The invention relates to an apparatus for cooling a heat producing device and a method of constructing thereof. In particular, the present invention relates to a re-workable metallic TIM for efficient heat exchange.
Operation of an integrated circuit produces heat. As integrated circuits increase in processing power, the production of heat also increases. In current microprocessor assemblies, a heat exchanger is thermally coupled to an integrated circuit, or die, in order to remove the heat produced by the integrated circuit. The heat exchanger is typically positioned above the die. In one approach, the heat exchanger is thermally coupled to the die by means of a polymer thermal interface material (TIM), such as thermally conductive grease. However, polymer TIM has a relatively low thermal conductivity and thus provides a significant barrier for heat transfer from the die to the heat exchanger.
In another approach, a soldering technology is used which involves thermal reflow of a solder material with wetting layers on both the die and the heat exchanger. U.S. Pat. No. 6,504,242 uses such an approach. '242 teaches a heat spreader sub-assembly that includes a primary heat spreader made of copper and a thin nickel layer plated over the copper primary heat spreader. The heat spreader sub-assembly is thermally coupled to a semiconductor package sub-assembly using an indium block and separate wetting layers applied to both the heat spreader sub-assembly and the semiconductor package sub-assembly. In particular, '242 teaches plating a gold layer on a bottom surface of the heat spreader sub-assembly. The gold layer serves as a wetting layer for the indium block during a subsequent reflow process step. Further, a stack of layers are sequentially deposited on a top surface of the semiconductor package sub-assembly. The stack includes titanium, a nickel vanadium alloy, and gold layers which also serve as a wetting layer for the indium block during the subsequent reflow process step.
One disadvantage of using a soldering technology, such as that taught in '242, is that each of the heat exchanger, or heat spreader, and the integrated circuit requires a wet surface to join to the TIM. Such a requirement adds processing steps. Another disadvantage is that the reflow process requires heating and cooling of the TIM, and therefore the integrated circuit, which in addition to requiring an additional processing step may also damage the integrated circuit, or the surrounding sub-assembly. Several of these steps also involve vacuum processing, which adds complexity. Still another disadvantage is that once the reflow process is performed, the process is not re-workable, and the TIM is not reusable.
Embodiments of the present invention are directed to a heat exchanging system that uses a metallic TIM for efficient heat transfer between a heat source and a heat exchanger. Preferably, the heat source is an integrated circuit coupled to a circuit board. The metallic TIM preferably comprises indium, which is thermally conductive and a relatively “soft” material. In a first embodiment, a thin metallic TIM foil is positioned between the integrated circuit and the heat exchanger. The metallic TIM foil is mechanically joined to a first surface of the heat exchanger and to a first surface of the integrated circuit by applying sufficient pressure during clamping. Any conventional clamping means can be used which clamps the heat exchanger to the integrated circuit. Such clamping means are well known in the art. Assembly of the heat exchanging system, according to the first embodiment, is a room temperature assembly process. Disassembly is accomplished by un-clamping the heat exchanger, the metallic TIM foil, and the integrated circuit from each other. Once disassembled, the heat exchanger and the metallic TIM foil are available to be used again.
In a second embodiment, a metallic TIM is deposited on the first surface of the heat exchanger, thereby forming a heat exchanging sub-assembly. The metallic TIM is deposited using any conventional means, including, but not limited to, electroplating or e-beam deposition. As in the first embodiment, the metallic TIM on the heat exchanging sub-assembly is mechanically joined to the first surface of the integrated circuit using any conventional clamping means. With the exception of electroplating or e-beam depositing of the metallic TIM onto the heat exchanger, assembly of the heat exchanging system according to the second embodiment is a room temperature assembly process. Disassembly is accomplished by un-clamping the heat exchanging sub-assembly from the integrated circuit. Once disassembled, the heat exchanging sub-assembly is available to be used again.
The heat exchanging system of the present invention provides many advantages. One advantage is that a metallic TIM provides efficient means of exchanging heat. A second advantage is that the assembly process is simplified and is performed at room temperature. A third advantage is that the assembly process is re-workable such that the heat exchanger, the metallic TIM foil, and the heat exchanging sub-assembly are reusable. A fourth advantage is that the compliant property of the metallic TIM provides a cushion for absorbing stresses, thereby minimizing stress transferred from the heat exchanger to the integrated circuit.
