needed in order to achieve high precision control of the load shaft.
Exact linearization methods for input/output relationships are known as examples of methods for controlling objects to be controlled including nonlinear elements.
In the specification and drawings of JP Application No. 2010-090695 (filed on Apr. 9, 2010), the inventors and others propose that in a semi-closed loop control system of an actuator for reducing rotational output of a motor via a wave gear device and outputting the reduced rotation from a load shaft, an exact linearization method is used to suppress the loss of load shaft positioning control precision due to the nonlinear spring characteristics of the wave gear device for which a clear analysis and control method has not been established. Specifically, as a nonlinear characteristic compensation method for a wave gear device, the inventors propose nonlinear spring compensation based on an exact linearization method for the nonlinear spring characteristics between the motor shaft and load shaft of the wave gear device.
An object of the present invention is to provide a positioning control system for an actuator provided with a wave gear device, wherein compensation based on an exact linearization method for the nonlinear characteristics of the wave gear device is extended not only to nonlinear spring characteristics but also to an angular transmission error component and nonlinear friction.
To solve the problems described above, according to the present invention, there is provided a positioning system for controlling the driving of an actuator which reduces the rotation of a motor via a wave gear device and transmits the reduced rotation to a load shaft, and for controlling the positioning of the load shaft; the system comprising a semi-closed loop feedback control element for feeding back a motor shaft position θm to control the positioning of the load shaft, and a feedforward linearization compensator for compensating positioning errors in the load shaft due to nonlinear elements of the actuator. The nonlinear elements for which compensation is to be performed include instances of: only a relative rotation-synchronous component; only nonlinear friction; both a relative rotation-synchronous component and nonlinear spring characteristics; both nonlinear friction and nonlinear spring characteristics; both a relative rotation-synchronous component and nonlinear friction; and nonlinear spring characteristics, a relative rotation-synchronous component, and nonlinear friction. The feedforward linearization compensator is obtained from the equivalent conversion of a feedback linearization compensator into a feedforward compensator, by incorporating a nonlinear plant model representing the actuator to be controlled into a feedback linearization compensator based on an exact linearization method.
The nonlinear plant model is defined by the nonlinear state equation shown in formula (6), the state quantity being x=[θl, ωl, θm, ωm]T.
By adding linearization feedback α(x) and an input variable β(x), with the state quantity x as an argument, to the nonlinear plant model, the feedback linearization compensator brings the characteristic from the input v to the output y of the expanded system to d3y/dt3=v, the linearization feedback α(x) being defined by formula (9) and the input variable β(x) being defined by formula (10).
Furthermore, the feedforward linearization compensator uses a load jerk command jref as the input v, calculates a feedforward current command i*ref as the output y using a state quantity estimation value x* calculated based on the nonlinear plant model, and calculates a feedforward motor position command θm to be input to the feedback controller.
The nonlinear spring characteristics in the present invention are nonlinear spring characteristics of the wave gear device relative to load torque defined by formula (1), and the coefficients Kg1, Kg2, Kg3 of various degrees of formula (1) are set so as to make it possible to reproduce experiment nonlinear spring characteristics obtained by adding load torque to the actuator and measuring the relationship between load torque and the twisting angle between the motor and load shafts.
τg(θtw)=Kg3θtw3+Kg2θtw2+Kg1θtw (1)
Among the angular transmission errors of the wave gear device, the relative rotation-synchronous component in the present invention is an angular transmission error defined by formula (3), the relative rotation-synchronous component being the motor shaft synchronous component θTEM produced synchronously with the rotation of the motor shaft. The angular transmission error when a minute angle-feeding action of the actuator has stabilized is measured for one rotation of the load shaft, and a spectral analysis is conducted in which the experiment relative rotation-synchronous component relative to the motor position has undergone Fourier transformation. Based on this, the amplitude Ak and phase φk of the integral multiple harmonic component of the motor rotation in formula (3) are set so that the experiment relative rotation-synchronous component can be reproduced.
Of the nonlinear friction of the wave gear device, the nonlinear friction in the present invention comprises the motor shaft friction τm (ωm) and the load shaft friction τl (τl), which are static friction dependent on speed and are defined respectively by formula (4) and formula (5). The motor torque is measured during a constant motor speed, and the parameters Cm, Cl, Bm, and Bl of formula (4) and formula (5) are set so as to make it possible to reproduce the experiment friction characteristics obtained from a constant speed driving test in which motor torque is treated as frictional torque.
