Power device with trenches having wider upper portion than lower portion

Information

  • Patent Grant
  • 7595524
  • Patent Number
    7,595,524
  • Date Filed
    Monday, March 17, 2008
    16 years ago
  • Date Issued
    Tuesday, September 29, 2009
    15 years ago
Abstract
A field effect transistor includes a plurality of trenches extending into a silicon layer. Each trench has upper sidewalls that fan out. Contact openings extend into the silicon layer between adjacent trenches such that each trench and an adjacent contact opening form a common upper sidewall portion. Body regions extend between adjacent trenches, and source regions extend in the body regions adjacent opposing sidewalls of each trench. The source regions have a conductivity type opposite that of the body regions.
Description
BACKGROUND OF THE INVENTION

The present invention relates to semiconductor MOSFET technology and more particularly to a trench MOSFET having self-aligned features.


Power MOSFETs (metal oxide semiconductor field effect transistors) are well known in the semiconductor industry. One variety of power MOSFETs is the vertically-conducting trench MOSFET. A cross-section view of such a MOSFET is shown in FIG. 1. MOSFET 100 has trenches 111 each including a polysilicon gate 112 insulated from body regions 114 by a gate dielectric 110. Source regions 116 flank each side of trenches 111. Dielectric layer 120 insulates gates 112 from overlying metal layer 126. Substrate region 102 forms the drain of MOSFET 100.


When MOSFET 100 is biased in the on state, current flows vertically between source regions 116 and substrate 102. The current capability of MOSFET 100 in the on state is a function of the drain to source resistance (Rdson). To improve the current capability of the MOSFET, it is necessary to reduce the Rdson. One way to reduce the Rdson of the trench MOSFET is to increase the trench density (i.e., to increase the number of trenches per unit area). This may be achieved by reducing the cell pitch. However, reducing the cell pitch of MOSFETs is limited by the particulars of the MOSFET cell structure and the specific process recipe used to manufacture the MOSFET. Reducing the cell pitch is made further difficult by such limitations of the manufacturing process technology as the minimum critical dimensions the photolithography tools are configured to resolve, the minimum required spacing between different cell regions as dictated by the design rules, and the misalignment tolerances.


The different dimensions that determine the minimum cell pitch for trench MOSFET 100 are shown in FIG. 1. Dimension A is the minimum trench width the photolithography tools are configured to resolve, dimension B is the minimum contact opening the photolithography tools are configured to resolve, dimension C is the minimum trench-to-contact spacing dictated by the design rules, and dimension D is the contact registration error tolerance or contact misalignment tolerance. The minimum cell pitch for MOSFET 100 thus equals A+B+2C+2D. Reduction of any of these dimensions without complicating the process technology is difficult to achieve.


Thus, a new approach wherein the cell pitch of the trench MOSFET can be reduced without increasing the process complexity is desirable.


BRIEF SUMMARY OF THE INVENTION

In accordance with an embodiment of the invention, a field effect transistor includes a plurality of trenches extending into a silicon layer. Each trench has upper sidewalls that fan out. Contact openings extend into the silicon layer between adjacent trenches such that each trench and an adjacent contact opening form a common upper sidewall portion. Body regions extend between adjacent trenches, and source regions extend in the body regions adjacent opposing sidewalls of each trench. The source regions have a conductivity type opposite that of the body regions.


In one embodiment, a metal layer extends into each contact opening for contacting the regions along sidewalls of the source regions.


In another embodiment, the entirety of each source region is disposed below a corresponding one of the common upper sidewalls.


In another embodiment, each of the common upper sidewalls together with a sidewall of a corresponding source region form a sidewall of a contact opening.


In another embodiment, the FET includes a gate electrode recessed in each trench, a gate dielectric insulating the gate electrode from adjacent body regions, and a dielectric region extending in each trench over the gate electrode.


In another embodiment, the dielectric region has at least a portion that is fully contained within each trench, and sidewalls of the at least a portion of the dielectric region together with sidewalls of adjacent source regions form sidewalls of the contact openings.


In yet another embodiment, the dielectric region has at least a portion that: (a) is fully contained within each trench, and (b) defines upper portions of opposing sidewalls of the contact openings.


In yet another embodiment, the dielectric region has a portion that: (a) is fully contained within each trench, and (b) extends directly over at least a portion of an adjacent source region.