These and other advantages will become apparent as embodiments of the heat exchanging system are described according to the detailed description below and the accompany figures.
Elements that are substantially the same maintain the same reference numerals throughout the figures.
Preferably, the heat exchanger 20 is a liquid-based cooling device. Alternatively, the heat exchanger 20 is any conventional heat exchanging device that accepts heat from another device thermally coupled via a common interface. The heat exchanger 20 is preferably comprised of copper. Alternatively, the heat exchanger 20 is comprised of any heat conducting material. As illustrated in
In a second embodiment of a heat exchanging system, the metallic TIM foil is replaced by a deposited layer of a metal TIM 130.
The components are mechanically joined by clamping the heat exchanger 20, 120 to the integrated circuit 40, with the metallic TIM 30, 130 positioned there between. Any conventional clamping means can be used. For example, a clamp or spring urged clamp is used to press and secure the heat exchanger 20, 120 to a circuit board onto which the integrated circuit 40 is connected. As another example, the heat exchanger 20, 120 is secured to the circuit board using screws. Sufficient clamping pressure is applied to generate a thermal interface between the metallic TIM 30, 130 and the integrated circuit 40. In the case of the first embodiment where the metallic TIM foil 30 is a separate component than the heat exchanger 20, sufficient pressure is also applied to generate a thermal interface between the metallic TIM foil 30 and the heat exchanger 20.
Where the individual components are mechanically joined, the components can be disassembled and reused. In the first embodiment, the heat exchanger 20, the metallic TIM foil 30, and the integrated circuit 40 are un-clamped from each other, and the heat exchanger 20 and the metallic TIM foil 30 are individually reusable. In the second embodiment, the heat exchanging sub-assembly 150 is un-clamped from the integrated circuit 40, and the heat exchanging sub-assembly 150 is reusable.
At the step 220, the metallic TIM foil is positioned on the heat producing device. Preferably, the metallic TIM foil is positioned such that a bottom surface of the metallic TIM foil is placed in contact with a top surface of the heat producing device. At the step 225, a heat exchanger, such as the heat exchanger 20 (
At the step 240, the heat exchanger is positioned on the metallic TIM foil. Preferably, the heat exchanger is positioned such that a bottom surface of the heat exchanger is placed in contact with a top surface of the metallic TIM foil. At the step 245, the heat exchanger, the metallic TIM foil, and the heat producing device are clamped together to form a heat exchanging system, such as the heat exchanging system 10 (
The first method of reusing components begins at the step 250 by un-clamping the heat exchanger 20, the metallic TIM foil 30, and the heat producing device 40. At the step 255, the heat exchanger 20, the metallic TIM foil 30, and the heat producing device 40 are separated from each other. At the step 260, either the separated heat exchanger 20, the separated metallic TIM foil 30, or both are reused in the assembly of another heat exchanging system.
At the step 325, the heat exchanging sub-assembly is positioned on the heat producing device. Preferably, the deposited metallic layer of the heat exchanging sub-assembly is positioned such that a bottom surface of the deposited metallic layer is placed in contact with a top surface of the heat producing device. At the step 330, the heat exchanging sub-assembly and the heat producing device are clamped together to form a heat exchanging system, such as the heat exchanging system 110 (
The second method of reusing components begins at the step 335 by un-clamping the heat exchanging sub-assembly and the heat producing device. At the step 340, the heat exchanging sub-assembly and the heat producing device are separated from each other. At the step 345, the heat exchanging sub-assembly is reused in the assembly of another heat exchanging system.
In operation, the integrated circuit 40 generates heat, which is transferred through the metallic TIM 30, 130 to the heat exchanger 20, 120 via conduction or convection. In the preferred embodiment where the heat exchanger 20, 120 is liquid-based, the heat is transferred from the integrated circuit 40 to a liquid within the heat exchanger 20, 120. The heated liquid is then pumped out of the heat exchanger 20, 120 to a heat rejector, or other device for cooling the heated liquid. Where the heat exchanger 20, 120 is not liquid-based, for example the heat exchanger 20, 120 is a heat spreader, the heat transferred to the heat exchanger 20, 120 is spread outward through the heat exchanger 20, 120 and is conducted or convected from an outer surface of the heat exchanger 20, 120. It is understood that any other conventional means for removing heat from the heat exchanger 20, 120 can be used.
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention.