RECOMBINANT ADENO ASSOCIATED VIRUS (RAAV) ENCODING GJB2 AND USES THEREOF

Information

  • Patent Application
  • 20230340038
  • Publication Number
    20230340038
  • Date Filed
    September 14, 2021
    2 years ago
  • Date Published
    October 26, 2023
    7 months ago
Abstract
The present disclosure, at least in part, relates to compositions (e.g., isolated nucleic acid and rAAVs) and methods for treating Non-syndromic hearing loss and deafness (DFNB1) by delivering gap junction beta 2 (GJB2) protein to inner ear cells that normally express GJB2 (e.g., fibrocytes and supporting cells of the organ of Corti and nearby regions). The isolated nucleic acid of the present disclosure comprises an expression cassette, wherein the expression cassette comprises a gap junction beta 2 (GJB2) gene regulatory element (GRE) (e.g., GJB2 enhancers, GJB2 promoters, GJB2 5′ UTR, and/or GJB2 3′ UTR), and a nucleotide sequence encoding a GJB2 protein.
Description
BACKGROUND

Loss of gap junction beta 2 (GJB2) expression in the inner ear underlies a disorder termed nonsyndromic Hearing Loss and Deafness, (DFNB1), characterized by recessive, mild-to-profound sensorineural hearing impairment. Many of these patients are born with profound hearing loss, which is probably irreversible even at birth. Two-thirds have some residual hearing at birth, and the majority of those lose hearing over the next few years. Therefore, these patients are potential candidates for treatment of DFNB1. Previous gene replacement therapy of GJB2 failed to rescue hearing even though gene addition of the GJB2 gene rescued cell survival and the gap junction network. Effective GJB2 gene replacement therapy for hearing rescuing has not been developed.


SUMMARY

The present disclosure, at least in part, relates to an isolated nucleic acid comprising an expression cassette, wherein the expression cassette comprises a gap junction beta 2 (GJB2) gene regulatory element (GRE), and a nucleotide sequence encoding a GJB2 protein. In some embodiments, the expression cassette further comprises a promoter (e.g., GJB2 promoter). In some embodiments, the expression cassette is flanked by two adeno-associated virus (AAV) inverted terminal repeats (ITRs). The presence of native GJB2 regulatory elements (GREs) in the isolated nucleic acid prevents promiscuous GJB2 gene expression in the inner ear, which is toxic and damages hearing. Accordingly, in some embodiments, the isolated nucleic acid described herein is capable of expressing the GJB2 protein in inner ear cells that normally express the GJB2 gene (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions), but not in the cell that do not normally express GJB2 (e.g., hair cells and spiral ganglion neurons).


In some aspects, the present disclosure provides an isolated nucleic acid comprising an expression cassette, wherein the expression cassette comprises a gap junction beta 2 (GJB2) gene regulatory element (GRE), and a nucleotide sequence encoding a GJB2 protein.


In some embodiments, the GJB2 protein is a human GJB2 protein. In some embodiments, the GJB2 protein comprises an amino acid sequence at least 80% identical to SEQ ID NO: 1. In some embodiments, the nucleotide sequence encoding a human GJB2 protein comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 2.


In some embodiments, the expression cassette further comprises a promoter operably linked to the nucleotide sequence encoding a GJB2 protein. In some embodiments, the promoter is a human GJB2 promoter. In some embodiments, the promoter comprises 500 nucleotides of a human GJB2 promoter. In some embodiments, the promoter comprises a nucleic acid sequence at least 80% identical to SEQ ID NO: 5. In some embodiments, the promoter comprises a nucleic acid sequence at least 80% identical to SEQ ID NO: 102. In some embodiments, the promoter comprises a nucleic acid sequence 100% identical to SEQ ID NO: 102.


In some embodiments, the promoter is a human GJB2 basal promoter. In some embodiments, the human GJB2 basal promoter comprises a nucleic acid sequence at least 80% identical to SEQ ID NO: 47.


In some embodiments, the expression cassette comprises a nucleotide sequence encoding a 5′ UTR. In some embodiments, the 5′ UTR is positioned between the promoter and the nucleotide sequence encoding the GJB2 protein. In some embodiments, the 5′ UTR comprises about 300 nucleotides of a human GJB2 gene 5′ UTR. In some embodiments, the promoter and the 5′ UTR comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 30.


In some embodiments, the GJB2 gene regulatory element comprises an enhancer. In some embodiments, the enhancer is positioned 5′ to the promoter. In some embodiments, the enhancer is normally present within approximately 200 kb upstream or downstream of a GJB2 gene. In some embodiments, the enhancer is normally present within approximately 95 kb of a GJB2 gene. In some embodiments, the GJB2 GRE comprises one or more enhancers. In some embodiments, the one or more enhancers are the same enhancers or different enhancers. In some embodiments, the enhancer comprises a nucleotide sequence at least 80% identical to nucleotide sequence or a fragment thereof as set forth in any one of SEQ ID NOs: 6 to 29. In some embodiments, the enhancer comprises a nucleotide sequence at least 80% identical to a GJB2 enhancer as set forth in any of SEQ ID NOs: 37-46 and 55-60. In some embodiments, the enhancer comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 42.


In some aspects, the present disclosure also provides an isolated nucleic acid comprising an expression cassette, wherein the expression cassette comprises a Gap Junction beta 2 (GJB2) promoter, and a nucleotide sequence encoding a GJB2 protein.


In some embodiments, the GJB2 promoter comprises a nucleic acid sequence at least 80% identical to SEQ ID NO: 102. In some embodiments, the GJB2 promoter comprises a nucleic acid sequence 100% identical to SEQ ID NO: 102.


In some embodiments, the expression cassette further comprises a 5′ UTR. In some embodiments, the 5′ UTR comprises: a first nucleic acid sequence at least 80% identical to SEQ ID NO: 103; and/or a second nucleic acid sequence at least 80% identical to SEQ ID NO: 104. In some embodiments, the expression cassette further comprises a 5′ UTR. In some embodiments, the 5′ UTR comprises: a first nucleic acid sequence 100% identical to SEQ ID NO: 103; and/or a second nucleic acid sequence 100% identical to SEQ ID NO: 104.


In some embodiments, the isolated nucleic acid comprises a nucleic acid sequence at least 80% identical to SEQ ID NO: 105. In some embodiments, the isolated nucleic acid comprises a nucleic acid sequence 100% identical to SEQ ID NO: 105.


In some embodiments, the isolated nucleic acid is capable of expressing GJB2 in cells that normally express the GJB2 gene. In some embodiments, the isolated nucleic acid is capable of expressing GJB2 in cochlear connective tissue cells and supporting cells of the organ of Corti. In some embodiments, the supporting cell of the organ of Corti are pillar cells, Deiter cells, Hensen's cells, Claudius cells, inner phalangeal cells, and border cells. In some embodiments, the cochlear connective tissue cells are strial intermediate cells, fibrocytes of the lateral wall and suprastrial zone, basal cells of the stria vascularis, fibrocytes in the spiral ligament, fibrocytes in the spiral limbus, mesenchymal cells lining the bony otic capsule facing the scala vestibuli, and supralimbal dark cells.


In some embodiments, the expression cassette is flanked by two adeno-associated virus inverted terminal repeats (ITRs). In some embodiments, the AAV ITR is from a serotype selected from the group consisting of AAV1 ITR, AAV2 ITR, AAV3 ITR, AAV4 ITR, AAV5 ITR, and AAV6 ITR. In some embodiments, the AAV ITR is AAV2 ITR.


In some embodiments, the expression cassette comprises: a 5′ ITR having a nucleotide sequence at least 80% identical to SEQ ID NO: 106; and/or a 3′ ITR having a nucleotide sequence at least 80% identical to SEQ ID NO: 107. In some embodiments, the expression cassette comprises: a 5′ ITR having a nucleotide sequence 100% identical to SEQ ID NO: 106; and/or a 3′ ITR having a nucleotide sequence 100% identical to SEQ ID NO: 107.


In some embodiments, the expression cassette further comprises a Woodchuck Hepatitis Virus (WHP) Posttranscriptional Regulatory Element (WPRE) 3′ to the nucleotide sequence encoding the GJB2 protein.


In some embodiments, the WPRE comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 108. In some embodiments, the WPRE comprises a nucleotide sequence 100% identical to SEQ ID NO: 108.


In some embodiments, the expression cassette further comprises a nucleotide sequence encoding a 3′ UTR located 5′ of the WPRE. In some embodiments, the 3′ UTR is a GJB2 exon 2 3′ UTR. In some embodiments, the GJB2 exon 2 3′ UTR comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 32.


In some embodiments, the expression cassette further comprises one or more miRNA binding site positioned in the 3′ UTR. In some embodiments, the miRNA binding site is a neuron-associated miRNA binding site. In some embodiments, the neuron-associated miRNA is selected from: miR-124, miR-127, miR-129, miR-129*, miR-136, miR-136*, miR-137, miR-154, miR-300-3p, miR-323, miR-329, miR-341, miR-369-5p, miR-376a, miR-376b-3p, miR-376c, miR-379, miR-382, miR-382*, miR-410, miR-411, miR-433, miR-434, miR-495, miR-541, miR-543*, miR-551b, miR-143, miR-449a, miR-219-2-3p, miR-126, miR-126*, miR-141, miR-142-3p, miR-142-5p, miR-146a, miR-150, miR-200c, and miR-223. In some embodiments, the neuron-associated miRNA is miR-124. In some embodiments, the miRNA binding site is a cochlear hair cell-associated miRNA binding site. In some embodiments, the cochlear hair cell-associated miRNA binding site is selected from: miR-124, miR-96, miR-182, and miR-183.


In some embodiments, the expression cassette further comprises a poly A signal. In some embodiments, the poly A signal is a bovine growth hormone poly A signal.


In some embodiments, the poly A signal comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 109. In some embodiments, the poly A signal comprises a nucleotide sequence 100% identical to SEQ ID NO: 109.


In some aspects, the present disclosure also provides an isolated nucleic acid comprising a nucleotide sequence 100% identical to SEQ ID NO: 110 or 111. In some aspects, the present disclosure also provides an isolated nucleic acid comprising a nucleotide sequence at least 80% identical to SEQ ID NO: 110 or 111.


In some aspects, the present disclosure also provides a vector comprising the isolated nucleic acid as described herein. In some embodiments, the vector is a plasmid or a viral vector. In some embodiments, the viral vector is an AAV vector.


In some aspects, the present disclosure also provides a vector comprising from 5′ to 3′: (a) an AAV 5′ ITR; (b) a GJB2 promoter, or a basal GJB2 promoter sequence thereof; (c) a GJB2 5′ UTR (e.g., a GJB2 exon 1 5′ UTR); (d) a nucleotide sequence encoding a GJB2 protein; (e) a GJB2 3′ UTR (e.g., a GJB2 exon 2 3′ UTR), optionally the GJB2 3′ UTR comprises one or more miR-124 binding site; (f) a bovine growth hormone poly A signal; and (g) an AAV 3′ ITR.


In some aspects, the present disclosure also provides a vector comprising from 5′ to 3′: (a) an AAV 5′ ITR; (b) a GJB2 enhancer; (c) a GJB2 promoter, or a basal GJB2 promoter sequence thereof; (d) a GJB2 5′ UTR (e.g., a GJB2 exon 1 5′ UTR); (e) a nucleotide sequence encoding a GJB2 protein; (f) a GJB2 3′ UTR (e.g., a GJB2 exon 2 3′ UTR), optionally the GJB2 3′ UTR comprises one or more miR-124 binding site; (g) a bovine growth hormone poly A signal; and (h) an AAV 3′ ITR.


In some embodiments, the vector comprises a nucleotide sequence at least 80% identical to any one of SEQ ID NOs: 36, 48-62 and 61-83. In some embodiments, the vector is an AAV vector. In some embodiments, the vector is capable of expressing a GJB2 gene in cells that normally express GJB2.


In some aspects, the present disclosure also provides a recombinant adeno-associated virus (rAAV) comprising: (i) a capsid protein; and (ii) the isolated nucleic acid described herein.


In some aspects, the present disclosure also provides a recombinant adeno-associated virus (rAAV) comprising: (i) a capsid protein; and (ii) an isolated nucleic acid comprising: (a) an AAV 5′ ITR (e.g., a GJB2 exon 1 5′ UTR); (b) a GJB2 promoter, or a basal GJB2 promoter sequence thereof; (c) a GJB2 5′ UTR (e.g., a GJB2 exon 2 3′ UTR), optionally the GJB2 exon 2 3′ UTR comprises one or more miR-124 binding site; (d) a nucleotide sequence encoding a GJB2 protein; (e) a GJB2 3′ UTR; (f) a bovine growth hormone poly A signal; and (g) an AAV 3′ ITR.


In some aspects, the present disclosure also provides a recombinant adeno-associated virus (rAAV) comprising: (i) a capsid protein; and (ii) an isolated nucleic acid comprising: (a) an AAV 5′ ITR; (b) a GJB2 enhancer; (c) a GJB2 promoter, or a basal GJB2 promoter sequence thereof; (d) a GJB2 5′ UTR (e.g., a GJB2 exon 1 5′ UTR); (e) a nucleotide sequence encoding a GJB2 protein; (f) a GJB2 3′ UTR (e.g., a GJB2 exon 2 3′ UTR), optionally the GJB2 exon 2 3′ UTR comprises one or more miR-124 binding site; (g) a bovine growth hormone poly A signal; and (h) an AAV 3′ ITR.


In some embodiments, the rAAV has tropism for a subset of cochlea cells that normally express the GJB2 gene. In some embodiments, the rAAV has tropism for cells of the inner ear.


In some embodiments, the capsid protein is an AAV1 capsid protein, an AAV2 capsid protein, an AAV5 capsid protein, an AAV7 capsid protein, an AAV8 capsid protein, an AAV9 capsid protein, an AAV-S capsid protein, or a variant thereof. In some embodiments, the AAV capsid is AAV9.PHP.B, AAV9.PHP.eB, or AAV-S. In some embodiments, the AAV capsid protein is AAV-S.


In some aspects, the present disclosure provides a host cell comprising the isolated nucleic acid, the vector, or the rAAV as described herein.


In some aspects, the present disclosure provides a pharmaceutical composition comprising the isolated nucleic acid, the vector, the rAAV, or the host cell as described herein. In some embodiments, the pharmaceutical composition further comprises a pharmaceutically acceptable carrier.


In some aspects, the present disclosure provides a method for specifically expressing GJB2 in cells that normally expresses the GJB2 gene in a subject, the method comprising administering to the subject an effective amount of the isolated nucleic acid, the vector, the rAAV, the host cell, or the pharmaceutical composition as described herein.


In some aspects, the present disclosure provides a method for treating Non-syndromic Hearing Loss and Deafness (DFNB1) in a subject, the method comprising administering to the subject an effective amount of the isolated nucleic acid, the vector, the rAAV, the host cell, or the pharmaceutical composition as described herein.


A method for treating a GJB2-associated disease in a subject in need thereof, the method comprising administering to the subject an effective amount of the isolated nucleic acid, the vector, the rAAV, the host cell, or the pharmaceutical composition as described herein.


In some embodiments, the subject is a mammal. In some embodiments, the mammal is a human. In some embodiments, the mammal is a non-human mammal. In some embodiments, the non-human mammal is mouse, rat, or non-human primate.


In some embodiments, the hearing loss is associated with a mutation in the GJB2 gene. In some embodiments, the mutation in the GJB2 gene is a point mutation, a missense mutation, a nonsense mutation, a splice-altering mutation, a synonymous mutation, a deletion, an insertion, or a combination thereof. In some embodiments, the subject is human; and the mutation is a mutation listed in Table 2 (below) or a combination thereof. In some embodiments, the mutation is NM_004004.6 c.101T>C (GRCh37/hg19 Chr13:20763620A>G) or c.35delG (GRCh37/hg19 chr13:20763685AC>A).


In some embodiments, the administration results in expression of GJB2 protein in the cochlea connective tissue cells and supporting cells of the organ of Corti and nearby regions. In some embodiments, the supporting cell of the organ of Corti are pillar cells, Deiters' cells, Hensen's cells, Claudius cells, inner phalangeal cells, and border cells. In some embodiments, the connective tissue cells are strial intermediate cells, fibrocytes of the lateral wall and suprastrial zone, basal cells of the stria vascularis, fibrocytes in the spiral ligament, fibrocytes in the spiral limbus, mesenchymal cells lining the bony otic capsule facing the scala vestibuli, and supralimbal dark cells.


In some embodiments, the administration is via injection. In some embodiments, the injection is through round window membrane of the cochlea, into the scala media of the cochlea, into the scala tympani of the cochlea, into the scala vestibuli of the cochlea, into a semicircular canal of the inner ear, or into the saccule or the utricle of the inner ear.


The details of one or more embodiments of the invention are set forth in the description below. Other features or advantages of the present invention will be apparent from the following drawing and detailed description of certain embodiments and also from the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate certain embodiments, and together with the written description, serve to provide non-limiting examples of certain aspects of the compositions and methods disclosed herein.



FIGS. 1A-1C show the structure and expression distribution of GJB2, and how loss of GJB2 expression affects the patients. FIG. 1A shows the structure of the GJB2 hemichannel. Six subunits of GJB2 protein, each with four trans-membrane helices, assemble in the plane of the membrane to form a large central pore. GJB2 hemichannels from adjacent cells join to create a channel from the cytoplasm of one cell to the cytoplasm of the other. Gap junctions are formed by hundreds or thousands of channels packed in a junctional plaque. FIGS. 1B-1C show the network of fibrocytes and epithelial cells in which GJB2 is expressed (FIG. 1B), and the inner and outer hair cells, in which GJB2 is not expressed (FIG. 1C). FIG. 1D shows that many patients carrying GJB2 mutation(s) who have some residual hearing at birth show further hearing loss over the next 3-6 years. A window for treatment is present for 1-5 years after birth. with ˜10,000 affected children in the United State aged 0-5 possibly treatable.



FIGS. 2A-2B show the delivery of viral vector to the cochlea by direct injection through the round window membrane (RWM) and the deleterious effect of promiscuous expression of Gjb2 to the hearing of injected mice. FIG. 2A is a cartoon illustrating the round window membrane (RWM) injection. FIG. 2B shows that promiscuous expression of Gjb2 in the inner ear damaged hearing in wild-type mice.



FIGS. 3A-3N show the identification of cis-regulatory elements (e.g., enhancers) that are critical for GJB2 expression in the subset of cochlea cells that naturally express the GJB2 gene. FIGS. 3A-3B show that certain patients with GJB2-associated deafness have upstream deletions occurring in trans with GJB2 coding sequence mutations, which suggests that some patients carry mutation(s) in the cis-regulatory element, and the region next to the CRYL1 gene is of particular importance for identification of such cis-regulatory elements. FIG. 3C (top) shows the identification of gene regulatory elements (GREs), in UCSC Genome Browser views of ATAC-Seq from mouse cochlea at developmental stages P2, P5 and P8, over ˜300 kb in the region of the mouse Gjb2 gene. Shaded regions mark regions containing putative GREs. X-axis is the genomic region on chr14 in the mouse genome. Y-axis is the number of reads from the ATAC-Seq that align to a specific region in the genome. Light shading denotes regions of open chromatin, which are the hallmarks of transcriptionally active regions that are enriched for read pile up, suggesting higher activity in these regions. Regions A and B mark the transcriptionally active sequences within mouse Gjb2 itself. Regions C-M are regions that are transcriptionally active around Gjb2 that might be part of a cis-regulatory network. FIG. 3C (bottom) shows transcriptionally active regions in and around the light-shaded regions that have been tested as specific GREs (dark highlight). Note that the GREs were initially identified in mouse. Human GJB2 GREs were identified in silico by modeling the mouse GREs. Human GJB2 GREs were tested in subsequent experiments. FIGS. 3D-3E show various vector designs with or without incorporation of GJB2 promoter and/or enhancers. These vectors were tested in mouse inner ear. The C15 vector, which is the GJB2 enhancer vector, concatenates 500 bp of the human GJB2 promoter, the human GJB2 5′ UTR followed by a coding sequence for GFP and human GJB2 3′ UTR, and three human GJB2 enhancers that match mouse sequences identified by ATAC-seq. Vectors c20-23 were constructed to test the toxicity of promiscuous expression of Gjb2 in mouse. Vector c20 was lethal at doses over 2×109 genomic copies. FIG. 3F shows a segment of the mouse cochlea, from the lateral wall (top) to the interdental cells (bottom). Cells transduced with the AAV9-PHP.B-C15 vector and expressing the GFP marker gene under Gjb2 enhancers are shown in the left panel. Cells normally expressing GJB2 are shown in the middle panel. In the right panel, IHCs and OHCs (indicated) are also identified by labeling actin with fluorescent phalloidin. The expression pattern of GFP, which was driven by the c15 construct, is consistent with native Gjb2 expression reported in Kikuchi et al., 1995 using the same antibody against GJB2. Notably, c15 does not drive GFP expression in hair cells. FIG. 3G shows the expression of Gjb2 in inner hair cells driven by construct c20. 3D reconstruction of the organ of Corti in an uninjected mouse cochlea, with outer hair cells and inner hair cells is shown in the top panel. GJB2-containing gap junctions in supporting cells were labeled with an antibody to GJB2 protein. Hair cells do not make gap junctions. Vector c20, with a promiscuous promoter, drives GJB2 expression in inner hair cells and other cell types (see bottom panel). FIG. 3H shows that promiscuous Gjb2 expression damages hearing in wild-type mice, but targeted expression rescues hearing in Gjb2 knockout mice. However, a C70 construct, which includes GJB2 promoter/enhancer based on preliminary results from the ATAC-Seq, was capable of rescuing hearing by 15-20 dB, and did not damage hearing in the wild-type. FIGS. 3I-3L shows the map of the c70 vector plasmid encoding mouse GJB2 or human GJB2 with or without an HA tag. FIG. 3M shows schematics of vector c.70 encoding mouse GJB2 or human GJB2 with or without the HA tag. FIG. 3N shows additional vectors that were created and tested.



FIG. 4 shows that AAV-S encoding eGFP with a CBA promoter efficiently transduces hair cells, supporting cells, and cells of the lateral wall, in both neonatal mouse and juvenile NHP cochlea.



FIGS. 5A-5V show vector maps of the AAV vectors including the identified GJB2 GREs 1, 2, 3, 4, 5, 7, 8, and 9, respectively. The vectors include, from 5′ to 3′, a 5′ ITR, a human GJB2 GRE, a GJB2 basal promoter, a GJB2 exon 1 5′ UTR, a nucleotide sequence encoding an eGFR, and GJB2 exon 2 3′ UTR. FIG. 5A shows vector c.81.1, which includes human GJB2 GRE1, and encodes human GJB2; FIG. 5B shows vector c.81.1, which includes human GJB2 GRE1, and encodes mouse GJB2; FIG. 5C shows vector c.81.2, which includes human GJB2 GRE2, and encodes eGFP; FIG. 5D shows vector c.81.2, which includes human GJB2 GRE2, and encodes human GJB2; FIG. 5E shows vector c.81.2, which includes human GJB2 GRE2, and encodes mouse GJB2; FIG. 5F shows vector c.81.3, which includes human GJB2 GRE3, and encodes eGFP; FIG. 5G shows vector c.81.3, which includes human GJB2 GRE3, and encodes human GJB2; FIG. 5H shows vector c.81.3, which includes human GJB2 GRE3, and encodes mouse GJB2; FIG. 5I shows vector c.81.4, which includes human GJB2 GRE4, and encodes human GJB2; FIG. 5J shows vector c.81.4, which includes human GJB2 GRE4, and encodes mouse GJB2; FIG. 5K shows vector c.81.5, which includes human GJB2 GRE5, and encodes eGFP; FIG. 5L shows vector c.81.5, which includes human GJB2 GRE5, and encodes human GJB2; FIG. 5M shows vector c.81.5, which includes human GJB2 GRE5, and encodes mouse GJB2; FIG. 5N shows vector c.81.7, which includes human GJB2 GRE7, and encodes eGFP; FIG. 5O shows vector c.81.7, which includes human GJB2 GRE7, and encodes human GJB2; FIG. 5P shows vector c.81.7, which includes human GJB2 GRE7, and encodes mouse GJB2; FIG. 5Q shows vector c.81.8, which includes human GJB2 GRE8, and encodes human GJB2; FIG. 5R shows vector c.81.8, which includes human GJB2 GRE8, and encodes mouse GJB2; FIG. 5S shows vector c.81.9, which includes human GJB2 GRE9, and encodes eGFP; FIG. 5T shows vector c.81.9, which includes human GJB2 GRE9, and encodes human GJB2; FIG. 5U shows vector c.81.9, which includes human GJB2 GRE9, and encodes mouse GJB2. FIG. 5V shows schematics of c81.2, c81.3, c81.5, c81.7 and c81.9 encoding eGFP, mouse GJB2 and human GJB2 as described above.



FIGS. 6A-6D show GFP expression by vector c81.5 in the cells of the organ of Corti FIG. 6A shows a fluorescent image of GFP expressing cells, including a variety of supporting cells in, and medial to, the organ of Corti. FIG. 6B shows antibody label of endogenous GJB2 in the region of the organ of Corti. Gjb2 expression largely overlapped that of exogenous GFP. FIG. 6C is an overlay of FIGS. 6A and 6B, with a third staining of actin, which revealed stereocilia of hair cells. No GFP was expressed in the hair cells. FIG. 6D shows a frozen section immunofluorescence image of GFP and a protein marker for hair cells, MYO7A. GFP was expressed in a variety of supporting cells in the organ of Corti, but did not overlap with MYO7A expression, which was expressed in hair cells.



FIGS. 7A-7E show GFP expression pattern by vector 81.5 in the lateral wall of the cochlea. FIG. 7A shows GFP expression in cells including fibrocytes of the lateral wall. FIG. 7B shows an antibody labeling of endogenous Gjb2 in the region of the lateral wall. GJB2 expression largely overlaps that of exogenous GFP. FIG. 7C is an overlay image of FIGS. 7A and 7B. Note that GFP was expressed in the cells expressing Gjb2. FIGS. 7D-7E show frozen section immunofluorescences of GFP (FIG. 7D) and GJB2 in supporting cells of the organ of Corti and fibrocytes of the lateral wall (FIG. 7E).





The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate certain embodiments, and together with the written description, serve to provide non-limiting examples of certain aspects of the compositions and methods disclosed herein.


DETAILED DESCRIPTION

The present disclosure, at least in part, relates to an isolated nucleic acid comprising an expression cassette, wherein the expression cassette comprises a gap junction beta 2 (GJB2) gene regulatory element (GRE), and a nucleotide sequence encoding a GJB2 protein. In some embodiments, the expression cassette further comprises a promoter (e.g., GJB2 promoter). In some embodiments, the expression cassette is flanked by two adeno-associated virus (AAV) inverted terminal repeats (ITRs). The presence of native GJB2 regulatory elements (GREs) in the isolated nucleic acid prevents promiscuous GJB2 gene expression in the inner ear, which is toxic and damages hearing. Accordingly, in some embodiments, the isolated nucleic acid described herein is capable of expressing the GJB2 protein in inner ear cells that normally express the GJB2 gene (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions), but not in the cell that do not normally express GJB2 gene (e.g., hair cells and spiral ganglion neurons).


I. Isolated Nucleic Acid

In some aspects, the present disclosure relates to compositions and methods for treating certain autosomal recessive genetic diseases, for example, non-syndromic hearing loss (DFNB1). DFNB1 is caused by mutations in the GJB2 gene. The GJB2 gene encodes the GJB2 protein, also known as connexin 26. Connexin 26 is a member of the connexin protein family. GJB2 protein forms channels in clusters called gap junctions, which allow communication between neighboring cells, including cells in the inner ear. Mutations in the GJB2 gene eliminate or change the structure of gap junctions and affect the function or survival of cells that are needed for hearing. Gene replacement therapy (e.g., gene therapy by recombinant adeno-associated virus (rAAVs)) is attractive due to the small size of the GJB2 gene coding sequence (less than 700 bp). However, restoration of GJB2 expression in the inner ear using the currently available gene therapy does not lead to the restoration of hearing.


Accordingly, the present disclosure is based, in part, on the surprising discovery that successful GJB2 gene therapy requires GJB2 expression in cells that normally express the GJB2 protein (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions) and not in other cells (e.g., hair cells and spiral ganglion neurons). Excluding sensory cells, most cells in the cochlea are connected via gap junctions, and these gap junctions appear to play a critical role in cochlear function. GJB2 protein occurs in gap junctions connecting most cell classes in the cochlea. There are two independent systems of cells, which are defined by interconnecting gap junctions. The first system, the epithelial cell gap junction system, is mainly composed of all organs of Corti supporting cells (e.g., epithelial cells of the inner and outer sulcus, and interdental cells), and also includes interdental cells in the spiral limbus and root cells within the spiral ligament. In the inner ear, the sensory region of the cochlea, termed the organ of Corti, includes one row of inner hair cells (IHC) and three to four rows of outer hair cells (OHC) that are surrounded by various supporting cells. The supporting cells play crucial roles in the development, function, and maintenance of inner ear sensory epithelia. Unlike hair cells, which contact only the lumenal surface of the epithelium, supporting cells span the entire depth of the epithelium, from the basal lamina to the lumen. Supporting cells are linked to each other and to hair cells by tight and adherens junctions; they communicate directly with other supporting cells by gap junctions (e.g., Wan et al., Inner ear supporting cells: Rethinking the silent majority, Semin Cell Dev Biol. 2013 May; 24(5): 448-459). Non-limiting examples of supporting cells for the organ of Corti include pillar cells, Deiters' cells, Hensen's cells, Claudius cells, inner phalangeal cells, and border cells. The second system, the connective tissue cell gap junction system, includes strial intermediate cells, fibrocytes of the lateral wall and suprastrial zone, basal cells of the stria vascularis, fibrocytes in the spiral ligament, fibrocytes in the spiral limbus, mesenchymal cells lining the bony otic capsule facing the scala vestibuli, and supralimbal dark cells. In some embodiments, in the cochlea, GJB2 is normally expressed in supporting cells of the organ of Corti and nearby regions (e.g., pillar cells, Deiters' cells, Hensen's cells, Claudius cells, inner phalangeal cells; and border cells), and the connective tissue system comprising strial intermediate cells, fibrocytes of the lateral wall and suprastrial zone, basal cells of the stria vascularis, fibrocytes in the spiral ligament, fibrocytes in the spiral limbus, mesenchymal cells lining the bony otic capsule facing the scala vestibuli, and supralimbal dark cells (See, e.g., Kikuchi et al. (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191:101-118; and Kikuchi et al., Gap junction systems in the mammalian cochlea, Brain Res Brain Res Rev. 2000 April;32(1):163-6. doi: 10.1016/s0165-0173(99)00076-4.).