The following detailed description and the accompanying drawings provide a better understanding of the nature and advantages of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a cross-section view of a conventional trench MOSFET;



FIGS. 2A-2K show cross-section views at different stages of manufacturing a trench MOSFET in accordance with an embodiment of the present invention;



FIG. 3 is a graph showing the effect of cell pitch reduction on Rdson;



FIGS. 4A and 4B show an alternate method for forming trenches in accordance with another embodiment of the invention; and



FIG. 5 is an exemplary cross-section view corresponding to that in FIG. 2K, and is provided to show a more accurate representation of the contours of the trenches in accordance with one embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, a structure and method for forming a trench MOSFET having self-aligned features which result in cell pitch reduction without increasing the process complexity are disclosed. In one embodiment, trenches are formed in an epitaxial layer in such manner that the trench sidewalls fan out near the top of the trench over source regions. An insulating layer formed along a top portion of each trench together with the source regions defines the contact openings between adjacent trenches for contacting the source and body regions. This structure and method of forming the trenches leads to a MOSFET which has source regions and contact openings self-aligned to the trenches. This in turn enables the 2D portion of the cell pitch of prior art MOSFET 100 (FIG. 1) to be eliminated and the dimension B to be reduced to thus obtain a reduced cell pitch without introducing any process complexities



FIGS. 2A-2K are cross-section views at different stages of manufacturing a trench MOSFET in accordance with an embodiment of the present invention. In FIG. 2A, a lightly doped N-type epitaxial layer 204 extends over a highly-doped N-type substrate 202. A layer of a material which is resistant to silicon etch having a thickness in the range of 2,000-10,000 Å is formed over epitaxial layer 204. In one embodiment, an oxide layer having a thickness of about 5,000 Å is used. Using a masking step, predefined portions of the layer of material resistant to silicon etch are removed so that only regions 206 remain. In the embodiment wherein an oxide layer is used, conventional dry or wet etch may be used to remove the predefined portions of the oxide layer.


In FIG. 2B, a first silicon etch is carried out to form a mid-section 208 of a plurality of trenches. The spacing between regions 206 defines the width of mid-section 208 which is in the range of 0.2-2.0 μm. Mid-section 208 extends from the exposed surface areas of epitaxial layer 204 to a depth in the range of 0.5-3.0 μm. In one embodiment, the width and depth of mid-section 208 are about 0.35 μm and 1.0 μm, respectively. Conventional methods for etching silicon, for example, reactive ion etching (REI), may be used to form mid-section 208 of the trenches.


In FIG. 2C, portions of regions 206 are removed to expose additional surface areas 207 of epitaxial layer 204. Smaller regions 206a having a thickness in the range of 1,000-9,000 Å thus remain. In the embodiment where regions 206 are from oxide, regions 206 are isotropically etched so that smaller oxide regions 206a having a thickness of about 2,500 Å remain.


In FIG. 2D, a second silicon etch is carried out to remove portions of epitaxial layer 204 along its exposed surfaces to thereby form outer sections 208b of the trenches. As shown, mid-section 208a extends deeper than outer sections 208b. Outer sections 208b extend from surface areas 208b of epitaxial layer 204 to a depth in the range of 0.1-1.0 μm. In one embodiment, the depth of outer sections 208b is about 0.4 μm. Note that the second silicon etch also removes silicon from along the bottom of the mid-section 208 though it is not necessary to do so. As with the first silicon etch, conventional methods for etching silicon, for example, reactive ion etching (REI), may be used for the second silicon etch.


While FIGS. 2A-2D show one method for forming trenches having a deep mid-section and shallow outer sections, the invention is not limited to this particular method. For example, an alternate method for forming trenches having similar physical characteristics is shown in FIGS. 4A and 4B. After forming isolated regions 206 of for example oxide or photoresist, as in FIG. 2A, an isotropic silicon etch is carried out so that openings 203 are created in epitaxial layer 204 between adjacent regions 206 as shown in FIG. 4A. The isotropic etch removes silicon from under regions 206 as shown. Next, keeping regions 206 intact, a conventional silicon etch is carried out to form deeper mid-sections 203a of the trenches as shown in FIG. 4B. As can be seen, each trench has a deep mid-section 203a and shallow outer sections 203b extending under regions 206.


Referring back to FIGS. 2A-2K, in FIG. 2E, remaining regions 206a may optionally be removed at this stage of the process. An insulating layer 210 is then formed along the surface of epitaxial layer 204 using conventional methods. Sidewalls of the trenches are thus coated with insulating layer 210. Insulating layer 210 has a thickness in the range of 50-1,000 Å. In one embodiment, insulating layer 210 is a gate oxide having a thickness of about 400 Å.


Next, using conventional polysilicon deposition techniques, a polysilicon layer 212 having a thickness in the range of 1,000-15,000 Å is deposited over insulating layer 210 to fill the trenches. In one embodiment, polysilicon layer 212 has a thickness of about 5,500 Å and is doped with impurities. In yet another embodiment, prior to forming polysilicon layer 212, a thick insulating layer is formed along the bottom of the mid-section 208a of the trenches. This advantageously reduces the gate capacitance of the MOSFET.


In FIG. 2F, polysilicon layer 212 is etched back to form gates 212a in mid-section 208a of the trenches. Polysilicon layer 212 is etched back such that its upper surface is recessed below the outer sections 208b of the trenches. This insures that no polysilicon is left in the outer sections 208b of the trenches which may otherwise short the gate to the source and also block the source and body implants carried out later in the process. However, the extent to which the polysilicon layer 212 is etched back must be carefully controlled to insure that at least a portion of the gate overlaps with the source regions formed in later steps. Conventional polysilicon etching techniques may be used to etch back polysilicon layer 212.


P-type body regions 214 are then formed in epitaxial layer 204 between adjacent trenches by implanting P-type impurities such as boron. The P-type implant is symbolically shown by arrows 218 which indicate that no mask is needed. Body regions 214 extend into epitaxial layer 204 to a depth primarily dictated by the target channel length. Next, highly-doped N-type regions 216 are formed in body regions 214 by implanting N-type impurities such as arsenic or phosphorous. N-type regions 216 extend along the top surface of body regions 214 and directly below outer sections 208b of the trenches. The N-type implant is symbolically shown by arrows 219 which indicate that no masking is needed for this implant either. Conventional ion implantation techniques may be used for both implant steps.


In FIG. 2G, a dielectric layer 220, such as BPSG, is formed over the entire structure using conventional techniques. Dielectric layer 220 has a thickness in the range of 2,000-15,000 Å. In one embodiment, the thickness of dielectric layer 220 is about 8,000 Å. Next, a conventional dielectric flow step is carried out to obtain a planar surface as shown in FIG. 2H. Dielectric layer 220a is then etched until silicon is reached as shown in FIG. 2I. After the dielectric etch, dielectric regions 220b which are fully contained in the trenches remain while surface areas of N-type regions 216 are exposed.


In FIG. 2J, a conventional silicon etch is carried out to form contact openings 222. Sufficient amount of silicon is removed so that along with the upper portion of N-type regions 216 a top layer of body regions 214 is also removed. This insures that: (i) a top surface of body regions 214a becomes exposed so that contact can be made to body regions 214a, (ii) of N-type region 216, source regions 216a separated by body regions 214a remain, and (iii) sidewall areas of source regions 216a become exposed so that contact can be made to source regions 216a. In FIG. 2K, metal layer 226 is deposited to contact body regions 214a and source regions 216a. Before metal 226 is deposited, a layer of heavily doped P-type region 224 may optionally be formed along the top surface of body regions 214a using conventional ion implantation techniques. The heavily doped region 224 helps achieve an ohmic contact between metal 226 and body region 214a. As shown, metal layer 224 is insulated from gates 212a by the dielectric layer 220b extending along the top surface of each trench.


Referring back to FIG. 2J, the silicon etch carried out to form contact openings 222 exposes portions of insulating layer 210 extending along the sidewalls of outer sections 208b of the trenches. As can be seen, the exposed portions of insulating layer 210 together with the exposed sidewall area of source regions 216a advantageously define contact openings 222 between adjacent trenches. Thus, with no masking steps used in forming either source regions 216a or contact openings 222, source regions 216a and contact openings 222 which are self-aligned to the trenches are formed.


Because source regions 216a and contact openings 222 are self-aligned to the trenches, the need to account for contact misalignment as in conventional techniques (dimension D in FIG. 1) is eliminated. Furthermore, the contact openings (dimension B in FIG. 1) can be made smaller than the photolithography tools are typically configured to resolve. Thus, not only the 2D term is eliminated from the minimum cell pitch A+B+2C+2D of the conventional trench MOSFET in FIG. 1, but the term B can be made much smaller. For the same process technology, a much smaller cell pitch is therefore obtained without increasing the process complexity.


The small cell pitch results in an increase in the number of trenches per unit area which in turn has the desirable effect of lowering the Rdson. This is more clearly shown in FIG. 3. FIG. 3 is a graph showing the effect of cell pitch reduction on Rdson. The vertical axis represents Rdson, and the horizontal axis represents the cell pitch. The numbers along the vertical axis are merely illustrative and do not reflect actual values of Rdson. Two curves are shown with the upper curve corresponding to a gate-source bias of 4.5V and the lower curve corresponding to a gate-source bias of 10V. For the same process technology, the self-aligned features of the present invention result in a reduction of the cell pitch from 1.8 μm to 1.0 μm. This cell pitch reduction results in about a 30% reduction in Rdson, in the case of 10V biasing and about a 25% reduction in the case of 4.5V biasing.


The cross-section views in FIGS. 2A-2K are merely illustrative and are not intended to limit the layout or other structural aspects of the cell array. Furthermore, these figures may not accurately reflect the actual shape of all the various regions as they would appear in an actual device. FIG. 5 is an exemplary cross-section view corresponding to that in FIG. 2K, and is provided to show a more accurate representation of the contours of the trenches in accordance with one embodiment of the invention. Because of the small dimensions of some of the regions and the effects of such processing steps as temperature cycles, a rounding of many of the corners occurs during processing. As a result, the trenches appear Y-shaped as shown in FIG. 5 rather than T-shaped as shown in FIG. 2K. However, it is to be understood that the invention is not limited to a particular shape of the trenches.


While the above is a complete description of the embodiments of the present invention, it is possible to use various alternatives, modifications and equivalents. For example, the process steps depicted in FIGS. 2A-2K are for manufacturing an N-channel MOSFET. Modifying these process steps to obtain an equivalent P-channel MOSFET would be obvious to one skilled in the art in light of the above teachings. Similarly, modifying the process steps to obtain other types of semiconductor devices such as insulated gate bipolar transistor (IGBT) would be obvious to one skilled in the art in light of the above teachings.


Also, body region 214 (FIG. 2F) may be formed earlier in the processing sequence. For example, in FIG. 2A, prior to forming regions 206, P-type impurities may be implanted into epitaxial layer 204 or a P-type epitaxial layer may be grown over epitaxial layer 204. Similarly, N-type regions 216 (FIG. 2F) may be formed earlier in the processing sequence. For example, a blanket implant of N-type impurities may be carried out to form a highly-doped N-type region in the body region before forming the trenches. The highly-doped N-type region however needs to extend deeper into the body region than that depicted in FIG. 2F so that after the trenches are formed, at least a portion of the N-type region extends below the outer sections of the trenches. Also, a deeper silicon etch would be required in FIG. 2J in order to reach a surface of the body region.


In a further variation, epitaxial layer 204 may have a graded doping concentration rather than a fixed doping concentration, or may be made of a number of epitaxial layers each having a different doping concentration, or may be eliminated all together depending on the design goals. Moreover, the trenches may extend clear through epitaxial layer 204 and terminate within substrate 202.


Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claim, along with their full scope of equivalents.

