This application claims priority to China Application Serial Number 201310091289.8, filed Mar. 21, 2013, which are herein incorporated by reference.
The disclosure relates to a printed circuit board. More particularly, the disclosure relates to a printed circuit board capable of effectively enhancing a soldering effect.
In a conventional integrated circuit packaging component, a ball grid array (BGA) is welded on a printed circuit board. A plurality of tiny solder joints of the integrated circuit packaging component are respectively bonded on a solder material layers of the printed circuit board, so as to provide electrical and physical connections between the integrated circuit packaging component and the printed circuit board.
However, some of the solder joints of the integrated circuit packaging component often fail to be completely melted with the corresponding solder material layer of the printed circuit boards one piece during the welding process, thus resulting in the failure of the electrical connections between the integrated circuit packaging component and the printed circuit board , or at least degrading the electrical conductivity performance between the integrated circuit packaging component and the printed circuit board might.
In view of this, how to develop an integrated circuit packaging component capable of improving the aforementioned disadvantages and inconveniences is an important issue to those in this industry.
The present disclosure is to provide a printed circuit board and a method of mounting an integrated circuit packaging component on the same. Because of concave portions respectively formed on soldering material layers of the printed circuit board, when the integrated circuit packaging component is stacked onto the printed circuit board, vertexes of ball-conducting joints of the integrated circuit packaging component can be sunk and received in the concave portions, so that a maximum distance defined between the printed circuit board and a down-most vertex of the ball-conducting joints can be effectively reduced, and an effective contact area that the ball-conducting joint contacts the soldering material layer can be increased.
According to one embodiment of the present disclosure, a printed circuit board is provided. An integrated circuit packaging component with ball-conducting joints can be mounted on the printed circuit board. The printed circuit board includes a substrate and a plurality of conductive contacts. The conductive contacts are arranged on a surface of the substrate. Each of the conductive contacts has a soldering material layer formed on a top surface thereof. Each of the soldering material layers has a concave portion formed thereon, and each of the concave portions can be arranged to be aligned with a vertex of one of the ball-conducting joints for receiving the vertex of the ball-conducting joint.
According to another embodiment of the present disclosure, a method of mounting an integrated circuit packaging component on a printed circuit board. The method includes steps: (a) a printed circuit board having a plurality of conductive contacts and an integrated circuit packaging component having a plurality of ball-conducting joints are provided; (b) soldering material layers are respectively formed on top surfaces of the conductive contacts, and each of the soldering material layers is formed with a concave portion thereon; (c) the integrated circuit packaging component is stacked onto the printed circuit board, and the concave portions of the soldering material layers are respectively aligned with vertexes of the ball-conducting joints, such that the vertexes of at least some of the ball-conducting joints are respectively received in the corresponding concave portions; and (d) the integrated circuit packaging component and the printed circuit board are heated, such that each of the soldering material layers and the corresponding ball-conducting joint received in the concave portion are completely melted as one piece.
As what has been disclosed above, with the printed circuit board and the method of mounting an integrated circuit packaging component on the same provided by the present disclosure, the quantity of the ball-conducting joints which fail to be completely melted with the corresponding solder material layer as one piece can be reduced, and the possibility that all of the ball-conducting joints completely melted with the corresponding solder material layer as one piece during the welding process can be increased.
The present disclosure will be apparent to those skilled in the art by reading the following detailed description of a preferred embodiment thereof, with reference to the attached drawings, in which:
The spirit of the disclosure will be described clearly through the drawings and the detailed description as follows. Any of those of ordinary skills in the art can make modifications and variations from the technology taught in the disclosure after understanding the embodiments of the disclosure, without departing from the sprite and scope of the disclosure.
Reference is now made to
As shown in
In view of this, the present invention forms a plurality of concave portions on all of the soldering material layers of the printed circuit board. Because of the concave portions on the soldering material layers of the printed circuit board, when the integrated circuit packaging component is stacked onto the printed circuit board, vertexes of ball-conducting joints of the integrated circuit packaging component can be sunk and received in the concave portions, so that a maximum distance defined between the printed circuit board and the down-most vertex of the ball-conducting joint can be effectively reduced, thereby reducing the distances defined between the printed circuit board and parts of ball-conducting joints on the warpage segment of the integrated circuit packaging component during the welding process, so as to decrease the possibility that the parts of ball-conducting joints on the warpage segment of the integrated circuit packaging component failing to be completely melted with the corresponding solder material layers as one piece during the welding process. Furthermore, since the concave portion of the soldering material layer is hollow, when the integrated circuit packaging component is stacked onto the printed circuit board, the down-most vertex of the ball-conducting joint can be closer to the inside of the concave portion of the soldering material layer, so as to increase the effective contact area that the ball-conducting joint contacts the soldering material layer.
Reference is now made to
The printed circuit board 100 includes a first substrate 110 and a plurality of first conductive contacts 120. The first substrate 110 can be, for example, a printed circuit board (PCB), a metal core printed circuit board (MCPCB) or a flexible printed circuit board (FPC).
The first conductive contacts 120 are arranged on a surface of the first substrate 110, and exchange information with an integrated circuit packaging component by adopting one or more wires in the printed circuit board 100. The first conductive contacts 120 can be metal contacts, and the material of the metal contacts can be copper, tin or nickel, etc. Also, the first conductive contacts 120 are not limited in shape, for example, can be a geometric shape such as a circular shape or a rectangular shape.
Each of the first conductive contacts 120 is formed with a soldering material layer 130 on a top surface 121 of the first conductive contacts 120. Each of the soldering material layers 130 is formed with a concave portion 140 thereon. Each of the concave portions 140 is not limited in profile, and does not need to shape exactly the same as the profile of the corresponding first conductive contact 120, for example, can be a geometric shape such as a circular shape or a rectangular shape. Each of the soldering material layers 130 is in a semi-solid or pasty state, and at least includes welding material (e.g., soldering paste etc.) and soldering flux.
In one alternative or option of the embodiment, each of the concave portions 140 is located on a central position (
In one alternative or option of the embodiment, each of the concave portions 140 penetrates through the corresponding soldering material layer 130, so that each of the concave portions 140 exposes the top surface 121 of the corresponding conductive contact 120 (
In one alternative or option of the embodiment, each of the concave portions 140 and the corresponding soldering material layer 130 are collaboratively presented as a concentric circle. In other words, an outer surface 132 of the soldering material layer 130 opposite to the concave portion 140 and an inner surface 131 of the soldering material layer 130 in the concave portion 140 all completely surround the concave portion 140. However, the disclosure is not limited to this specific embodiment. For example, the corresponding soldering material layer 130 can also be formed in a C type (
In other words, each of the soldering material layers 130 is provided with a slot 133. The slot 133 laterally connects both the outer surface 132 of the soldering material layer 130 and the inner surface 131 of the soldering material layer 130 in the concave portion 140. (
Reference is now made to
Referring to
In Step (501), a printed circuit board 100 having a plurality of first conductive contacts 120 and an integrated circuit packaging component 200 having a plurality of ball-conducting joints 220 are provided. As shown in
In Step (502), a plurality of soldering material layers 130 are respectively formed on top surfaces 121 of the first conductive contacts 120, and each soldering material layer 130 is formed with a concave portion 140.
In Step (503), the integrated circuit packaging component 200 is stacked onto the printed circuit board 100, and the concave portions 140 are respectively aligned with vertexes 220a of the ball-conducting joints 220, so that the vertexes 220a of at least some of the ball-conducting joints 220 respectively extend into the concave portions 140 thereof.
In Step (504), both of the integrated circuit packaging component 200 and the printed circuit board 100 are heated, so that each ball-conducting joint 220 and each soldering material layer 130 are completely melted as one piece.
Therefore, referring to
After that, both of the integrated circuit packaging component 200 and the printed circuit board 100 are sent to a melting furnace. Although the integrated circuit packaging component 200 might still be warped in shape due to a high temperature condition of a melting furnace, yet, since the vertexes 220a of the ball-conducting joints 220 respectively extend into the corresponding concave portions 140 thereof, the ball-conducting joints 220 which are lifted due to warped still are highly possible to be completely melted as one piece with the corresponding soldering material layers 130, respectively.
Thus, in comparison with the conventional design of the soldering material layer without the concave portion, the present disclosure can reduce the quantity of the ball-conducting joints 220 which fails to be completely melted with the corresponding solder material layer 130 as one piece, so as to increase the possibility that all of the ball-conducting joints 220 are completely melted with the corresponding solder material layer 130 in one during the welding process.
To be noted, in the practice of the present disclosure, the ball-conducting joints 220 and the corresponding solder material layer 130 should be formed according to the type of the first conductive contacts 120. For example, when the area of the top surface 121 of one first conductive contact 120 is relatively enlarged, the corresponding ball-conducting joint 220 and the corresponding solder material layer 130 can be relatively enlarged, and the concave portion 140 corresponding to the ball-conducting joint 220 also can be relatively enlarged.
Furthermore, in one alternative or option of the embodiment, the capacity of the concave portion 140 can be enlarged to be greater than or equal to the volume of the ball-conducting joint 220, so that not only the vertex 220a of the ball-conducting joint 220, but also the whole ball-conducting joint 220 can be totally received inside the concave portion 140.
Reference is now made to
In Step (502), the soldering material layers 130 can be coated on the top surfaces 121 of the first conductive contacts 120 by printing.
Specifically, referring to
Specifically, the soldering material layer 130 surrounding a concave portion 140 having no soldering material can be sprayed on the top surface 121 of the first conductive contact 120 of the printed circuit board 100 by a spraying machine J.
Although the present disclosure has been described with reference to the preferred embodiments thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present disclosure which is intended to be defined by the appended claims.
The reader's attention is directed to all papers and documents which are filed concurrently with this specification and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.
All the features disclosed in this specification (including any accompanying claims, abstract, and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Number | Date | Country | Kind |
---|---|---|---|
201310091289.8 | Mar 2013 | CN | national |