GJB2 expression is critical for cochlear function. For example, the K+ that enters hair cells through transduction channels and leaves through basal K+ channels is shuttled away from the organ of Corti by the epithelial system and conveyed by the cytoplasmic system to the stria, where it is pumped back into endolymph. Further, GJB2 plays a role in the development of the cochlea, as mice lacking GJB2 protein in the inner ear have reduced endocochlear potential and profound apoptotic loss of hair cells and supporting cells by postnatal day 30 (P30), even though hair cells do not express Gjb2 (Cohen-Salmon et al., 2002; Wang et al., 2009; Sun et al., 2009; Crispino et al., 2011; Johnson et al., 2017). If Gjb2 is deleted after P6, the phenotype is much milder (Chang et al., 2015). However there remains a long-term requirement for GJB2 protein: hair cell loss occurs after months even with deletion as late as P14 (Ma et al., 2020). Not wishing to be bound by any particular theory, GJB2's function in shuttling K+ may be related to its role in the development of the cochlea: If K+ is not carried away from hair cells by a gap junction network, K+ accumulation could depolarize hair cells, leading to Ca2+ influx and eventual cell death. The gap junction network may also be required to transport glucose and nutrients from blood vessels to the sensory epithelium, and its absence could lead to cell death.


In some embodiments, the present disclosure provides an isolated nucleic acid comprising two adeno-associated virus (AAV) inverted terminal repeats (ITRs) flanking an expression cassette, wherein the expression cassette comprises a promoter (e.g., a human GJB2 promoter) operably linked to a nucleotide sequence encoding a GJB2 gene regulatory element (GRE), and a nucleotide sequence encoding a gap junction beta 2 (GJB2) protein. Incorporation of the native GJB2 gene regulatory element and/or tissue/cell-specific promoter in the isolated nucleic acid facilitates the expression of the GJB2 gene in cells that normally express it (e.g., connective tissue cells of the cochlea including fibrocytes and supporting cells of the organ of Corti and nearby regions). An expression cassette, as used herein, refers to component of vector DNA comprising a protein coding sequence to be expressed by a cell having the vector and its regulatory sequences. Once delivered to the target cell, the expression cassette directs the cell's machinery to make RNA and/or protein(s) (e.g., GJB2 protein).


A “nucleic acid” sequence refers to a DNA or RNA sequence. In some embodiments, proteins and nucleic acids of the disclosure are isolated. As used herein, the term “isolated” means artificially produced. As used herein with respect to nucleic acids, the term “isolated” means: (i) amplified in vitro by, for example, the polymerase chain reaction (PCR); (ii) recombinantly produced by cloning; (iii) purified, for example, by cleavage and gel separation; or (iv) synthesized by, for example, chemical synthesis. An isolated nucleic acid is one which is readily manipulable by recombinant DNA techniques well known in the art. Thus, a nucleotide sequence contained in a vector in which 5′ and 3′ restriction sites are known or for which polymerase chain reaction (PCR) primer sequences have been disclosed is considered isolated but a nucleic acid sequence existing in its native state in its natural host is not. An isolated nucleic acid may be substantially purified, but need not be. For example, a nucleic acid that is isolated within a cloning or expression vector is not pure in that it may comprise only a tiny percentage of the material in the cell in which it resides. Such a nucleic acid is isolated, however, as the term is used herein because it is readily manipulable by standard techniques known to those of ordinary skill in the art. As used herein with respect to proteins or peptides, the term “isolated” refers to a protein or peptide that has been isolated from its natural environment or artificially produced (e.g., by chemical synthesis, by recombinant DNA technology, etc.).


In some embodiments, the GJB2 protein is a human GJB2 protein. In some embodiments, the human GJB2 protein comprises an amino acid sequence at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to SEQ ID NO: 1.


An exemplary human GJB2 protein sequence is set forth in SEQ ID NO: 1:











MDWGTLQTILGGVNKHSTSIGKIWLTVLFIFRIMILVVAA







KEVWGDEQADFVCNTLQPGCKNVCYDHYFPISHIRLWALQ







LIFVSTPALLVAMHVAYRRHEKRKFIKGEIKSEFKDIEEI







KTQKVRIEGSLWWTYTSSIFFRVIFEAAFMYVFYVMYDGF







SMQRLVKCNAWPCPNTVDCFVSRPTEKTVFTVFMIAVSGI







CILLNVTELCYLLIRYCSGKSKKPV






In some embodiments, the expression cassette of the isolated nucleic acid encodes a human GJB2 protein having the amino acid sequence as set forth in SEQ ID NO: 1. In some embodiments, the nucleotide sequence encoding a human GJB2 protein comprises a nucleotide sequence at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to SEQ ID NO: 2.


An exemplary nucleotide sequence encoding a human GJB2 protein is set forth in SEQ ID NO: 2:











ATGGATTGGGGCACGCTGCAGACGATCCTGGGGGGTGTGA







ACAAACACTCCACCAGCATTGGAAAGATCTGGCTCACCGT







CCTCTTCATTTTTCGCATTATGATCCTCGTTGTGGCTGCA







AAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCTGCA







ACACCCTGCAGCCAGGCTGCAAGAACGTGTGCTACGATCA







CTACTTCCCCATCTCCCACATCCGGCTATGGGCCCTGCAG







CTGATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGC







ACGTGGCCTACCGGAGACATGAGAAGAAGAGGAAGTTCAT







CAAGGGGGAGATAAAGAGTGAATTTAAGGACATCGAGGAG







ATCAAAACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGT







GGACCTACACAAGCAGCATCTTCTTCCGGGTCATCTTCGA







AGCCGCCTTCATGTACGTCTTCTATGTCATGTACGACGGC







TTCTCCATGCAGCGGCTGGTGAAGTGCAACGCCTGGCCTT







GTCCCAACACTGTGGACTGCTTTGTGTCCCGGCCCACGGA







GAAGACTGTCTTCACAGTGTTCATGATTGCAGTGTCTGGA







ATTTGCATCCTGCTGAATGTCACTGAATTGTGTTATTTGC







TAATTAGATATTGTTCTGGGAAGTCAAAAAAGCCAGTT






In some embodiments, the GJB2 protein is a mouse GJB2 protein. In some embodiments, the mouse GJB2 protein comprises an amino acid sequence at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to SEQ ID NO: 3.


An exemplary mouse GJB2 protein sequence is set forth in SEQ ID NO: 3:











MDWGTLQSILGGVNKHSTSIGKIWLTVLFIFRIMILVVAA







KEVWGDEQADFVCNTLQPGCKNVCYDHHFPISHIRLWALQ







LIMVSTPALLVAMHVAYRRHEKKRKFMKGEIKNEFKDIEE







IKTQKVRIEGSLWWTYTTSIFFRVIFEAVFMYVFYIMYNG







FFMQRLVKCNAWPCPNTVDCFISRPTEKTVFTVFMISVSG







ICILLNITELCYLFVRYCSGKSKRPV






In some embodiments, the isolated nucleic acid comprises a nucleotide sequence encoding a mouse GJB2 protein having an amino acid sequence as set forth in SEQ ID NO: 3. In some embodiments, the nucleotide sequence encoding a mouse GJB2 protein comprises a nucleotide sequence at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to SEQ ID NO: 4.


An exemplary nucleotide sequence encoding a mouse GJB2 protein is set forth in SEQ ID NO: 4:











ATGGATTGGGGCACACTCCAGAGCATCCTCGGGGGTGTCA







ACAAACACTCCACCAGCATTGGAAAGATCTGGCTCACGGT







CCTCTTCATCTTCCGCATCATGATCCTCGTGGTGGCTGCA







AAGGAGGTGTGGGGAGATGAGCAAGCCGATTTTGTCTGCA







ACACGCTCCAGCCTGGCTGCAAGAATGTATGCTACGACCA







CCACTTCCCCATCTCTCACATCCGGCTCTGGGCTCTGCAG







CTGATCATGGTGTCCACGCCAGCCCTCCTGGTAGCTATGC







ATGTGGCCTACCGGAGACATGAAAAGAAACGGAAGTTCAT







GAAGGGAGAGATAAAGAACGAGTTTAAGGACATCGAAGAG







ATCAAAACCCAGAAGGTCCGTATCGAAGGGTCCCTGTGGT







GGACCTACACCACCAGCATCTTCTTCCGGGTCATCTTTGA







AGCCGTCTTCATGTACGTCTTTTACATCATGTACAATGGC







TTCTTCATGCAACGTCTGGTGAAATGCAACGCTTGGCCCT







GCCCCAATACAGTGGACTGCTTCATTTCCAGGCCCACAGA







AAAGACTGTCTTCACCGTGTTTATGATTTCTGTGTCTGGA







ATTTGCATTCTGCTAAATATCACAGAGCTGTGCTATTTGT







TCGTTAGGTATTGCTCAGGAAAGTCCAAAAGACCAGTC






In some embodiments, the nucleotide sequence encoding the GJB2 protein is codon optimized for expression in a host (e.g., a human). “Codon optimization” as described herein, refers to the design process of altering codons to codons known to increase maximum protein expression efficiency in a desired cell. In some alternatives, codon optimization is described, wherein codon optimization can be performed by using algorithms that are known to those skilled in the art to create synthetic genetic transcripts optimized for high protein yield. Programs containing algorithms for codon optimization are known to those skilled in the art. Programs can include, for example, OptimumGene™, GeneGPS® algorithms, etc. Additionally, synthetic codon optimized sequences can be obtained commercially, for example from Integrated DNA Technologies and other commercially available DNA sequencing services.


As used herein, the term “sequence identity” refers to the percentage of amino acid (or nucleic acid) residues of a candidate sequence that are identical to the amino acid (or nucleic acid) residues of a reference sequence, e.g., GJB2 protein disclosed herein and its coding sequences, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent identity (e.g., gaps can be introduced in one or both of the candidate and reference sequences for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). Alteration of the amino acid sequence or nucleic acid coding sequences can be obtained by deletion, addition, or substitution of residues of the reference sequence. Alignment for purposes of determining percent identity can be achieved in various ways that are within the skill of one in the art, for instance, using publicly available computer software, such as BLAST, BLAST-2, BLAST-P, BLAST-N, BLAST-X, WU-BLAST-2, ALIGN, ALIGN-2, CLUSTAL, or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For instance, the percent amino acid (or nucleic acid) sequence identity of a given candidate sequence to, with, or against a given reference sequence (which can alternatively be phrased as a given candidate sequence that has or includes a certain percent amino acid (or nucleic acid) sequence identity to, with, or against a given reference sequence) is calculated as follows:





100×(fraction of A/B)


where A is the number of amino acid (or nucleic acid) residues scored as identical in the alignment of the candidate sequence and the reference sequence, and where B is the total number of amino acid (or nucleic acid) residues in the reference sequence. In particular, a reference sequence aligned for comparison with a candidate sequence can show that the candidate sequence exhibits from, e.g., 50% to 100% identity across the full length of the candidate sequence or a selected portion of contiguous amino acid (or nucleic acid) residues of the candidate sequence. The length of the candidate sequence aligned for comparison purpose is at least 30%, e.g., at least 40%, e.g., at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% of the length of the reference sequence. When a position in the candidate sequence is occupied by the same amino acid (or nucleic acid) residue as the corresponding position in the reference sequence (e.g., GJB2 amino acid sequences, coding sequences, nucleotide sequences for GJB2 gene regulatory elements (GREs), or any other sequences described herein), then the molecules are identical at that position.


An expression cassette of an isolated nucleic acid sequence described herein (e.g., the expression cassette of the isolated nucleic acid comprising a nucleotide sequence encoding a GJB2 protein) may further comprise a promoter operably linked to the coding sequence (e.g., GJB2 protein coding sequence). A “promoter” refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the transcription of a gene. The phrases “operatively linked,” “under control,” or “under transcriptional control” means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA polymerase initiation and expression of the gene. A promoter may be a constitutive promoter, inducible promoter, or a tissue-specific promoter.


In some embodiments, the promoter is a tissue/cell-specific promoter. A tissue/cell specific promoter, as used herein, refers to a promoter that has activity in only certain cell types. In some embodiments, the promoter used in the isolated nucleic acid described herein has activity in cochlear cells that normally express the GJB2 gene. Use of a tissue/cell-specific promoter in the isolated nucleic acid described herein can restrict unwanted transgene (e.g., GJB2 gene) expression as well as facilitate persistent transgene expression. In some embodiments, the expression cassette of the isolated nucleic acid comprises a tissue/cell specific promoter. In some embodiments, the expression cassette of the isolated nucleic acid comprises a GJB2 promoter (e.g., a GJB2 promoter for any species where cell specific GJB2 expression is desired). In some embodiments, the expression cassette of the isolated nucleic acid comprises a human GJB2 promoter. In some embodiments, the expression cassette of the isolated nucleic acid comprises at least 300 bp (e.g., 300 bp, 400 bp, 500 bp, 600 bp, 700 bp, or more) of any consecutive nucleotides of a human GJB2 promoter. In some embodiments, the expression cassette of the isolated nucleic acid comprises a promoter having 500 bp consecutive nucleotides of a human GJB2 promoter. In some embodiments, the expression cassette of the isolated nucleic acid comprises a promoter having a nucleotide sequence at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to SEQ ID NO: 5. An exemplary nucleotide sequence of 500 bp of a human GJB2 promoter is set forth in SEQ ID NO: 5:











ACCTGTCTCCCGCCGTGGCGCCTTTTAACCGCACCCCACA







CCCCGCCTCTTCCCTCGGAGACTGGGAAAGTTACGGAGGG







GGCGGCGCCGCGGGCGGAGCGCGCCCGGCCTCTGGGTCCT







CAGAGCTTCCCGGGTCCGCGAACCCCCGACCGCCCCCGAA







AGCCCCGAACCCCCCAAGTCCCCTTCGAGGTCCCGATCTC







CTAGTTCCTTTGAGCCCCCATGAGTTCCCCAAGTGCCCCC







AGCGCCCTGAGTCTCCCCCGGTTACCCCGAGCGCCGCCTC







CCCCAGCCCCTTGGCGGCCCGGGTGAAGCGGGGGCGGCTG







AGAGTCGGGACCCCCCAGGAAGCGGCGCCCCAGACCCCGG







CTCCGGCGCTGTGCCGTGGGCGGGGTTCAGGGATGGCTGT







GGTCGTTGTCCTCTGTACTCCGCATAGTGCGAGAGGACTT







GGCATTTATGAGCGCTTCTTTAATTTTTTATTGTTAGAGA







AACAGGCATTCCTCCAAGGA






In some embodiments, the expression cassette of the isolated nucleic acid comprises a GJB2 basal promoter (e.g., a human GJB2 basal promoter). A GJB2 basal promoter is a promoter region of a GJB2 gene highly conserved across different species (e.g., human and mouse). The GJB2 basal promoter has been previous described, for example, in Tu, Z. J., and Kiang, D. T. (1998). Mapping and characterization of the basal promoter of the human connexin26 gene. Biochim. Biophys. Acta 1443,169-181; Kiang, D. T., Jin, N., Tu, Z. J., and Lin, H. H. (1997). Upstream genomic sequence of the human connexin26 gene. Gene 199, 165-171; and Castillo et al., DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes, Front. Mol. Neurosci., 22 Dec. 2017, each of which is incorporated herein by reference. In some embodiments, the expression cassette of the isolated nucleic acid comprises a GJB2 basal promoter having a nucleotide sequence at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to SEQ ID NO: 47. An exemplary nucleotide sequence of a human GJB2 basal promoter is set forth in SEQ ID NO: 47:











GGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACC







CGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCC







CGCGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCCGAGG







GAAGAGGCGGGGTGT






Examples of constitutive promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) (See, e.g., Boshart et al., Cell, 41:521-530 (1985)) the simian vacuolating virus 40 (SV40) promoter, the dihydrofolate reductase promoter, the β-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the elongation factor 1-alpha 1 (EF1α) promoter. In some embodiments, the promoter is a chicken beta-actin (CBA) promoter. In some embodiments, the promoter is an enhanced chicken β-actin promoter. In some embodiments, the promoter is a U6 promoter. Since the CBA promoter is constitutively active in all cell types, using a CBA promoter in the isolated nucleic acid described herein leads to promiscuous expression of GJB2 protein in all cell types, including cells that do notnormally express GJB2 protein (e.g., hair cells of the cochlea). Accordingly, in some embodiments, a CBA promoter is not used in the isolated nucleic acid described herein.


Inducible promoters allow regulation of gene expression and can be regulated by exogenously supplied compounds, environmental factors such as temperature, or the presence of a specific physiological state, e.g., acute phase, a particular differentiation state of the cell, or in replicating cells only. Inducible promoters and inducible systems are available from a variety of commercial sources, including, without limitation, Invitrogen, Clontech, and Ariad. Many other promoters have been described and can be readily selected by one of skill in the art. Examples of inducible promoters regulated by exogenously supplied promoters include the zinc-inducible sheep metallothionine (MT) promoter, the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter, the T7 polymerase promoter system (WO 98/10088); the ecdysone insect promoter (No et al., Proc. Natl. Acad. Sci. USA, 93:3346-3351 (1996)), the tetracycline-repressible system (Gossen et al., Proc. Natl. Acad. Sci. USA, 89:5547-5551 (1992)), the tetracycline-inducible system (Gossen et al., Science, 268:1766-1769 (1995), see also Harvey et al., Curr. Opin. Chem. Biol., 2:512-518 (1998)), the RU486-inducible system (Wang et al., Nat. Biotech., 15:239-243 (1997) and Wang et al., Gene Ther., 4:432-441 (1997)) and the rapamycin-inducible system (Magari et al., J. Clin. Invest., 100:2865-2872 (1997)).


In some embodiments, the isolated nucleic acid comprises a gene regulatory element (GRE) (e.g., GJB2 GRE). Gene regulatory elements, as used herein, refer to a variety of DNA sequences that are involved in the regulation of gene expression. For example, a GRE may rely on the interactions involving DNA, cellular proteins (e.g., histones), and transcription factors to regulate gene expression.


In some embodiments, the isolated nucleic acid comprises gene regulatory elements which are cis-regulatory elements (e.g., cis-regulatory elements for the GJB2 gene). Cis-regulatory elements are regions of non-coding DNA which regulate the transcription of neighboring genes. Cis-regulatory elements are found in the vicinity of the genes that they regulate. Cis-regulatory elements typically regulate gene transcription by binding to transcription factors. In some embodiments, the gene regulatory elements impart cell-specific gene expression capabilities (e.g., cell specific GJB2 gene expression). In some embodiments, the gene regulatory elements are cis-regulatory elements associated with the GJB2 gene.


In some embodiments, the cis-regulatory elements of the GJB2 gene are enhancers. An enhancer, as used herein, refers to DNA sequences, which are located more distal to the transcription start site as compared to a promoter, capable of interacting with site-specific transcription factors to regulate gene expression in a cell-type specific manner. Enhancers confer cell-specific gene expression regulation by binding to the collection of transcription factors in a cell, which leads to transcriptional activation or inhibition through various mechanisms, e.g., recruitment of epigenetic enzymes that catalyze post-translational histone modifications, and recruitment of cofactors that promote DNA looping. Enhancers can be identified in the vicinity of the gene they regulate, or at a distance of hundreds of kilobases from their target genes. Multiple enhancers can act additively and redundantly to regulate gene expression (e.g., Doane et al, Regulatory elements in molecular networks, Wiley Interdiscip Rev Syst Biol Med. 2017 May; 9(3)). In some embodiments, the enhancers described herein are enhancers capable of regulating genomic GJB2 gene expression. In some embodiments, the GJB2 enhancers are identified in the transcriptionally active sequences of the GJB2 gene. A transcriptionally active sequence, as used herein, refers to a region of DNA in a chromosome in which the DNA is in open chromatin confirmation such that the sequence is exposed, thereby allowing binding of transcription factors and transcription to take place. In some embodiments, the GJB2 enhancers are identified within approximately 1000 kb of a genomic GJB2 gene (e.g., within 1000 kb, within 900 kb, within 800 kb, within 700 kb, within 600 kb, within 500 kb, within 450 kb, within 400 kb, within 350 kb, within 300 kb, within 250 kb, within 200 kb, within 150 kb, within 100 kb, within 95 kb, within 90 kb, within 85 kb, within 85 kb, within 80 kb, within 75 kb, within 70 kb, within 65 kb, within 60 kb, within 55 kb, within 50 kb, within 45 kb, within 40 kb, within 35 kb, within 30 kb, within 25 kb, within 20 kb, within 15 kb, within 10 kb, or less upstream or downstream of the GJB2 gene). In some embodiments, the GJB2 enhancers are identified within approximately 200 kb of the GJB2 gene. In some embodiments, the GJB2 enhancers are identified within approximately 95 kb of the GJB2 gene (e.g., regions C-M listed in FIG. 3C) In some embodiments, the GJB2 enhancers are within the regions of DNA sequences near the GJB2 gene (FIG. 3C) listed in Table 1.









TABLE 1







Human and mouse DNA regions that include GJB2 enhancers.









