This non-provisional application claims priority under 35 U.S.C. §119(a) on Patent Application No(s). 099143260 filed in Taiwan, R.O.C. on Dec. 10, 2010, the entire contents of which are hereby incorporated by reference.
The present invention relates to printed circuit board grounding structures for use with communication apparatuses, and more particularly, to a printed circuit board grounding structure whereby a printed circuit board disposed in a communication apparatus is capable of electromagnetic wave shielding.
According to related prior art, a circuit is configured on a printed circuit board in accordance with a circuit layout. Due to the development of high-speed communication technology, electronic components configured on the printed circuit board generate electromagnetic wave in the presence of high-speed data transmission/reception and thus bring about intrinsic electromagnetic interference (EMI) between the electronic components. Upon its occurrence, the aforesaid EMI can be mitigated, by reducing the effect of electromagnetic wave through a specially designed circuit layout and rendering the electronic components free from the EMI which might otherwise take place there between. Still, the electromagnetic wave generated by the electronic components on the printed circuit board in the presence of high-speed data transmission/reception escapes from the printed circuit board and thus interferes with an outside communication apparatus to the detriment of the operation thereof.
To overcome the aforesaid drawback of the prior art, a conventional solution entails providing an electromagnetic wave shielding wall that encloses electromagnetic wave-generating electronic components on a printed circuit board and thus blocks the electromagnetic wave generated by the electronic components, such that external communication apparatuses suffer less EMI from the electronic components. For example, Taiwan published patent application no. 200841812, entitled “Method of Electromagnetic Protection For Circuit board and Components of the Circuit Board,” provides a metallic protective device disposed on a circuit board and configured to implement electromagnetic wave shielding.
According to the prior art, it is necessary to provide an additional metallic protective device for use as an electromagnetic protection wall. However, the additional metallic protective device inevitably adds to the costs incurred by the communication apparatus in general. In addition, an examination or an overhaul carried out to electronic components inside the metallic protective device is laborious and expensive, not to mention that the metallic protective device has to be removed before the electronic components inside can be examined or overhauled.
Accordingly, it is imperative to provide a printed circuit board grounding structure for use with a communication apparatus so as to solve the drawbacks of the prior art.
It is an objective of the present invention to provide a printed circuit board grounding structure for use with a communication apparatus with a view to providing electromagnetic wave shielding for a printed circuit board.
In order to achieve the above and other objectives, the present invention provides a printed circuit board grounding structure for use with a communication apparatus. The printed circuit board grounding structure is configured for use with a printed circuit board to contact a grounded casing and thereby form a grounded circuit capable of electromagnetic wave shielding. The printed circuit board grounding structure comprises a copper conductive layer and a plurality of solder contacts. The copper conductive layer is circumferentially disposed along the periphery of the printed circuit board. The plurality of solder contacts are disposed on the copper conductive layer and used for electrically contacting the casing.
Compared with the prior art, the present invention provides a printed circuit board grounding structure for use with a communication apparatus. The printed circuit board grounding structure is configured to contact a grounded casing, especially a communication apparatus casing. The printed circuit board grounding structure comprises a copper conductive layer circumferentially disposed along the periphery of the printed circuit board, and comprises a plurality of solder contacts disposed on the copper conductive layer. The copper conductive layer, the solder contacts, and the casing in contact therewith form a grounded circuit. In so doing, the printed circuit board is capable of electromagnetic wave shielding. Hence, designed to solve the problems facing the prior art, the grounding structure of the present invention not only eliminates electromagnetic interference generated from inside the printed circuit board, but prevents electromagnetic interference that originates in the printed circuit board from interfering with an outside communication apparatus. Furthermore, the present invention reduces electromagnetic wave shielding deterioration which might otherwise be caused by oxidation of the copper conductive layer.
To enable persons skilled in the art to fully understand the objectives, features, and advantages of the present invention, the present invention is hereunder illustrated with specific embodiments in conjunction with the accompanying drawings, in which:
a is a perspective schematic view of a printed circuit board grounding structure for use with a communication apparatus according to a first embodiment of the present invention;
b is a cross-sectional view of the printed circuit board grounding structure taken along line A-A′ of
Referring to
Referring to
Due to their physical properties, namely electrical conductance, the solder contacts 10 are electrically connected to the copper conductive layer 8 when soldered thereto. The solder contacts 10 are disposed on the copper conductive layer 8. Alternatively, the solder contacts 10 are alternately disposed on the copper conductive layer 8. The solder contacts 10 can be of any shape. For example, the solder contacts 10 are each of hemispherical shape and thus protrude from the copper conductive layer 8. Persons skilled in the art should be able to understand that, in the aforesaid embodiment, the solder contacts 10 are densely distributed across the copper conductive layer 8, such that the solder contacts 10 together form a solder contact layer on the copper conductive layer 8. The solder contacts 10 are less susceptible to oxidation to the detriment of physical properties (i.e., electrical conductance) than the copper conductive layer 8 is. Hence, even if the copper conductive layer 8 is oxidized and thus becomes incapable of electrical conductance, electrical conductance will be manifested and maintained by the solder contacts 10 electrically connected to the copper conductive layer 8.