τm(ωm)=Cm tan h(Bmωm) (4)
τl(ωl)=Cl tan h(Blωl) (5)
The feedforward linearization compensator preferably compensates positioning errors of the load shaft due to the nonlinear spring characteristics, the relative rotation-synchronous component, and the nonlinear friction.
To compensate positioning errors due to a dead time element e−Ls in the control system, the feedforward linearization compensator uses the Smith method to delay the feedforward motor position command θ*m by a preset dead time L, and then supplies the command to the feedback controller.
The present invention proposes a model base control system for nonlinear spring characteristics, a relative rotation-synchronous component, and nonlinear friction, which are nonlinear characteristics of a wave gear device, for the purpose of improving positioning performance of a positioning mechanism that includes the wave gear device. Modeling is performed as a differentiable function on these nonlinear characteristics, and a positioning control system is designed which uses feedforward compensation based on exact linearization. According to the system of the present invention, overshooting caused by nonlinear springs and nonlinear friction can be inhibited to shorten positioning time in the operation of positioning an actuator provided with a wave gear device, and response contained vibration and load positioning variation during stabilizing due to angular transmission error can be suppressed,
The following is a description, made with reference to the drawings, of a nonlinear characteristic compensation method using an exact linearization method in a positioning control system for an actuator provided with a wave gear device to which the present invention is applied.
[Device Configuration of Actuator Provided with Wave Gear Device]
The actuator 1 acquires reduced rotation of a motor 2 via a wave gear device 5 as a reducer, and rotatably drives a load apparatus 7. A positioning control system 10 for the actuator 1 constitutes a semi-closed control system which uses position information of an encoder 4 installed on a motor shaft 3 of the motor 2 to position the load apparatus 7 connected to an output shaft 6 of the wave gear device 5, and the positioning control system uses a position proportional-speed proportional integral (P-PI) compensator for feedback control. The inertia ratio between the motor 2 and the load is approximately 1:3 after being converted by the motor shaft. To model the nonlinear elements of the wave gear device 5 and to evaluate the nonlinear compensation results, the position of the load shaft 8 of the load apparatus rotatably driven by the actuator 1 is measured by a load shaft encoder 9.
[Modeling Actuator Including Nonlinear Elements of Wave Gear Device]
In the present invention, the actuator 1 is modeled in the following manner, accounting for the application of the exact linearization method.
The actuator 1 provided with a wave gear device is commonly treated as a two-inertial model accounting for torsion characteristics, because torsional vibration between the motor and load shafts is induced when motor torque or load torque is applied.
The nonlinear spring characteristics, angular transmission error, and nonlinear friction of the wave gear device are all modeled below as nonlinear elements included in the object to be controlled. Design specification values are used for linear parameters other than these nonlinear elements, and Table 2 shows the constants thereof.
(Modeling Nonlinear Spring Characteristics)
To measure the nonlinear spring characteristics, an arm and a weight were attached to the load shaft and load torque was applied by gravity with the motor shaft in a servo-locked state, and the load torque and the twisting angle between the motor and load shafts were measured. The load torque was then gradually increased, after which load torque was applied in the opposite direction, and a series of nonlinear spring characteristic measurements were taken until a zero-load state was reached. The static nonlinear spring characteristics are shown by the solid line (experiment) in
Concerning these characteristics, the nonlinear spring characteristics τg (θtw) are expressed by the following formula (1) using a non-hysteretic third-order polynomial that can be differentiated for the twisting angle θtw between the motor and load shafts.
τg(θtw)=Kg3θtw3+Kg2θtw2+Kg1θtw (1)
Kg3 to Kg1, which are coefficients of various degrees of the polynomial, were determined by applying the least-squares method to the measurement results. The values of these parameters are shown in Table 3, and a model of the identified nonlinear spring characteristics is shown as well by the dashed line (model) in
(Modeling Angular Transmission Error)
The angular transmission error θTE is generally defined by the following formula (2), using the motor shaft position θm, the load shaft position θl, and the reduction ratio N.
The relative rotation-synchronous component θSync of the angular transmission error, which is the object to be compensated in the present invention, is a component produced by assembly errors such as accumulated pitch error in the flex spline (FS) and circular spline (CS) constituting the wave gear device, and axial misalignment between the wave gear device and the load. The relative rotation-synchronous component θSync is also produced in synchronization with the relative rotations of the wave generator (WG), the FS, and the CS. Therefore, θSync can be expressed as a sum of the motor shaft synchronous component θTEM, the load shaft synchronous component θTEL, and the FS-WG relative synchronous component θTERE, by superposing sine waves that use as an argument. Because θTEL and θTERE require load position information, it is essentially impossible for them to be compensated in a semi-closed control system. In view of this, θSync is modeled below in the following formula (3), using only θTEM as a relative rotation-synchronous component.
When the relative rotation-synchronous components are modeled, the angular transmission error when the minute angle-feeding action has stabilized is measured for one rotation of the load shaft, a spectral analysis is conducted in which angular transmission error characteristics relative to the motor position have undergone Fourier transformation, the amplitude Ak and phase φk of the integral multiple harmonics of the motor rotation are extracted, and formula (3) is identified.
(Modeling Nonlinear Friction)
Nonlinear friction is classified as one of two main types of friction: static friction, which is dependent on speed and is dominant in the positioning actions of long strokes; and dynamic friction, which is dependent on the displacement associated with elasticity and is dominant in very small strokes. In the present invention, static friction dependent on speed is modeled because the objective is positioning that considered to be that of long strokes for both the motor and load shafts. The solid line (experiment) in
τm(ωm)=Cm tan h(Bmωm) (4)
Cm and Cl are allocated to the motor shaft and the load shaft so as to reproduce the experiment positioning time response, on the basis of the constant speed driving test results. These parameters are shown in Table 3 presented previously, and the dashed line (model) of
[Nonlinear Compensation Based on Exact Linearization Method]
In applying exact linearization to the object to be controlled, when the state quantity is chosen as x=[θl, ωl, θm, ωm]T from the block line diagram of the object to be controlled shown in
The dead time element e−Ls is not included in the formula above because the effects thereof are compensated by the Smith method, described hereinafter. The relative rotation-synchronous component θSync(θm) does not appear in formula (6) because it is included in the twisting angle θtw and the twisting speed ωtw=dθtw/dt of formula (7) and formula (8).
When the time portion of the final control quantity y of formula (6) is repeated until the control input i emerges on the right side, i appears in the quantity d3y/dt3 which is a third-order differential of y, and α(x) and β(x) are given by formula (9) and formula (10).
When the above quantities α(x) and β(x) are applied, the input/output characteristic of the expanded system in
In formula (9), α(x) includes a first-order differential of τg(θtw), a second-order differential of θSync, and a first-order differential of τl(ωl). According to the modeling of the nonlinear elements previously discussed, the differential coefficients dτg(θtw)/dt, d2θSync(θm)/dt2, and dτl(ωl)/dt pertaining to the nonlinear elements arc calculated as shown below using formulas (1), (3), and (5).
In applying these formulas to experiments of the linearization method, α(x) includes all state quantities x according to formula (9), but because the state quantity of the load shaft cannot be detected by the positioning control system of the present invention which is a semi-closed control system, it is not possible to implement the system in this state. Furthermore, because there is a finite dead time element, it must be compensated as well. In view of this, implementation in a semi-closed control system and dead time compensation are addressed by an equivalent conversion of the feedback (FB) linearization compensation in
Specifically, in the FF linearization compensator 11 of the positioning control system 10 as shown in
Not only can the method of the present invention be implemented in a semi-closed control system; it also has the advantage of not requiring stable analysis of a FB system in a linearization compensator because the compensation is essentially FF compensation.
[Experiment Verification of Nonlinear Compensation]
A positioning control system constructed as described above for performing nonlinear compensation based on an exact linearization method was implemented in an experiment positioning control system, and the compensation effects thereof were verified through testing.
(Positioning Test Conditions)
Among the nonlinear elements treated as objects to be controlled, the angular transmission errors and relative rotation-synchronous components are the causes of steady-state deviation and vibration inducement in the load position, and the gear meshing conditions of the wave gear device must therefore be taken into account when setting a positioning-feeding angle for the experiment validation. In view of this, to evaluate variation in steady-state deviation of the static load position, the evaluation is made according to the feed angle whereby the meshing of the gears changes, so that the stabilized relative rotation-synchronous component has a different value with each positioning.
When evaluating vibration during a dynamic positioning action, the effect of the relative rotation-synchronous component differs with each positioning at a feed angle at which the meshing of the gears changes with each response, the vibrations from the relative rotation-synchronous component in the positioning responses cancel each other out when a plurality of responses are averaged, and an appropriate evaluation cannot be conducted. Therefore, in setting the feed angle, the value of 6.05 motor rotations=45.56 Load deg, at which meshing of the gears changes with each positioning (static characteristic compensation test), is selected when evaluating variation in static load position steady-state deviation, and the value of 6 motor rotations=43.2 Load deg, at which meshing is constant with each positioning (dynamic characteristic compensation test), is selected when evaluating vibration in the dynamic positioning action, allowing independent assessments to be performed. The conventional control system used for comparing the control results is a two-degree-of-freedom control system based on an irreducible factored expression that does not account for nonlinear characteristics.
(Test Results)
Static Compensation Characteristics
A continuous unidirectional positioning action with a feed angle of 43.56 Load deg (240 times, in feed intervals of 1.25 s) was performed with the objective of evaluating the static compensation precision of the control system of the present invention. The top rows in
According to the motor position responses in the top rows and the load position responses in the middle rows of
To statistically and quantitatively evaluate the static compensation results described above, the variation in the load position steady-state deviation was compared with the average stabilization time of 240 positionings, using a standard deviation of 3σ as an index. Table 4 shows a comparison of index values. The bottom row of items shows evaluation values that have been standardized with the conventional control system as a reference, and according to this table, the control system of the present invention can reduce positioning time to 90% of that of the conventional control system, and can reduce variation in the load position to 64%.
Dynamic Compensation Characteristics
To evaluate dynamic compensation characteristics, the test was performed with a feed angle of 43.2 Load deg and the other conditions identical to those of the static compensation precision evaluation, and the results are shown in
According to the load position response in the middle rows of
From the descriptions above, it is clear that the control system of the present invention can suppress overshooting due to nonlinear springs and nonlinear friction, shorten positioning time, and inhibit vibration in the response and load position variation during stabilization due to angular transmission errors. According to compensation evaluation testing using a testing apparatus, positioning time was shorted to 90% by overshooting suppression during stabilization, variation during stabilization was condensed to 64%, and reduction of the vibration of the load shaft in the positioning response was successfully achieved.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/005951 | 10/24/2011 | WO | 00 | 2/25/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/061362 | 5/2/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6515442 | Okubo et al. | Feb 2003 | B1 |
20090200979 | Sasaki et al. | Aug 2009 | A1 |
20100092248 | Kim | Apr 2010 | A1 |
20110054820 | Sasaki et al. | Mar 2011 | A1 |
20110248661 | Okitsu et al. | Oct 2011 | A1 |
20120271459 | Okitsu et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
63-66611 | Mar 1988 | JP |
2000-187404 | Aug 2009 | JP |
2010-90695 | Apr 2010 | JP |
WO 2010116607 | Oct 2010 | WO |
Entry |
---|
International Search Report (PCT/ISA/210) mailed on Nov. 15, 2011, by the Japanese Patent Office as the International Searching Authority for International Application No. PCT/JP2011/005951. |
Ishijima et al., Nonlinear System Theory, Measurement Automatic Control Society Compilation, Corona Publishing Co., Ltd., pp. 141-168, 1993. |
Godler Ivan, Haguruma Gensokuki no Kakudo Dentatsu Gos ni Kiin suru Sokudo Hendo no Yokusei Seigyo, Journal of the Society of Instrument and Control Engineers, Oct. 2000, vol. 39, No. 10, pp. 651-654. |
Toshiaki Miyazaki, Robust Speed Control for Robot Arm with Angular Transmission Error of Gear, Dai 16 Kai Annual Conference of the Robotics Society of Japan Yokoshu, The Robotics Society of Japan, Sep. 18, 1998, pp. 443-444. |
Number | Date | Country | |
---|---|---|---|
20140203752 A1 | Jul 2014 | US |