Region
Human
Mouse





A
CTTTGTGGATGGCTTGGTGGCCTCACTGTCA
CCAAAAAGGGACAAAAACAGACAAACAAACAAC



GGCTGGCACTGATGGCTCAGTTAGCATATCT
ACCAACACAAACAACAACAGCACTAAAACGAGT



GTTTTGATAAGTGCTGCAACAGTGCATTATA
CTCTGCACCTAGGTCTTCGCACGCAGGCTGGTA



ATTGTGGGCTGTGGTTTTAATTTCAAAGTGT
GTCCCACCCTCAGGTAGGGCCTGTTTGGTTAAC



TTCTTAAAAGACACATTATTTTAAAATGACA
GATCCGTGTCTGTTTTGATATGTGTTGCAAGTG



GAAAATTCAACTCCCTCGGTTACTGGCCCAG
AGTGTTGCACTGTGGACTATGGTTTTAACCTTG



CTAAGCGACGTCACTGCATTGCAGTTCAGCG
AAGTGATTCTAAAATAAATATATGATGAAAAAT



CTGAAGCTTGGGAGAGTCCCACACTCCTTAC
GACGGAAAATTAGCTCAGCGGTTCACCAGTTGC



TGCAAGCGGATGTGGAGAGGCCAGTGGATAA
TGGTCCAAGGAGCCACCTGATGGGGGTTTTGCC



TCTCCTGTGAGCCCATGGCCTTCTTTTCATC
TTGGGTGGCATCACAGTGTATCCTGTCTGAGTG



CCAGGATGTGAATTGTCTTCACTGATTCATA
ACACAGTGTCTATATATGGCCTGTGCCCTAGAT



GTTACACCCTGCCTGCCACAACCAACGCTCT
GAGCCTCCATAAGCCAATGACCTTCTATTTCAT



CCTAAACAAGATTCCACCCTCTCCACAATCC
CCCAGGGCAGGAACCTTCCATGGCTACACCTGG



GGATGAATCATCTCTTTTCCACCCTTCAGAG
TCTGTCACAATCAACCCCTCTTTTGATTAATCC



CTGGTAGTGAATCCTCCTTCTTCTTTTTCTT
CATCTTCCCGGCTGTCCTGACTCACTTGCTTCC



AAAAGCATCCTCCTCTCCTCATTTTAGGCAA
ACCCCTTCCTTCCAAGCTGTAAAGAATCCTCTG



GTTGCATCCCGTTTTCTGATGGACTCCAGAA
ACTCTTTCTTAAAAGCACCCTACCCTCCTGCTT



GCAGGCTCGTAGTGAATGTCTTTCATGACCC
AGCAAGTTACATCCTGTTTCGCAGTGGACTCAC



ACAGTCGCTGCCACGGGGCACCAAGGTCAGG
AGCAGGCGCAGAGAGAAGTCCCTCCTTGTCCCT



CAGAAACCATCCAGTGCCACCTTGGTCAGAG
AGTGGCGGTGGCAGAGCACCAGGGAACCCACTT



GCTAACAGGAGAGAGGTGGCCACGAAAGTTA
GCTGGAACCCACTCAGCTCTGCCTTGGACAGAG



CATCAGATTGACATAGGCCTGTGAAACATTT
GAGATAGGGCCAGGGGCATGGGAATTAAGGAAT



AGCTTCACTGAGCTTGGGAAAGACAACATCA
ACTGACATACACCGGTAAAACATCAAGTCCTAT



TTGGAAAAAACAATATTTTAGCCCAGGTTCA
CCAACTTGGAAAGCAGAAACAGACAGGCTCGGC



GCACTGACCCATTGATAATCCAGACTGGGAG
AGGTTCAGCCCTGACCCATTTATACCTAGACTG



GCCCTTAGGTGAGCTGGTTGTCCTGCTACAG
TCAGAGGCCCTTTGGGAAGCTGGTTGTCCTCTG



CACCCACAGCTCAGGCCAGTCCCGTCCCAAC
AACAGTCTCTCAGCTCCATGTGGTCTGCCCCCA



AGCAGAACCACCGAGGACAGCAACATTCCGA
ACAGCAGAAGGATTGAAAAGCAACAGTGTTCCA



TTTTAACAAAAGCATCTTATGGAATTAGACA
AGTTTAACAAAACAATCTGATTGGAATTAGACC



TTCTTCATTGGCCCTCACTGAGTGGAAAACA
TTCTGTTCTTCCTTCCCCTTCTCCCGAGTGGAG



GGATACTCCCCGAAGTAAACTCTCTCCTGGT
ATCAGGACATTGAAATAAACATCTACACACCTG



TTACAACAATACACCTGGCCAAGAATATGGG
ACCCAAAATACAGAGCTGGAGGATCCCTTTGCC



GCTGCAGGAGGAGGGGTTTATCCTTTGCCCT
TGCCTATAGCATCCACAGACTAGCCCAATTATT



CTTCCACCTGCCAAACCCAGGTCATACACCC
ATCAACACAGAAAAAAAAAAAAACCCTCAATTT



TTCTACAGACCTGTCCAGTTACCATCAGCTG
CTGCGTAAACTGTGCACTTGTTTATAAAAGTAC



AGAAAAATACAGTTCCGAGAAACCCTATATT
TTAAGTGTTTGTTGAATTTGAGTTTACCGTGTT



GTTATTTTATAAAGCTTGAGTTGAAGCTACC
ACCCAGGATGGCTTCTAAATCCATGCAGTTGGA



TGTTTTAAAGATCCTTTTTCAGGAAGAGGAG
GTTAGCACAACATGGGGGTGGGGGTAGGGGGTT



TAAATTAAGATTTACTCCCCAATGGGCTAGG
AATACATCTATAATAGCAGAACTCTGGAGGCTG



GGGTCATGGGTTAAGAGGGGCTCAGAAGCAG
AGGTAGGAGGAGTGTGCTAACTTGAGGAAAACT



GACGAAGTTGTTTTCAATATTCAAGTCAGAG
TTTCTGCAGAGCAAGACCCTGGCTCAAGAAAAC



GAGGAGCTGCCCTCCTGGCCTCCCGACCCTG
AAACACCAAAAGAGACAAGAAAAGAAAAGAACA



GGCGGTTACATGCAGCTTCCTACCGGGCCCA
GAACCAAAACAAAAACAAACAAACAAACAAACA



CGCCATCCTGCACCGCCTGGAGGGCTGCCAG
AAAAACCAAAAAATGGGAAGGCCGGATTGAACA



AGGCCAGCGGAGGAGTTGGTTCAGTTCCTTA
AACAAGGTCAAGAAGAGAGAGAGAGAGAGAGAG



GGGAAGACACTAGGTGAATCACCAGGATCCA
AGAGAGAGAGAGAGAGAGAGAGAGAGAAAACTC



GAAAAGGCAAAAGGGACTCTTCACCCCTTAA
CAAAAGAAAACCAAATAGCTGGGACATAGCTGT



ATTTCTCCACCCTTAGGTGATGGGTGGTCGA
GGGTCCCGGCATATCTGATTGCAGCTGCTTGTC



CCTTGCCTGGCTGTCCCCAGAGGGTTCCTCC
TTAAATGGCCTTTCTAAGTGGAAGGAGAGGTTA



ACCCTTCTCACCAGTGTCTGAAATTGTGACC
AAATTTGACCTCACAAAGGGGTTAGGAGTACTA



GACTGTGCACAGCAGTTTCGAAAGGGACTCT
AGCCAGCAGGTGAAATCGTCAATATTCAACTGT



AAGGTCACATGGGGACACGGCCGTACCACGC
GGTGTAGGAGGTGATTTCCAGGCTGGCCTTAGG



TTCTCAAGGCAGTCCCAGGTGCATGGCCACG
ACTAGGTCACACGCAGGTCCCTACCTGGCATGG



GAACCCAGCTCTCAGCAGCTGTTAGTTAGGT
GACACCTGGAGATTGCCTTGAACCGGTGAATCA



GAGCGCTGTTCGGGCTGCCTTCCTCCTCCAG
TTCGCTCCTGAGTAGAAGGGAGCTTCTCCATGT



TGGGGCAGGATCGAGGCACTGATGGAACCGT
TTATAGTATATACTGCATATGACCCTTATTTGC



CCTGAGGACGCGGGTCTCAGCCGCACACCAC
CTTAAAGGATACTTCGGGGAGCTGGTGGACTGC



CTCTTCGCGAACAAGGGTCCTAAAAATTTTC
CTCTAGATGCTGACCCCACCGCACCCTCCACCC



CTTCTAGGCGGGGAGCACAGCCCGGAAACAG
TTCTCATAATTCACTGGCTTTGCCCATAGTTCC



ACCCTCGTGAAGTGTTTAGGAAAAAGGGAAG
CAAAGGACTCCGGGGTAAGTGTAGCCATGACTG



CCACTGAAATCTTGGCCCCGGGGTAGGCCGG
AGCCAGGCTTCTCAGGACAATCCCGTGGACCTG



GATCGGCTGGCTCCGCGTTAGTTCTAGGCAA
AGCAATGGGTCCCATTTAGGCCTACGCTCCCTT



ACTCCGCCCAAATCTCTGCCCGGGGATTTTT
CCCTTCCATTGAGGCAGCACCAAGGGGCTGATG



CTGCAGAAGCCGCTCCAAGAGGTAAAGGTCA
CAATTGTCCTAAGGGACAAGTTTCTCAGCAGCA



GTTCCTGCAGCGAAGGCTTCCTGCTTCACCG
CGCCATCTGTGAACCTGTGCCTTCCCTTCCAGC



GCGAAACGGAGCTTTGCTTCGAAGCTAAGCT
TGTAACGTCCCGCCTGGACGCAAATCCTTAAAA



TTCGGTGAATTTAAAACGTTTGGTGGCAGTG
AGCATTTAAGGAAAGAAAAAAAAAAAAAGCAAT



GGTCAAGTAGCCAGGCGGCTGCGCTAGAGTA
CAAAATCTCCACCCGAGTGCAGGTTGGGGTTCC



CCCCGAAGGGACATCGGCGACACCACAAACC
CCAGCTCGCGGGAGCGGCTACGGCCGCGCGTTT



TCGCGCTGGCGGCTCGCCCGCGCCTTTTTCC
TGGGCGGTCGCCCACGTCACCCCAGTGCTTTAG



CCTCCCGCGCGCGCCCGGCCCCACTCGCACC
GTGGTAAAGGTCAGTGTCTTCCCACGGAGGCTT



CCGGGCGGTGCCATCGCGTCCACTTCCCCGG
CCTGCTTAACAAATGAAACTGAGTTTTCCTGCT



CCGCCCCATTCCAGCTCCGGAGCTCGGCCGC
CAGCTTTCGGTTAGCTAAAAACTTTTCAATGGC



AGAAACGCCCGCTCCAGAAGGCGGCCCCCGC
GGCAGACAACGCAGCCAGGAGGCCTCGGGAAAA



CCCCCGGCCCAAGGACGTGTGTTGGTCCAGC
TTCTAGCGAAGGAATACTGGCGACACGTCGCAG



CCCCCGGTTCCCCGAGACCCACGCGGCCGGG
TCGTGCGCGGAACAGCCTGGCCCCCGCGTCCCT



CAACCGCTCTGGGTCTCGCGGTCCCTCCCCG
CCCCACCCCGCGCTGTGCGGGACCTCCCGGCTC



CGCCAGGTTCCTGGCCGGGCAGTCCGGGGCC
AGGCTGTGCGCGGCGGTGAGAGCAGCCGGCTCC



GGCGGGCTCACCTGCGTCGGGAGGAAGCGCG
AACCCCGAGCCGGGCCAGACGCCTGCAGCCGAA



TGACAGAAGACAGATTTGCACAGCGCAAGCG
AGAGGTTAGGCAAGCCCATCCCTCTTGGAGTCC



GATGAGGGACTAAGATGTGCAGAGCAGGCTG
AGGATGCTGGGAAGACCTGGGCAGCCTGCATCT



GGTGGGGACTCCCGGGGAGGTCTCCCCCAAC
ACCTCTCTCCGCCAAGCTGTTCGTGGGTTTTGA



CCCCGCCCCACCTCGGGCACCCACTTCGCGA
GGGCTCGGTGTTCCACATTGCTTGGCTGTCTGG



TTTTTGCAGAGGGGAGCCAGGTCAGAGGTGC
ATAGTTTTGAGAGGAGTTACGGTGGACATTCAC



AGCCTGGTCCCCTCGCGCTCACGTTTTTACC
AAGAGCTAGCTACGCTTTGGGATACCTAGGCCA



CAGGTCAGTTCGAAGTTAAGTGGAAATGATG
GCTAGCTTCACCTTACTACTTGCAACCCGAGTC



ATTAATCCTGACAAGTCAGATCTGGCCTCAG
CTACAGCTGCCAGGTTTGGAATGAAAACGGCAC



AATGGATTTCCCGTGATTGCCACCATTATTA
ATCCCCACAAAGTTCCTTCAGATTAGCTTTACA



GCATTGACTTTTCCTTGAAAAATTGGCGCCC
CGCAGTGAAGAGACTGATTCATTCTGACAAGGC



CGTGGCCATGGGCCGACCTAGGCAGTTTCTG
CCGTCTGGTCGAAGGATTGGCTTTCAATGAAAG



CAGGGACGAGCGTGAGTTTTGTACCGCGGTT
GACCATGGCTGAAGGTACATGCTTTCCCTGTAA



ACCACCTACTTTCCAGCTCCAGGTCTTAGTC
AGCTGGCACATTGCCGCGGGCAGACCTGACTGC



TAAGAGGGAGTGTCTGCTCATGAAGAGGCAA
TCTTGCTTGGGCAGAGGAAGGTTGCACGCTCGC



AGCCCCAGGAGCTGCGAAAAGCCTTGCATGG
TTGCTACTACCCCCACCTCCTTTCTAACTGTAA



CCCATCTGAGAGATGTGCTGAGTCGGCTTGT
GTCTTAGTCTAAGAGGGAGTGTCTCTAAGGAAG



TAAAAATGACAGGCAAAGCCTGTGGGGTGGG
AGAGCCTCGGATCTGTGTCCAGCCCTTCAGAGA



GCAGCTTTCTTGGCCTGAGCGCATCTTGGTT
GAGAGAGATGTGCTGAATCAGCTTGTGTGGAAT



GAGCCAGAGGTGACTTGGGGTGGGGAGTGGG
AACTGGCCAAGCAAGATGGGGTGGTACAACTCC



GCGCCGGTTGGTGGGTTCTCCCTTTAATTTC
CTTGGCCTGAGCACATCTAAAGATGAATCAAAG



TCAAAGGCTGTGGTGTTTATGAGTCTGTTGG
AGGAGATGAGGTAGTGGCAGCAGGCAGGGGTGG



AATCCTGGTTGGGTTGGAATGAAGGAAGGTT
AAGGATGTTGGCACCTTTAGCTTCTCATGGGTC



CTAGAACCATTGTGGGAAGCTCGCTAGTAAA
GTACAGTTTCCAGTCAATTGGAGCCCCTGTTCA



GATGGTTTGGAGATCGGAAGTTGACTGACTT
GTGAGGATGACAGAAGCTTCTAGAATCATTGTA



TCCCCCATTGAAAAATGTCACCTGAGATTTT
GGAAGCTGGCCAGTAAAAGATAGGTTGGAGATC



AGTGCCTGTATCACGATTATAGGCTCAACTT
AGAACTGCTTCACTTTCTCCATTGAACAATTTC



TCTTTTCCTTGTTTTCTTTGATTTAGTTCTC
TCCTGAGGGTTAGTGCCCACGTTATGATTACAG



CTTATGTGCAAAATTACTGTGTGATGTTGGC
CTTCAGCGTCTAGCTCCCTAACTTGCTTCTACA



TAGTCGTATTATCACAGCCACTCCGTGTTTT
GATTCGCCTAATGGCTGTGTGTTGGCTGATGGT



CAGGATTTGTAGCTGGAAGTCCTATAGCACT
CACAGGTGCTGGGAATATTAGGATGTATCGCTA



TAAGTCTTCACTTACAGATCAGCGCTTGCTT
GCTCATCTCCTCCTCTGTTCCAGCCATCCCTCC



TTATTCTGTTTTGTGTGATTTCTGCTGTTTT
TTGTTTCTTGTTTTCTCACCAACTAGACCAGAG



CCTGTGAGTTGGTGTTTTCTTCCCAAGTAGG
GCTCCTCTAGGGTAAGAAATGCTAAATTTATTT



CTCAGGACTCCTCTAGGGCAGGACATTATAT
GTGTATGTGTATTCTCCAGAGGGGGAGAGGGGA



GCATGTACATAGTGTCCTCCAGTGTAGGGGA
GAGGGAAGGAGAAGGGAGGGGAAGAGAGGCAAG



GGAGAAGGAGGAGAGGTGAGGTGGGAAAAGG
GAGAAGGGAGAAGGGAGGAGAAGGGAGGACAGG



GTGAGGG (SEQ ID NO: 6)
GGGACAGAGGAAGCTAGAAAAGAGCTAGGA




(SEQ ID NO: 7)





B
TAATCCAGATGTTAACACTGAAACTTCCAAG
CATGGAGAGAGATGGATAACTGAGATTTCTGGG



CAGGGGAGTGAAATGAGACTTTCACTTTTGA
CAAGAGATGAAATGGGCTGAATCCCACTCCTGA



CTTCGTATACTCCTGTATTATTTAAGTGAAA
CTGCACACACCTCTCAGTGATTTAATTAGAAAT



ATGTATTTATATATTCTATAATTACAAAAAT
AAAAACAAGTCTCTACATTAACATTTACATAAG



CACATTGGTTGCCTTTTCATTTTGAAATGAG
TAACATCAGCCGTCTTTTCCATTCAAAGTGACT



CAAAAGTGACAGGGCTGTTAAAAAGCTAAGT
GAAGGAGATGGTGTTGTTAAAAGATTGAAATTA



CACTTGAGCAATAACGTGATGTCCAGAACAG
GACAGCAGCAACACGTCTAGAAGAGCATCCCTG



TGGTTCCATGGCTCAGCCATGTCGGGGGCTG
GGGCAGGGTTCTGCCTCAACACCACACAGCACT



CACTGAGGACAGGGGGCCATCTGCCTTCTAG
ACACAGCACCACACTTAGCACAAGGCTCCTCGT



GAGGACACTGTGGACTGGAATATTGTTCCTG
GGCTCCTCATGTCCCTTCAGCAAGTCACCAGTG



CCTTGAGGAGGAGTCTCCCAGCACAGTTACT
CACCAGGAGGCGTTGGGGAGGGAACTCCTGACC



GCTGCTTGACTGTCAGAGCATGCGTTTTCTT
ACAATCACAGCCTGAGGGTTGGAGTTGTGTTTC



AGGGAAGTTGAAGGCAGCCTGTATCTAGTAA
AGTCATCCTGGGGGGCAGGGGGAGCTTAAACTC



GGTGGTATGCAGTAGTTGCTTAATGCTGAAT
GTTGGCATTTACTAGGGCAGTACACAGCAGCCG



GTGTGAAGGAATGTGGGGCTGTGGAGCAGGA
CTCCACGTTGAACGAGTGGATGATCAGCCTGAG



GGATAAAGTCTGAACTTGGACCTGTTGTTCT
AATCAAGGCTGGGCTGAGCTTGGCTCTATCCTC



CAGCTATTCGAAGCTTTCTCAAGTGGAAAAT
AATTATCTGCAGAGCGCCCTGGTAGAGAACAGA



AGACTGACTTTGGGTCCATCAGAGGGCAGAA
TCTGCCTTTGAGTTTCCAAGTGAGAGCGGAGCA



CAAATGCTGGAGAGCAGATGCTAGAATTCCG
AGGCTGGGCACAGAGCAGGGTGGCAAGGTGGCT



TCTTAAAACCATGAATCCTTACAGCGGCCTG
GCTGTGGGCACAGCACAGAAGATACTCAGGGGC



CGTGGCCTGCGCCATCTGTCCCAGCCACGCC
ATAGATCTTCCTGGTGGCTGCTTGGTCTCATGT



CTCCTTGGCCCCATCTCCCCCTTTCTCGCCC
TGGTCAGGTCACCTCCATTTTTGGCCTCATCAT



TGACTCTTTGGCATCCTGGCCTTTCCGTCTC
CTTCTGACATGCACCTGCTTCATGCGTCTGCTT



ACTGGGATGCTTCCCTAAGAGACTCGTGTGG
CCTGGAACCCATTCCTGGCTTTTTGTCTTAATT



TTTGCTGCCCTGTATCCTCCGGATCTCCTGA
CTCTGAGGCAGGTGGCTCCATTGCTTGTCTCCT



CCACCCTATGTTAGTTACATTGCAATTTCCC
TTAGGTTTCATCTAAGAGGGACCGTCACACACA



GTTTCCCTCATGACGTCTTATTTTCCTCCAT
GCCTGTGTGGGCATCATGCTGGTGCCTGACAGT



TTAAATTACCTGCAGCAGGTACCACCTACAG
CCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT



GGATCTGTTGAGAGTCGGCCTCCTTCAATGT
CTCTCTCTCCCCCCCCCCTCTGCTGTGGCTTTG



GAAGCCTGATGTTTTGTTCTGTTCACAGCTA
GCCTCTGCAGAAACAATCTATGGGATTTGTTGA



TGCCCCCAGCCCCTAACAGTTGGTGGCAGTC
TATGCTGCCTCCTTCAACACAAAGGCTTAAGTT



AGTAAATATTGCCTGGGAAAACGAATCATTA
GTATTTATCAGCTCCAGTCCCAGGGAATAATCA



GCCATGTGCAGAAATGGAACAGCGTCTCACC
TGTCTGGTGCTTAGCTGGTGCTCAGTAGATAGC



AAGTTGGGGTTGCCCCTGGACCCTGTGAACA
AGCTGATGAAAAAAAATCAGGAGGGATACGTAG



CTGGGGCAGCTGGGGTGTTCCTACTGTGCTT
GAACTGACCACAAAATCTTGTGGGGGTGCAGTT



GTTACCGGCTTCAGGAATCAAATGCACTAGA
ACACCACGGACTCCAGCAGTGTTGCAACAGATG



GAATTGTAGAAGTGCGGTCCACATCCTCTGT
TAGGTTGTGGGCCTGTGGAGTTAGTCTTCATTG



GTGGTAGGACCAGCTGCTGTTGGCCTCTGAG
TGGGAGGGGCAACTCCACAAGGCCTATCAACAT



CAGGATCTCTTACCTCTCTGAGCAGTGCCTT
AACCTCCGAGGGGTTGGACTACTCTTGCTGGCC



CCTGTTGCCCTCAGCAAGAATAACACTAACA
TTCGATCTTGACAATTACCAGTGCCTTCTTCAC



GCCTAGGACTTCAGAGCACTGCTGCGAGGTG
AACCCCTCCCCCACCCCTGCACAGGTGATGACT



CAAATGAGGTGATATGGGAAAAGCATTTGGT
TGATGGTTCTTAAGTTGCAATAAGAATGACAGG



GAGATGTATGGAAAGTGTAGAGACCCTGACC
AAGCAAGCAGGAAGCAAGAGATGTGATATACAC



AGATGAGTCAATGGCCTTCTTCGTTACTCTG
ATTAGGTCGTATGGAGACCCTGACAGAGCAAAC



TTGACCTTTCTTTAATTACAGAGTCGCATAG
CTGTAACATTCATTCTTACTGTATTAGCCCCTT



CTGTCACCACCTTATCCTTTTTTGCTGCTAT
TCTTAGTCACTTATTAATATTCATTTAGTCATT



ATTTGCCCCCAGCCATTCCTCTCCCGGCTTA
TAGTTTTTGCTGTTTGCTTGATGCAGAGTCTCA



TGTGGCTAGACTCACCTGCCTGTGCTGCAGT
TGAAGTTCAGGCTGGCTTTGAACTAAGTATGCA



TACTCCAGGCTTTGTGTAAATGTGCATTTTT
GCTGAGGATAGCCTTGAACTTCAAATTCTCCTA



TTCCAGCCCCCAGTTTATCAAGCTTTGCTTG
CCTTCATTTCTGAGCCATTGGGAATGCAGGCAT



AGTCACTTGTATCTGAAATACCATCTGTCAC
CCACCTTGGAGCGCCATTTCTATTTATTTACTT



TCTTCCAGGTTGGGATCTGTCTAGTGGAAAA
TCTCTAAGGCTGGGGATGGAGCCTATGGCTGTG



CAGATGACAGTCATATGTTACTTAGTGCTTT
TGTGGTAGGCACAGGCTGGGGATGGAGCCTATG



ACTATGTGGAGAACGTTTACATAAATTATCT
GCTGTGTGTGGTAGGTAGCATTTTGGCATTGAC



TATTTCATTGCCACTAAGCCGGGGAAAGATT
TCACTTACTCTCCAGCCCTTGATTCTTTTGAGT



CAGGAAACCCATTTTAAGATGAGGACACTGA
TACAGAGTGATACCATTGCCTGTCACTCATCTT



GGTCAGGGTAAGTGAGTGAGCTTTTACCCAC
TACTGTGCTTTTGTGTATGCACCCAGCCCCCCT



CTCTCAGCTGCTCTCTAGTTGTCAAAGACCA
TCCTCTGTTGACCTGGCTGGTCTCTGAGGTCAC



ACCCGTGGGGGTGGCTCAGGCCCGACCCCTG
TGTGTTATGTTTATTTCAGTGTCAACCTGCACA



CAGCATATTCCTTGGGGCCTCCCAAGTGGGC
CTCTCAAGCTTCCGGTTAATTGAGCTTTGCAGG



CCGATCTGCTCACCCCAGCTGTGACTGTCTT
AGACATTCCTACTTACTCTGTCATTCACCATGT



TTGACAGGAGGAGGGAGCAGCGAGGCTGCAC
CACTCAGGGTCTACTGAGTGGGAGAGAGATGAC



CCACTGCTCATAAAAAGCAGAGCTTGTCCAC
ATATTAATGCTAATATCATTCTACTGCCCTAGG



GCCGAGGGCTCGGCTGGGTGGGAGGCCGCTT
TGGAGGAGAGGGTCTGTGTGAATCACCCCATTG



CCACAAGGCTTTTTCTTGCTCCATACAAAGT
CTTTTCCTAGGGGTGGGGAGTATTTAGGAAGCC



GCAGACTGATGCTTTGAGATATAGTCAGGAT
CACTGTAAGGTGGAGAGCCTAGGCCAGGGTAAG



TATCATTTTCAGAGCTCAAGCTCTAATTTCC
CACGGAGCTCCCTTCCACCCGTGGCCACCCATT



AGGCATGTGACCAGACCTCTCTATCCATTCC
CAGCATTTGCAAGCTGCTCCCTGGTGCATCACC



TACAAGTGGTCGAGAGTAGCCCATAATTATT
TAGTTAGAACAGTGGCACCTGAGACAGCTTAGG



TTGGCTTGGTCTTTTAATAGCTTGAGAGTAA
CCTGGGGAAACCAATAGAACACTCTGTTGTTCC



TAATCTACATAGCTTGTAGAAGTGAATGTAC
ACTTGGACTAGCAGTGGCCTGTCTCTCCACAGG



TTATTTTAAAAGTTCTGTGTTTTTTGATGTT
GAGCACCACCCATGTTGGGGAGCATCACCTGTA



GTTGTTGTTTGGGACAGGATCTTGCTGTCGC
ACCTCCAGAGTTCACTCACACCAAGGCTTCTTC



CTAGGCTGGAGTGCAGTGGCACAATCTCAGC
TCTTCACAAACTGCCATCTGCTAGTATCAGGAT



TCACTGCAGCATGGACCTCCCAGGTTCAAGC
GATCATATTCCAGAGGCCAAGCTTATGGCCAGC



AATCTTCCCACCTCAGCCTCCTGAGTAGCTG
CCTCTCCGTCAGTCCTATGAAGTGGTTGTTGGC



AGACTACAGGCACATGTTACCACGCCTGCCT
AGTTTGTAATTATTTTGGCCCTGTTCTTTAATA



GGCTAACATTTTTATTTTTTATAGAAACAAT
CCTTAAGAGTAATAATCTTCATAATGTGTAGGA



GTCTCCCTATATTGCCCAGGCTGGTTTTGAA
GTGGAACTAGCCATTTAAAAAGCTGTGCATTCT



CTCCTGGGCTCAAGTGATCCTCTCGTCTCAG
TTTAACAGGGTACGTCCAGGACACCCTGGCAGG



CCTCCCAAAGTGTTGGGATTATAGGTATAAG
TGGGAGAGACTATTCACTTTTTCTACTGTCCAA



CCTCTGCACCCAGCTTAAAAAATCCTATTTT
GTGGACGTGGGCTAAGTTGTATCCCTTTCGAGC



CACAGTCTATGTGCAGAGCATTTTGGAAGTC
TAGGTTGTATGGTCCTCCATAAAAACATAGTAT



AGGTAGAAACCATTTCCCATTTTCTATTACC
CACTGATGTTTAAAATGCCTTGACAGCCTCAGT



TGGGTGATAGTTGACTGGTTTTTGTTCTTTG
GTGAAGCTTATAATTTAAAGGATGATAGTGTAG



GAAAATACTTCTAATTATTGATGTGTGAAAT
CTTACCTGGGACACGCTTGCCTGGCAAGGTCTG



GCTTTGAAATCCTTGGATGGAAATCTTGTAC
TCCCGTGGGAATAGACATGGAGGAAACAAAGAA



CATGAAAGAACAGAACTGTTGGTGGTGTCTC
CATGGGCCACATGCTTCTACACACACACACACA



TGGGAGAGGCTCACGAGGGCCGGGCAAGCCT
CACACACACACACACACAGAGAGAGAGAGAGAG



GTGGGGGTAGCAGGCAGTCACTCCCATGGGG
AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA



ACAGGCTGACCTGGCAGGCTTATTTCCCATG
GAGAGAGAGTCTTGCAAAGTTCTGCAGAGGACG



GAAGTGGGCACTGAGGAATAAAAAGCAGTTT
GTTCTCAAAGTGTAGTCTTCACAGTGGAAGATG



CAGGCCAGGTGCGGTGGCCCATGCCTGTAAT
TTTTAATTTTTAAATATAAAGAGGTTTGTTGTT



CCTTGCACTTTAGGAGACTGAGGCAGGGGGA
GTTGTTTTCTGTGATACTGGTGTTCCAATATGG



TCCCTTCAGCCCAGGAGTTCGAGACCAGACT
GGGCCCACACACGGAGACAGGTGTTTTAGCGCT



GGGCAATATAGTGGGACCTCGTTTCTACAAA
GATTACACACTGAGCCTAAGGACCATGTAAACT



AAATGAAAAAATTAGTGGAGTGTGGTGGCAC
GTGAGTTCCTCTGCTTCTTCTAGAAACGGAACG



ACTCCAGTGGTCCCAGCTACTTGGGACGCTG
GAACTGATCCCGTCACCAGGACTTAGCATCCTC



AGGTGGGAGGATCGCTTGAGCCTGGGAGGCA
CTGCTGCACTCTGACTCTCAGACCTTGCAGCCC



GAGGTTGCAGTGAGCCAAGGTCATGCTATGA
TTAGGTTGGGGCTCACGGAACCTCTTAGAGTGC



GTAACATTTTGAAGGTCCACTTCTGGGATTC
GTGGATTTGGGCAGCAGTGGTCTGTCTGTTCCC



ATCCAGGAGCTAAACGGGTCATGTCCAGCCA
TCTCTCTTTATCAAGTTTTCTAGCCACAGGGTA



ACTCAGCATTCACCAAGGTACGTTTCCAGAC
TTTTTTGTAACTGGAGCAGAATCCCAGAACATG



CAAACACCACATTGTCCATAGACTGATATGC
TTGTAACATGTGAGCATACTTCTGGGATGCTTT



CTCAAAAACCTGGTAGAGGTGGGCACGGGGT
AAGATATAAACTATGAAATATATGTATATACAA



TAGGTAGAAATCATCTTCCTCCCTTCCTTCC
ATTAGTATAGCTGGGCATGGTGGTGTGCACGTT



CCACCAAACTTTCTGGTGACAGAAGCTTTTC
TAATCTCAGTCCTTGGGAGGCAGAGACAGGCAG



TGTAACTGGGGCAGAATGGGGTCAGACACTC
ATTTATGAGAGTTCTAGGCCAGTCTGGTGACAG



TGGCAACTTACCCATTGGTGTTATGAAATAT
AGTGAGGCCCTGTTTCAAAGACAAAAACAAATC



AAAACATTAATGTATTTATATAAAAAGTGAT
AAAGCCAGAAAAACTTACCATTGGTCACGTTAG



AGATGAAATTAAAATTTGCTGTTCTATTAAA
AGTTTGGTATTCTATTAAAAACCTTATTTAATT



ACCATATTAGATTTTAAATTATTATAGAGAT
TTAAAGTATACAAAATAATCATATTTTAATAAA



TATATTTTAATGTTTTAAATGTATTTGATAC
GGGCATTTAGGGGTTTACAAAATTATATCAGTG



ATTACAAAATTATTTTAGTTACAAGCATATC
ACAAGCATGAAACCACAACTCTTATTTATTGTT



ATTAAAGCTATTCTTTATTATTACAAAATGC
ACAAAATGGCTTTCCAATGACATTCTTGGCAGG



TTTTACAATGCTATTCTTGACAACAGGAAAA
AAGAAGTGTCCCCTGTTGGATTTGTTGACTGTC



TACTTACCCTCACTGAAATATGTGGAGTACC
ATCTTGTAGGATACACATAAGGCATAGTGGTAA



ATTTTTTGGAAACCATGTCAAGCATAATGGC
TGGTTCAACTTGCCCTAGAAAGGTTACATACTG



AATATTCAGGTTCAATCTTCCTATAGATCTG
ACCTAAACTAGTTTCTTCTATTTCTTCCAAATA



CTCAATATTTATCTAAACCTTAGCTTCTATT
TCCACATTTCTGTTTCCAGTTAAGAAGGCAATG



CTTTTCACATGTTATTAGCTATATTTTCACT
CTGAAGAGGGAGGCAAACACACTTTCAAAAGTA



TAAAAAATTGGAGGCTGAAGGGGTAAGCAAA
GAAAAACTTAGTTTTAATCAACAGGATTGGGAG



CAAACTTTTGAAGTAGACAAAGCTCATCTTT
TCTAGAAGTTTCATTGGTTCTCTGAAAACCACC



AATCAACAGACTTTAGAGTCCAGTCTTTCCA
CCATTTGGTTTCTGCACCATTGAATTGTCCCAT



AAATCCATTTTAAAAGTGTATGGTCCTCTAT
GTACCACCCAGGAGAGAGACGTATAGCCTGTCC



AATCTGTTTTTAACGACAGAAACTTCTCCCT
GGCAGTGAAATTCCCAAGCAAACCCATGAAGTC



CCCCTGCCCCATTTTGTCCTCCCCATTAAAT
CCTATCTTCTGATGCTGACTGCAACATCCCACA



GGTACTGTGTCAATAAAATTCCCAAGCGACC
GCTACAGAGTAGACAAACTGGTGGGGGGTGGGG



TCTTTAAATCAGCGTTCTTTCCGATGCTGGC
GTGGGGTGGGGCTGAGTTAGGCTCATGGCAGGT



TACCACAGTCATGGAAAAGGGAGATGTGTTG
GGCAGTTGTCGGCATATCCTATCTGTCTCTTAC



GACAGGCCTGTCATTACAGGTAGTAGTTGGT
ACAAAATTACAGTTGACTATTTTAATTGAGGCC



GGTACATCCAGTCTGTATTTCTTACACAAAA
TCTTCTTGTCAGAAGCCAGCACGAGACGCTTCC



TTACATCTAAATATTTGACATGAGGCCATTT
AGTTTGTCTCACTTATGACAGGCAGTAGGGTTA



GCTATCATAAGCCATCACTAGGAACTTCTAG
TAGCCCTGAGCCCAGCACGCCAGTGATGAATAC



TCTGTCTCACTCGATTGAGGCTACAATGTTG
AATAGGTGGGCCCTCAGCCACACTGCAGGTTTC



TTAGGTGCTATGACCACAATGAATACAACAG
CCATAACCCAAAGGCCAACATCTTAAAGACCCT



ACAGCCTCTCAGCTGTGCTGCAAAGTATTCA
GTGAGATCTGGTTACACACCATGCTCACTTCAC



TAACCAAAAGACCATATTTCAAATTAAATCA
ACACTGAACCTCTGGACTAGGAGGAATGTATAA



TAGTAGCGAATGACATACCATTTACATATTA
TACTTTCCAGATCATTTTAGGAAAAAAAAGAGC



CAATCTGAGCCTCTGAAACAGGGGGAACATA
CTATCTTATTTTAAGGTTTTCATTAAAAAAAAA



TAATGGTATCCAGAACATCTTTACATCAAAA
AAGTACACAGCACTTGAAGTATTAATAGCTTTT



TAACCTATCATACTACAAAGTTTTCACTTCC
TGTCCATTGTTGCACACGTAAACTATCAAAGCA



AAAAAGTGTAACAGAGTTTAAGGCACTGGTA
AATAACAGTATGGCATTTCTTTACCTTTAGCTA



ACTTTGTCCACTGTTAGAGATTAAAACTTCC
GGGGTAACTTGGGGGGGGGGACTTTCTCAGTGG



AAAGCAAATGAAAGAACCAATGTTCACCTTT
CACCTTCCTCAGGACCGGGTTCCTCTCTCCTGT



AACGTGGGGAAAGTTGGCAAAAAGAACCCCA
CCTCAGAGGAAGAGAAACAATGTGAGATCCCTT



GGAGGACACCCAAACCTTCTCTGTGTCCTCT
TGTTTAAACTGTGAATGTATCCTCCAAGCTTGG



GTGGAACCTGGCTTTTTTCTCTTGTCCTCAG
TCGCTACCAGCACGGGGTCTCAGTGGAACTAAC



AGAAAGAAACAAATGCCGATATCCTCTGTTT
TTTAGAACCCATTAATACAGGCATAGAATTGGG



AAAATATGAAAGTACCTTACACCAATAACCC
CCTTTGTTTGGGAGCTTTGGGGGAAGGGAGGCC



CTAACAGCCTGGGGTCTCAGTGGAACTAACT
CACGGAGGCTTCTGGAGTTTCATAGGAGGCCTC



TAAGTGAAAGAAAATTAAGACAGGCATAGAA
CAGGGACTTCAAATGGTGGCATTTTAGATGGGA



TTAGGCCTTTGTTTTGAGGCTTTAGGGGAGC
ATGTTTGTCTTGGGAACTGCTGGTGGCTGAGCT



AGAGCTCCATTGTGGCATCTGGAGTTTCACC
CTGCCGACTAAGCGACTAAGCATGGGTTGCCTC



TGAGGCCTACAGGGGTTTCAAATGGTTGCAT
ATCCTCTCCCTCCATCTTTGCTCTAGCAGCCAG



TTAAGGTCAGAATCTTTGTGTTGGGAAATGC
GCAATGCATTAGACTGGTCTTTTGGACTTTCCT



TAGCGACTGAGCCTTGACAGCTGAGCACGGG
GAGCAATACCTAACGAAC (SEQ ID NO: 9)



TTGCCTCATCCCTCTCATGCTGTCTATTTCT




TAATCTAACAACTGGGCAATGCGTTAAACTG




GCTTTTTTGACTTCCCAGAACAATATCTAAT




TAGC (SEQ ID NO: 8)






C
AAGGGGACAGGACATCTCTTTCCAAAACTTA
GTAAGAGCCAATTAGGAAGTTCCAGGGTTAGTA



GGTTTGGTGACTCCTGGATTTCACACTCTCT
AAGGCCAATCAGTAAGCACCAGGGTAAGAGCCA



GACTGCTTGGGTGAGGGTGGAATGGAGGGCT
ATCAGTAAGCTCCAAGGTTAGTAAGAGCCAATC



GTCCCCCACCCTCGCACCTGCACGGTGGCAT
AGTAAGCTCCAGGTTAGTAAGAACCAATCGGTA



GCTTTCCTCCTACTCCAGGGAATTCCTCGTG
AGCACCAGGGTTAGTAAAGGCCAATCAGTAAAC



GCCTCATGGCCTGGGCTGTTTCTGGCTTCAA
TCCAGGGTTAGCAAAGACCAATCAGGAAGTTCC



GCTCCACGTGGCCTGGCCCCAGCGGTCTGGT
AGGGTTAGTAATGGCCAATCAGTAAGCTCCTGG



CCACCTTGTACTCGGTGCCCCCGCTGCCCCC
GTTAGTAAGAGCTTCTGGTTTTGGTCCTTCAAT



TGGCCTCAGCTGGAGTGACGCACCTCATCCA
CACTGGCCTGAGCACTCATGTGATTGGCTAGGC



TGCGGGCCTGGCGTCTGGAAGGTGGCTGGGT
TGGCTAATCAACCAGCTGTGGGAATACTATCCA



CTCTCGGGCTTGAGCACCATCATCTTAGCTC
GTGATGGGCTTGCAGACAGATGCCACAGCATGT



CAACATGTCATTATTCCTTCCTCACTGAGGA
GGCACCTTTAATGTGGGTGCTGAGGATACAAAG



CTTTTCTGCTTCCTAATTGGTTGTTGAAGAT
TCAGGTCTCTCCACGCTTGCATAGGAAACACTT



GAGGCCCCCATGCTCTTTTAAGAAAACCTGT
TACCAAATGAGCCATTTTTCTCAGTTTCGATTT



TGTGCCCCAGGCTTGGCTGTGATGGGCACTG
TATTTTATTTTTTGAGACAGGGTCCCACTGTAT



ACTCATACAGAAGTAGAAAGGCCTGCTGAGT
AGCTCAGGTTGGACACAGACTTGTGATACTCCT



CATCAACACTCGTGCGACGCCCTCGCATTTT
ATCTTGGCCTCCTTGACTACTGGAATTGCAAGT



CATTAATGATGGCCTCCCTGCCACACGTGAA
GTGTGGCACCATGCCAGCTGGAAAGGTAACTTT



TCACTCCAGCCCGAGATCTGAAACCAGGACA
CTAAGGTACCTCTTTCTAAAATAGATGTTGACC



CACCCCAGGGGCGAGGTGACGCTGAGTGAGC
TTTTGTAAGGACAGACTAAACGCCCCCTGGGCT



CCAGCTGTGTCCCTTTCATGAGAACTCAGAG
TGAGGCTGGCGCCATCCAGAACAGGGTAGAGCG



CACAGGGCTCTGTGTGCATGGCCGTCCCCTC
TATTGAGCCTGGCAGGTTGAATCCATCTCCCAA



CAGAGAGGAGGAAGTAAATGCCGGGATTAGT
ATGAAGAGGGCAGGTGGGTTTTGGGGGTTGATG



GGAAGATCATTTCCTTCTATTTGCCTTGGCT
ACGAGGGAGGGGCAGAAAGAGGGAGACAAGACA



TACGTCTTTCAGAATTCAAACACGTGCACTG
GAGAGTGTTACTCAGTCCAGGTACTCTCTTGAA



TTGACCCTGCAATGGTGGAGTTTTTGGATTT
CTAAGAGCACACAGGGAAGAAGGGCCTCATCTG



TCCTTCAGTCCGATTGCTAAAATACTTCCCT
AGGCCAAGGTGTCATTGTATCCGGTATAAGGGG



CTCATGTGAGCTGTTGTGAAAGTCATCAGCC
ACAGGATCACCTCCTTTCATGTTGGAGCTCGTG



AGATACCATTCTAAAAACAAAGAATGTGCTT
GATCTTACATTCTCTAATGCTTGACTAGATGTG



CTCGTATGTTGCATGCTGGTTACTGAAATAT
AGTGGAGCTAGAACACGTATCTTCTCCTGGTCA



TAGGGAATTACATAAAGGTTTTCTGGGGCAC
CCGCCCAGGGTTCGTGCGCTTTTCTTACTCGGT



ATATTCAAGCTGAATGATAAAATTGAAGGTC
ACATCATCCTCATCGCAGTGGGCTGGTCTCTGG



ACACAAAGCTAAGGTCTTTCAAATCCTGACC
CTGCCTCATCCAGTTTGTCGTCTCAGTTCATAC



CAATTAGCTCTCTGTTAGCTCTCTGACTTTG
GGACACCCCCTGGCTTGTCAGTGCTGGCCCAGT



GACAAGCTGTCTGGTCCTCTGAAGCATACTT
ACCCTCGGGCCTGAGCACCTGTGATGCCCCTGC



TGTTCGCCCTGGGTAGGGGCCCTCTGTTTTA
CTCCAGCTCTTCCTCCCCAGAGTCTGCAATGCT



ACAGCGTTTGGCAGATGAAAACATTTGCAAA
ATCATTCCTTCCCGGCCCAGAGACTTACGCTTC



GCCAAAGGACAATGAAATCTACGGAAGCCTA
CTCATTAGATGTGGGAGATGAGGTTCTCAAGCT



CCATATGCCAATGACTCCACCAAATGTTTTC
CCAACAAACCAGTCCTGACCTCGTTTTGGCAGG



TCTTCTTGGGATCTTCTAAAATTCATCTGAA
AACTCAAAGAGAAGTCAGAAGCTTGCTGAATCA



TACTTATAAGTTATGCAAATTTTGGTTATTA
CCCACACCGGCCGGCCGGCCGAGCATCCTGGCA



ATCTAGGTTGTATTACCTTGGGGGAAGTCAG
AGGCCTGTAATTAGAGCCTCTCTTTCACACCTT



TTAATCTCTTTGAACTCAGTTTCTTTATCTG
GAATCTTGAGGGCCCCACGTCTGAAATGAGGGG



TGAACCTGAAAGAACACCTTCAAACTCCAAG
TGTCCCAGTGCCTGCTGCAAGTTTATGAGCAGC



GGTGGCTGTCAGAATTAACTATAGAGGTGCA
ACACAGACTCCTTTCCTTTGGAACTCAGGGGTG



GGTATCAGATGAAAGCTATAAAACAGTTTAC
CTGCCTGCGTCTGGCTTCTGTGGAGGAGGAAGT



AGATCTTAGATATTATGATGGATGGCTATGA
AATGTGTGTGGATTAGTAAAAGATCATTTTCCT



TACGTTTCTCGAATCACTGCTTGCCAATGAG
GCTGTTTGTCTTGGCCTCCGTGCTTCAGAATTC



CTGTACAATCTTCCTGAAGGGGTCTGCCTTT
AAGCACTTGTACTCTTGACCCTGCAGTGGTGGC



CCAATCTGGGCAGCAACAGTTAATGACGGTG
TGGTTTTGAGTCCACTTCCTGTCTGATCGCTAA



TGCCAGGATATCTGTGTCTCCTTTTATCTGC
ACTGCTCCTTCTCTGAGGACCTTCAGCTGAAGC



TCCAGACTTTAAACACACCCTCTGATTACAT
CACTTACCTGCTAACACTTAATTAATTAATAAT



CACACTATCAATTTGAAAAAGGGCTCAGAGC
TAATATTGTAATTAATTTTTTGTTGCAGGATTG



CAAAATCACCACTGTTAGCGAGTTCTCCAGG
GCAGTGAAACCCAAAACGTCACACATGCTAAGC



GCTGCCTCCTATCCTCTGGAGGTGGGGCTCT
AGGCACGGGGCCATCAAATCATTTTCTTAATTT



CGTCTGCAGAAATAGGCATAAGGGTTTTCTA
TTTACTTTTTTATTTTTTGTGTGTGACAGGGTC



TGGTTTTTGTTTGTTTTAAAGACGAAACATG
TCAAGTAACCCAGGTTGACCTTAAACTTCCTGT



TTTTGGGATCTTTTAAGAATCCTAATCGTTG
GTGGCCAGAATGGCTTTGAATCTCTGGCCCTTC



TGAAAGAAACTGAAGTAAGTTACTGTTCAAG
TTCTCCCTCCCATGGTACTGAGATTACAGGTAT



TGACTCTCATTCTGCTGTGAATAGTTTCTCC
GTACCACCATGCCTGACACCCTGATGCTGTGGT



CACGTGAAGTCAGCTCAAGAGACTGTGAATT
GGACTCAAGGAATGCACATACCTAAGCTTGAAT



GCTTCAGCCTACCTGAGACCTGGTACACAGG
GCTCGCTGTTGAAATACTAGAGACATTTAAAAT



GAGGCTTCCTAGCCACGGAAGAGGAGAGCGT
AATTTGCCAGTTAGGAAAAGCTTTCTATGGCAC



TTGCAGGAGGAGAAGGAGGAGAGAGGGCCCA
ACAGTCCAATTGAATCTTAACACACACACACAC



CGCAGGTGACATTCTGGAAAGGGAATGCTGG
ACACACACACACACACACACACACACACACACA



TGCGAAACTGCCTCACCTACTTTGCTCCTTG
AGACTTAGGTCTTTCAAATTCCAGCTTGGTGGC



GATGTTCAGGAAAAGCCAGCCCCATCCGCCC
TTGTTCCATGTCTTCTTTGGACAAGCCCTCCAG



CAGTCCGAGGGCCTCACTCATGGAACAAATG
CTCTCCTCTCCTCTGCTCTCCTCCTTGGTAACT



AAGCTGAGAAGAGGAGCTTCCTGTTTTCCAG
AAGGGGAGGCCACGCCTACTTTATTGGCATCCT



CTGCTGGGGTCATCATTATCTTCAGGAAGGA
AGAGATGCCAACATTGGCAAAGAGAAGGGACAA



CCCCGAAAAGCATCGTGTGTTGTTGCAAAGG
TTAAATTCATTGAGGCCTGTGTGGTGTGTCAGC



CCTGCCTTATCCTGGCCCCCAGGTCCCTCTC
AACTCTGCCAACCACTTTCTTATCTTGGTATCA



CGCTGGCCCTGTCTACTGGATAAGCTGAGGT
TTTAAATTAGTTTGAACACTTAAAAGGTTGTGT



TGCACGAAGTAGGTCCAGGCCTAATGTGACA
AAATGTGGCTGTCTAGTATTAGAAGCTGTTTTG



GTGAATAATATGGTGTTTGGCCACACAGAGA
TATTATTGTTAGTTGTGTTCCCTCAGGGGAAGT



TGTGTGTAGGTACAAAAACCACCATGCTTTT
GAGCTGCCCTGAGCTCAGTTCTTTATCTGGAAA



GGCGGCAAAGTAAAAAATGAAGATGTCGTCA
CTGGGCCTAATACCTCCAGACTCAAATGACTGT



AACGATCTGAACTCTGATGGAGACTGAGCGA
CACAGGACTTAGCTATGAAGGAAAGGGTTGAGG



GAGACCCTGGCCCAAAACAATCACTCCATGG
CAGAAGTCAGAGCACTTTACAAATATTAGGCGC



CGGATGCGCTCTGGGGTAGACAGCTACTGCT
ACTTACTAATGCTCATGATAAATTCTTCAAATT



CTCAGAGCAGCTGTTTTCAGGCCA
GTTGTGCGATAAAGATCTTGTCAGGGTTTCTCA



(SEQ ID NO: 10)
GGCGGCTATCTTTCCCATCAGAGCTGTCTGTCC




AAGTTAAAGACAGCTTACTGGAATATTTCTGTA




TCCTTTTGTCCAATACAGGATTTAAATATACCC




TGCGATTAGATTGTAATGCCAATAAAAAGAAAA




GAGGGGATGTCAGAGCATAAGCCCAGGGTGACA




ACCCTGGGACTGGCATTCTAGATTCTGGGGAGG




AGACTCTTTCTGGGAAGAGAGGCTCATGGCGTT




TTGCAGTTTTTGTTTTCTGTTTTAAGACAGGAG




TTGCTTTGGGGAGCTTTATCTTAAGAATCCGAA




CGGTTGTGTAGGCAAGCAAGCAAGCAAGGCAGC




TACTGTTCGGTTGACCTCGTTCTGCTGTGAAGA




ATTTGCACTGTGTGAAGTGTGTTCAGGAAACCC




TGAATAGCCTTGGCACACCTCCGACGTGCTGCT




TCGTGGTAAAGTTTCCTGTCCTCAAAAGAGAAG




ACATTTAAAGGAAGAGGAGGGACCAAAGAACGG




GTCACCTAGACAACAGGGATCTGGGCACCTGGT




AGGAAGGAAACCTTAGCTTATTTACTCCTTGAA




TGTTGGGAGAGAACAGCCAGGACCCTGCCCTAG




AGCCTCACTCATGAAAGCTGAATCTGGGACAGT




GAGTCCTCCCCTCTAACTGCTCCCAGTTCCACT




GTCTCCAGGGTGGATCCCAAGTGGATGCTGTGT




ACATGGCCTTCATTCTGGTGCCTAAGCTCCACT




CTGTGGACCCTGTCACCAAGTTGGTGTGAGGAA




ATGTAACATTTAATATTATGGGTCTGGGCCACA




CCAATAAACTACGAGGCATTGTAGTCAAAGCTG




CTGCCGCCTTTCAGTCACCTGACCTCGGTGGCC




ATTGAATAAGTGACCTTGGTCTAAAACAATTGC




TCCAATGTTCTGTTCTGATGCTCTGGGTGGATC




GCTGCTTGTGTCAGAGCAGATGTTTCCAGGCTG




TTGCTGGGGCCAATGTCACCATTCCTGTTAGTT




TCAGATTGTCTATTAGTTCTAGATAGGGTCTCA




TTATATGAGACACCCCACCCTCCTGCATGGCTC




AAAAGTTTACTGATTTTTATTCTTTGTGTGTAA




GTGTCTTGTGTGCACGCACATATATGTGCACCA




TATGCATTCCTGGTGGTAGGAAGCTAGAAGAGG




GGCTCAGATTCTCTGGAACTGGAGTTACAGATA




GTCGTGAGT (SEQ ID NO: 11)





D
ATCACGCAGCCCATACCCTGCGGTTCTCCGG
AATCATGCAGCCTGAATGGGCATTTCTCTCCAA



GGACTTATGCATCGGCCCAAGTTGAGGGTTT
GTCGCAGGGTTTGACTGACCATAAACATCATTC



GTCTGAACTGAAACCCGCATCCTAGACCTGG
CTTGCTGTGCTTTTCTGCCCGCTCCCCAAATCG



CTTTCTTCTCCCCAAATCCAAGGGGACACCC
ATGACAGCCCCAAACCAGCAAAGGAAATGAGAA



CGGTGACCCACAAAAGCTTAGAAAATCCAAC
AAGGGACTTAATCCGGACTCTAGTCACTTTAAA



ACGCAGCAAATGAAACGGGGGAAAGGGGCAC
CAGCCTGGTGTGTTTATAAAACCTGTCGTGCAA



CGGCCCTCACTCTGGCCTCTTAGACACACGA
GTCAGAGGGGCATGGTGCATGCAGAAGTCAAAC



TATGAAACCTTCATAAAACCTGTTGTACAAG
TAGTCCATCCCAGTTCCTACTGCAGGGCACGAG



TCAAAGGGGACCACGCTGGGGTAAAAGTCAA
GGAGGGGGCGGCGCGGGTGACAACCACCCTGCC



ACCAGTCCATCCTCGTTCCTCTGCGTACAGA
GCGGTTCCAGTTCCCGGTGGGCTCGCAAAGGCG



GAGAGGGTCCAGCGCGGGCGGCGCCCACTGC
GGATGCCGATGGGAGGCAGATAAGGATGCTGGC



CATCGGGCCGGGGCCGGGGCGCGTGGACAGG
AAACCCCCGCCTCCCCCCCCCCCACCCCCCGCA



AGGGTGCGGATAGAGGCAGATCGGGGGCCCG
TGGTCAAGACTGTCTGTAACCGCCGGGCCGCCT



GTCGCCCCACGTGCGGCCAGACACCCATCCC
GGAGATACTTGCCACCCCCTCGTCCCACAAATC



GGCCGCGCTCTGCCGGCTCTGATCCGGTGCC
TGGCGAGAAAGGGAACAGACCACTTCCTTTACC



AGACAGGAGCGACAGGGGCGAGGTGGGGACC
TGCCCGGGTTTCTCGGAGGAAATGCTCCCACTC



AGCCGCCGACCTCACCTGTTTTGTTTTCTTG
GCGCTTACCTGCTCGGTGGGAGCCGGCTCCAGG



GAGGAAATTCCTCCGCTGGGGGGCCGAGGTG
CTCGCAGCGGCACTCAGAGCTCCTACCCTGAGC



GCACCGCCCGCTCGCCCCCCGCAAGACCCAG
GTAGGTTGGATCAGGCGCCGGCGGTTCACAGCG



CCGGTCCGCGCCCGCTTACCTGCTCTGCGGC
GGAATGGAATCGGGGACAGTGCGGGTGGAGCCC



CGGCGGCCCTGGCGCGGGCTCTGCGCGGGGC
CGGTTTCCACCTGTGGCTTCTTTTAACCGCGCC



GGCGCCCTTCGCTCCGGCTGGGCAGGCAGGT
CCCACCCCGCCTCTGCCTGACGCCGCACGGGAG



CGGGCTCGGGCGCCGCCGGCTGTCGGGCTCT
GGCTGCGGGAGAGGAGCGCGGGCACTCGACGCG



CGTCGGGTTTCGGGTGAAGGCCCCGGCTCCC
CCTTCTGTGGTGCGCACCGCCCTCTCTCCGGGA



ACCTGCTGCGCCTTTTAACCGCGCCCCACCC
CAGAGGAGCGGGGCGGGTCCCCTTCTGTGGAGC



CGCCTCTGCCCTGACGCGGCTCGGGCGGGCT
AAGGGGCAGGGGACCTTCCCTGTTAGGGCCAGG



GCGGGAGGCGAGCGCTGTCACTCGACGAGCC
TCTTAGTGGTACTATATTAGGGCACTCGTTGGG



CCCCGCCCCCACCTACCCGGGGCGCACTAGC
ATCCTTCTTCTGAAGCCAGGGACCACTGCGAGT



CGCTGGGCGCGGACCGTCCCCCTGAGGAGCA
GTCCCCTAGGAGAGACTCCAGGTGTAGGCTGGT



AGGAGTGCAGGACCGGGGCTGTCCCTCCGGG
CTTCCCTTGGGTTGGGGACAGAAGGCTTGTCCC



GCCGGATGCGCAGAGCGGGGACCTTTTTCCC
TTCTTGTGGATGTGGGTGGAGCGTGGACCGCGA



GTGGCGGGGGCGCAGGGTGGGGGACCCCTAA
TGGGCAAGCTCAGCCAGATCCCATCAAGGACAG



GAAGTGCACAGTGCGCGGGGCCCTCTTTCCG
GGAAAAGTTGCCCGCTGGGGCCTTGCTGGGGCT



GCCCTTGGAGGGAACGGGGTACCGGGGATGC
GGACACTGGAGGGCCCTTAATGAAGTGAGGGCT



AGGGGGTAGGGCTCTCCCTCGGGAGCGCAGA
ATCCAGAGTACGGGGAACAGGCTTGTGGACCCA



GGGCGGGCCCAGCCCCCTCTGCACGGGTGCA
GCTAGTAGTGAGTCTCTCCTGTTGGTCATCCTG



GGTGTGGGGCGCCTGCTCAGGCCCTCGAGGG
GTAGGAAGACAACTGGTTTGTTTTCATCCTTTC



AACTCTTCCTCCCTAGTGCACCCGTGGGGAG
TAGACCCTTTGGGCACCCTCTCCTCTAGAGCAG



CAGTGTGAGGGGCAGGCTGTGTTTTTGCCAG
CCTGGAGGTTCTTTATTCCTTAATGACCACTTA



GACACATCCTCAGTCTTTCTGGGTGATCCAG
GGAGTCTCAAAGGTTTGTTTTTATTAGTCATCT



CCTTCTCATAGCCCGCGGGGTGCACAGACCT
GAATCCCTTCCTGCATTGTCCAGGGAAGGGGAG



CTCCTATAGGAGCCTGGAGGTTCTTTATTAA
TGGACTTCCATCTTGAGAGATCCCACTGTGTCT



TTAATGACCACTTAGAGGAGGTACAGGGGTT
GCTGTCACATCAAGGGCAGGGTAAGGTCAAGGC



GTTTTTATTAATTACCTCCATCCTTTGAAGA
AAGCATAGAGGGTGGTACAGGGGGTCCTGGGCT



CTCCTCCGGGGAAGCGGAGCAGGCCTTCCTC
GGAAATGTTGGAAGCCATGTAAGGACCTAGTTT



GGGACAGTGCACCAGGAGAGACCACATTGCC
TACAGGGCCTGCCCTGTGCTACTTCAGACAAGA



TCCCCGCTTTTCAGTCAAGACTAGAAAGCTC
CTTGTAACATGTGTAACTTGGTTATTTTACAAA



AGGGCCAGTACAGGGAGTGGTGCAAGGGCTG
ATTGGCTGGCAGGTATGTTCTTACCTGTTGGGT



GTGGGGTGGAAACGTTGGAAGCTATTTAGGC
CATATTCTCACTTTAGCTACATTCTACCTGTTG



ACCTGGCTTTACAGGTTCAAACCTGTCACGC
GTTCACGTTCTCTCACAAAACGAGAGTAATAGT



ATCGGACAAAAGATGTGTGACTTGCTTATTC
GCTTCCTAAAATGTCTCTCCCAGGTCATGGAGG



TACAAAACTGTTCGGTAATTAAACGTCCCCA
TTGAGTCAACGCTTTATAAAAACCCACCTTAAT



CCTAAACCATATGCCACTTGTTGGGTCATAT
AAAATACTTGAACCAGAGTTCTCGGAATTGGAC



TCTCCCACGAAACAATTAAGATGTCTGTTAA
CC (SEQ ID NO: 13)



AGGTCATGGAATTTGAGCCAAGACTTCATAA




AAATCCGCTTTCCAAAATATTTTATTTGAGG




AGAACAAGGTTCTTAAAGAATTTGCCCAAGT




C (SEQ ID NO: 12)






E
TAAAAGTGAGCAAACAGCTTGAACCAATCTA
AGGAGGTGTGTCTTCCTGGAGGAAATATGTCAC



AACAGCTTATTTATTTGAGGTAATAAACTTT
AAGGGTGGGCTTTGAGCATTTAAAAATTTACCC



TCCTTCTTCCTGAGTTTTCCTAAATTCTTCT
CCTTTCCAGGTTTTTCTCTCTGCTTCCTGCTTA



CTATCATGAAAATAGCATTAATAGCTAAAAT
TGGTTCAAGATACAAACTCTCAGCTTCCAGCTT



TTTAAGTGTTTAGAGGTTTTGCCTTTCAAAT
CAGCCCCTCTGCTCTCAGAGATGCTCATCTCTC



CCAGTAAGTCTCCAGAGTCAACAGGTGCTAC
TGGAACCATGGGTCCAAATAAACTCTTTGTTCT



AAGATGCTACTGGCAGTAACAGTGCTTCTCC
ATAAGTTACCATGGTCACGGTGCTTTACCACAG



AGGATTGTGGTAGGTGGTGTCTAAGGGTCTT
CAACAGCAAAGTAGCTAATATAATCTTTTCAAG



TTCAGCTTGAAGGTTCTGTTTCCCAGTTCTG
GCCACGAAAAAGAGAAAGGCAAACCAAGAGTTT



TCTCACTTAAGATCAGATCTTGGTGAGTATA
GGCTGACCAAATCAGCTGAGAACACAAACCTTC



TTGGCAAACCATTTCATTATTTAAATTTGTA
CCATCCTAAATTCCCCAATGTTCTTTTATTTTT



AAATACAGGCTTTAGGCCGGGCGCGGTGGCT
CATCATGCAAATAGCCACTGATATTTAAATTAT



CACACCTGTAATCCCAGCACTTTGGGAGGCC
ATTAATGTGCTCATTATGGCAGTTTCATATATT



CAGGCGGGCAGATCACCTGAGGTTGGGAGTT
TATATATTGTACTTTGAACATATTCACACACCT



TGAGACCAGCCTGACCAACATGGTGAAACTA
CCAAATACCCTCTTCTGTCCCCCACATTTTAAG



CGTCTCTACTGAAAATACAAACTTAGCCAGG
ACTGGAAGTCTCGTTTTTTCAAATCCATTATTA



CTTGGTGGCACATGCCTGTAATCCCAGCTAC
GGTCCTTAGGGTCAATGGGGTCATATGATGGTG



TCGAGAGGCTGAGGCAGGAGAATCGCTTGAA
TCTGTGGTTCTAATTAGTGGCCAGCTGGATACC



CCCGAGAGGCGGAGGTTGCTGTGAGCTAAGA
TGCAGAATCAATGACTAGTGGGTAAAAAGTGAG



TTGTGCCATTGCACTCCAGCTTGGGCAACAA
CAGTCAGGGTCAGCAGCTCACAAAGCGTCAGTG



GAATGAAACTCCATCTCAAAAAAAAAAAAAC
AGAGGCGGACAAAGAGAGCTTTCAGCAACCCCT



AACAACAACAACAAAAACAGGCTTTAATTGT
AACTGGGTGGGCAGCATGTGAGCCAAGTGTGAG



ATTTCATACTCTTTAACTAACTAGATATTAA
TCCCTCCTTTTTGGACCTGGGAGACCAGCAGAG



CTATAAAATATTAACAATTTCAAATTTTTGT
TGTGCAGGCCCTCCGTTGGCTTGGCCCAGGTGA



TAAAGGAATACATTTACACAGCTTAAAAATT
TAAGCTGACCTCAGCAGGAATTACCTCAGTCTT



CAAGTGGAACTAAAAGGTTTACAAGGCAATA
AGTCCAGCTCCTGATGTAAGTCTCACTCAAAAC



TTTCAGTCCTCTGCCCCATTCTCTGCTCCTC
AAAACAAACAAGCCTAGACAAAACCAGCTTGTT



CCACCCTGTATGCTGTCCCAGAGGCAACCAA
GTCTTTTTTCTGTTGTGGGAACTGCTCCCACTC



CGCCTTTCATTTTTTAGAGCTCTTCTGACGT
AGGAATTTCTCAGTGGCCCCCTCAAGGAAGTTT



TTACCTTTATGTTTCCAAATAATGTGCTTAT
GCTTCTTCTCTGCTTCCTTCCACACATCTGTGT



TATGCCATTTACTGATTGCTGGACTTTAGAC
CTTTCTGGTTGGAGACCATGGACTTGAGAGTTC



CTGTTGACTTTTTCTGCTATGGTAGTGGAGG
AAGTTGAGCTTCCACTACCCTAAGTGCCTGGGT



CTTTAGCTCTGACCTGAGCCCCACTGCTCCT
CAAGCACACCTGCGCTGAGAAGGGTCCTGCCAG



GCTCCACCCACACCTCTTCCCTCACCCTCAT
TCTCAAAACTGCATCACTAGATCAGCAGTATAC



GACATGATCATGGCTCATACTCTGGTCAAAT
TCTCTCACTTAAGCATGGAGTGGGGAGGTGCCT



ACATATTGTTATTTATATTATTTTGACTGCG
TTGTATGTCTTAGCAATAGTCATCTACGTGATT



AGCATAATGACGTCTGGACCAAGTTGTATTC
TTGAGGTCATTTTACTTTTAAAGTATATAATCT



TATGTTACATTTTCTTTTGGTTGCAATTGCC
TCAAACCAAATTCAAAGACTAGGCAAAATTTTT



TCCCTTCCCTGAGAGTGAACCATGACTGGGG
AAATTAGCTTTTAAAAAATGAGCTGGTTTGCTT



TTTTCATTTGCTTGGCTTTCTATGTGTCTAT
ACTTCCCTGATCTTAATTCCTATAGGCAGTATT



TGTTCGGCTTTTCCTACTCTTCCAACAAATC
GTGAGGTAACTTATTTAGGTTTAGGGATGATAG



TGTCATATGCCCGGAAACAATTTTTTCAAGT
AGAAATAATGTCTTAGGGTTTTACTCCTGTGAA



TCCCAGACATGGTTCCGCACAGTCCATCTAT
CAGACACTATGACCAAGGCAACACTTATAAAGA



TCCATCTGTTTCTTTCCCTTTTCCCGGGGGC
CAATGTTTAATTGGGGCTGGCTTACAGGTTCAG



TGTGGTCTGGGCAGGGTGCTCTGGCCCTCTG
TTGTTCAGTCCATTATCAAGGCAGGAACATGGC



CCCAGTGGTCCCCTGGGCTCCCCTTGCCTTT
AGTGTCTAGGCAGGTATGGTGCAGGAGGAGCTG



CCCCTGGGCCAGAGCTTGTGCTTTCTGGAGT
AGAGTTCTACAGCTTCATCTGAAGGAAGCTACG



CCGTGTCTTCCTGTCTTGGTCTCTACCTTCA
AGAATCCTGGCTTCTAGGAAGCTAGGATGAGGA



TTTTGCTGAAGCACACACCTTCCAGGAACTT
TCTTAAAGCCCACGCTCACAGTGACACACTTCT



CCTCAGGAGGGGAATGTGGAACTAAACTTCT
TCCAACAAGGCCACACCTCCAAATAGTGCCACT



ATGCACATAAAGTCTTCATATCACCCTCAAA
CCTTGGGCCAAGCATATTCAAATCACTATGGGT



CCCGATCTGTCTCCCCGCCTCCAATGTACTT
ACTCTTAAAAGAATGCATGTTTTAGCTTTAAAC



TCCTTTCCTCTCTTATTTTCTCTGTTTTTAT
ATTGTTCATTTATCCGTGTAACAGACTGGTTTG



GAACTTACACCTTTTTTCTTCACTATTGTGT
AGATCTCTCAGCAAAGGGAGTTATCCTTATACA



AATTGGCATTTAAGATGGGAGTAGAGATAAA
GGGACTCTTTTCATTCTTTTTCTTAGTGCATAT



TGCACCTGTGTAGGCTCATACTAACCACACG
TCATTGTAGATAGTGCTGAGTTGTATAAAGGCT



CCTCAGTGCATGGGTGTTTATCAGACTTCTC
TTATCTATCTATCTATCTATCTATCTATCTACA



TCAATCAAGAGCTGCGCTGAGTACTTGTGAA
TCCCAAATGTTGCCCCCCTCCCCGTACCCCCTC



GGCCCTGCAGGGCTGGTGCTGAGTAAGTTCA
AAAGAGTTCTTTCTCCCACCCCCATTCTCTTTG



GGATTGGGCACCTCTGAGGGGTGAGGAAATG
CCTTTAAGAGGCAACCTCCTCTTATATCTCCCC



GAGGTTCAGAGACGAGAAGGAACTTCCCCAA
AACCTGATGCATCAAATCTCTGCAGGATTAGGC



GGCCACATGGTTAATGATTGGAAGATCTGAG
CTCAGGCCAGCCCATGTATGCTCTTTGGTTGGT



ATTCTAAACCAAACCTGAGTCGATCACTTCC
GACTCAGTCTCTGGAAGCTCCCAGGGGTCCAGG



CTTTCTGTCCACTGCACTGATAACTGAAGCC
TTAGTTGACACTGTTGGTTTTCTTGTGGGGTTG



CAAGGGCTGAGGCCACACCTCAGCGTGTGAG
CCATCTGCTTGAGGGCCTTCAATCCTTCCCCTA



GATCAGCAGAGGAGACCCTGCTGGCTGCGGG
ACTCTCCCACAGGGGTTCCCAACCTCCAGTCAG



ATGTGGATAGGCTTTGAGGAAGAGGAAAAGC
TCCAGTGTTTATCTATGGGTATCTGGATATCCC



ACAGGCAAAATGTCAAAGATAAGTGGGAATG
CCTCTGTCTCATCAGCTGCTGGGTACAGCCTCT



AGGTTCCCTGGAGCATGAGTCGCAGGTGCTC
CAGAGGCCTGCTATGCTAGGCTCCTGTCTGCAA



AGGAAGGTGCTGGCAGCTCTAGAGAAGGCCA
GCACAACATAGTATCATCAATGGTGTGAGTGAT



GAGAGAAGCACCCAGTGGTGGGAGCCACAGC
GGGTGCCTGCCCATGGGATGGGTCTCAAAACGA



CCCAAGACACAGGCTAAAGCCCCAGCCCAGG
TCTGATCACTGGTCAGCCATTCCTTCAGTCTTT



GTGGGTGAGCTCCACCCTGTCACCTATGGGG
GCTCCATCTTTGTCCCTGCCTTTCTTTTAGACA



TTGCATGCAAGTGGTTCCTCTAAGCATTGGC
AGATCAATTTGGGGTCAAATTATAAAGGCATTT



TTCATCTGGGAGGCGGGGGTGACATCGCTTC
TCATGTTAAGTGTATAATGTATTTTGACCATGT



TTTGAGCCTTATTTGGAGGACTAAACAACAC
TTCCCCATATCCTCCTACCCTCCCATTTGCCCT



ATGCATTTTGTCATTAGGCTGGTGCAAAAGT
CCCCCTTTCTCATTAGTATTCTTTGTTCTAGAC



AATTGTGGTTTTTTTCTATTACTTTTAATGG
AAATTTACTCTACTTTTATGGCATATGACACAT



TAAAAACCGCAATTAGTTTTGCAGCAACATA
ACATGATTTAATGAAACATAAAATGGAGAATCT



CTAACTTTAAAGTTCTTAATACATATGAGAT
ACAGACAAAAGAAAGCATGAAATATTTGGCTGA



ATTATTTCTATCAGCTTAGAAGGATCCATTA
AGCTGACTCAACTCATTTAATATGACAACCTCC



TGATTGTAGAAGACCTGGGATGCCAGTCTGA
ATTTCCCTACAAATAAGAGAATCTCATTCTTTA



GGAACTCTTCTTTTCTTAAGCAAAGGAGAAA
TTGCAGACTAAAATTCCACAGGTGTATATACCA



CAAAATAATTCTGATGGGGGAGTGACTGACC
CATTTCTTTCCCTATCCCTCTGTCTTTGGACAC



CCAGTCTGGCTCACCGGCGGCTGTGAAGTCC
CTAGGCAGGTTCCACCGTGTAGCTATTGTGAGT



TGAGTGTCCTCTGGCAGCTGCCTTTGAAAGC
AATGCTGTAGTCAACATTGACATGCAAGTGTCT



GCAGTGGTGTCCGGGGCTCGCCACTGAATAG
CTGTGACATGTTGACACAGAGTTCTCTGGATAA



CGTTTGTTCTCAGAAGGGAGCCCGGTGGAAA
ACACATAGGAGTGTCGTAGCTGAATGGCAGTCG



ATTTGAAGCTGCAGTTAGGAACTGTGTGTAT
ATTGAGAAAACAAATAATAAAAGGGTTGGTGAG



GGCCTTGGAAACTGAAGATGTTCCTTTAAAA
CAGGTGGGAAAAGGAAACTTTGAACGCATTGCT



GAAAAATCACAGTGTTTTTAAAACTCAGATG
GGTGAGAAGGAAAGTCAGTCTAGCTGCTATGGA



ACAGCTTTGACCATTATCTGCTTTCCTCTCC
AATCAGGGCGAGGGTTCCTCAGGCCCTAAAACC



TGCCAGCTCTAGAGTTTTCTTGGGATGTTAT
AGAACTGCCTTATGACCCAGGCAGTCTTGACAG



CAAGGATGATATCACAACAATGCCCACTTCT
CTGTTGTTGTCTGTGCTTAAGTTCTTGACTCTG



GTTTTGTTTTTAACCTGAATGACAAATTACC
TCAGACATAGAGAAACCAGATCTCAGGCTAGAA



AATCAGCAGATGTAGGCCATCCAGGGAAGTT
GTTCCTTCTTTCTCCATGTTCCCTTAACCACCC



TCTTTTAAATGCTGGACTTTTGCAAAAATGT
TCTTCTCTCCTGCCTCAGCCTTGTAGAAGTGTG



AGAGCCTTGGTGGCAATTGTGATTCTTTTTT
CCTTCCATTAGGCACCTAAGAAGAGGAACTTGA



TTTTCTTTTCTTTTCCCCAATGAAGGTACTT
CAGTCAGCTGCCACCTTCTAGTGACTGGAAGAA



TTTTTTATGTCCAGTTTTGGAAGGCTCCTGA
CCAAATATTCTGGATCTGAATAAAAGATTTTAC



AGATTGTTTGAGAACTTGACTGCTGTGTCAG
ATTCTGCTTTGTGGCTCACAGGAGACTCAGTGA



GGCAGTGCTGACACTCTCTGTTGCCAACTGT
CAGGCCCACCTAAGCACACACAGAACAGTAGAG



TATTCATTATTCCAAAAAATCAGAGAAGCAA
CGACAGGTTGAAACAGCTTCCAGGAGGAGTGGG



AAACGACCCCTCCAAACAACTCCAAGACAAA
GGGAGGACGGGCTGAGGAAGTGGGATGTGTAAT



CTCCAAGCAAAACAACAACACACACACAAAC
TCCAGTAGAGAAAGTCATTGGAGGTACGGAAGG



CCACAATTTTCCTTTGGTTGCTTCTGAGAAG
TGCTGGCAACCCTGAGAAACAGCAGCTGATCCA



GAGTTTTAATGGTATAGTAAATACAGCATTT
CCAGCTGCAGGGCCAGGCCTCTGGATGCAACAG



ATCGGATGATTTTTGCTGCCATTGATATGTT
CCAAGTCAGAGCCCAGCTGGGCCTGGCTGTGTT



TCTCTTCTTG
CCACCTGCTCCCTGGGTGGCCCCAGGCAAGTGA



(SEQ ID NO: 14)
CTCCCCTGAGAACTGGCTTCAGTAGTGAGAAGA




GGGGTGGGGTGACAATAGCCTCTTTACAGGGTT




ACCTAGAGGACTAAATAATGCACATACGCATAC




ACACACACAGACATGCACACATAGACGCACACA




TAGACACATAGACACAGACACACACACAGAAAC




AGACACTGACACACACATACACATACACAAAGA




CACACAGAAACAGACACATACATATATGTATAC




ACACAGAGATATACAAATATACATACACACATG




GACACAAACACACACATACAGAAACAGACACAC




AGACACACACACCAACATATAATACACACCCAT




ATAACACACACATATAACACACACACACAGGCA




AACACATGGGTTTATGGGCTCTGCAGTACAATA




AGGCTTTATTTTCATCAGCTTAGTCAGCAGTAG




CCTACAAATATTAGTGTTCAAAAGTATTTTCTA




GGCAAGGGAGAGACAGAAAGTGGTTGTGGTGGG




GAGTGAGGCTGGTGACTGTGAGTGGGCAGTGTC




TAGTGTCTGGGGACAGCTGAGATTGGCAGCCCA




CTGGCCACTGACTAGAGTTGCTTCCCACAAGTG




AGTCCAGTGGAAATTTTTAGTTTGCTCTTAGAA




ACTGTGCCTTCAGCCTTGGAAACTGAAGATGTT




TCTTTAAAAGAAAAATCGTGCTTTTTGAAACTC




AAATGAGAGCATTGCCTGCGGTCTGCTTTTCTC




TCTCTCTCTCTCACCAGTTTTCCTGGGATGTTA




TCAGGGCCAATCATCAGAACAATGCTCACTTCT




ATCTTGTGTCTAACCTGGATGACAAATGGCCAG




TCAGCCGATGTAGGTCACGCAAGGAAGTCTGTC




TTTCGGGTTGGACTGAGGTAGCCGCAGTGCGAT




GGCTGCTTTGTTGTTTCTTTCCCTTTTCTTGTC




CCAACTAAAAGCGCTTCTGGTCTGGGAGTAGGG




GCGACTGAAGGCTGTTTGAGAACTTGACTGCTG




GGCCCCTCTAACATTTTCTGTTGCCAACAGCTT




ACTCCTTTTGCTAAAAAAAAAAAAAAAAAAAAA




AAAAGCAAACAAGCCCAAACTACTTCTTCAAAC




AATTCTAAGACACCACACAAACAGAACAGACTG




AAGCCCCAGTAACCCAGCTTTCCCAGGGATGTT




TGTGAGAACCAGGGTAGTTTTTGATCACTACTA




AATTCTACTTAAACATTTTTAAAGGATTTCTTT




TTCTTCTCGTTTTTAAATTTGTTCTTCGAATAC




AATGTATTTTTGATCATATGTGCACCCCTCCCC




CAACCCCTCCTTCTATCAAGCCAACCTGGTGTT




CCCTCCCCTCCCCTCTCCCTCCTCCTCTCCCTC




CCCTCCCTCTCTCCTTCCCTTTCCCTCATCTCC




CCCTCCCCTTCCCCTCATTTCCCCCTCCCCTTC




CC (SEQ ID NO: 15)





F
GTTTTAATGGTATAGTAAATACAGCATTTAT
GGGTAGTTTTTGATCACTACTAAATTCTACTTA



CGGATGATTTTTGCTGCCATTGATATGTTTC
AACATTTTTAAAGGATTTCTTTTTCTTCTCGTT



TCTTCTTGAAAGAGGAATTCAAATGACAATG
TTTAAATTTGTTCTTCGAATACAATGTATTTTT



AACATTTTTGGGGTCCTCTTTTATGGAGTTT
GATCATATGTGCACCCCTCCCCCAACCCCTCCT



GATTTTCAGGGGATTGTCAGGCATGTCGTCT
TCTATCAAGCCAACCTGGTGTTCCCTCCCCTCC



CCGGGTTCCCATGCTGCACAGTCCCAGCACT
CCTCTCCCTCCTCCTCTCCCTCCCCTCCCTCTC



CTCTGTGGCTCAGCCTTCCCGTCCCTTGCCC
TCCTTCCCTTTCCCTCATCTCCCCCTCCCCTTC



TCTGAATACCTTGCCGTTGACTGAATGGTCA
CCCTCATTTCCCCCTCCCCTTCCCCTCCCTCCT



TCGTTAGCACAGGTCATCACAATACATGACT
CCTTCCCCTCCCTTTCTCTCCCCTCCTTTACCT



CCTGGGCAGGAGGAACAGAGGAGCGGAGGTT
CCCCTCTCTTCCCCTTCCCCCTCCCTCCCTCCC



GTGCCATGCATTTAAAACCCAGTTAGCATCC
TTCCTCCTTCTTCTGGAGGTTATGGTAGCACTA



CAGTGGGTCTTCCAAGGCCGAAGATGGCAAA
GGAGTCAAATCCAGAGCCTGACACTCAACTGCT



ACGTTTTTATTTTACTTTGTTGAAATCATCT
GATTGAACCCCTGACCCTTCTTATTTTTTCTGT



GTTTCCCTCCAAATGGTGGGCTGTTTGGGCA
CCATGTTTATTTTCTTGAAGGAGGAATTACATA



CAAGGTCATGTTGTCTTCAATTTCATAGCCC
AAAAATGAGCCTTTCGGAGGTCTTCCTTCCTTG



CGGTACCCAGCAAGGATGGCTGCCCATAGGC
AGTCTGCTGTTAGGGATGAGTCCCGTTTGAATT



TCTATTAAGATGCCGAGTGCATCCGTGGCAC
TCTGTCCATGGCAGGGTCTAGCGCCGATTTCTC



GGCCAGGAGGAGTGTGCTGTGGTCAGCCTTC
TCTGATCCCCAGAACCTCACCCTGATGAGGTTT



CAGAAGGAATCAATCTCCTGGGAGAAGTGGA
GTGCGATGGGTGACACTAAACAGTGTTTTCTAC



GAAGTTGGCCTGCAGCAGGGGCCTCGAGAAT
TAAACAGTGGGCTTTGTGGGGACAGGGTGACAC



GGCGGGTCTCATCCACCACCAGCAGGCTCGT
TGTCTTCCACTTGCTCTGAGTTCCCCGCAGGCA



CTGTTGCCCAGCAGTGTGATCCTAGCTGAGG
TCACCCCCTTCCTCCCCACTGGTGCCCCACTCT



TTTATTCTCTTTCCCTCATTAGACTGCAGTC
CTCTATCTGGGTAGGTTGCAGGCCCCCTCACAG



TCCTGAAAGGCAGGGTGTGCACCTGACTTGT
TTCTACCTGGAACGTGCTGTGGTCAGCGCAGGC



CTTTTTGTCCCTTCATCCTGCGCCCTGCACG
AGGAGCTGGCTGGCCTTTGTAAGACTGGCCAAC



GTTTGATCAGTAAATGGTGGCTGAGAGACAA
TAGAGCGATGCAAAGCCGGCCTGGCACCAACCC



GGGAGTGGGAAGGAAGGAGGTCAGGAGGGGA
GGGCTGCTCTGCAGAAAGCTAGCTGATTTCCAG



GAGAGGTCTGAGTGCTTGAAAGAGTCCCTCC
CCTGAGCAGGTGCCTGTGACTCCAGGGGCAGGG



TCTGCTTCAGGGGCTTGTTCTGGGGTTTTCT
TCTCTGTCAGACGCACCTCTATCCATCCTTCAT



GGATCTTCAGTACTTGCGGGTAGGATCTGAG
CTTATCCCTATGTTCTGACTGTTAAATGGCAAC



CTCTCCCGGCCCCTGGTGGTTGTTGGCCAGG
TGAGTGAGGAGGGGAAGGAAGGCAGAGGAGGGG



CCTGGCCAGCTTCCAGCAGCACAGGTCATCA
TCTGAGAGGGATTTGAGTGTTCCCAGGCCCTTG



TAATATATGACTCCTGGACAGGAGGAACAGA
CAGAGGCTGTCCCGGGTCTGGAGGGCTTCAGCC



GGAGCGGAGGTCGTGCCATGCATTTAAAACC
AGGGTGTCCTATGTAACACAGGATCCTCAGATA



CAGTTAGCATCCCACTGGGTCTTCCAAGGCG
GCAGGTACTGTTAAAGAGGAGGCCATCACACCT



GAAGATGGCAAAACGTTTTTATTTTACTTTG
GTGCATTTGAGACCATGCCAAAGCAAAAGGTGT



TTGAAATGCAGGTTGTTCCTTTTTTTTTAAC
CAACACCCGCATTTTACTGCATGGAAATGTAGT



CAACTTTTATGTTCCAAGGCTAAAACATAGC
TCGTTCCTTTTCAACCTTTTGTATCGTGGGGCT



ATAAAACAATTTGAAAAAGTCGGTTTCAATG
GAAGAGATGATGTGAAAGGACTTTAAAAACTCC



TTTCCCATTGTTCACTGAGAGAGGGTCACAC
ACTAGGCTTCTCTGCTTTGTTCACTGTAGAAGG



AGGGTGCAAGGCAACAGAGGACACCATTGCT
TCACAGGGAGTTCAAGAAAACAGGCTAGGGATA



TACGTAGTACCTCGTGAGCTGCACTGCGAGA
GGAGGATGCTCATGTGCTTCTCTTGTGAGCGGT



GGCCTTTCAAAGGAAGGTTTTATTTAGGAAG
GGCAGGGCCAGCTCCGTCTCAAAGCAGGCTTTA



CAAGGAATGATTAAAAACTGATGGCTCTAAT
TCTAGAAACTGGTGAGGTGGCAGGAGCTTAGGA



CAAATGAGATTTAAAATTTTCCATTAAACCT
GGAGGGAGAAATTGATTTAAATATTTTCATTAA



TCATAGTTAGGCTGCATGCAGTGGCTCATGC
ACACTCCCTCACTGATGGTAATTTCACTTGCTC



TTGTAACTCCAGCACTTTGGGAGGCTGAGAT
TCTCCCTCTTAGCCCCCCACACTTCAGAACAGG



GGGAGGATCACTTGAGGCCAGGAGGTTGAGG
AGAGAGAGGATACTCGCATACACACACATTTAA



CTGCAGTGAGCTGTGACTGGGGCACTGCACT
GTGCAGGCACACACATAGATATGTATTTCTAAA



TCAGTCTGAGTGACAGAGGGAGACTGTATCT
CCATTTTTCCTGTGAATACAATGATGTGCTCCG



CAAAAAATAAAAAAAATTAAAAATTAAAAGA
ATATATACTTAAGCCAGTCTTACTATTAAACCA



AATAAACCTTTAACATTGGGTGTAATTTTAC
TCTCTTCTAAAAAATATGATCAAAACACAGTTG



TTTCCATCTACTCCTTCTTCCTCACCTGCAA
TTCTAAAAGCAAACTCTAAAAGACTGACCTAGT



CGTTCAAGAGCAGGAGGGAAGATGTGAACAC
CTCTGACAATGAGTTTGAAAAAGTGCAGCTCTT



ACATTTGTGTGTGTGTGTAAACATGCTCATG
GGTGTTGTCTGCAAACCCAACACTATTTGTTGA



TGTTTCTAAATTATCAAGTCAGGATAAGAAC
CTTGACAGGCAAGACAGACAAACCCTCAAAGTT



TTCTACTGTGAAATACAGATATACAACAATA
AATGGTTTCTCTATTCGTTTACTCTGTAAGTGC



TGTCCCAAGCTATGTTTAATGCACTTTTATT
TCTCTGCATTCAAGCGAGATACTGCATTGGCTG



ATCCTGCTAGTTCTTCTAAATATGATCATTA
ACACATTAAATATGCTGAGACTCTTCCAGAACG



TACAATAGTTCTTTTTTTTTTTTTTTTTGAG
CAGCAGGCAGACAACCCACGGTCAACAGTGGGG



ATGGAGTCTTGCTCTGTCACCTAGGCTGGAG
GAATGGTATTTGTCTGGCTTAGTTATCTCCAAA



TGCAGTAGCGCAATCTCGGCTCACTGCAACC
TGTCTAGAGAGAGAATAATAGTATATAATGGTG



TCCGCCCCCCAGATTCAAGCAATTATCCTGA
CATGGAAAACACCCATGAGCCTTGGTGTGTTAT



CTCAGCCTCCCGAGTAGCTGGGACTACAGGC
TAGTAGTAGTTACTTTATAGTGGGTAATGACAA



GCGTGCCACCACACCCAGCTAATTTTTGTAT
AATAAAGGTAGCTTCCAGTTTCTGAAGGTTTAC



TTTTAGTAGAGACGGGGGTCTTGCCTCGTGG
TATGTGTGGATGTAACCCTTGCTAATCACCACC



GCCAGTTTGGTCTCGAACTCCTGACCTCAGG
TTAGTTAATCCAAACAACAGTCCCATGAAGTAT



TGATCCACCCACCTTGGCCTCCCAAAGTGCT
GACTATTATTATCCCCATTTTACAGACAAACAA



AGGATTACAGGTGTGAGCCACTGTGCCCGGC
AATGAGGACTACAGAGGTTAATAACTTGCCCCA



CCATTATACAATAGTTCTACAAAGAAAATTT
AGTCATGGTACCAAAGGGTTTGGGAGCCATTAT



AAGAGCAAGCTCTGGCTTAGTCTTTGAAAAA
TTCAGTCAAATTCTAACCAAGTGTGCTTAGCCA



CAAGTTTGGAATTTCCTATACGAGTGGATAA
TCGTGCCAGAGGTTCCAAGGAAGGAGTTTGCTT



AATGTCAGCTCTTGGTATTGTCCTTAAGACA
GTTTGTTTTATTTATATCACTTGATGAAATAAA



CAGTACATGGTATTTACTCTCTTTTTATAGG
ACTACCATTCCCATTACATATAAAACCTCCTAT



GTAAAGATAGATAAATCCCCAAAGGCCTTGG
AGATGCCTCCTTAGCATGCTGTGTGATTCCACT



CATTTAGGAAACAATCATGCTTTATCTATTA
AAGCTGTTGATAGACACAGTCCTCGGGGCTGGG



ACTTACTCTTTAAGCTCTGTCATTTTTTGCG
GGTGTGGGTCATTTGTTAGCATGCATGAGGTCT



TCTGAGTGAGACACTCTATTTACTGAGCCAC
TGGGTTTGATCCCCAGCACTGATAAAGCTGGCA



AGACCACCTGCTAGATAAGCAGAGACTCTTC
TGGTGATGTATGCCTGTCACCCCAGGACTTCAG



CAGGGCACACAGCCTGGAGAAAAAACGCCTG
AGATGGAGGAAGCCATTCAGTGCCATCACCAGC



TTTAACTGTCCCCAAATGTCTAACTAAGAAT
TACATAATGAGTAAGAAAGAGACCAGCCTGGAA



ATTAGTGGGCCAGGCGCAGTGGCTCACGCCT
CACATGGCATTTTATCTTAAAAAAAAAAAAAGA



GTAATCCCAGCACTTTGGGAGGCCGAGGCGG
CATTCGTTTTGACATGTATATTTTTTGCTTTTG



GCGGATCATGAGGTCAGGAGATCGAGACCAT
TAAATTTTCAAGGGAATGTTTCACCCAGAAGCT



CCTGGCTAACACAGTGAAACCCCATCTCTAC
TTGCACTGCTGATGGTACACGTCTGAAATGTCA



TGAAAATACAAAAAAATTAGCTGGACATGGT
GCAATCCAGAGGCTGAGGCAGGAGGATTATTGA



GGCAGCCACCTGCTCTAGTCCCAGCTACTCG
GTTCCAGGTCAGCTGGGTCTAAACACAGGAGGA



GGAGGCTGAGGCAGGAGAATGGCATGAACCC
AAGTAGAGCTTTGAGTGGACACCATGTTCAGAT



GGGAGGCGGAGCTTGCAGTGAGCCGAGCCCG
GCTCAATGATCTTCAGAGTTATGCTTTTGGCAG



CGCCACTGCACTCCAGCCTGGGCGATAGAGC
ACACCACACCAACAGAAAAACAAGAACAACAAT



GAGACTCTGCCTCAAAAAAAAAAAAAGAATA
TGCCTTCAAAGGGAGGGCAGCCTTGTGAAGCTC



TTAGTGAATGATTAGTATATGGGAAACACCT
TGATTCAAAGGAGAATTGTCCTTTGGAGTCTGA



CCGGACCACCCTACATTATTATTAGTCTTCA
ATGAATTTGGACCGCTCTTTCTGAGCCTTTCCA



CTTTGTGGTGGGTAAAGATAAAATAAAAGTA
ATTCTACTGGCATCCACAACTGAAAACAAACAG



GCTACCGTTTATTGAATGTTTACCATGTGTG
CGGTGCCCTGATTGCCACAGACACTCTCTGCTG



GATGAAAACCATGTTAATCATTGTCTTCTTT
GGCAGACAGCACACCGCAGTTCCCAGGCTGTTC



AATCCTCACAGCAACCTAATGAAGTAGGTAC
TGCCAGCATCTCTCAGGTGTTCAGCCTGGGTGG



TATAATTTTGCAGATAGCCACATTGAGGGTG
GGAATTGCAACATGTGTAGCAAGCCAGGTGGCC



AGTGAGGTTAAACAACTTGCTCATATGACTC
CTGCAGAGCCTGTCTCCAACTTCGATGCTGCTG



AAAAGTTTGGAAGCCATTTTCAAATCAGATG
GGGACACAAAGAACATTAGGGCATGGAGTGGCT



TGGACAAAGTGTGCCTTTTTAACCATTGTAT
CTGTCAGTCTCTGTGAGGGAAGCCCTTGCTCAC



TATTCAGTCTTCCTATGAAGACACGCCTCTA
CACATAACATCATTCCCTAGGTGTGTTCCTGCA



TTTGGGGCATTTACTTCCTATATAACTTGAT
CATATCCTAATTTGTTTTAACTCTGTATTTATA



GAAAAAAAACCCAGCATTTTCATTGCTTGCC
GTGAGAATTGTTAAGAGAATCTTAGGACTGAGC



TATAAAAACTCTAAAGGTGTTTCTGTGGGAG
AGGACTGAACCAGACAGAGACAGCAGTTCCATG



GGTGTGTTATTCCACTCAGCTATTGATAAAT
TTGCCAGACAGATCTTACACAGGCTTAGCCTGG



ATAGTCCTGTCTTAATGTTTAATGTGGATCT
TCGCAGCCACCAGACCAGGTCCCTGTTCAGTGA



TTTTTCTGTTTCATGCTTTTCTGAATTTTTG
GAGGTGGAAAGAAATACACATGGATTTTTTTTT



AGTGACCATGTCACTCAGAAAAGCTTTGAAT
TCATTTTTTGCTTTGTAAATCATGTGGGAGATG



CAGCAACATTTCCAGTGGACTGTAGGGAAAG
GAAAAGTTTACACATAGATTTTTTTTTTCTTTT



CCTGTTGTTTTGGTGGAAAGTAGAGAGTCAC
CGTTATTTGTTTTATAAGTCATTACTCACTAGC



AGATCCCCAACCTTCATCTGAGCCGTGGTTC
CTAGGCTAGCTTGGAGCACTCTCTGTAGCTCAG



TGCATCAGTACAGACAGGAAACCAACTATTA
GCTGGCCTTGAACTCTTAGCATCTCAGCTTCAG



GGAGCCACTACATGAAATAGTATTTCCTCAG
CCTCCTGAGAACTGGGATTACATAGCTATGATA



GTGAGCAAAAAATTCTTTTGCTTTTGTAGAT
CTATACCTGGCGCCCAGATGTGTTTAAAAGCCT



TGGCCCTGTCTATACGTGGTAGCCACTAGTC
CAACTTCCCAATAGACCTAGACGCTCCTTTCTC



ACATGTGGCTTTTGACGTTTGCATTTTAATT
AGTCTGAAGGACACAAATGTACCTCAATCTACA



AATTAAAGTGAAACACAATTTAAAGTTCAGT
AACTTAATCACAAATCTCTCAAGGGTGTTTCTG



CACCCCTGCCACACTATAAGTGCCCAGTATT
AAACTTCAGAGCACTTTGGAACAAACTTTCCTA



AATGCACAACTAGAAGTATTAGCAAGTCTGG
GTGGGGAGGTTTGTTTCTTCACTCATTTAACTG



CAATACAACTGCCCAGTGGCTGCCATGCTGG
GCAAAGTCACAACTATACAACTTCATTTATTTA



GCGGCGCAAACGTAGAGCACTTCTGTCCTGG
TATAATTCTATCTAACTAATGGAAATAAGAGGT



CTGAAAATTCTACTAGACAGAGCCATCCAGG
GAGGTTAGAGAAGAGGAATAACTTTTAATATTC



AATTTGGACTAGCAAGCACCAAGTTCACAGT
TGTAGTAAAGTAGTGAAG



TAGAGAACACAGTTGCAGGCCAGGCGCGGTG
(SEQ ID NO: 17)



GCTCACGCCTGTAATCCCAGCACTTTGGGAG




GCCAAGGCGGATGGATCACGAAATCAGGAGT




TTGAGACCAGCCTGGCCAGCACGGTGAAACC




CCATCTCTACTAAAAATACAAAAAATTAGCC




AGGCATGGTGGTGCTCACCTGTAATCCCAGC




TACTCGGGAGGCTGAGGCAGAAGAATCACTT




GAACCCAGGAGGCGGAGGTTGCAGTGAGCTG




AGATTGCGTCACTGCACTCCAGCCTGGGCAA




TAGAGCAAGACTCTGTCTCAAAAAAAAAAAA




AAAAAAAAAAAAAAGGAAAGAAAAAGAAAAA




AGAGAAGACAGCTGCTTTACAAAGCAAGAGG




GCTTCAAGAATCTGGAAACCAAAGGAGCAAT




GTCCTTTGAGTTTCTACAAATTTGGGCCACA




CTGATTGGGCCTTTCCACAGCCAATTCCATT




TGCCTTCATTATGGAAAGTAAACAGTTTAAC




TTCCTACTGACATGCTCTGCAGTGCAGACAG




TAAACAGTAGCTCACCGCTGCTTCTGCCAGC




TGCTCTCGGGTGTTCTACTTGGGTGGGGAAC




AGCAGCACTGGCACTGGCACTGGCCCCGGTG




GCCCCACAGAGCATGGCTCCATCAGGCTGGG




TGCTACAGAGGGATGCCAAGAACATTTGGGC




ATTGAATGCCTCTCTCTCTCTCTCTCTCTGA




AATGAAAACCCTCATCAATTCAACAATAGTT




TCTCTAATAGAACATATAGTGATTTGTTTCA




TCTCAACTGTTCCCATACAATAATAGAAAGG




AGGGAGTCTGTGCCTGAGAGTGCCTGCAAAC




CCCAGGGCACACCAGCCCCGTGGAGCCATAA




CAGTTGCTCACAGAGACAGCCCCTCACAGCA




GCCCCCGGCACAGTGACTCGTGTAATGAAAG




CTGGAAAATTGCCCAGGAAAACCTGAAGATG




CATTCCTGAAGCTCCCACACTCCAACGCACG




CACACACAGACTTCTCTCCTGGCTTTAGGAA




CATGAATTTACCTTGAATCTTTAAACTTAAT




TGAAAATCTTGCAAAATAACGAGCTTTCCTT




TGAATCTTCATGGCACTTTGTAATAAAATGT




CTAAAAGGGGGCCATTCCATGAAATCATTTA




ATTGGCATTAATAGTACACTATTACTTCATA




TAAAATCATAATCATATAAATGTACTTATAT




AACTCCATGTAAATTAATTTATATAA (SEQ




ID NO: 16)






G
N/A
GACTTGCAGTCTTCAAGAACGGATGATGCCCCA




GGCAAAAGGGGTATCCTACCCTGCCACTTAGTG




GGCCCCAAAGGAGAGGCTTCTGCTCTAGGGCAA




AGCTTCATTTCCCTCTTCCTTTGAGCTCACTTA




TTTGGAATGAGTATGTCTGCCCCTTGCCTGCCC




TATCATGGTCTTTTGGGAACACACAACAAACCT




GGTTTTGCCGGTTCACAGCCAGAGGACGGATTC




CCTTCTACATGGGTCTGCCTATACCAGATGATG




TGATACTGTGTTGACTTGGGACTTGGAGTGGTT




TGGGCATGGGTTAAGACTTTGGGCCAGTTGGGA




TGGGGTAAGTGCGTTTAGCATGTGAGGATGCTA




AATATGAACTTGGGGGACATAGAGAATATGGAG




TTATAGACCCAGTGGTATCCTTCCAGATTTGTA




ATTAAATCTGTACAGTTCAATACCTCAAAATGT




GACTATATTTGGAGACAGGGCTTCCATGGGGAG




ATGACATTGAAATGGGGCCGTCAGGATGGACTC




TAACCTGAATGATGTCTTTGTAAGAGAATCATT




AGCTACAAAGAGAGCCCAGGGGCACACACTTAG




AAAGGATCCCACAAGGACACAGGAAGGGAGTGG




ACATGTGCAAGGCAGGCAGAGGCCTCCTGAGAA




ATCGGTTCTGTCTGCACCTTGATCTTGGATATC




CAGCCTCTAGAATTATGAATGCATTGCCTTCTT




TGACAAATCTGTATCTAAAAGAAAGGAGGGTGT




TATTTGTTTTAGCTCAAGTTCTAGTACAAGGTC




ACTTGGCCCCTTGTGCTTGGGTGGAGCATCATA




ACATTTGGCAGAAGACAGCCATTCGTGTCATAG




GAGATAGGATGCAGAGGACAAGTGGAAGGGGAG




GGGACTGGACACATAGGCACAACACCCGTGGTG




ACCTGCTTACCCCAGCTGGGCCGATACCTCCTG




AGATTCCAGCACCATCCAAAACAGCACCATGAG




CAGGAGAACAGATTTGAGAGCCATTATGCATGC




AAGCCATAACAGTGAGGGAATACATTTCTGCTA




AGTCATAAGTAATACTGACTTCAATCTTAAAAT




CCCAGGGAAGCTGATGAAGCTCAGCGGTAAGGC




ACTTGCTGGCGTGCTAGAGGCTCTGGGTTCCCA




TCCCTCCCAGACAATTTACCAGAGTCTTCCCTT




GGTGTTAGCAGTTTTGGGTCCTCTTGTCTTCAC




ATTAAAACTGACATTCACATGGAATGATTTTTG




CTAATGGTGAGAAAGGGTTCATTTTATTCTCAT




TAAGAGGGTCAACTAAGTACCACACACACACAC




ACACACACACACACACACACACCCCACAGATTA




TTTGCAGCCCCTCGGTCTTAAGTGATGCAATTG




CTGTGCACTCCTGTCTTGCAGGCTGTGCTCTGT




TCTATTGGTGGTTCACCAGCCTGTGCCAACACT




GACTGGAAGAACAAGCTCTCTCTGGTTCATCTT




CACAGTCTTGGTTATT (SEQ ID NO: 18)





H
GAATGTTTACATGTACATTTCAAACCCAGTT
GAGTATATATGTTTCTAAGCCAGGTTCCTAACT



TTCTAATTGTGCAGTCTTAATTTCCTAGTTA
ATGTAGTATTAATTTCCTAATGAAACACCCTTT



ATTTCACTTTACAGATAAGAAGCTCTGGAGA
ACAGGTAGTGAGGCCTTTGGAGACCAGGGCTTT



CATGGCCTTTCCGGTTAAAGACACAGAGCCC
AAAGGCCAAGTAGCTGAAGCCCAGGGTCTTTCC



AGGCACTGCCCACGGCTTCCTCCACACTCAT
ATGGCTTCTTCCTATGACTGTTTATCTAATAGA



GCTGCTTTCCCTTAGGTAAGACAAACCTCAC
TGAGACAAACCTTTTCAAAACTGATTATCAGTT



CAAAGCTGAGACTGGCTCAAGAAACGGGGAA
AAGTTCCAAGAAAGCACCACTGTAAATGTTAAT



GCCTAATGCTTGTAAACATTCCCTTAATTGG
GTTCCTTTGAAATGGAAGTATTTAGCGCTCTGT



AAGCATTAGGCACCAAAATTCTTCCTAAAAA
GTGTGTGTGTGAGTGTGTGTGTGTTGTGCAGTT



ATATGTAAGCCCCAAGAATGAAAGGGCCATG
GGGTACATATATGCAGATATGCACAATTGTTTG



GTTAGCACAAACCGCACCTCCTGAGCCCAGC
TGTTTGTGGGTCTTTGTGTGTGTGTGCAGGTCT



AAAACCCAACAGGCACAGTGCAGCACAGCCT
AAAGTTTTTCTTTTCATTAGTTATGGTCTAAAG



GGGCGGTCTCTCAGGTGAGTCTCTGCCTCGC
TGGTTTTAAAAAAAGAAAAAGAAGAGCAGAGAA



TCTTGCCCTGTCTGTCACCTCATCTCTGCCA
GGCTATGATAGCATGAGGTTCCTTTGGGATTGT



AGTCTGAAAATCCTGAGCTCCAGGGACTGTG
CTGGCTTAGAACGCTAGGTTTTCCCATGTTTTA



GGAACTTCACTAGACATGTGTGAACAACTCT
ACAGCTTCCCATGTCCTTCCCACTCTGCCTTTG



ACATTCTGATCCGTAGCGTCTCCCTAATGAT
TCTTTCTCATTGTGATCCAGATTTGCCCCAGAG



GCACATCTAGGAAGGAGAGGGAGGGAGAGGG
GGGGAGAACCCAGTAGGTAAGAGTTCACGCTGT



AGCGTGTGCATTCCTTGGAGCAACGAGGACA
ACTTCCATGTTAATTAAGTGATGTGGAAGTCTT



GCCTAGTGATTTGCAAACTCTTTGCGGCCTC
GGAAAGGCTGGGCAGTTTTTCCTGTCTTCCCAG



CTGGTGGGCTTCAGAATCAATTTGTGAGTCC
GAGCTGGGGGAGGTTCATCCTTAATGGAACCAG



CAACCAGAATTTTCTACATAATTAGAATAAA
TTCCATGCCATCCCCAGGAGGCAAGAAGTCTGG



ACAGAGTTAAGATATGAGTGCATCGTATGTT
AAACATCAATAATTATTCAGTCACAACAACCCA



GCAAGATACTGTTTTGTAAACGTTGTTTCAG
CTTTCCTCTCTCCCCCTAATCCTCAACTGCTGA



ATATTTGTGAGTGCACATGTGTGTGTGCAGT
CTTCAGGACAAAGTCCATCTGATTTCAATCAGA



AATGGGTCACAAAATATATTTACTCTGGGTC
TAGGAAGACTAGTTAGAGGCCTGCCCCAGTTTA



ATGTTTTAAGAGGGCTAGAAGGCAACACTAA
CTGGCTGCAGCAACAGGAAGCACAGGTTACAAT



CATAGGATGGTTGGAAGATGGTCAGGCTCAG
ACCAAGTGATTCCACGCTGAAAGCTTCACTCTG



AACATCAGATTTTGCCTCCTTCCAGGGTACC
ATCATCCTACCAGGCTGCTACATGAGCCCTTGA



ACTTTTATCAAGTCACACATTCCTTCCCGCT
AAGCGAATTATCCCCGGAGACTTACTTTCTATA



CTGCTTTTGTGTTTCTCAATCGCTATCCAAA
TAACACATATATACTTACATATACATGTCGACT



TTTGCGCAGAAGTCAGGAATCACGTGGGTAA
TTGTTTTTTCTTGTATGCTGTAAAGATGCCTAG



AGATTTAAGCTGTACTTCTGTGTTAATTAAG
GATACATTTAAGGATGCAACATAAAAGTCACTT



CACGTTGAAGAAGAGGTGCTCTGGGGGAACG
TCTTCATGGAGTAATTATTATAATAGTACTTGT



TGGAGAAGGTGGGTAGCGAGGGCTCCAGGGG
TTCTGGGGGAGCAAATTGAAATGTTTCCCAGTG



CTCAGAAGGTGGCCTCGAGGGGCTCTCATCT
TGAACTGCCAAGTTAAAACAACAAAAAGCTAGT



GCCATCCTTGTGAGGGAGAAAGTCCTAAACC
TGGAGCTCCCCCT (SEQ ID NO: 20)



AGTCGTAACATTGCCAGAACAAGGGGTCCCA




ATCCAGACCTCCAAAGAGGGTGCTTGGATCT




CTCATGGGAAGGAATTCAAGGTGAGTCACAA




AGTGCTGTGAGAAGAGAGAGTTTTTTGGAAG




TTACGCAGATACAGAGTAGGGTGTCCTCAGA




AAGCAAGAGGAGGAACTGCCTCGTCTTTAAG




TTTTTCTTACATAGGAGTCCTCTCTATGTAA




AGACAGAGCTAAGCTGTGTCTCTATGTGGGT




GGGCTGACAGCGTGACAAAATTTATTATTCT




GTTGATTTAAAGAAAACTATACTCAATATTT




TAATGTGTAAGTACATCAAGTCATAATTATA




ATTATCTTGAAAGCATATATTGTTATGGGTA




TTGGGACCTCTGGACTTTTCGTTGTCATATG




ATTGTATCCTTGCAGGTATCTTTAGGCTGTT




TCTTCAACTGTAAATATCTTATGACTGTGGG




TCGTGACCGGCAAGGAATGGAGTTGGTTTTT




AAAATGGTGTCACCCTGGCTCTTCTATGCTC




CTGTTTCCCTAACAGTAATAGCCCAGCCATT




CTCTCCCATGTTCTCCTCTGCCCTCAACTTC




AGAATGAAGTCAATTTTTATTTCAGCCAAAA




TAGGAGGATTCTATTCTGTCTGTTGAGGTCT




GCTGTGGTCTAATGATGTTAATAACCAGTGG




CTGGGCATGATTACACGACGAGGATTCTAAA




TCCTGTTTCATGTTTCCCTCTGGGCCCACTG




GCTATATGACCCCTTAAA (SEQ ID NO: 19)






I
CTAACATAGGGTCGTTAGTGTCAGAACTGAA
TCCTTGGCTACTTTCTCTAGCTCCTCCATTGGG



TTAAATTGTAGGACATGCAGGTGGTGACTGC
AGCCCTATGATCCATCCATTAGCTGACTGATGA



AGAGAATTGGAGCATTGCTTGGAGTGAAAAC
CACTGCATTCTTTAATATATGGGGTTTGCACTA



CAAGCCCACATATTTGGTGTCAAAAGTGTTA
ACTTGGGGTAGTTATTGTCATGTTTGAACTAAA



TACAAGTAGAAAAACAGGTTCTCTTTAATGG
TTATAGGACCTCCAGTTGCTGGAGAATTGCTCT



AATATTATTCAGCCGTATTAAGGAATGAGGT
GTGTGGACTGTCCACACATATTTGGTTTCTAAA



TCAGACCCATACTACAGCACATATGAATCTC
ATGTCATATAAGCAGACACTGCAGTTTCTCCAC



CAAAATATTGTGTTTAGTGAAATAATATAGA
AGTGGAATCTTACCCGGGCATAATAAGGGAAGA



CACAAAGGACAAATACTGTATAATTGCACTT
CATTCGGCACAAGCTTCAACACAGGTGAACCTT



ACATGAGGTGCCTGGAATAGGCAAATCCATA
AGAAAACATGCTAGTGAAATAATCCACACCCCA



GAGACAGGCAGTAGAATCATGGTTGCCAGGG
AAGGACAAACAGGAAATGATTCTTATACAAGAC



GCTGGGCGGGAGGGAGAATGGAGAGTTAGTG
ACCTGGCAGAGGCCAGCTTAAAGAGACAGGCAG



CTTAATGGGTACAGAGTTTCTGTTTAGAGGT
AAGATGTGAGTCCCAAGGACTGCGGAGGGGAAA



GATGAAAACAGTTTGGAAATAGTGGTGATGA
TGACAGCCAGTGTTTTGTGGGTGCTGAGGGCAA



TTGTACTATATTGTGAATGTATGTAATGCCA
CAGTTTGGAGTAGACAATGGTGATGCAGGGCTG



CTCACCGAACACTCTAAAGTGTTTGAAATAG
TGAACGGGCTCAGTGCCGCTCACTGAACCAAAC



CAAATTTCTATTATACGTATTTTACCATAGT
AGCCTAAGTGTTTATAATAACAAAAGTAATACT



TTTTAAGTTAATTACCATAGTTTTTAAAAGT
GACATACACCTTCCGTTGTTTGAAAGAGTTAAT



TAATAGGATAATATTCCCTGAACCACTATAC
AAGGTAACATTCCCCAAATCACTTTAAACAGGC



ACTTTAGATTGGTACACTGTGTGGCATGTGC
AAACTATGTGAAATATAAATCTGTTTCTGTGAA



ATTATATCTCAATGAAGTTGTTAAAAACAAG
GCTGCTTTTTTAAATGCTTCTCCTATCAGAGGT



ATTTAAAAGCAGAGATTGGGTAAAGTAAAGG
CAGAAGAAAGAAGGCTTGCTGGGAGTGGAGTTG



TTTGCTCTGTGCTGAGCTGTGTGGCATGTGG
GCTGTGTATCTCAGACCTGTTTTTGCAGGAGGA



ACCTGTTTTCCCAGGAGGGAGCACTCCTGGG
GTGTGCGCTCCGGGATTTGGCAGCGGCTCGAGT



GTTTTGGCCGCAGCTGCACATCAGCCCCCTG
CATCCCTGTGAGAGGCAGGCATGGTGCGTGATC



TGCAGAGGAGGTATGGTGTGTGATCTGGAGA
CTGGGGCTTTTCTGTTTCTAGTGTTCTATTTAT



TTAGCTGTTTCTAGTGCAGTATTTACATTTA
TTTAAAGACATTGCTGAGTTCAGCAGAAATGTT



AAGACATTGCTGAGTTAGGCAGAATTTTCTA
TCACATCCATTTGTATTTTCCTTGGTACTCATT



TATCCATTTGTATTTTGCTTGGCATTCACTT
TCCTTACAAAAATGACGATCAAAGCAAAGAAAA



TCTTACAAAAATGGACAATCAAGACAAAGAA
CAGAGAATCTTCATTTTACCCCAAAGCAAAGTG



AACAAAAGGTCCAATTACTACTCTTCATTTC
AGTGCACTTCTAATACCATAACAGAAAAAACGC



ACCCCAAAGCAAAACAATATTAGTTTTCAAT
TTCGGGCCCTTAGGAAGTGCTGAAGAAGCTGGG



TTTTTTTTCCCATAGAAAGCAATAACAGTCC
CAAGGTGGTGGGTGCCTTTAGACCCAAAGGAAA



CATACTACCTCCTCTTCCATGAAAGTAGTGC
GTGATTTTCTCCAAATGTGAGAGGCCTGCGATG



TTGAGATGCCCCAAGGAAAAACCATTCTTTC
ATGGGGTGAGTGGCCCCCAGAGGATGTGGGGAC



CAAAGATGAAAGACTTTGTACCTGTCAGGTG
TGACTAGCGCTGTCTCCGTCTGTATGCCCAGTG



AAGAGATGGAATAAATGCCACTCCTAGTGGG
AAGCTGTGGGTGGGACACAATTAACAGCACAAG



TGTGGGACTTGTGCAGCCCCTGGTCCCCAGT
TCTGAGTGGTGAGACCCTCTGCTGTGACGAACC



TATCTGCTTATCAGAATGTGGTTTGCATATC
CTGCACTGATGTTACTGTTGAAGGTATCTCTCA



ACCTTTAGCGGAATTCCTTGGGATGCTTGTA
AGTGCTCATGCTGGAAACTAAGCCCCCAGTTTC



ATTCTGGGGGAGATGTCTGGAGTCTGCATTT
TAGTTGATGTTGTTTGGAGGTGGGATCTTATGG



TTAGCCAGTACTCCTATGACTTAGGCACAGT
GAGGGGATTAGGATTAGATGATGTCATAGGGGT



AGGGAACCACTGGTGCCATTCCTTCCTTCCT
GGGGCCTCCACAATGGCATTAATTGCTTTAGAG



TTCTTCCTTCCTTCCTTCCTTCCTTCTTTCC
GAAGCAGACAAGACCAAACTAGCACATTTACGC



TTCCTTCCTTCCTTCCTCCCTCCCTCCGTCC
TGTCTTACCGTGAGAGTAATCTGCCATCTTCTG



TTCCCTCCCTCCTTCTTTCTCTCTTTCTTTC
AGGCAGGTGAGTTGATATCACCAGATGCCCACA



TTTCTTCGGAGTCTCACTCTGTCACCCAAGC
CCATGCATTTGGGCTCCACAGTCTCCAGAATCA



TGGATTGCAATGGTGTGATCTTGGCTCACTG
TAGGTTTTGAACCTTTATTCTTTATAAGTTTTC



CAACCTCTGTCTTCTGGGTTCAAGTGATTCT
TAGACTGGGGCATTCTGTTACAGCAGCAAGAAC



CCTGCCTCAGCCTGCTCAGTAGCTGGTATTA
TAGACTAATATACATCCCTCCTTCCATCTGCCC



TAGGTGTGCACCACCACACCCAGCTAATTTT
A (SEQ ID NO: 22)



TTTGGATTTTAGTGGAGGGGTTTCACCACGT




TGAGCAGGCTGATCTTGAACTCCTGGCTTCA




AATGATCCACCCGCCTCAGCCTCCCAAAGTA




CTTGGATTACAGGCGTGAACCACTGCGCCCT




GCTGCAATGCTTTTGCTTTCCGTATACAAGG




AGGGGTTGCAGGCTTGACTCTAAAATGATTG




ACTTTATGGAGGACCGTCTCATGTCTGGATG




GTAAGTGATAGGGGAGGGGGCAACCCTAAAT




GGGATCCCAATGACTTGATGAAAGACTGGAA




GATGAGACACTTTCAGGTGTGCATAATGGAA




GACTTACGTAGGACTAGGACCAAGCCTCTCA




ATTATACTAAGTTGTCCATGATTGACCAGGG




ATTTGATGAAAATCCCACTGCCTTCCTAGAA




AGGTTAAGAGAGGCCTTGGTAAAGCACACCT




CTCTATCTCCTGATTCAGTCAAGGGACAGCT




AATCCTAAAGGATGAATTTGGCTGGGCATGG




TGGCTCATGCGTGTAATCCCAGCACTTTGGG




AGGCTGAGGTGGGAGGATCACCTGAGGTCAA




GAGTTTGAGACCAGCCTTGTCAACGTGGTGA




AACCCTGTCTCTACTAAAAATACAAAAAAAA




TTAGCTGGGTGTGGTGGCAGGTGCCTGTAAT




CTCAGCTACTCGGGAGGTGGAGGCAGGAGAA




TTGTTTGAATCTGGGAGGCAGAGGTTTGCAG




GGAACCTAGATCGCACCATTGCACTCCAACC




TGGGTGACAAGCAAAACTCCATCTCAAAAAA




ATAAAAGGGATAAATTTATTACTCAAGCTGC




CCGATATCAGGAGGAAGTTGCAGAAAGGGGC




CCTGGGTCCAGAAAGTACATTAGAGGACCTC




CTGAAAATGGCCACCTTGGTCTTTTATGATT




GAGACAGGGAGGCCTGGGAAAGAGAGAGGAG




ATACAGGTATTCCAGGGTGCACCTGTTAACT




TCTAAAGATATGGCAAGAACAGTTCTCTCTC




TTCTAAAGTTTATCTGCCCCCGTACAAGGTT




TAATTTCTTTCACCAGGGTGAAACAGCTTGG




AGTACAATGTTGTTGTTAGTATATTTCACTT




ATCTCTGTTGGCACTAAATTCTTTCCTTGTA




TAATACACATGTTTAACTTATGCATACTTGA




CCTTATAAAACTTGTTTTTTTCTCTCATGCC




TAGAAGCCATCAAACTCCAAATGGTCAGGCA




ACTGGAGCCTCAGATGATAGCTCCCCTTTGC




TAGGAACCCTTAAATAGACCTCTGGGAGGAC




TCTGACTGCCATTTTCTCCAAAACAACACCC




CTTGTCAGCAGGAAGCAGCAAGACTGGTCAT




CAACCATATTCTAACGGCAGTATTCCTATGA




TTTAGCCAGTGGGCCGTGACCGGCAAGGAAT




GTGCCTTGTTAGTTTCAAGATGGAGTTGATT




TTTAAAATCATGTCACCCTGGCTCTTCTATG




CTCCTGTTCCCCTAACAGTAATAGCCCAGCC




ATTCTCTGCCATGTTTTCCTCTGCCCCCAGC




TTCCGAATGAAGTCAATTTTTATTTCTTCAA




CGTACCTCTTCAGAGGGGAAATTATACAGGA




GGGGGGCAGGGAAGTGCTGGGTAGAGAAAGG




TGGATCCCCAGCTAGGGTTCCACCCCCACAG




ACCTAGGTGAGGAAAGGCACTTCTGGCTTCA




CACCCAAATGTTGCATTTTCGAAGACCAACC




TGGCCTGCCATGCCCCCATTCTGGGCCTATA




AAAACCCACCACCCTAGCGGACAGACACACA




GGTGGCCAGACGTCAAGAACAGCACATCAGC




AGTTGAAGACACAAAAGGGTGGACGACAAGA




AGGCATCACAAGAGAACGTCAAGGGAGCACG




CCGATGGAAGAACCTGCTGGCAGGCTATCCA




CTGTTGGCATGAGGGGGAGTTTGGCTGGGGC




AGTCAGAGAAGAGCCCGGCTGCATAGCGGCC




CAATTCCAGGGGAAAACCATCTCTCTTTTGG




CTCCCCCGGCAGAGAGCTACTTCTGCTCAAT




AAAACTTGGCTTTTATTCACCAAGCCCAGGT




GTGATCCGATTCTTCCGGTACACCAAAGCAA




GAATCCCTCTGTCCTTGTGACAAGGTAGAGG




GTCTAATTGAGCTGGTTAATACAAGCCACCT




ATAGAGAGCAAACTAAGAAAGCACCCTGTAA




CACAGGCCCACTGGGGCTTCAGGAGCTGTAA




ACATTCACCCCTAGACACTGCCGTGGGGTCG




GAGCCCCCCAGCCTGCCTATCTGTATGCTCC




CCTAGAGGTTTGTGCAGTGAGGCACTGAGGA




AGTGAGCCATACTCCCATCCACGCCCTACAA




AGGGGATAAGGGAATCTTTCCTGTTTCATAA




GTAGCAATCTCTGTGGTAACAGCCCCTGTGG




TGATGCCGTCTCTCTCGGTTCTGCCCT




(SEQ ID NO: 21)






J
N/A
TGTGTGCACCAGCTTTGACTGCTGCTGGAGGCT




GCCCATTTCCTGTGATCTCAACCAGCTTTTCTG




ATAGGCCAGTTTATCTCTGGACTCTGGCCTATG




CCTGATACAGATGTAATCAGGCATCCAGGAAGC




TATCTATATGGAGGCAAAGGTCCTTTTATTCAG




GCCACTGGAAGCCTCTTCCATAAAGTTCAGTAG




TACGAGTACAGTGTCCTTTCCTGTGTACAGCCC




CTCGCTTTCTCTTCTGGACTCCCAGCTGAGCCA




GTGTTTGAGCCACCCATCACTCTGAAAACAGCA




TCTTCATCTCCTTAGGCTCAGCTTCTCAAGTCA




CACAGGCTACATTGCTGCCCTCAGGGTGAGCCT




CCCTTCATTCATCTCGGTGATAATTCTAAACAA




TGGCCTGTGTGTTATAGAAAGGCCCTGCAAGCA




TACATGTTATCAACTTACTAGCTGTGCCCAAGG




TTGCATAGCTAGTAAGTGGTAAGACTGAAATTT




GAGCCTAGGGGACCATAACTCTAAACAATGTTC




TATCCACTAGGCGGTACTGTGTAGACCATGGGC




TCACACACACACACACACACACACACACAAAAT




GTATTGAATAAAATAATTGTGGGTTTTGCATAT




TTTCCTGTTTTATGTCAGCTTGACACAAGCTAG




AATCATTTGTGAAGAGGGACTCTCAATTGAGAA




AATGCTTCCACTTTTTGTTGTTTTGTTTGTTGT




TTTTGCCTGTCGGAAAGTCTGCACT (SEQ TD




NO: 23)





K
CTGTGGAGTGCCTATAGCACTGTGTGTAGGC
TCCCAGAGAACCTAAGCCTGATTCCCAGCACCC



AGAATGCAAAGGGGACAGTGTGGGTGGGGAC
AAAGGACTGCTTACAACCAACTGAAACTCCAGT



AGTGTTGGTGTAGAAATGGCGGGGAGGTTAG
TCAGGGATCCAACACCCTCTTCTGGCCTCTGTA



ATTGCAGGCACAGAGGGCCTCAGCCATCTCG
GGCACCAGGCTTGCATGTGGTACCCAGACATTC



AGAGCCCAGACTTCCTCCCTGAGGTGATGGC
GTGCAAGCAAAACACTCATACATATAAAAATAG



ACTTGGGGAAGTCAGTCATGGAAGGATTTTA
ATAAATAAATGCCTATTTAAAACCCTTGCCTCA



AGAAAGATGTGAAAGGGGCAGGTTTCTATTT
TCTGAAATTATCTGAATGTTGATTTCTTTGGAT



TCAGAAAACCATTCTGGGCCAGTGGAAGATG
TCCCTTTCCTTTTGCCCTTGGGAAAAATAGGTC



GAGTACACAGGACCACACCTTGGTGAAGGGA
ACCCCTGTGTCAGTTACTGTATGTTTTGGTCAC



GATTGTAGGAGCCTGGGCTTGGTGGCGGGGG
TGTTCATAGTTTTAGAGAGGATGTCTAGGAGGG



ACAGTGGAGAGAACAGCCTGGGATGTATGAA
CAGGGTCACCTGTGGTGTGGCAATTGGGAGCTC



CATGGCAAGTCTCCCTTCCTGGACAGTGGGG
CATGTGCAGAAGGAATGCAGACACAGCAGCAGA



TTTGCCTATGGTGGACAGAAGGTGAGATCAT
GAGTGCAGGAGGCCCGGAAGGTTCCACCATCCC



CCTTTGAAAAATGCCACTTCATAGTGTTTCC
CACAGCCCCACTTCCTCCCTCTGCCGAAGGGGT



CCAGCTGTGGGCCTTCACTCATTGGAGGGTC
TGGGGGTCAGGCAGAGGCTTTAAGAGGGGCGTG



AAATAATCAATGTATTAGGTTGCAA (SEQ
GACAGGGTAGATTTCTGTTTTGGGAAAACCATC



ID NO: 24)
TATCAGAGGGCAGAGGACAGGGTGGAACCCAAC




ACAGCTGAGAGCTTGCAAGGGGCTGGGCTGGGC




AGCAGTGAAGAGGAACCTCACAGGGAGGAGCCC




CTGGGGTGCAGGGGCTCTGAAACTGCCCTGTGA




AAAACACTGCCTCATTGTCTTGGCAGTTTGGGC




CCTGACCCAGTAGCAGCAGGTCAGACAATTGTT




ATATAAAGTTCCGAAAATTCAAACCTCCCCCTT




CCTCCTTCATCCTTCTTAGCTACACGTGTGTCC




ATGAGTGGCAGAGCAGGCACTCACATAGAGGTG




TGCCCACTGCAGCGGCTACAGCACTAAAGAAAA




TCCCTCTCTCCCCTTCCTCTCCCCCTTTCTTTT




ACTTCAAAGCAGAGTCTTACTATAGGGCCCGGC




CCCTGTGGGCTGCTCACTTTTAATCCTCTGCCT




TGGCCTATCTAGCACTGAGATCACACACCTGCC




TGTGTCACTATGCCTGGCTTCCAGCACTTCTTT




GAGTGCTGACAGACACCTCAAGTGGAAAATTCT




TGTCCTTGCTTCATTTGACAGATCACAGTGAAA




ATGGGAGCCCACTAAAAATACTTTATAGGATTA




CCCTCGGGCTGTGTCTGAGGCGGGTAGGTAACA




TAAGGAATTTCAGGGTTAGACTTTAGTCCTGTC




ACCAAGACATCTATCTCTTTATACATATAAAAG




TATTCCACAGTCTGAAAAAAGCTCTGAAATAGA




GAATGCTTCTTGTCCATAGCATCATAGATAGAG




ACCCTTCAGACTTGTATATAAAACAGAATTGAA




AAGTCAATTCAGGTGTGCACACACACATGCATG




CACGCACCAGCACGCCTGACATCTCTCAGGGCT




GCCGGGCATCACTCAGGTGACTGCTTGACGTGT




TGATGTTTGTGTCTTTGGCTTCTTCTTTGAGTC




TTTTGTTTTTCTTCTTTTATTTTATTTATGAGA




CAGGGTTGAGTTCATTGCAT




(SEQ ID NO: 25)





L
CACACCATTGCATGCTTCAGCCGTTGCCCGT
TAAGCCATCACATGCTTCAACCATGGGCTACTT



GCTATTTCCTCCCTTGGAAAGCCCTCTACTG
CCACCTGCTCCCCCCCCCCCCACACACACACAC



TGAGGCCCTCACCTCTCAACCCTCTCCCTGG
TGCTACCCCTCACCCCCAGCTTGGTGCCTCACT



CCCCCATGTTGTCTATGTGATTTCTTGCCAT
TCTCAGGCTATAATGCTGCTTTCATGGACATTC



TTAAAAATCTACCCAGGTGTCAGCGCTTGGG
CTTGTTCTTTGGAAACAAGGGCCCTTCCCTCTG



CAGTTTCCTCACACCTCTCACCCAGTTCATC
CAGAGTTCTCCTGCCTGAGGCTGTGTGTTCTTG



CTCCCTTGCTTGGTGCTATTTCTGCCCTTGT
GTTTGTGGGCCTTTGCCCAGCTGGTGCCCAGTG



CCATATCCCCACCACAGCATGCACTTTGGAT
CAAGGTGCCCTGCTAACTGAACAAATGACCTTG



TCCAGGCACGCTCCTTGAGTGTGACCCCGAG
CTCATCGTCATCTTCTTGGTCTCCATCTTTGTG



GCCCTCTGTGGGCTCTTGGAGCAGGGCAAAG
GTGGAGCCTTCTGGACCACCGGCAGGTACCCTT



CTGGGTGTGCTGGGGCGCAGCACGGGCCTGA
TGCAGGACAGCCTATCCTGCCCTGTCTCCCTAC



TGCCCTGAGGTTGTTTGTTGTGCTGGGCTGG
AGAGCCACTCCCTGAAGCTGCAGAAAACAAGAG



AGGCGTTCGAAGAAACGTCCAAGGAGGCTGC
AGCATAGAGGTGACCCTCTCCACAGGTGTGTGG



TAGACTCAGTTCTTTCTTTCTGTTTTCCCTC
CCAGAGCCACTCATCCACAGTGGCCAGGCCCAT



CACCTCCTCTGCTAGTGGAAGCTCCATGTCT
CCAAATATTAATGATGGGTGTTTTCTGCTTTGA



CCCAGGCTCGTGAGCTGGCAAACACCCCGCT
AGTTGAGAATGTCGGTCCTCAAGAGTCCACCCT



TGCATGGTTCAGTGTTGTCGTTGGCGGCAGG
GAAGAGAACACAACCACATCTGTTTCCTTCCAG



CGTACGTGGAAGGCCAGTTACAGAGGGTCTC
GGAACAGGGGCTGCACTGCCCTTCTTCTCTGTC



TAGGGCTAATGCATTTCACAACACACCGCCC
CGTGCCCAGAGCATGTATCTGAGCATGCCCAGA



TCTGACACTCCACGCTCTGCTTTTCCTCCAG
GCCAAACACAGCATCTATTTCCTACTGATCTTC



AACCACTCCCTTTGCAAAACTCTGTTTCAAA
ACAGCTGGACAGGCTCCCACACAGCCAGATGCT



CAAAAAGAGCACAAAGAGGCTGACCGTGCCT
CCCTGGGGAGCCTCAAAAGCAAGGTTCACCAGG



TCCTCCAACCAAGCTCCCCTCTCCACAGGTG
TGGAGCTCTGGGGAAATTGCTTTCAACTCTGTC



CACAGCAAGAGCCCTTTGTCTGTGATGGGAC
TTGGCAGGGCTTGCCTTCTGCACCTGGCTTTAG



AGGCCTGGGCTCCAGTGAGCAAGACAGGCAC
GAGGGCTCCAAGATGCAGCATAACATGGGACGG



TGTGGGCCCATCCAAATATTAACTGTGGACA
ATATCAACGCTTCTGTCTGATCTTATAACAAAG



CTTTCCTACTTTGAAAACATGAGACTTTGTA
GTCAATTTGTAAAGTTGATACCACCAAGTCCTT



CTCAGAGCCCTGCCCTCCAGAGAACACAATT
TCTTCCTTCCTTTCTTCCACACCCCGTCCTCTC



ACTTCTGTTTTTCTTTTCCTAGTGGAAGGAG
TGAGAAAATGGATCCAATAGAAGCTAGAGTGTG



GCTTGACACTGGTGATGGCCTTGCCTTTACA
ACTTGTAGGTTCTGACTGTCACTTCTTTGGGGT



ATGCTCAGGGTTTGGGAAAGTCAGGGCCTAG
GAATTTTAATGCCAAATCAGCCAGGGGCGAAGC



GGCTGCTGATCTCCAGGCACTGTCTGCTTTC
TGAGGAGAGCCAAGTTCACACACAGTTCAGCAC



CATCTATCCTCTCTGCTTGGTCCCTGAAAAG
GAAGTTTTAATTCAGTCCCATCCGTCCGAATCT



CAGGAGGGAGACAGGAGGAATGGGAGCATGA
GCACTGCTGTGGGTGGGTTAAAGGGAGAGCAGG



ATGCCCTCAGGGTCCACGGGGGATCCCGGAA
CTCCTGACAGCATGTGCTCCAGCACAGGTGAGT



GGCCTAGAACACCAGGGGTCTGGGCTCCACC
CTGTCACACTTTTTCCTACAGCTGCCAGGCAAG



CATGATGGATCATGCCTTTGGGGGAAGATTG
ACGTCAAGTCTACTTAAGGTTTCTTATGCCTGG



GCCTACACTCATGTCAAGTAATAAGTTTTAC
AATCGCCTAAAACGTAAAGCAATCAAAATGTCT



TTCCTGCACCTGGTGTTAGGTTGGTTCTAAG
ATCACCCAAAGAGTAGCCAGACAAAACACAGCA



ATGCAGCTGTAACCTGTGACTAAGATCAATA
GGTCCTTTTATGAAGAGTCCTGTGTCACAAGAC



TTTTTCATGTCACTATCTGATCATACAATGG
ACAGGAATATCAATTCTCAGCCATTAAAAGGCA



TCAATTTATCGATTTAGAAAATTGTTGCACA
CGCTGTAATGACACTGGCCACGATATGCCACAT



ACGAGGCAACACCGAGTCATGACTTAAAAAA
CTTAGAAATATTACAATAAGTCAAAGAAGCCAG



AAAAAAAGTGGATCTAACCGAAGCTAGATTG
CAGCAAAAGGCTAACTAATGTATTATTTCCAT



TGGCTTATCACCTTTGATTGTCAGTTTCTTG
(SEQ ID NO: 27)



GGTCAAATCTTAATGCCACATTGACCACTGT




GTCAAGAGAGGCCAGGTTCCAACTCAGCTCC




GTGTATAGTGTTCATGGAATCTCAATGCTCA




TCAGGCGCTGCTGGGGCTGGGCCTCGGGGAG




GGGCAGGCTCCTGTCAGCACAAGTCACCAGC




ACAGGTTTTAACCAGCCAGTCTGGGCTACTT




TTACCACTGAAGCAGTGGGGCGAGAAACTCT




ATTTTACAGTGTTTCTAAAACCTCTGTGAGC




TAAAAGTAGAAGCAACTCAAATGCCCCTCAC




CTGATGAATAAACAAACACAGTGTGGCATCC




TCGTACAATGGAGTATTATTCAGCCATAGAA




AGGGAGGAAATAGTTGTGCTCGATACAGTAT




GGATGAGGCTTGGAGACATGATGATAAGTGA




AAAGAAGCCAATCACAAAAGGACAAATAATG




TATGATTCCAT (SEQ ID NO: 26)






M
CTCTAGGTGGTGAAAATGACCAGATTTGGTT
CCTCAGCTGGAATTAACCCTACACAGTTCCTCA



GTGGGGTCATAGTGGACACTAAAGATCAGCA
GAGCCTAGGGCTTAGTAAAAAGGCCAAGCCTGA



AGGGAAAAAAGATGTGACTATAAACTTTCCA
CCTATGACCTCTCTGACATCTGTCCTTAGCACG



TTCTCACAGTTGTTTTGAGACCCGAGTGTAC
TGTTCTTTTCTTTCCAAGTACATTGTACCACCA



GTTTAATGTTTTCAACAGAAGAGGCTGCATG
TGATGGCCTGTGCCCTCCTCCCCATCACCTCCA



AAGAAGAGTAAGTTAACCGCGGGGAGGCTGT
TACAACGAATGAGCTCTCATGAGAGCAGAGTGG



GAGAATTTTTCTGCGCGGACAATGGAGCTCA
AGGCTGGTGCTGTGGCCTCCACTCAGGAATTGT



GTGTCTGTTTCAGTGTTTGTGCTCTCTATAG
GAACCACTCCAACCTTCTTTTGTTAAACATTAC



ATACCTGGATGATTCTTGGGCCTCAGTGTGT
CTAGCCTCAAATATCTTGTGATAGCAACAGAAG



TCTCGCTCCCTCCCTGCCGAGACTCAAAGGG
AGACTAAGATACTTAAAAATATCTATGGATGAA



ATGATGCACGCTGCCCAGCCAAAACCAGGAC
GAAAATGACCAATGTGAGGACGTCGTGGATATT



AGAACGTCTTTTTCCCCGTGGGAATGCGCTC
GGCCATCAGCAAAGAAGAGAGCATAAAGTTCCC



CCGGCGCCAATTCCAAGGCCTGCCTGGGTCC
ATTCTCACAGATATTCTGAAACCTGTGTATTTC



TATTCAGGCAGTGCTGGGGTGAGCAGCAGGC
ATTTTTGATGGAAAAGAGCTGCACACAGAATAG



TCGGGCCCAGCTGACACGGCCAGAGATCCCC
TAAGTTAGCTGGAGGGAACTTATGAGCCTTTTT



AGTGACTACTTTCCTGACATGGCAGAGATGG
TTTTCCCCCTCACATAAACAACAATGGAGCTTA



CAGATGGAGAATCCATAAGCCCCAGTTACAC
GTGTCCATTTCATTCTCTTTGTGCTTGACTGGG



CCGGGAGCTCACACTGTGGCTTCAGTCTCCA
ACCCAGATGGCTCACTGTCCCTCAGTATGTCCC



AGGAGAGTGGGGAGAGCCCTGGCCCTCCGTG
TGCTCCCTCCCTGCTGAGATCTCATTGGCTGTG



AAGGATTGCTTCCGCCCAAGGGGGGCCAGTG
ACGCACTGCCCTGCTCCAGCCAGGACACTACTG



AACCCGAATCACTCTGCTGGATGGTGCTGGG
TCTTTCTTCCCCGTGGGAATGTGTTCTCAAAGC



GGGCTGATGCAATCTGCATTCCTTCCCCTCG
CAACTCCAACAACGCTGACCTGGGCATCACTTG



CACCCCTTACCCCTCGCTACCTCCCCCTTCT
GGTGGTGCTGGAGTGAGCTGTAGGCTCTGGTCC



CATCCTCCCCACTCGCACCTCTCCTTCTCCC
TGCTGTTGTAGCCTGGGGTCCTAGTTGTCATTC



ACACCTGGCTGACACCCACTCTTGAGTCACT
CCCTGACACAGCAGAGAGAGCAAACAACAGAAC



GTCAGCTCCAAGACAGAACCGGCATCCTGGG
CAATGGCTGTAGCCACATGGTGAACAGCTAGAC



TGCTTGGCAGGAGCCAAAGGAGCATGTTACA
CTCCAGAACAATAGGAGTAAATGCTTCTGCCAC



GGATCTCTGGCTTCACAGATGGGGAGAGAGC
GAAGTGTATGGAGAACCTAAACCAATCTTCAGG



AGTTCAGAGAATTGCGGGTTCCACATTTGCT
CAGAACTGGGGCCAGGTACCACACACAGCCCTG



TGAAGTCACTCATCAGCCTTTATGTTACATT
CCCCTTTCTCAGCTGGCTGTTGCCCATGCCAGA



ACAACAAAGCAGCCCAGGGGACATGGACTCA
GTCATGATCACCCATAGGATTCTCAGACCCAGG



TAGGGTACCTGGTGTTTCCCCAACTGTAGGG
GCATTGTGTAGCTGGAGCTCAATGAGTCTTACG



GGGATTCCGGGACAAATAAAGTTTGCCACTG
GGCCGGAAGCAGCCAATTCAGGGAACTCTGGGT



GGACCCTCCCCCGAACTGTGCCCTGTCCCAC
TCTGCGTTTGCTTTGCATCTATTTGGTGAGAGA



TCCTGTGACACACTCTCTGCCCACAAGAGAG
CAGTGTGAGTTCTTCCATTACAAAATTCCAATG



TGGCCAACAGTGGAGGCTGAGAGTGACCACC
TTTAAAGAGCAAACAGTCAAGAAACAAGAAAAA



TGCCTGCCCTCAGTTATTAAAGGCTACTGGA
AAAACCCAAGGGTGTGTCTGTGTGTGTGTGTGT



GAACAAGCCTTGAGTGCGTGCTGAGAACACA
GTGCATGTGTTTATGTATGTGCAGGTACATGTT



TGCCCCTAGCTGCCATCAAAGAGAATCACTT
GGGGACATGTGCATGTGCATGTTTACATGTGCA



CATATGATTTTGACCATAAGCAAACTCTTCC
TAGAGAGGTCAGAAGACAACACCAGCTGTTGTT



ACCTTCATTTTTTAAAATAACGGCTTTATTG
CCCCAAGTACAATCCATAGTTCAACCCCCTGTG



AGATATGCATCACTTACCATGAAACTCACTC
TGTGTGTGTGTGTGTGTTTATGTGTGCATATGC



TTTTAAAGTGTACAACCCAGGGTTTTCAGTG
TATGGAAGTCAAAGATTGAGTCTGGTGTCTTCA



TATTCACGGAATTGTGCAACCATCACCCATC
ACTGCCCTCTACCCTATTTTCTGAAACAGAGTC



ACCCCTAATTTCAGGACATTTTTATCACTCC
TCTCACTAAATCTAGACCTCACTGGTTGGGCAT



AAAAAGAAACTTTGCACACATCATTCTTCTC
CCTTGTTAGCCAATGAGCTCAACTATCTGCCCG



TCCCCACAGCCTCTGACAACTGCTGATCTAT
TTTGTTCTCTCTCTCTCTCTCTCTCTCTCTCTC



TTTGTCTCTATGGATTTAGCAGTCATGGACA
TCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT



TTTCATATACATGGAATCATACACTATATGT
CCATAAATGAATGAATGTGTGTTTTTAAAAAGA



CCTTTCATGACTGACATCTGTCACTTAGCAT
GAGTTTAAAAAAAACTAAGGTGGCATGTATCCC



GATTTTATGAGATTCATCATGTTGGAGCATG
AGCTTCTCTCCACAATCCAACTGGAACGGCTCA



CACCCATGCTTCCATCCTTTCTTTTTTTTTT
GGCCAGCCTCATTTCACGCAGCTCACTCTATCA



TTCACAGTCTTGCTCTGTCGTGCAGGCTGAA
ACACATCTGCTGCACAGAGCATGCTTTGTGAGT



GTGCAATGGCACGATTTTGGCTCACTGCAAC
GACTCAAAGATCAGAACCCTGACTTCCAATGGC



CTCTGCCTCCCAGGTTCAAGCCATTCTCCTG
TTATAGCCTAAGGGTAGAGAAGTTACCTGTATT



CCTCAGCCTCCCAGGTAGCTGGGACTACAGG
CTGGCAAGATACCAGGGATTGTAGGAGGGGTAG



TATGTGCCACTATGCCTGGCTAATTTTTTTG
CAACCTGGGGAGGAGGGAATGCACTCTGTGTAG



TATTTTTAGTAGAGATGGAGTTTCACCATGC
GAGATGCAGAAAGGATTGGAAGAGCTGGTGAGT



TGGCCAGGCTGGTCTCAAACTCCTGACCTCA
ATTTGAGTTGGATGTTGGACTGATAAATGCAGG



AGTGATCTGCCCGCTTCGGCCTCCCAAAGTG
GAGCATCTCACAGGTTGGGATCAGGCACACCGG



CTGGGATTACAGACGTGAGCCACCACATCCT
TAGGATGTTTCATCCATCCGAGTCAAATGGAGG



TTCTAAGGCTGAATAGTATTGCACTGTATGG
GCAGGTGTAGGGATTTCAGGTTAGAGGGCAGGG



ATAGACCACATTTAGTTTATCTGCCTGCTGG
AAAGAAAGTAGAGAGGAGAGCCTGGGGTTGTGC



CTTATGGACAATGAGTCACTCCACTTTTTGG
TGGAGTGTGCACAGAGCACTCAGCTGGCACTTT



CTACTATGAATCATGCTGTTGTGAGCACTTG
GAAGAACAAAGTGGACTGTCCCTGGACGTGAGA



TGTACATGTCTTTATATGGATGTCTGTTTTC
CTGAGCAGGTAAGGTGGGTTAAGAGACGGTAAG



CCTTCCATTGGGTTTGCTTGGGGGTGGAATT
ATCACTACTGCAATAATCCAAAATAAGAACCTT



GCTGGGCCACCTTCTTTCTCCATGAGTGGAG
TATGATCTCTAGGTGGGATAACAACCAGGGGGA



CATGCCTATGCGCCCATCCCCGCATCTCCCA
GGGACTTTTAACACACAATTCAGTTCAACAGGA



TGTGTGGAGGCACTGCCCAAGCTCGTCTGTA
ACTCGCACATCCTGGAGGCAACACGTGAACTGC



CTCTGAGTCACAGGGCTGTGCACCATTACCG
GCAGGCTCAGCAGTCATTGTCTGTTCTGCGTGG



ATCACCATCTATGGGTCAGGGACTTATCAAT
TGCTCTTCCAAGTGGCACAGTGTCTTCATCAGA



GAGCAAGACATAGCCCCTGCCATCACTAACT
CCTGGTGCTCACATGACTGATCTAGTCACAGAA



CACATTCTGCATCGTCCTGTGCCATCCCCAC
CAGGCCATGTATCAAGTTTTGGGAAACAGGAAG



CACCCCACCTTGGTCAGGCCCAGTGTCCAGG
CAATGGGAGAAATGTATTTTATTGGTGATTAAG



TGTCTTCAACTGCTCACCTTCCCCCTATTTT
TGAAGTGCAAAAGATAGGACGTGCTA 



GTTGCCCTGAAGTTCATCCAGACATCAGGGT
(SEQ ID NO: 29)



GCCCTATTGAAAATGCTAGTTAATATGACCT




CTCTGCTCTAACCCCAATGTTGGAGTCTTGT




CATCAGTGGGATAGAGCTGGTGTGACTGCAC




CAGACCAGTCAGGTTCAACTTTTATGAAAGG




AAGTTGTGAGTTGCTTTCAGTTGCCATGGAC




CCCAAGTCGTAGGTCATGTAAGCTGAGCATG




CCCAAACGGACCAAGCATGCAACCATGGGCA




GAACCTGAGTGCTCAGACTGAGGAGCAGGGG




CTGAATTAAGAAGCAGAGCATACATGGCAGG




ATCCAGGATCCAGGAGCCAATCAGACTGAGT




TTGGCATCACTCCATGGCAGGATCCAATCAG




ATCACACCTCCCTGCAGCACCTCATTGCAAG




ATCCAATCAGACCACACCTCATTACCCTAGG




CTTATAAAATCCAGGCCAGCCGCTAGCTTGG




GGAGGCAGATTTGAGTGTTTTTTTTTTTCTG




TCTCCTTGCCAGACTACCAGCAAAAAAGGTT




TTCTTTTCTCAAAAGCCGGTGTCATGGTATT




GGCCTCTGTGCACATTGGGCAGTGAGCCCAC




TGATTGCTCAGTAACATGGGCACACTCTGGG




GCCCACACAAGCCAGGAATGATGTGGCCTTT




ACCTGCTGCTCCAGCTGCATCTGAGCCCAGT




ATCCCCTGAACACAAACCCCCACCTGCATGG




AGCTGCATGCGGTTCTCGGGTACCTCCTGGC




TATGTTCAGCTCCTGTAGATTCCTTCAGATC




CACTCCTTCCCATTTCCTCATCCAACTGCCC




AGCAGAGTGCCTACTATGCGCCACACACTGG




GATTCAGCAGTAAACGACACAAACATGATCC




CCACCCTTATCCTTCTCCCAGGACTCTTATT




AATCTAAGGCTCACCTCCCTTCTTGTAACTT




CCATGAACTCATATGCTCCCTCTCAGCTCAG




GGACGTTGCTGGAGGAAGCAAGAGAGCAGCA




GATGAACCCTTATGTTCAGGAGGCAGATGGA




GCTCATTCAAAGCCCACCTTGGCCTCTTCTT




AACCCGAAGATTTTAGCAAGTCATATAACCT




TTGAACTGCAACTCCCTGGATTGTGGAATGC




CCAAAGTGTGCTGAGCGTGAAGTAAATAATG




CACATTCTGCATCGTCCTGTGCCATCCCCAC




CACCCCACCTTGGTCAGGCCCAGTGTCCAGG




TGTCTTCAACTGCTCACCTTCCCCCTATTTT




GTTGCCCTGAAGTTCATCCAGACATCAGGGT




GCCCTATTGAAAATGCTAGTTAATATGACCT




CTCTGCTCTAACCCCAATGTTGGAGTCTTGT




CATCAGTGGGATAGAGCTGGTGTGACTGCAC




CAGACCAGTCAGGTTCAACTTTTATGAAAGG




AAGTTGTGAGTTGCTTTCAGTTGCCATGGAC




CCCAAGTCGTAGGTCATGTAAGCTGAGCATG




CCCAAACGGACCAAGCATGCAACCATGGGCA




GAACCTGAGTGCTCAGACTGAGGAGCAGGGG




CTGAATTAAGAAGCAGAGCATACATGGCAGG




ATCCAGGATCCAGGAGCCAATCAGACTGAGT




TTGGCATCACTCCATGGCAGGATCCAATCAG




ATCACACCTCCCTGCAGCACCTCATTGCAAG




ATCCAATCAGACCACACCTCATTACCCTAGG




CTTATAAAATCCAGGCCAGCCGCTAGCTTGG




GGAGGCAGATTTGAGTGTTTTTTTTTTTCTG




TCTCCTTGCCAGACTACCAGCAAAAAAGGTT




TTCTTTTCTCAAAAGCCGGTGTCATGGTATT




GGCCTCTGTGCACATTGGGCAGTGAGCCCAC




TGATTGCTCAGTAACATGGGCACACTCTGGG




GCCCACACAAGCCAGGAATGATGTGGCCTTT




ACCTGCTGCTCCAGCTGCATCTGAGCCCAGT




ATCCCCTGAACACAAACCCCCACCTGCATGG




AGCTGCATGCGGTTCTCGGGTACCTCCTGGC




TATGTTCAGCTCCTGTAGATTCCTTCAGATC




CACTCCTTCCCATTTCCTCATCCAACTGCCC




AGCAGAGTGCCTACTATGCGCCACACACTGG




GATTCAGCAGTAAACGACACAAACATGATCC




CCACCCTTATCCTTCTCCCAGGACTCTTATT




AATCTAAGGCTCACCTCCCTTCTTGTAACTT




CCATGAACTCATATGCTCCCTCTCAGCTCAG




GGACGTTGCTGGAGGAAGCAAGAGAGCAGCA




GATGAACCCTTATGTTCAGGAGGCAGATGGA




GCTCATTCAAAGCCCACCTTGGCCTCTTCTT




AACCCGAAGATTTTAGCAAGTCATATAACCT




TTGAACTGCAACTCCCTGGATTGTGGAATGC




CCAAAGTGTGCTGAGCGTGAAGTAAATAATG




CAAGTGTAAAGTGTGCGGCATGGTCCTGGTT




CATCTCAGGAGGCCGTTAGGAAACTAGCACT




TATTTTTGCCAGGGCTTGAGCATAGAACATA




CTAATTTCCCCAATGGCATTATCACATTGTA




TTACTTTTTATTTACATGTTCTTTCTCCCCT




ACCAATCTCAGAGAATCTCAAGGGCAGCAAT




GATTAATTATTAATTTTGGAATCCTTGGTTC




CTGGCACATTCCTTGAAAATAAATCATTGGC




TTACTTTCCACTGATTCTCTTAATTACCCCT




GAGAGGCAGAGATTGGAATTATACTATGCTG




AGCAGCTCAATGTTTTCCCAGTAACAGCAGG




AAAATCCCAATGCACAGAGAAGGAACCTGAA




TGACTTAGGTGGGACACACCAGGACAGACAC




CCGTGGTGATGACATTCTGTGCCCTTCATCC




CACAGAGTGGTCTGTCTTCACAGTGGTCTCC




CCTCACCACACTGAGCCCTCAAACTTCCTCT




TTCCGCTGACCAAAGTGCACCCAGGCCTGCT




TGTCCATTCAGACAGATGCCAGGGCCCTCTG




CACTCCATCTGACCTCTGCAATATGCCGGTT




CCTAATAAGGGAGCAGGATCCAGGTCCAGTT




GTTCACACTTCTAATTTCATACCGGCAGCCT




CAGTAAAGTTCTGCCATCAGGCTAAGGCCCC




ACTGATCGTCGACCTTTTCTGCATAAAGATT




CACCTCCAGGGCTCTTAGAAAATACTGCTGC




CTGGCTACCACCCCATCCTTAGTGTGACATA




GGGTTTTTTTTTCTTCTTCTTCTGTTTTTTG




TTTTTTTTAGAATAATTAGGCAGCTCTGTTG




CCCAGGCTGGAGTGCAGTGGCATGATCTCAG




CTCACTGCAACCTCTGCCTCCTGGTTCAAGC




AATTCTCCTACCTCAGCCTCTTGAGTACCTA




GGACTATAGGCACACGCCACCATGCCCGGCT




AATTTTTTGTATTTTTAGTAGAGACGGGGTT




TCACCAGGTTAGCCAGGATGGTCTCAATCTC




CTGACCTTGTGATCCGCCCACCTCAGCCTCC




CAAAGTGCTGGGATTACAGACGTGAGGCACC




ACACCTGGCCTGCCCCGGGTTGTTTTTTTTT




TTAAAGCTCCCCAGGGATTTGTAAGTGCATA




CCAAAGACTGGGAACCCCTGGCTTAGCTCAC




AGAGCAAAGAGCCTTTTGAGGGTTCCCCTCG




ACAGTTGCTCCCTCACCTCCAGCTGTGGGGC




CACACAGAGCGCTGGGCCATTGTGGTGTTAG




AGACCAGAGTTAAAGGGACTCCATCTGTAAT




ATCCAGGACAAATGGGCTGGCAGGTGCTGCT




CAAACCCTTACACACAGATAGTATTTGGGGA




GGTGAGGTCAATTCCCCCATTATGGAACGCT




GCGGTTTTAAAAGCAAGCAAACAAACAAAAA




CAGGAAAAAAGTGAGCTTTTTAAAACTAAGG




TAAAATTTGTCCTCAACTTCCTGGCCTTGAT




TGGGCTCTGCTACTAGAGCGGCAGAAGCAAC




TCACTTCCCTGCTTCCACGGACCTGTTTCAT




GTAATGCATTTTGCAGAGATTTGAAGACAGG




GTCCTTGACTTGGGCAGCTAACAGCCTGAGG




CTAGAGGCAGCCACCCCTGAACAGTGAACAA




TTCTGCAAGGCGCCTGGCAATAGTACTATGC




GGGGAGGGGGTAGGAACAAGGTGCTGCAGGG




CGGGGTGGAGGAGGAAATGAATTCTGCCTGG




GAGAAGCGGGAGTGCGTATTTGAGTGGGGTC




TGGAGCAGGTGCATGCAAAGAAGCACCTCAA




AGGCACGGGCAGGTGTGTGCAGGCGTGGGCA




GGCGTGGGCAGGCGTGGGAAGGCGTGGGCAG




GCGTGGGCAGGTGTGGGCAGGCGTGGGCAGG




CGTGGGCAGGCGTGGGCAGGTGTGGGCAGGT




GTGGGCAGGCATGTGGGCACGGCACAGGGCT




TGTCCAGGCCAGATGCCATTAAGCACAGGTA




TCTGTGGTGGGCAGGGGACACAGTGGAAGCA




GATAGAGAAGGTTTGCTGGGGTCCCATGGAG




GGGCGCCTTGTAGGCCATGGTCACTCTAGGC




TGATGCAAGGTGCTCAAGGTTGAAGGCAGAG




GTGACTGACCTGTGCTTGAGAGAGGGTAGGG




AAGAGAAGCTGCCGGACTTGAGGGGCTGAAA




TTGTCCTGTAATAGTCCAGGTCAGGAGTGTT




AATGATGCCCCAGCTCGGGCAGTGACTACGG




CAAGGAGAGTTTAACATGTGGTTCAGTTCAG




CAGACATGGGGAACTCACTATGTGTGAAGCA




GGACACATCACGGAGGCAGCCCTCAAATGCT




TGAAGACAGTAATCCTGCCCCTGTGCTGTGG




CGGGTTCTTTAAGGGGTGTGACTTCCTCATC




AGACCCATTGCTCTCACACCTAATGATGCTG




CCATGTGGCAGGGCTGTGGGCAGAGCCATGC




CCTAGCAGGGGAAGTGGAGGACAGCGGCGGG




GAGGGAGTGTGGGCAGGGCTTTCCTGCCCTC




TGGGTCCTCTCCTCTCTTTCGTGGCAGGGCC




TTGAGGTCCATTCGCTGGGCTGCACAGAAGG




AGGACTCCAGAGCCCCCCTTGGGTTCAGGAT




TTTATACACGCAGCATTCCAGACAGATGGAC




CCGTGTATTGACAATGAAAGCATGGGAGAAC




TGTATTTCTTTGGTGATTAAAGTAAATGCAA




AAGTTATGATGC (SEQ ID NO: 28)









In some embodiments, a GJB2 GRE (e.g., a GJB2 enhancer) sequences can be identified from the regional sequence listed in Table 2. In some embodiments, a GJB2 GRE (e.g., a GJB2 enhancer) comprises at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least 750, at least 800, at least 850, at least 900 at least 1000, at least 1100, at least 1200, at least 1300, at least 1400, at least 1500, at least 1600, at least 1700, at least 1800, at least 1900, at least 2000, at least 2100, at least 2200, at least 2300, at least 2400, at least 2500, at least 2600, at least 2700, at least 2800, at least 2800, at least 2900, at least 3000, at least 3100, at least 3200, at least 3300, at least 3400, at least 3500, at least 3600, at least 3700, at least 3800, at least 3900, at least 4000, at least 4100, at least 4200, at least 4200, at least 4400, at least 4500, at least 4600, at least 4700, at least 4800, at least 4900, at least 5000, or more consecutive nucleotides in any of the regional sequences described in Table 2 (e.g., human GJB2 regions A-M or mouse Gjb2 regions A-M). In some embodiments, a GJB2 GRE (e.g., a GJB2 enhancer) is identified with the transcriptionally active regions of the GJB2 gene (e.g., regions A and/or B). In some embodiments, the GJB2 GRE (e.g., a GJB2 enhancer) comprises at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least 750, at least 800, at least 850, at least 900 at least 1000, at least 1100, at least 1200, at least 1300, at least 1400, at least 1500, at least 1600, at least 1700, at least 1800, at least 1900, at least 2000, at least 2100, at least 2200, at least 2300, at least 2400, at least 2500, at least 2600, at least 2700, at least 2800, at least 2800, at least 2900, at least 3000, at least 3100, at least 3200, at least 3300, at least 3400, at least 3500, at least 3600, at least 3700, at least 3800, at least 3900, at least 4000, at least 4100, at least 4200, at least 4200, at least 4400, at least 4500, at least 4600, at least 4700, at least 4800, at least 4900, at least 5000, or more consecutive nucleotides in within regions A and/or B. In some embodiments, the GJB2 GRE (e.g., a GJB2 enhancer) comprises at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least 750, at least 800, at least 850, at least 900 at least 1000, at least 1100, at least 1200, at least 1300, at least 1400, at least 1500, at least 1600, at least 1700, at least 1800, at least 1900, at least 2000, at least 2100, at least 2200, at least 2300, at least 2400, at least 2500, at least 2600, at least 2700, at least 2800, at least 2800, at least 2900, at least 3000, at least 3100, at least 3200, at least 3300, at least 3400, at least 3500, at least 3600, at least 3700, at least 3800, at least 3900, at least 4000, at least 4100, at least 4200, at least 4200, at least 4400, at least 4500, at least 4600, at least 4700, at least 4800, at least 4900, at least 5000, or more consecutive nucleotides in within regions C-M. In some embodiments, the GJB2 GRE (e.g., a GJB2 enhancer) comprises nucleotide sequences out of the regions listed in Table 3.


In some embodiments, a GJB2 GRE (e.g., a GJB2 enhancer) is located on the sense strand of the GJB2 coding sequence in the genome. In some embodiments, GJB2 GRE (e.g., a GJB2 enhancer) is located on the reverse complement strand of the GJB2 coding sequence in the genome. It is within the skill of one in the art to select the appropriate sequence (e.g., GRE sequence on the sense strand, or GRE sequences on the reverse complement strand) when designing a vector using the enhancer sequences as described herein.