Claims
  • 1. A field effect transistor (FET) comprising: a plurality of trenches extending into a silicon layer, each trench having upper sidewalls that fan out with a substantially vertically-extending top portion;contact openings extending into the silicon layer between adjacent trenches such that each trench and an adjacent contact opening form a common upper sidewall portion corresponding to the substantially vertically-extending top portion;body regions extending between adjacent trenches; andsource regions extending in the body regions adjacent opposing sidewalls of each trench, the source regions having a conductivity type opposite that of the body regions.
  • 2. The FET of claim 1 further comprising a metal layer extending into each contact opening for contacting the regions along sidewalls of the source regions.
  • 3. The FET of claim 1 wherein the entirety of each source region is disposed below a corresponding one of the common upper sidewalls.
  • 4. The FET of claim 1 wherein each of the common upper sidewalls together with a sidewall of a corresponding source region form a sidewall of a contact opening.
  • 5. The FET of claim 1 further comprising: a gate electrode recessed in each trench;a gate dielectric insulating the gate electrode from adjacent body regions; anda dielectric region extending in each trench over the gate electrode.
  • 6. The FET of claim 5 wherein the dielectric region has at least a portion that is fully contained within each trench, and sidewalls of the at least a portion of the dielectric region together with sidewalls of adjacent source regions form sidewalls of the contact openings.
  • 7. The FET of claim 5 wherein the dielectric region has at least a portion that: (a) is fully contained within each trench, and (b) defines upper portions of opposing sidewalls of the contact openings.
  • 8. The FET of claim 5 wherein the dielectric region has a portion that: (a) is fully contained within each trench, and (b) extends directly over at least a portion of an adjacent source region.
  • 9. The FET of claim 1 wherein the source regions are self-aligned to the plurality of trenches.
  • 10. The FET of claim 1 wherein the contact openings are self-aligned to the plurality of trenches.
  • 11. A field effect transistor (FET) comprising: an epitaxial layer of a first conductivity type extending over a substrate of the first conductivity type, the epitaxial layer having a lower doping concentration than the substrate;a body region of a second conductivity type extending in an upper portion of the epitaxial layer, the second conductivity type being opposite the first conductivity type;a plurality of trenches extending through the body region and terminating within the epitaxial layer below the body region, each trench having upper sidewalls that fan out with a substantially vertically-extending top portion;contact openings extending into the body region between adjacent trenches such that each trench and an adjacent contact opening form a common upper sidewall corresponding to the substantially vertically-extending top portion; andsource regions of the first conductivity type extending in the body region adjacent opposing sidewalls of each trench.
  • 12. The FET of claim 11 further comprising a metal layer extending into each contact opening for contacting the source regions along sidewalls of the source regions.
  • 13. The FET of claim 11 wherein the entirety of each source region is disposed below a corresponding one of the common upper sidewalls.
  • 14. The FET of claim 11 wherein each of the common upper sidewalls together with a sidewall of a corresponding source region form a sidewall of a contact opening.
  • 15. The FET of claim 11 wherein the upper trench sidewalls that fan out also extend directly over at least a portion of corresponding source regions.
  • 16. The FET of claim 11 further comprising: a gate electrode recessed in each trench;a gate dielectric insulating each gate electrode from adjacent body regions; anda dielectric region extending over the gate electrode.
  • 17. The FET of claim 15 wherein the dielectric region has at least a portion that is fully contained within each trench, sidewalls of the at least a portion of the dielectric region together with sidewalls of adjacent source regions form sidewalls of the contact openings.
  • 18. The FET of claim 15 wherein the dielectric region has a portion that: (a) is fully contained within each trench, and (b) extends directly over at least a portion of an adjacent source region.
  • 19. The FET of claim 16 wherein the gate electrode is recessed in each trench below the upper trench sidewalls that fan out.
  • 20. The FET of claim 11 wherein the source regions are self-aligned to the plurality of trenches.
  • 21. The FET of claim 11 wherein the contact openings are self-aligned to the plurality of trenches.
  • 22. A field effect transistor (FET) comprising: an epitaxial layer of a first conductivity type extending over a substrate of the first conductivity type, the epitaxial layer having a lower doping concentration than the substrate;a body region of a second conductivity type extending in an upper portion of the epitaxial layer, the second conductivity type being opposite the first conductivity type;a plurality of trenches extending through the body region and terminating within the epitaxial layer below the body region, each trench having upper sidewalls that fan out with a substantially vertically-extending top portion;contact openings extending into the body region between adjacent trenches such that each trench and an adjacent contact opening form a common upper sidewall portion corresponding to the substantially vertically-extending top portion;a gate electrode recessed in each trench;a gate dielectric insulating each gate electrode from adjacent body regions;a dielectric region extending over the gate electrode;source regions of the first conductivity type extending in the body region adjacent opposing sidewalls of each trench;a highly doped region of the second conductivity type extending in the body region below each contact opening; anda metal layer extending over the dielectric region, the metal layer further extending into each contact opening for contacting the highly doped region along a bottom of each contact opening and for contacting the source regions along sidewalls of the source regions.
  • 23. The FET of claim 22 wherein the entirety of each source region is disposed below a corresponding one of the common upper sidewall portions.
  • 24. The FET of claim 22 wherein each of the common upper sidewall portions together with a sidewall of a corresponding source region form a sidewall of a contact opening.
  • 25. The FET of claim 22 wherein the dielectric region has at least a portion that is fully contained within each trench, sidewalls of the at least a portion of the dielectric region together with sidewalls of adjacent source regions form sidewalls of the contact openings.
  • 26. The FET of claim 22 wherein the dielectric region has at least a portion that is: (a) fully contained within each trench, and (b) defines upper portions of opposing sidewalls of the contact openings.
  • 27. The FET of claim 22 wherein the upper trench sidewalls that fan out also extend directly over at least a portion of corresponding source regions.
  • 28. The FET of claim 22 wherein the dielectric region has a portion that: (a) is fully contained within each trench, and (b) extends directly over at least a portion of an adjacent source region.
  • 29. The FET of claim 22 wherein the gate electrode is recessed in each trench below the upper trench sidewalls that fan out.
  • 30. The FET of claim 22 wherein the source regions are self-aligned to the plurality of trenches.
  • 31. The FET of claim 22 wherein the contact openings are self-aligned to the plurality of trenches.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. Application Ser. No. 11/111,305, filed Apr. 20, 2005, which is a division of U.S. Application Ser. No. 10/442,670, filed May 20, 2003, now U.S. Pat. No. 6,916,745, the disclosures of which are incorporated herein by reference for all purposes.

