The present invention generally relates to a rearview mirror assembly for a vehicle. More particularly, the present invention relates to a rearview mirror assembly having a turn indicator incorporated therein and/or a flexible circuit board. The invention also pertains to subassemblies for use in a rearview mirror assembly in which an LED is mounted to a circuit board in a novel manner.
Outside rearview mirror assemblies incorporating turn signal indicators have become increasingly popular. An example of one significant advantage that can be achieved by such a “signal mirror” is evident from
Signal mirrors generally employ one or more lamps in a mirror assembly to generate a turn indication signal. More specifically, outside signal mirrors have employed a lamp assembly positioned either behind the mirror, such that the signal light passes through the mirror, or on the rearview mirror housing, such that the signal lamp is independent of the mirror and projects light from a position either adjacent to or outside the periphery of the rearview mirror. Examples of rearview mirror assemblies incorporating turn signal indicators or other light modules positioned adjacent a rearview mirror are disclosed in U.S. Pat. Nos. 5,059,015; 5,402,103; 5,490,049; 5,497,306; 5,669,704; 5,669,705; 5,823,654; 5,863,116; 6,007,222; 6,049,271; 6,086,229; 6,119,031; 6,152,590; and 6,176,602. Rearview mirror assemblies incorporating a turn signal indicator that is directed forward of the mirror housing and subsequently directed rearward by appropriate light piping is also known in the prior art. Examples of rearview mirror assemblies where a light module is disposed behind the mirror are disclosed in U.S. Pat. Nos. D 363,920; D 394,833; D 409,540; D 425,466; D 426,506; D 426,507; D 428,372; D 428,373; D 428,842; D 429,202; D 430,088; 5,014,167; 5,207,492; 5,313,335; 5,355,284; 5,361,190; 5,436,741; 5,481,409; 5,528,422; 5,587,699; 5,619,374; 5,619,375; 5,788,537; 5,938,320; 6,005,724; 6,045,243; 6,076,948; 6,111,684; 6,142,656; 6,166,848; and 6,257,746.
As shown in
Referring back to
An ambient light level signal may also be transmitted via a wire or cable 38 from inside mirror control circuit 30 to a variable attenuator 60 provided in the rearview mirror assembly or elsewhere in the vehicle. Variable attenuator 60 may thus be provided in addition or in lieu of sensor 56 so as to attenuate the light levels of LEDs 54 in response to ambient light sensed by a sensor remote from the outside rearview mirror housing.
The rearview mirror housing may further include a mirror position actuator (not shown), which is mounted to the inside of housing 12 and attached to the rear of mirror 10 via a carrier plate (not shown). The mirror position actuator may be electrically coupled to a mirror position controller 44 located within the vehicle via one or more electrical wires or cables 46. In this manner, the positioning of mirror 10 within housing 12 may be adjusted remotely within the cabin of the vehicle using an appropriate switch or other user input mechanism.
Additionally, rearview mirror assembly 100 may include a heater circuit provided on the rear of mirror 10 so as to heat the mirror to remove moisture such as snow, frost, or mist from the surface of mirror 10 to thereby allow clear viewing by the driver. Such a heater may be electrically coupled to a heater control circuit 40 via one or more wires or cables 42. The heater control circuit 40 may be incorporated within the vehicle climate control system such that the heater is activated whenever a window defroster/defogger is activated.
Some details of the structure shown in
Of significance with respect to
Another problem associated with placing LEDs, particularly those mounted at an angle, to a circuit board behind a mirror and a rearview mirror assembly is the lack of space available for such a configuration. In direct conflict with the desire to provide a multitude of components in the outside rearview mirror body housing is a desire of vehicle designers to make the rearview mirrors as small and as aerodynamic as possible to minimize the mirror's impact of wind noise and vehicle styling. Consequently, there is not a significant volume available within the mirror housing for additional components to be placed. Further, it is desirable to make the weight of the mirror as light as possible to reduce vibration and its associated detrimental impact on rear vision. For these reasons, designers are presented with a significant challenge when attempting to design a signal mirror.
Another problem associated with placing a light module behind a mirror is properly aligning the light sources with the window regions in the mirror.
Another problem associated with providing a multitude of components such as those shown in
As disclosed in commonly assigned U.S. Pat. No. 6,166,848, it is particularly advantageous to utilize what is known as a “third surface reflector” in an outside electrochromic mirror, an example of which is shown in
According to a first embodiment of the present invention, a rearview mirror assembly for a vehicle comprises: a mirror having a surface that is at least partially reflective; a flexible circuit board disposed behind the surface of the mirror, the flexible circuit board having a first surface facing the mirror and a second surface opposite the first surface, the flexible circuit board further including a substantially transparent window; and an LED mounted to the second surface of the flexible circuit board so as to project light through the transparent window in the flexible circuit board and through the mirror.
According to another embodiment, a method is provided for angle mounting an LED to a circuit board comprising the steps of: providing a circuit board having a first surface and second surface opposite the first surface, the circuit board further including at least first and second vias extending between the first and second surfaces; providing an LED having at least a first lead and a second lead; positioning the LED on the circuit board such that the optical axis of the LED is inclined relative to the first surface of the circuit board with the first lead of the LED inserted through the first via and the second lead abutting the first surface of the circuit board in proximity to the second via; soldering the first lead to the second surface of the circuit board; and soldering the second lead to the first surface of the circuit board.
According to another embodiment, an optical radiation emitting assembly comprises: a circuit board having a first surface and second surface opposite the first surface, the circuit board further including at least first and second vias extending between the first and second surfaces; and an optical radiation emitter device having at least a first lead and a second lead, the LED being positioned on the circuit board such that the optical axis of the optical radiation emitter device is inclined relative to the first surface of the circuit board with the first lead of the optical radiation emitter device inserted through the first via and the second lead abutting the first surface of the circuit board in proximity to the second via, wherein the first lead is soldered to the second surface of the circuit board and the second lead is soldered to the first surface of the circuit board.
According to another embodiment, a rearview mirror assembly for a vehicle comprises: a mirror having a surface that is at least partially reflective; a circuit board disposed behind the surface of the mirror and having a first surface and second surface opposite the first surface, the circuit board further including at least first and second vias extending between the first and second surfaces; and an optical radiation emitter device having at least a first lead and a second lead, the LED being positioned on the circuit board such that the optical axis of the optical radiation emitter device is inclined relative to the first surface of the circuit board with the first lead of the optical radiation emitter device inserted through the first via and the second lead abutting the first surface of the circuit board in proximity to the second via, wherein the first lead is soldered to the second surface of the circuit board and the second lead is soldered to the first surface of the circuit board.
According to another embodiment, an optical radiation emitting assembly comprises: a flexible circuit board having a first surface and second surface opposite the first surface; an LED chip mounted to the first surface of the flexible circuit board and electrically coupled to conductive tracings provided on the flexible circuit board; and an encapsulant molded over and around the LED chip.
According to another embodiment, a rearview mirror assembly for a vehicle comprises: a mirror having a surface that is at least partially reflective; a flexible circuit board disposed behind the surface of the mirror and having a first surface and second surface opposite the first surface; an LED chip mounted to the first surface of the flexible circuit board and electrically coupled to conductive tracings provided on the flexible circuit board; and an encapsulant molded over and around the LED chip. The surface of the encapsulant may form a lens to direct the light output of the LED chip at the desired angle. There may or may not be rigid circuit board attached to the flexible circuit board in the area of the LED die to prevent the die from becoming dislodged. The rigid circuit board may consist of holes that line up with holes in the flexible circuit board to permit the encapsulant material to flow into these holes to increase the adhesiveness of the encapsulating material.
According to another embodiment, a rearview mirror assembly for a vehicle comprises: an electrochromic mirror having front and rear surfaces and first and second electrical connectors disposed along edges of the electrochromic mirror; and a flexible circuit board disposed behind the rear surface of the electrochromic mirror and having a first surface facing the rear surface of the electrochromic mirror and a second surface opposite the first surface, wherein the flexible circuit board includes printed electrical circuits that are terminated with connectors that provide an electrical connection with the electrical connectors of the electrochromic mirror, the printed electrical circuits extending to a common location on the flexible circuit board to provide mirror control terminals for connection to a source of a mirror control signal.
According to another embodiment, a rearview mirror assembly for a vehicle comprises: a mirror having front and rear surfaces; a flexible circuit board disposed behind the rear surface of the mirror and having a first surface facing the rear surface of the mirror and a second surface opposite the first surface; and a turn indicator having at least one light source. The flexible circuit board includes a resistive conductor extending back and forth across the first surface of the flexible circuit board to function as a mirror heater. The resistive conductor begins and ends at a common location on the flexible circuit board to provide heater power terminals for connection to a source of heater power. The flexible circuit board includes conductive paths extending therethrough from a location proximate the light source to the common location to provide turn indicator control terminals proximate the heater power terminals for connection to a source of a turn indicator control signal.
According to another embodiment, a rearview mirror assembly for a vehicle comprises: a mirror having front and rear surfaces; a flexible circuit board disposed behind the rear surface of the mirror and having a front surface facing the rear surface of the mirror and a rear surface opposite the front surface, wherein at least a portion of the flexible circuit is disposed at an angle to the mirror; and at least one light emitting device surface-mounted to the angled portion of the flexible circuit board so as to selectively project light through the mirror at an angle thereto.
According to another embodiment, a rearview mirror assembly for a vehicle comprises: a mirror having front and rear surfaces; a first circuit board disposed behind the rear surface of the mirror and having a front surface facing the rear surface of the mirror and a rear surface opposite the front surface; and a light module having at least one light source mounted to a second circuit board. The first circuit board includes a first plug connector extending from the rear surface thereof. The second circuit board has a second plug connector extending from a front surface thereof for mating engagement with the first plug connector. The first circuit board includes conductive paths extending from the first plug connector to another location to which wiring from the vehicle is coupled to provide lamp module activation signals.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
In the drawings:
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
As noted above, the present invention generally pertains to outside rearview mirror assemblies incorporating turn signal indicators and/or flexible circuit boards. When incorporating a turn signal indicator, the outside mirror assembly of the present invention may have an outer appearance resembling that shown in
As also shown in
Mirror subassembly 200 further includes a printed circuit board 206, which may be a rigid circuit board or a flexible circuit board. In a most preferred embodiment, circuit board 206 is a flexible circuit board having electric heater element tracings printed on the front side of circuit board 206, which faces rear surface 14b of the mirror element. As will be discussed further below, an electrical connector plug 208 is provided on the rear surface of circuit board 206 for mating connection with a corresponding plug 210 extending from a wire harness 212 of the vehicle for selectively applying power to the heater circuit that is printed on the front surface of circuit board 206. Connector plug 208, as well as corresponding plug 210 and harness 212, may also be utilized to provide power and/or control signals to a turn signal indicator 220 as well as power or other control signals to the electrochromic mirror. As will be described further below, electrically conductive tracings may be printed on the printed circuit board 206 extending from connector plug 208 to the circuit elements of which turn signal indicator 220 is composed. Additionally, conductive tracings may be printed on circuit board 206 that extend from connector plug 208 to corresponding finger extensions 215a and 215b, which in turn provide an electrical connection to connector clips 216a and 216b, respectively. Connector clips 216a and 216b are configured to be physically and electrically coupled to bus bar clips 202 and 204, respectively. Additional circuit elements may be mounted to printed circuit board 206, such as a reverse polarity protection circuit including a diode 218 or the like. Although connector plugs 208 and 210 are shown as including pins and pin receptacles, the connector plugs may have any form including that of lugs and lug receptacles.
Turn signal indicator 220 may be configured to be disposed on a flap 222 that is cut out from a portion of the flexible circuit board and bent slightly at an angle. A plurality of LEDs 250 may be mounted to the portion of flap 222 that is bent slightly backward so as to project light outward through the mirror and away from the driver, as discussed further below. The angle which the circuit board is bent backward maybe set by the lens of the LEDs or held in place with a bracket or some other similar method.
Printed circuit board 206 may be mounted so as to be spaced slightly apart from the rear surface 14b of the mirror element or may be secured directly to rear surface 14b by an adhesive layer.
Mirror subassembly 200 further includes a bezel 230 and a carrier plate 240. Bezel 230 includes a forward lip that extends over the front surface of front element 11 of the electrochromic mirror. Bezel 230 further includes a rearward extending frame that extends about the periphery of the electrochromic mirror and the printed circuit board 206. Bezel 230 is mechanically connected to carrier plate 240 in order to secure the mirror and circuit board 206 therebetween. The connection of bezel 230 and carrier plate 240 may be accomplished in any conventional manner.
Carrier plate 240 preferably includes an opening 242 lined by a rim 244 that is configured for attachment to an actuator mechanism that allows mirror subassembly 200 to be pivoted along two axes relative to the mirror housing in which the mirror subassembly is mounted. Carrier plate 240 also preferably includes either an opening or recess 246 for accommodating turn signal indicator 220.
With the possible exception of the recess 246 in carrier plate 240, the structure of the first embodiment described above consumes very little volume inside the rearview mirror housing. In the event it is desirable to mount circuit components to the rear surface of circuit board 206, apertures may be formed through carrier plate 240 in the location of the circuit components so as to accommodate the circuit components and maintain the low profile of the subassembly. An example of such a construction is disclosed in commonly assigned U.S. Pat. No. 6,244,716. The first embodiment is further advantageous insofar as the number of parts and components required for constructing a turn signal indicator 220 are minimized. Additionally, by providing a six-pin connector plug 208, electrical coupling to the wire harness of the vehicle is significantly simplified. The shape of the connector plug 208 may be made non-symmetric so as to ensure proper coupling with a correspondingly non-symmetric connector plug attached to the wire harness. Such a non-symmetric plug shape serves to prevent the incorrect voltage potential to be applied to the connections of the electrochromic mirror, the heater, and the turn indicator.
The printed circuit board 206 of the third embodiment preferably includes a pair of conductive tracings 236a and 236b, which extend from locations approximate the corresponding pins of connector plug 208 to conductive clips 216a and 216b, respectively. Further, a pair of conductive tracings 238 may extend from the location underlying plug 208 to the plurality of LEDs 250 mounted on the forward surface of circuit board 206. Current limiting resistors (not shown) to be coupled to LEDs 250 can be either surface mount components or carbon ink resistors. The die of a reverse protection diode could also be placed onto the copper circuitry to protect from backpowering the wire harness from LEDs 250 from improper electrical connection.
To protect the LED 250 from being “popped” off the circuit board 206 and to enable die mounting, a cardboard or printed circuit board serving as a “backer board” 260 may be secured behind the LED 250. This helps to stiffen circuit board 206 in the event it is a flexible circuit board. Additionally or alternatively, a plurality of vias 262 may be provided through circuit board 206 in the vicinity of LED chip 252 so as to allow encapsulant 250 to flow through vias 262 and mushroom slightly on the opposite side of circuit board 206. This technique helps to ensure LED 250 remains securely attached to circuit board 206.
As shown in
As further shown in
Connector plugs 300 and 304 not only provide the benefit of ease of electrical connection to the vehicle wiring harness, but also provide a mechanism for positioning the light module on circuit board 206 and mirror 14 such that LEDs 250 are in registration and aligned with regions 270 and corresponding windows (not shown) in the mirror reflector. Light module housing 52 may be secured to the assembly by latch mechanisms or other structures in the carrier plate (not shown) in any manner including those disclosed in commonly assigned U.S. patent application Ser. No. 09/862,414 entitled “REARVIEW MIRROR CONSTRUCTED FOR EFFICIENT ASSEMBLY” filed on May 21, 2001, by Bradley L. Busscher et al., the entire disclosure of which is incorporated herein by reference.
Where possible, it is preferable that LEDs 250 are constructed in accordance with the teachings of commonly assigned U.S. Pat. No. 6,335,548 so as to increase the brightness levels obtainable by the LEDs. The efficiency of the LEDs may further be increased by providing appropriate heat sinking. Examples of heat sinking such LEDs in rearview mirror assemblies is disclosed in commonly assigned U.S. Pat. No. 6,441,943, the entire disclosure of which is incorporated herein by reference.
Although the present invention has generally been described with respect to light modules mounted behind the mirror subassembly so as to project light through the mirror, various aspects of the present invention may be employed in rearview mirror assemblies where the light module projects light not from behind the mirror, but outside the periphery of the mirror or in the front or side of the mirror assembly. For example, the flexible circuit board and the techniques for mounting LEDs to the circuit board may be used in the light module regardless of its position in the mirror assembly. Likewise, the techniques for angle-mounting LEDs to circuit boards may also be utilized regardless of the location of the light module. Other aspects may similarly be utilized in locations besides those behind the mirror.
The above description is considered that of the preferred embodiments only. Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.
This application is a continuation of U.S. patent application Ser. No. 10/105,574 filed on Mar. 25, 2002, now U.S. Pat. No. 6,657,767, issued on Dec. 2, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 09/862,414 filed on May 21, 2001, now U.S. Pat. No. 6,650,457, issued on Nov. 18, 2003 filed on May 21, 2001, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1096452 | Perrin | May 1914 | A |
1563258 | Cunningham | Nov 1925 | A |
2457348 | Chambers | Dec 1948 | A |
2561582 | Marbel | Jul 1951 | A |
3887788 | Seibel et al. | Jun 1975 | A |
4274078 | Isobe et al. | Jun 1981 | A |
4733335 | Serizawa et al. | Mar 1988 | A |
4803599 | Trine et al. | Feb 1989 | A |
4931627 | Watts | Jun 1990 | A |
5014167 | Roberts | May 1991 | A |
5016996 | Ueno | May 1991 | A |
5017903 | Krippelz, Sr. | May 1991 | A |
5059015 | Tran | Oct 1991 | A |
5151824 | O'Farrell et al. | Sep 1992 | A |
5207492 | Roberts | May 1993 | A |
5313335 | Gray et al. | May 1994 | A |
5355284 | Roberts | Oct 1994 | A |
5361190 | Roberts et al. | Nov 1994 | A |
5371659 | Pastrick et al. | Dec 1994 | A |
5402103 | Tashiro | Mar 1995 | A |
5436741 | Crandall | Jul 1995 | A |
D363920 | Roberts et al. | Nov 1995 | S |
5481409 | Roberts | Jan 1996 | A |
5497305 | Pastrick et al. | Mar 1996 | A |
5497306 | Pastrick | Mar 1996 | A |
5528422 | Roberts | Jun 1996 | A |
5587699 | Faloon et al. | Dec 1996 | A |
5619374 | Roberts | Apr 1997 | A |
5619375 | Roberts | Apr 1997 | A |
5632551 | Roney et al. | May 1997 | A |
5659423 | Schierbeek et al. | Aug 1997 | A |
5669698 | Veldman et al. | Sep 1997 | A |
5669699 | Pastrick et al. | Sep 1997 | A |
5669704 | Pastrick | Sep 1997 | A |
5669705 | Pastrick et al. | Sep 1997 | A |
D394833 | Muth | Jun 1998 | S |
5788357 | Muth et al. | Aug 1998 | A |
5796176 | Kramer et al. | Aug 1998 | A |
5798575 | O'Farrell et al. | Aug 1998 | A |
5818625 | Forgette et al. | Oct 1998 | A |
5823654 | Pastrick et al. | Oct 1998 | A |
5825527 | Forgette et al. | Oct 1998 | A |
5863116 | Pastrick et al. | Jan 1999 | A |
5879074 | Pastrick | Mar 1999 | A |
D409540 | Muth | May 1999 | S |
5938320 | Crandall | Aug 1999 | A |
5959367 | O'Farrell et al. | Sep 1999 | A |
6005724 | Todd | Dec 1999 | A |
6007222 | Thau | Dec 1999 | A |
6045243 | Muth et al. | Apr 2000 | A |
D425466 | Todd et al. | May 2000 | S |
6064508 | Forgette et al. | May 2000 | A |
D426506 | Todd et al. | Jun 2000 | S |
D426507 | Todd et al. | Jun 2000 | S |
D427128 | Mathieu | Jun 2000 | S |
6074077 | Pastrick et al. | Jun 2000 | A |
6076948 | Bukosky et al. | Jun 2000 | A |
D428372 | Todd et al. | Jul 2000 | S |
D428373 | Todd et al. | Jul 2000 | S |
6086229 | Pastrick | Jul 2000 | A |
6093976 | Kramer et al. | Jul 2000 | A |
D428842 | Todd et al. | Aug 2000 | S |
D429202 | Todd et al. | Aug 2000 | S |
D430088 | Todd et al. | Aug 2000 | S |
6099155 | Pastrick et al. | Aug 2000 | A |
6111683 | Cammenga et al. | Aug 2000 | A |
6111684 | Forgette et al. | Aug 2000 | A |
6124886 | DeLine et al. | Sep 2000 | A |
6142656 | Kurth | Nov 2000 | A |
6146003 | Thau | Nov 2000 | A |
6149287 | Pastrick et al. | Nov 2000 | A |
6152590 | Furst et al. | Nov 2000 | A |
6163083 | Kramer et al. | Dec 2000 | A |
6166848 | Cammenga et al. | Dec 2000 | A |
6175164 | O'Farrell et al. | Jan 2001 | B1 |
6176602 | Pastrick et al. | Jan 2001 | B1 |
6195194 | Roberts et al. | Feb 2001 | B1 |
6227689 | Miller | May 2001 | B1 |
6244716 | Steenwyk et al. | Jun 2001 | B1 |
6257746 | Todd et al. | Jul 2001 | B1 |
6264353 | Caraher et al. | Jul 2001 | B1 |
6276821 | Pastrick et al. | Aug 2001 | B1 |
6280069 | Pastrick et al. | Aug 2001 | B1 |
6296379 | Pastrick | Oct 2001 | B1 |
6299333 | Pastrick et al. | Oct 2001 | B1 |
6336737 | Thau | Jan 2002 | B1 |
6340849 | Kramer et al. | Jan 2002 | B1 |
6340850 | O'Farrell et al. | Jan 2002 | B2 |
6347880 | Furst et al. | Feb 2002 | B1 |
6356376 | Tonar et al. | Mar 2002 | B1 |
6416208 | Pastrick et al. | Jul 2002 | B2 |
6426485 | Bulgajewski et al. | Jul 2002 | B1 |
6441943 | Roberts et al. | Aug 2002 | B1 |
6476358 | Lang et al. | Nov 2002 | B1 |
6650457 | Busscher et al. | Nov 2003 | B2 |
6657767 | Bonardi et al. | Dec 2003 | B2 |
20020126497 | Pastrick | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
2028461 | Nov 1994 | CA |
0450162 | Oct 1994 | EP |
2161440 | Jan 1986 | GB |
WO9940039 | Aug 1999 | WO |
WO 0030893 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040070857 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10105574 | Mar 2002 | US |
Child | 10702281 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09862414 | May 2001 | US |
Child | 10105574 | US |