The casing 6 and the solder contacts 10 are coupled together, such that the copper conductive layer 8 can be grounded by coming into contact with the casing 6 through the solder contacts 10, so as to form a grounded circuit capable of electromagnetic wave shielding.
The printed circuit board grounding structure 2 further comprises a soft conductive layer 12 disposed between the casing 6, the copper conductive layer 8 and the solder contacts 10. The soft conductive layer 12 enables the solder contacts 10 and the copper conductive layer 8 to be in tight contact with the casing 6. Hence, the soft conductive layer 12 increases the electrical contact area and thus the electrical conductance of the solder contacts 10 and the copper conductive layer 8.
In another embodiment, it is feasible for the printed circuit board 4 (through the opening 42) to be fixed to the casing 6 by an electrically conductive locking unit, such as a screw. Also, the locking unit enables an opening-adjoining portion of the copper conductive layer 8 to come into contact with the grounded casing 6. Hence, not only is the printed circuit board 4 fixed to the casing 6 by the locking unit, but the copper conductive layer 8 comes into electrical contact with the grounded casing 6 through the locking unit.
Referring to
The printed circuit board grounding structure 2′ further comprises the soft conductive layer 12. The soft conductive layer 12 is disposed between the solder contacts 10 and the organic solderability preservative layer 14. Due to the soft conductive layer 12, the solder contacts 10 and the organic solderability preservative layer 14 are in tight contact with the casing 6 to increase the electrical contact area and electrical conductance thereof.
Referring to
Compared with the prior art, the present invention provides a printed circuit board grounding structure for use with a communication apparatus. The printed circuit board grounding structure is configured for use with a printed circuit board to contact a grounded casing, especially a communication apparatus casing. The printed circuit board grounding structure comprises a copper conductive layer circumferentially disposed along the periphery of the printed circuit board, and comprises a plurality of solder contacts disposed on the copper conductive layer. The copper conductive layer, the solder contacts, and the casing in contact with the solder contacts formed a grounded circuit, such that the printed circuit board is capable of electromagnetic wave shielding. Hence, designed to solve the problems facing the prior art, the grounding structure of the present invention not only eliminates electromagnetic interference generated from inside the printed circuit board, but prevents electromagnetic interference that originates in the printed circuit board from interfering with an outside communication apparatus. Furthermore, the present invention reduces electromagnetic wave shielding deterioration which might otherwise be caused by oxidation of the copper conductive layer.
The foregoing embodiments are provided to illustrate and disclose the technical features of the present invention so as to enable persons skilled in the art to understand the disclosure of the present invention and implement the present invention accordingly, and are not intended to be restrictive of the scope of the present invention. Hence, all equivalent modifications and replacements made to the foregoing embodiments without departing from the spirit embodied in the disclosure of the present invention should fall within the scope of the present invention as set forth in the appended claims. Accordingly, the protection for the present invention should be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
99143260 A | Dec 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5335147 | Weber | Aug 1994 | A |
5398169 | Gorenz et al. | Mar 1995 | A |
5483413 | Babb | Jan 1996 | A |
5748455 | Phillips et al. | May 1998 | A |
6016083 | Satoh | Jan 2000 | A |
6031732 | Koike et al. | Feb 2000 | A |
6137693 | Schwiebert et al. | Oct 2000 | A |
6377475 | Reis | Apr 2002 | B1 |
6462436 | Kay et al. | Oct 2002 | B1 |
6490438 | Wu | Dec 2002 | B1 |
6614663 | Yokota et al. | Sep 2003 | B1 |
6653563 | Bohr | Nov 2003 | B2 |
6744640 | Reis et al. | Jun 2004 | B2 |
7295083 | Kimata et al. | Nov 2007 | B2 |
7626832 | Muramatsu et al. | Dec 2009 | B2 |
7999195 | Huang et al. | Aug 2011 | B2 |
20020080593 | Tsuge et al. | Jun 2002 | A1 |
20050276027 | Shen et al. | Dec 2005 | A1 |
20070291464 | Wang | Dec 2007 | A1 |
20100243301 | Feng et al. | Sep 2010 | A1 |
20120074153 | Yang et al. | Mar 2012 | A1 |
20120261165 | Durocher et al. | Oct 2012 | A1 |
20120281386 | Kim | Nov 2012 | A1 |
20130112233 | Coakley | May 2013 | A1 |
20130284510 | Lo et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
2008072009 | Mar 2008 | JP |
2010056348 | Mar 2010 | JP |
200841812 | Oct 2008 | TW |
Number | Date | Country | |
---|---|---|---|
20120145439 A1 | Jun 2012 | US |