US Referenced Citations (260)
Number Name Date Kind
3404295 Warner et al. Oct 1968 A
3412297 Amlinger Nov 1968 A
3497777 Teszner et al. Feb 1970 A
3564356 Wilson Feb 1971 A
4003072 Matsushita et al. Jan 1977 A
4300150 Colak Nov 1981 A
4326332 Kenney et al. Apr 1982 A
4337474 Yukimoto Jun 1982 A
4579621 Hine Apr 1986 A
4636281 Buiguez et al. Jan 1987 A
4638344 Cardwell, Jr. Jan 1987 A
4639761 Singer et al. Jan 1987 A
4698653 Cardwell, Jr. Oct 1987 A
4716126 Cogan Dec 1987 A
4746630 Hui et al. May 1988 A
4754310 Coe Jun 1988 A
4774556 Fujii et al. Sep 1988 A
4801986 Chang et al. Jan 1989 A
4821095 Temple Apr 1989 A
4823176 Baliga et al. Apr 1989 A
4833516 Hwang et al. May 1989 A
4853345 Himelick Aug 1989 A
4868624 Grung et al. Sep 1989 A
4893160 Blanchard Jan 1990 A
4914058 Blanchard Apr 1990 A
4941026 Temple Jul 1990 A
4967245 Cogan et al. Oct 1990 A
4974059 Kinzer Nov 1990 A
4990463 Mori Feb 1991 A
4992390 Chang Feb 1991 A
5027180 Nishizawa et al. Jun 1991 A
5032888 Seki Jul 1991 A
5071782 Mori Dec 1991 A
5072266 Buluccea Dec 1991 A
5079608 Wodarczyk et al. Jan 1992 A
5105243 Nakagawa et al. Apr 1992 A
5142640 Iwanatsu Aug 1992 A
5164325 Cogan et al. Nov 1992 A
5164802 Jones et al. Nov 1992 A
5216275 Chen Jun 1993 A
5219777 Kang Jun 1993 A
5219793 Cooper et al. Jun 1993 A
5233215 Baliga Aug 1993 A
5262336 Pike, Jr. et al. Nov 1993 A
5268311 Euen et al. Dec 1993 A
5275965 Manning Jan 1994 A
5283201 Tsang et al. Feb 1994 A
5294824 Okada Mar 1994 A
5298781 Cogan et al. Mar 1994 A
5300447 Anderson Apr 1994 A
5326711 Malhi Jul 1994 A
5350937 Yamazaki et al. Sep 1994 A
5365102 Mehrotra et al. Nov 1994 A
5366914 Takahashi et al. Nov 1994 A
5389815 Takahashi Feb 1995 A
5405794 Kim Apr 1995 A
5418376 Muraoka et al. May 1995 A
5424231 Yang Jun 1995 A
5429977 Lu et al. Jul 1995 A
5430311 Murakami et al. Jul 1995 A
5430324 Bencuya Jul 1995 A
5434435 Baliga Jul 1995 A
5436189 Beasom Jul 1995 A
5438215 Tihanyi Aug 1995 A
5442214 Yang Aug 1995 A
5473176 Kakumoto Dec 1995 A
5473180 Ludikhuize Dec 1995 A
5474943 Hshieh et al. Dec 1995 A
5519245 Tokura et al. May 1996 A
5532179 Chang et al. Jul 1996 A
5541425 Nishihara Jul 1996 A
5554862 Omura et al. Sep 1996 A
5567634 Hebert et al. Oct 1996 A
5567635 Acovic et al. Oct 1996 A
5572048 Sugawara Nov 1996 A
5576245 Cogan et al. Nov 1996 A
5578851 Hshieh et al. Nov 1996 A
5581100 Ajit Dec 1996 A
5583065 Miwa Dec 1996 A
5592005 Floyd et al. Jan 1997 A
5595927 Chen et al. Jan 1997 A
5597765 Yilmaz et al. Jan 1997 A
5605852 Bencuya Feb 1997 A
5623152 Majumdar et al. Apr 1997 A
5629543 Hshieh et al. May 1997 A
5637898 Baliga Jun 1997 A
5639676 Hshieh et al. Jun 1997 A
5640034 Malhi Jun 1997 A
5648670 Blanchard Jul 1997 A
5656843 Goodyear et al. Aug 1997 A
5665619 Kwan et al. Sep 1997 A
5670803 Beilstein, Jr. et al. Sep 1997 A
5689128 Hshieh et al. Nov 1997 A
5693569 Ueno Dec 1997 A
5705409 Witek Jan 1998 A
5710072 Krautschneider et al. Jan 1998 A
5714781 Yamamoto et al. Feb 1998 A
5719409 Singh et al. Feb 1998 A
5770878 Beasom Jun 1998 A
5776813 Huang et al. Jul 1998 A
5780343 Bashir Jul 1998 A
5801417 Tsang et al. Sep 1998 A
5877528 So Mar 1999 A
5879971 Witek Mar 1999 A
5879994 Kwan et al. Mar 1999 A
5895951 So et al. Apr 1999 A
5895952 Darwish et al. Apr 1999 A
5897343 Mathew et al. Apr 1999 A
5897360 Kawaguchi Apr 1999 A
5900663 Johnson et al. May 1999 A
5906680 Meyerson May 1999 A
5917216 Floyd et al. Jun 1999 A
5929481 Hshieh et al. Jul 1999 A
5943581 Lu et al. Aug 1999 A
5949104 D'Anna et al. Sep 1999 A
5949124 Hadizad et al. Sep 1999 A
5959324 Kohyama Sep 1999 A
5960271 Wollesen et al. Sep 1999 A
5972741 Kubo et al. Oct 1999 A
5973360 Tihanyi Oct 1999 A
5976936 Miyajima et al. Nov 1999 A
5981344 Hshieh et al. Nov 1999 A
5981996 Fujishima Nov 1999 A
5998833 Baliga Dec 1999 A
6005271 Hshieh Dec 1999 A
6008097 Yoon et al. Dec 1999 A
6011298 Blanchard Jan 2000 A
6015727 Wanlass Jan 2000 A
6020250 Kenney Feb 2000 A
6034415 Johnson et al. Mar 2000 A
6037202 Witek Mar 2000 A
6037628 Huang Mar 2000 A
6037632 Omura et al. Mar 2000 A
6040600 Uenishi et al. Mar 2000 A
6048772 D'Anna Apr 2000 A
6049108 Williams et al. Apr 2000 A
6057558 Yamamoto et al. May 2000 A
6063678 D'Anna May 2000 A
6064088 D'Anna May 2000 A
6066878 Neilson May 2000 A
6077733 Chen et al. Jun 2000 A
6081009 Neilson Jun 2000 A
6084264 Darwish Jul 2000 A
6084268 de Frésart et al. Jul 2000 A
6087232 Kim et al. Jul 2000 A
6096608 Williams Aug 2000 A
6097063 Fujihira Aug 2000 A
6103578 Uenishi et al. Aug 2000 A
6103619 Lai Aug 2000 A
6104054 Corsi et al. Aug 2000 A
6110799 Huang Aug 2000 A
6114727 Ogura et al. Sep 2000 A
6137135 Kubo et al. Oct 2000 A
6137152 Wu Oct 2000 A
6156606 Michaelis Dec 2000 A
6156611 Lan et al. Dec 2000 A
6163052 Liu et al. Dec 2000 A
6165870 Shim et al. Dec 2000 A
6168983 Rumennik et al. Jan 2001 B1
6168996 Numazawa et al. Jan 2001 B1
6171935 Nance et al. Jan 2001 B1
6174769 Lou Jan 2001 B1
6174773 Fujishima Jan 2001 B1
6174785 Parekh et al. Jan 2001 B1
6184545 Werner et al. Feb 2001 B1
6184555 Tihanyi et al. Feb 2001 B1
6188104 Choi et al. Feb 2001 B1
6188105 Kocon et al. Feb 2001 B1
6190978 D'Anna Feb 2001 B1
6191447 Baliga Feb 2001 B1
6198127 Kocon Mar 2001 B1
6201279 Pfirsch Mar 2001 B1
6204097 Shen et al. Mar 2001 B1
6207994 Rumennik et al. Mar 2001 B1
6222233 D'Anna Apr 2001 B1
6225649 Minato May 2001 B1
6228727 Lim et al. May 2001 B1
6239348 Nakagawa May 2001 B1
6239464 Tsuchitani et al. May 2001 B1
6239465 Nakagawa May 2001 B1
6265269 Chen et al. Jul 2001 B1
6271082 Hou et al. Aug 2001 B1
6271100 Ballantine et al. Aug 2001 B1
6271552 D'Anna Aug 2001 B1
6271562 Deboy et al. Aug 2001 B1
6274905 Mo Aug 2001 B1
6277706 Ishikawa Aug 2001 B1
6285060 Korec et al. Sep 2001 B1
6291298 Williams et al. Sep 2001 B1
6291856 Miyasaka et al. Sep 2001 B1
6294818 Fujihira Sep 2001 B1
6297534 Kawaguchi et al. Oct 2001 B1
6303969 Tan Oct 2001 B1
6307246 Nitta et al. Oct 2001 B1
6309920 Laska et al. Oct 2001 B1
6313482 Baliga Nov 2001 B1
6326656 Tihanyi Dec 2001 B1
6337499 Werner Jan 2002 B1
6346464 Takeda et al. Feb 2002 B1
6346469 Greer Feb 2002 B1
6351009 Kocon et al. Feb 2002 B1
6353252 Yasuhara et al. Mar 2002 B1
6359308 Hijzen et al. Mar 2002 B1
6362112 Hamerski Mar 2002 B1
6362505 Tihanyi Mar 2002 B1
6365462 Baliga Apr 2002 B2
6365930 Schillaci et al. Apr 2002 B1
6368920 Beasom Apr 2002 B1
6368921 Hijzen et al. Apr 2002 B1
6376314 Jerred Apr 2002 B1
6376348 Schrems et al. Apr 2002 B1
6376878 Kocon Apr 2002 B1
6376890 Tihanyi Apr 2002 B1
6384456 Tihanyi May 2002 B1
6388286 Baliga May 2002 B1
6388287 Deboy et al. May 2002 B2
6400003 Huang Jun 2002 B1
6429481 Mo et al. Aug 2002 B1
6433385 Kocon et al. Aug 2002 B1
6436779 Hurkx et al. Aug 2002 B2
6437399 Huang Aug 2002 B1
6441454 Hijzen et al. Aug 2002 B2
6444574 Chu Sep 2002 B1
6452230 Boden, Jr. Sep 2002 B1
6465304 Blanchard et al. Oct 2002 B1
6465843 Hirler et al. Oct 2002 B1
6465869 Ahlers et al. Oct 2002 B2
6472678 Hshieh et al. Oct 2002 B1
6472708 Hshieh et al. Oct 2002 B1
6475884 Hshieh et al. Nov 2002 B2
6476443 Kinzer Nov 2002 B1
6479352 Blanchard Nov 2002 B2
6489652 Jeon et al. Dec 2002 B1
6501146 Harada Dec 2002 B1
6538280 Nakamura Mar 2003 B2
6734066 Lin et al. May 2004 B2
6762127 Boiteux et al. Jul 2004 B2
6809005 Ranade et al. Oct 2004 B2
6818552 Daniels et al. Nov 2004 B2
6822288 Hshieh et al. Nov 2004 B2
6921939 Zeng Jul 2005 B2
7033876 Darwish et al. Apr 2006 B2
7161208 Spring et al. Jan 2007 B2
7345342 Challa Mar 2008 B2
20010023961 Hshieh et al. Sep 2001 A1
20010028083 Onishi et al. Oct 2001 A1
20010032998 Iwamoto et al. Oct 2001 A1
20010041400 Ren et al. Nov 2001 A1
20010049167 Madson Dec 2001 A1
20010050394 Onishi et al. Dec 2001 A1
20020009832 Blanchard Jan 2002 A1
20020014658 Blanchard Feb 2002 A1
20020066924 Blanchard Jun 2002 A1
20020070418 Kinzer et al. Jun 2002 A1
20020100933 Marchant Aug 2002 A1
20030060013 Marchant Mar 2003 A1
20030107080 Hshieh et al. Jun 2003 A1
20030193067 Kim Oct 2003 A1
20040121572 Darwish et al. Jun 2004 A1
20060267090 Sapp et al. Nov 2006 A1
Foreign Referenced Citations (40)
Number Date Country
4300806 Dec 1993 DE
19736981 Aug 1998 DE
0975024 Jan 2000 EP
1026749 Aug 2000 EP
1054451 Nov 2000 EP
0747967 Feb 2002 EP
1205980 May 2002 EP
62-069562 Mar 1987 JP
63-186475 Aug 1988 JP
63-288047 Nov 1988 JP
64-022051 Jan 1989 JP
01-192174 Aug 1989 JP
05226638 Sep 1993 JP
2000-040822 Feb 2000 JP
2000-040872 Feb 2000 JP
2000-156978 Jun 2000 JP
2000-277726 Oct 2000 JP
2000-277728 Oct 2000 JP
2001-015448 Jan 2001 JP
2001-015752 Jan 2001 JP
2001-111041 Feb 2001 JP
2001-102577 Apr 2001 JP
2001-135819 May 2001 JP
2001-144292 May 2001 JP
2001-244461 Sep 2001 JP
2001-313391 Nov 2001 JP
2002-083976 Mar 2002 JP
WO 0033386 Jun 2000 WO
WO 0068997 Nov 2000 WO
WO 0068998 Nov 2000 WO
WO 0075965 Dec 2000 WO
WO 0106550 Jan 2001 WO
WO 0106557 Jan 2001 WO
WO 0145155 Jun 2001 WO
WO 0159847 Aug 2001 WO
WO 0171815 Sep 2001 WO
WO 0195385 Dec 2001 WO
WO 0195398 Dec 2001 WO
WO 02001644 Jan 2002 WO
WO 02047171 Jun 2002 WO
Related Publications (1)
Number Date Country
20080164519 A1 Jul 2008 US
Divisions (1)
Number Date Country
Parent 10442670 May 2003 US
Child 11111305 US
Continuations (1)
Number Date Country
Parent 11111305 Apr 2005 US
Child 12049996 US