In some embodiments, a GJB2 GRE (e.g., a GJB2 enhancer) comprises at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least 750, at least 800, at least 850, at least 900 at least 1000, at least 1100, at least 1200, at least 1300, at least 1400, at least 1500, at least 1600, at least 1700, at least 1800, at least 1900, at least 2000, at least 2100, at least 2200, at least 2300, at least 2400, at least 2500, at least 2600, at least 2700, at least 2800, at least 2800, at least 2900, at least 3000, at least 3100, at least 3200, at least 3300, at least 3400, at least 3500, at least 3600, at least 3700, at least 3800, at least 3900, at least 4000, at least 4100, at least 4200, at least 4200, at least 4400, at least 4500, at least 4600, at least 4700, at least 4800, at least 4900, at least 5000, or more nucleotides. In some embodiments, a GJB2 GRE (e.g., a GJB2 enhancer) comprises 200-500 nucleotides or any number of nucleotides in between, 300-600 nucleotides or any number of nucleotides in between, 400-700 nucleotides or any number of nucleotides in between, 500-800 nucleotides or any number of nucleotides in between, 600-900 nucleotides or any number of nucleotides in between, 700-1000 nucleotides or any number of nucleotides in between, 1000-1500 nucleotides or any number of nucleotides in between, 1500-2000 nucleotides or any number of nucleotides in between. In some embodiments, a GJB2 GRE (e.g., a GJB2 enhancer) comprises 700 nucleotides.


In some embodiments, the GJB2 GRE is a human GJB2 enhancer. In some embodiments, the GJB2 GRE (e.g., a human GJB2 enhancer) comprises nucleotide sequence at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to any one of the GRE sequences as listed in Table 3.









TABLE 3







Human GJB2 Enhancer Sequences










Sense strand
Reverse Complement strand





hGJB2 GRE1
TCATCCATGTCCCTACAAAGGACAT
AAGAGAGCACTTGGGAAGAGCCCCCG



GAACTCATCATTTTTTATGGCTGCA
AGGGCAGCCGGGGCTTGCCGCCTCAC



TAAGTCGTTCTTTCAAACACCCTGC
CCTTTTGGTTTCACATCCCAGAAATC



AGTCAGCTTCTCCTCACGAGAAACC
AGTAAGGCAGGAATTGGAGGCTGCTT



ACATGAAAGCCCTCGGGGAAATGCC
CTTGCCTTAGCAACTCGGTGACCTTA



TCTCGGGATCTACTTTTCTTTGTGT
GGCAGAACAGTTCAGCCTTCTGAGTG



GTATCCTACTTAGCCTATCGGTTTC
TCCTTCCTCTTCTGTAAGGGGAGCGT



TGCTTCCTGTGGGGCTACAGCCGTC
AAACCGTCCTCCATGCAGAACGTGTA



TCGTCTTTTTCTGCTGGCTCCTTTG
CTGTGCCTGGCACAGCACTGGGGCAT



CTCTGTTCTCCAGTGGCTATCTTCT
TAGGATCTCCAAATTAAAGGCTCACT



TTCTCCTTTCTTTCAAATGTTCTCC
CTGCGGGATGGAGGCAGCCACAGCTG



CTTATCTTCTCTGATACAGACAGAA
GAAGAAGGAACATTTGGGGCCAGAAG



GGTCAGGAGCCACGCCCATTACACT
TCCCCCTACCTCCGTCCTAAGAGAGA



GACAGAACCCGATGTCCTGATGCGC
AGATGGGAATAACGACCCTCGCTGAA



TCTGTGCCTCCCAGATTTGGATGTG
ATGATTGCTCTCTGGCCAGCTCGCCT



GATGCGAGGCGAGCTGGCCAGAGAG
CGCATCCACATCCAAATCTGGGAGGC



CAATCATTTCAGCGAGGGTCGTTAT
ACAGAGCGCATCAGGACATCGGGTTC



TCCCATCTTCTCTCTTAGGACGGAG
TGTCAGTGTAATGGGCGTGGCTCCTG



GTAGGGGGACTTCTGGCCCCAAATG
ACCTTCTGTCTGTATCAGAGAAGATA



TTCCTTCTTCCAGCTGTGGCTGCCT
AGGGAGAACATTTGAAAGAAAGGAGA



CCATCCCGCAGAGTGAGCCTTTAAT
AAGAAGATAGCCACTGGAGAACAGAG



TTGGAGATCCTAATGCCCCAGTGCT
CAAAGGAGCCAGCAGAAAAAGACGAG



GTGCCAGGCACAGTACACGTTCTGC
ACGGCTGTAGCCCCACAGGAAGCAGA



ATGGAGGACGGTTTACGCTCCCCTT
AACCGATAGGCTAAGTAGGATACACA



ACAGAAGAGGAAGGACACTCAGAAG
CAAAGAAAAGTAGATCCCGAGAGGCA



GCTGAACTGTTCTGCCTAAGGTCAC
TTTCCCCGAGGGCTTTCATGTGGTTT



CGAGTTGCTAAGGCAAGAAGCAGCC
CTCGTGAGGAGAAGCTGACTGCAGGG



TCCAATTCCTGCCTTACTGATTTCT
TGTTTGAAAGAACGACTTATGCAGCC



GGGATGTGAAACCAAAAGGGTGAGG
ATAAAAAATGATGAGTTCATGTCCTT



CGGCAAGCCCCGGCTGCCCTCGGGG
TGTAGGGACATGGATGA



GCTCTTCCCAAGTGCTCTCTT
(SEQ ID NO: 56)



(SEQ ID NO: 55)






hGJB2 GRE2
CCATGATATGTTAAGAAAAGCAAAG
ATATAATCTGTTTTTTCCTATACATA



TGTGGAATAGTAGGTAAAATATTCT
CAAACCTACCATAAGGCTTAATGGTA



ATCTTATGTGCAAAAGGGGAAATAA
AGAGATTAACAATAAAGAATAATAAA



AAGTCATCAATATTCATGTAGATTC
ACAACACTTATAACAATGTATAACAA



AATTCACATATAGATTCATATCACA
TATATTGTAATATAAGTTTTTGGATG



TTCCTATATATATAGAAATTCTGGA
CAGTCTCTCTCTCAAAATGCTATCAT



AAGACACAAAATAAATTAATAAAAG
ATTTTCCAACTGTGGTTGACTACAGG



TTGTTACTTCATTGTAGTTTTTAAA
TAACTGGAACCACAAAAATGAAACAG



GTTTTTTGAGTCTTAAGACTTACTT
TGGATAAGAGGGCGACTCCTGTACCA



TCCACTTCTGTAGAAAGGAATTACA
AAGAAAAAAATAGAGTGTTGCAGCTG



AATCCTTTCTTTATAGAGCTATGTG
TAACATAGTTGAATGACTGAGTTAGA



ATGAAATAAACATAAAGCATTTGGC
CTGCATAACTGACACACAAAACCACA



ACACTTCAGGATAGCAACTTGTGGA
TAAATATAAATGAAGGAATCTCTGGG



TTAATGATTAACACAGTCACCTTTG
TGTAATCTGGTGCAAAGGTGACTGTG



CACCAGATTACACCCAGAGATTCCT
TTAATCATTAATCCACAAGTTGCTAT



TCATTTATATTTATGTGGTTTTGTG
CCTGAAGTGTGCCAAATGCTTTATGT



TGTCAGTTATGCAGTCTAACTCAGT
TTATTTCATCACATAGCTCTATAAAG



CATTCAACTATGTTACAGCTGCAAC
AAAGGATTTGTAATTCCTTTCTACAG



ACTCTATTTTTTTCTTTGGTACAGG
AAGTGGAAAGTAAGTCTTAAGACTCA



AGTCGCCCTCTTATCCACTGTTTCA
AAAAACTTTAAAAACTACAATGAAGT



TTTTTGTGGTTCCAGTTACCTGTAG
AACAACTTTTATTAATTTATTTTGTG



TCAACCACAGTTGGAAAATATGATA
TCTTTCCAGAATTTCTATATATATAG



GCATTTTGAGAGAGAGACTGCATCC
GAATGTGATATGAATCTATATGTGAA



AAAAACTTATATTACAATATATTGT
TTGAATCTACATGAATATTGATGACT



TATACATTGTTATAAGTGTTGTTTT
TTTATTTCCCCTTTTGCACATAAGAT



ATTATTCTTTATTGTTAATCTCTTA
AGAATATTTTACCTACTATTCCACAC



CCATTAAGCCTTATGGTAGGTTTGT
TTTGCTTTTCTTAACATATCATGG



ATGTATAGGAAAAAACAGATTATAT
(SEQ ID NO: 38)



(SEQ ID NO: 37)






hGJB2 GRE3
GCAGAGACCTACAGACAGAAGTACA
TAGGATTGACAAGGGCAATAGAGCGA



TTTTACACTGGATCCAGGACACACA
TGACTCCCTGGCTGTGTTGTATTTGA



TCAGTCTGAAAACACACACATGAAC
TGGACGGCAGTAGCTTTTCACAAAAT



CAAACGTTTCCTAAAGCATTACTTA
GCTCATTTGGATGTTTCAAATTAAAA



TCCTTGCTAATAGCAACACATTCTC
CGTTTCACTTTCTAGAACCAATTACG



ATATTCTTTTATACTTCATTTAATT
TGGTCAGTTTAGCTCCTGAGGTCCCA



TCATATAAAAAAGAAAAGGAAAGGA
GTCAGAGGGGTATTCTGTAGCTTGCA



AAGAAATCTATTTCTCAGCCCATTA
AAGCCTCTCTTTGGGGACTGGACATG



ATAAGGTCAGGAGCAGCAACACCAG
GAGTCTGTGGTCTTAGAATTCAGAAC



ACTAGAAGAAAAGCTTACCTATAGA
CGGGAGAATGTGTTAGCCACTCATCT



TTTTTCTGCCACCTCTTGAGTGCGT
AAGCTATTCCTTAAACGCTTTCAGAG



CCAGCTTTCCGACAAGTCTCAGTGC
CCATCTCCACTGTGGGGAAAGAAGTT



CATCTACTGTGCGCTCTGGGTATTG
CTTTGTGTTCTCTGACTTAGTCTCAT



CAATTGCTTTTTTTTTTTTTTTTTT
TCTAAAAAAAAAAAAAAAAAAAAAAA



TTTTTTTTTAGAATGAGACTAAGTC
AAAAGCAATTGCAATACCCAGAGCGC



AGAGAACACAAAGAACTTCTTTCCC
ACAGTAGATGGCACTGAGACTTGTCG



CACAGTGGAGATGGCTCTGAAAGCG
GAAAGCTGGACGCACTCAAGAGGTGG



TTTAAGGAATAGCTTAGATGAGTGG
CAGAAAAATCTATAGGTAAGCTTTTC



CTAACACATTCTCCCGGTTCTGAAT
TTCTAGTCTGGTGTTGCTGCTCCTGA



TCTAAGACCACAGACTCCATGTCCA
CCTTATTAATGGGCTGAGAAATAGAT



GTCCCCAAAGAGAGGCTTTGCAAGC
TTCTTTCCTTTCCTTTTCTTTTTTAT



TACAGAATACCCCTCTGACTGGGAC
ATGAAATTAAATGAAGTATAAAAGAA



CTCAGGAGCTAAACTGACCACGTAA
TATGAGAATGTGTTGCTATTAGCAAG



TTGGTTCTAGAAAGTGAAACGTTTT
GATAAGTAATGCTTTAGGAAACGTTT



AATTTGAAACATCCAAATGAGCATT
GGTTCATGTGTGTGTTTTCAGACTGA



TTGTGAAAAGCTACTGCCGTCCATC
TGTGTGTCCTGGATCCAGTGTAAAAT



AAATACAACACAGCCAGGGAGTCAT
GTACTTCTGTCTGTAGGTCTCTGC



CGCTCTATTGCCCTTGTCAATCCTA
(SEQ ID NO: 40)



(SEQ ID NO: 39)






hGJB2 GRE4
CTTGCTTACCCAGACTCAGAGAAGT
GACACTGCAATCATGAACACTGTGAA



CTCCCTGTTCTGTCCTAGCTAGTGA
GACAGTCTTCTCCGTGGGCCGGGACA



TTCCTGTGTTGTGTGCATTCGTCTT
CAAAGCAGTCCACAGTGTTGGGACAA



TTCCAGAGCAAACCGCCCAGAGTAG
GGCCAGGCGTTGCACTTCACCAGCCG



AAGATGGATTGGGGCACGCTGCAGA
CTGCATGGAGAAGCCGTCGTACATGA



CGATCCTGGGGGGTGTGAACAAACA
CATAGAAGACGTACATGAAGGCGGCT



CTCCACCAGCATTGGAAAGATCTGG
TCGAAGATGACCCGGAAGAAGATGCT



CTCACCGTCCTCTTCATTTTTCGCA
GCTTGTGTAGGTCCACCACAGGGAGC



TTATGATCCTCGTTGTGGCTGCAAA
CTTCGATGCGGACCTTCTGGGTTTTG



GGAGGTGTGGGGAGATGAGCAGGCC
ATCTCCTCGATGTCCTTAAATTCACT



GACTTTGTCTGCAACACCCTGCAGC
CTTTATCTCCCCCTTGATGAACTTCC



CAGGCTGCAAGAACGTGTGCTACGA
TCTTCTTCTCATGTCTCCGGTAGGCC



TCACTACTTCCCCATCTCCCACATC
ACGTGCATGGCCACTAGGAGCGCTGG



CGGCTATGGGCCCTGCAGCTGATCT
CGTGGACACGAAGATCAGCTGCAGGG



TCGTGTCCACGCCAGCGCTCCTAGT
CCCATAGCCGGATGTGGGAGATGGGG



GGCCATGCACGTGGCCTACCGGAGA
AAGTAGTGATCGTAGCACACGTTCTT



CATGAGAAGAAGAGGAAGTTCATCA
GCAGCCTGGCTGCAGGGTGTTGCAGA



AGGGGGAGATAAAGAGTGAATTTAA
CAAAGTCGGCCTGCTCATCTCCCCAC



GGACATCGAGGAGATCAAAACCCAG
ACCTCCTTTGCAGCCACAACGAGGAT



AAGGTCCGCATCGAAGGCTCCCTGT
CATAATGCGAAAAATGAAGAGGACGG



GGTGGACCTACACAAGCAGCATCTT
TGAGCCAGATCTTTCCAATGCTGGTG



CTTCCGGGTCATCTTCGAAGCCGCC
GAGTGTTTGTTCACACCCCCCAGGAT



TTCATGTACGTCTTCTATGTCATGT
CGTCTGCAGCGTGCCCCAATCCATCT



ACGACGGCTTCTCCATGCAGCGGCT
TCTACTCTGGGCGGTTTGCTCTGGAA



GGTGAAGTGCAACGCCTGGCCTTGT
AAGACGAATGCACACAACACAGGAAT



CCCAACACTGTGGACTGCTTTGTGT
CACTAGCTAGGACAGAACAGGGAGAC



CCCGGCCCACGGAGAAGACTGTCTT
TTCTCTGAGTCTGGGTAAGCAAG



CACAGTGTTCATGATTGCAGTGTC
(SEQ ID NO: 58)



(SEQ ID NO: 57)






hGJB2 GRE5
ATCCATTATTTGATTAGCCATTTCA
GTAGTGTATGTTTGTGTGAATTTTTG



AAAACACATTTACGGAGATCTTCAT
TTTTTAATTTTTTATGAGTGCCCTAA



CTGGGCAGAGCATTATTCCAGGCCT
CAAAGATTACAAATTGGGAATACAAA



CTGAAGAACCAAAGATGATTTTGAA
CTCCAGAGCAATGGAGACAGTGACAC



AGGAGGTCACAGTGCAGACAGCAGG
TTTTGTGGAGGGGTACATGTGGCTGT



TGTGTATATAAGGTGGCTACTTTAC
TCGGGTGGTTATTAACACAGGCTGCT



AAAACAGGATATGGCAAGCTGGACA
GCCCCTGCCCTGCAATGGGAATCCCC



TGACAGGCACAGCAAAGTCTCTGAA
AGGGCATTGGAGGATTCAACCTCTTG



CAGAGTTCGGGGCATGAAATTGTTT
CAGTTACCTCTTGTAAGACAGCAGAT



CTTTTGGGGGTCTTCAGGAACAATT
GGCAGCAGAGAGAGGCTTTGCACATC



TCATGAAAGCTAAATCATGAAAGAT
CCTGCAGGTTCTAGTTTGCACAAAGG



AGCAGGCTTTTGCCAGGAAAAAAAA
GCTTCTGAGAGACCTATCAACCAATT



AAACAAGACTAGTGATTAGTTTGGC
ATAACATCAAGTGGCAAAAAGAGTCC



GTTTTCGGTTTCTTTGAGAAGCGAA
TTGATAAGTTATTTCGCTTCTCAAAG



ATAACTTATCAAGGACTCTTTTTGC
AAACCGAAAACGCCAAACTAATCACT



CACTTGATGTTATAATTGGTTGATA
AGTCTTGTTTTTTTTTTTCCTGGCAA



GGTCTCTCAGAAGCCCTTTGTGCAA
AAGCCTGCTATCTTTCATGATTTAGC



ACTAGAACCTGCAGGGATGTGCAAA
TTTCATGAAATTGTTCCTGAAGACCC



GCCTCTCTCTGCTGCCATCTGCTGT
CCAAAAGAAACAATTTCATGCCCCGA



CTTACAAGAGGTAACTGCAAGAGGT
ACTCTGTTCAGAGACTTTGCTGTGCC



TGAATCCTCCAATGCCCTGGGGATT
TGTCATGTCCAGCTTGCCATATCCTG



CCCATTGCAGGGCAGGGGCAGCAGC
TTTTGTAAAGTAGCCACCTTATATAC



CTGTGTTAATAACCACCCGAACAGC
ACACCTGCTGTCTGCACTGTGACCTC



CACATGTACCCCTCCACAAAAGTGT
CTTTCAAAATCATCTTTGGTTCTTCA



CACTGTCTCCATTGCTCTGGAGTTT
GAGGCCTGGAATAATGCTCTGCCCAG



GTATTCCCAATTTGTAATCTTTGTT
ATGAAGATCTCCGTAAATGTGTTTTT



AGGGCACTCATAAAAAATTAAAAAC
GAAATGGCTAATCAAATAATGGAT



AAAAATTCACACAAACATACACTAC
(SEQ ID NO: 42)



(SEQ ID NO: 41)






hGJB2 GRE7
GCTAATTGGGTCAGGATTTGAAAGA
ATCTTAGCTCCAACATGTCATTATTC



CCTTAGCTTTGTGTGACCTTCAATT
CTTCCTCACTGAGGACTTTTCTGCTT



TTATCATTCAGCTTGAATATGTGCC
CCTAATTGGTTGTTGAAGATGAGGCC



CCAGAAAACCTTTATGTAATTCCCT
CCCATGCTCTTTTAAGAAAACCTGTT



AATATTTCAGTAACCAGCATGCAAC
GTGCCCCAGGCTTGGCTGTGATGGGC



ATACGAGAAGCACATTCTTTGTTTT
ACTGACTCATACAGAAGTAGAAAGGC



TAGAATGGTATCTGGCTGATGACTT
CTGCTGAGTCATCAACACTCGTGCGA



TCACAACAGCTCACATGAGAGGGAA
CGCCCTCGCATTTTCATTAATGATGG



GTATTTTAGCAATCGGACTGAAGGA
CCTCCCTGCCACACGTGAATCACTCC



AAATCCAAAAACTCCACCATTGCAG
AGCCCGAGATCTGAAACCAGGACACA



GGTCAACAGTGCACGTGTTTGAATT
CCCCAGGGGCGAGGTGACGCTGAGTG



CTGAAAGACGTAAGCCAAGGCAAAT
AGCCCAGCTGTGTCCCTTTCATGAGA



AGAAGGAAATGATCTTCCACTAATC
ACTCAGAGCACAGGGCTCTGTGTGCA



CCGGCATTTACTTCCTCCTCTCTGG
TGGCCGTCCCCTCCAGAGAGGAGGAA



AGGGGACGGCCATGCACACAGAGCC
GTAAATGCCGGGATTAGTGGAAGATC



CTGTGCTCTGAGTTCTCATGAAAGG
ATTTCCTTCTATTTGCCTTGGCTTAC



GACACAGCTGGGCTCACTCAGCGTC
GTCTTTCAGAATTCAAACACGTGCAC



ACCTCGCCCCTGGGGTGTGTCCTGG
TGTTGACCCTGCAATGGTGGAGTTTT



TTTCAGATCTCGGGCTGGAGTGATT
TGGATTTTCCTTCAGTCCGATTGCTA



CACGTGTGGCAGGGAGGCCATCATT
AAATACTTCCCTCTCATGTGAGCTGT



AATGAAAATGCGAGGGCGTCGCACG
TGTGAAAGTCATCAGCCAGATACCAT



AGTGTTGATGACTCAGCAGGCCTTT
TCTAAAAACAAAGAATGTGCTTCTCG



CTACTTCTGTATGAGTCAGTGCCCA
TATGTTGCATGCTGGTTACTGAAATA



TCACAGCCAAGCCTGGGGCACAACA
TTAGGGAATTACATAAAGGTTTTCTG



GGTTTTCTTAAAAGAGCATGGGGGC
GGGCACATATTCAAGCTGAATGATAA



CTCATCTTCAACAACCAATTAGGAA
AATTGAAGGTCACACAAAGCTAAGGT



GCAGAAAAGTCCTCAGTGAGGAAGG
CTTTCAAATCCTGACCCAATTAGC



AATAATGACATGTTGGAGCTAAGAT
(SEQ ID NO: 44)



(SEQ ID NO: 43)






hGJB2 GRE8
GCCTGACACAGTCTGAGCCTCCTCA
CTGCCTTCCTGGCGTTTAGTGCGATT



GGCGGCCTCAGGGGTTGGGATAGAG
TGTTTAGCCATGTGCTCCCTGGTGTG



TGGAGAATTCAGGCAAGAATGCCAA
TGTTTTTGAATGTGTGTGAGATGGGT



CCCTAGCTCCAGGCCTGGGACCCAC
TGTCTCTCGGGACCTGGCAGGTGCGG



AGGCCTGGGGAAAAGAGTGGTTGCC
CCACCAGGTCAGGGCTGCCCCCCAAC



CCGTCTTGAGACAGCCGAAAACTGT
CCTGTGCCTCCTTCCTCCTAGACTCT



GTCCCCAGGATTGTTGGTTTCATAA
GGCCCCCTCAGTGCTGAGGGTGATAC



AAGCAAGTAGCTAGGGAGGCCACAT
AGAGCACTTTTCAAGCTGGATTTGGA



TTACAGGGGATCACAGAACACTTGG
ATGTGGCCTCTCCCCTCCAAACTCCT



GTAGGGGCTTGCTGTAGGTGTCATC
GGAGATCATGCAAAGGCCTTTGGAGC



AGGGAAGTGGGGGACGGCAGGAGGG
CAGCCAGTCACCTGGAAGGTGACATT



ATGTGGCCCAGTACGCAGATGAAGA
CCCACCAGCTGAGGCCTCACCTTCAG



CAGGTGATCATCCGCTGGGCCACAC
CGGGGGCTGGGCAGCTTTGGAGCCTG



GTGGCAGGGATATGGGCAGAGTGAG
GGGCCAGCCAAGCTCACTCTGCCCAT



CTTGGCTGGCCCCAGGCTCCAAAGC
ATCCCTGCCACGTGTGGCCCAGCGGA



TGCCCAGCCCCCGCTGAAGGTGAGG
TGATCACCTGTCTTCATCTGCGTACT



CCTCAGCTGGTGGGAATGTCACCTT
GGGCCACATCCCTCCTGCCGTCCCCC



CCAGGTGACTGGCTGGCTCCAAAGG
ACTTCCCTGATGACACCTACAGCAAG



CCTTTGCATGATCTCCAGGAGTTTG
CCCCTACCCAAGTGTTCTGTGATCCC



GAGGGGAGAGGCCACATTCCAAATC
CTGTAAATGTGGCCTCCCTAGCTACT



CAGCTTGAAAAGTGCTCTGTATCAC
TGCTTTTATGAAACCAACAATCCTGG



CCTCAGCACTGAGGGGGCCAGAGTC
GGACACAGTTTTCGGCTGTCTCAAGA



TAGGAGGAAGGAGGCACAGGGTTGG
CGGGGCAACCACTCTTTTCCCCAGGC



GGGGCAGCCCTGACCTGGTGGCCGC
CTGTGGGTCCCAGGCCTGGAGCTAGG



ACCTGCCAGGTCCCGAGAGACAACC
GTTGGCATTCTTGCCTGAATTCTCCA



CATCTCACACACATTCAAAAACACA
CTCTATCCCAACCCCTGAGGCCGCCT



CACCAGGGAGCACATGGCTAAACAA
GAGGAGGCTCAGACTGTGTCAGGC



ATCGCACTAAACGCCAGGAAGGCAG
(SEQ ID NO: 60)



(SEQ ID NO: 59)






hGJB2 GRE9
CGCCTCGGCCTCCCAAAGTGCTGGG
TTCTAGGTAGACAACTAAGATGTTCA



ATTACAGGCGTGAGCCACCACCGTG
TCTTATGGTTTAATGTTTAGTTGTAA



CCTGGCTTATACAAGTAATTGTAAA
AGGTTGTTTGCTTCTCATTTGGTTCC



CGAAAAGGAAAAAATGGAGATACAG
AAGAAAGAGTATTTAGGCCAATTTCA



TTTTCTCGTGCATCTTAAACTTTGG
GGGAGAAATATGTGTATAGATATATT



TGCTTAAAAGCACCATTAAATTCTG
CATATGTCAAACTGATTAGTGCTGAA



CTTTCACATGAACACACACAAGATT
TGTCACATTTCCATATTCTAATAACA



ACCACGTTTGCTCTGGGCTGCTGCG
TTTCTAGCAAAGAAGAGGACACAGTG



TATTGGAAGGACATACACATTCAAC
AAGAGAGAATTGCCCGCATTGTCATT



AAATATTTGTTGAACTTCCATTCTG
GTCTCTTTCTGAGCCTAGAACGCCTA



TACACAAAGCACAAAGAAAGATTCG
ACACTTGGGTGTGGAGAGACTCAGCC



TTCACAGTCCGTGTGGGTACTGGAA
TCAATTCACTTTCTAGCAGCCACTGA



AGCAGTTCCAGCCCTGCCTGCCAGG
GATGTGCTTGCCTGGGGTGCCCCCTG



GGGCACCCCAGGCAAGCACATCTCA
GCAGGCAGGGCTGGAACTGCTTTCCA



GTGGCTGCTAGAAAGTGAATTGAGG
GTACCCACACGGACTGTGAACGAATC



CTGAGTCTCTCCACACCCAAGTGTT
TTTCTTTGTGCTTTGTGTACAGAATG



AGGCGTTCTAGGCTCAGAAAGAGAC
GAAGTTCAACAAATATTTGTTGAATG



AATGACAATGCGGGCAATTCTCTCT
TGTATGTCCTTCCAATACGCAGCAGC



TCACTGTGTCCTCTTCTTTGCTAGA
CCAGAGCAAACGTGGTAATCTTGTGT



AATGTTATTAGAATATGGAAATGTG
GTGTTCATGTGAAAGCAGAATTTAAT



ACATTCAGCACTAATCAGTTTGACA
GGTGCTTTTAAGCACCAAAGTTTAAG



TATGAATATATCTATACACATATTT
ATGCACGAGAAAACTGTATCTCCATT



CTCCCTGAAATTGGCCTAAATACTC
TTTTCCTTTTCGTTTACAATTACTTG



TTTCTTGGAACCAAATGAGAAGCAA
TATAAGCCAGGCACGGTGGTGGCTCA



ACAACCTTTACAACTAAACATTAAA
CGCCTGTAATCCCAGCACTTTGGGAG



CCATAAGATGAACATCTTAGTTGTC
GCCGAGGCGGGCGGATCACATGAGGT



TACCTAGA
CGGGAG



(SEQ ID NO: 45)
(SEQ ID NO: 46)









In some embodiments, the GJB2 GRE is a non-human primate (e.g., Cynomolgus macaque) GJB2 enhancer. In some embodiments, the GJB2 GRE (e.g., a Cynomolgus macaque GJB2 enhancer) comprises nucleotide sequence at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to any one of the GRE sequences as listed in Table 4.









TABLE 4







Cynomolgus macaque GJB2 (mfGJB2) Enhancer Sequences










Sense strand
Reverse Complement strand





mfGJB2 GRE1
ATGGCACCAGCTTTTGAAAAAAGAA
CGATCACCCTCTATGTGCCATGGACT



AACCTTTTTGCTGGTAGTCTGGCAA
TATCAGTGAGCAAGACAAAGCCCCTG



GGAGACAGAAAAAAACCACTCACAT
CCCTCATTAATTCCCATCCTGTGTCC



CTGCCTCCCCAGGCTGGGGGCTGGG
TCCTGTGCCATCCCCACCACCCCACC



CCGGATTTTATAAGGATAGGGTAAT
TTGGTCAGGCCCAGTGTCTGGGTGTC



GAGGGGTGGTCTGTTTGGATCTTGC
TTCAACTGCTCACCTGCCCGCTATTT



AATGAGGTGCTGCTGGGAGGTGTGA
TGTTGCCCTGAAGTTCATCCAGACAT



TCTGATTGGATCCTGCCATGGAGTG
CAGGGTGCCCTCTTGAAAATGCTAGT



ATGCCAAAGCTCCATCTGATTGGAT
TACTATGACCTCTCTGCTCTAATCCC



CCTGGATCCTGCCGTGTGTGCTCTG
CATGATGCGGTCCTGTCATCAATGGG



CTTCTTAATGCAACCCCTGCTCCTC
ATAGAGCTGGTGTGACTGCACCAGAC



AGTCTGAGCCCTTAGATTCTGCCCA
CAGTCAGGTTCAATTTTTATGAAAGG



CGGTTGCACGCTTGGTTCACTTTGG
AAGTTGTGAGTTGCTTTTCAGTTGCC



CATGCTCAGGTTACATGACCTTCAG
ATGGACCCCAAGCTGAAGGTCATGTA



CTTGGGGTCCATGGCAACTGAAAAG
ACCTGAGCATGCCAAAGTGAACCAAG



CAACTCACAACTTCCTTTCATAAAA
CGTGCAACCGTGGGCAGAATCTAAGG



ATTGAACCTGACTGGTCTGGTGCAG
GCTCAGACTGAGGAGCAGGGGTTGCA



TCACACCAGCTCTATCCCATTGATG
TTAAGAAGCAGAGCACACACGGCAGG



ACAGGACCGCATCATGGGGATTAGA
ATCCAGGATCCAATCAGATGGAGCTT



GCAGAGAGGTCATAGTAACTAGCAT
TGGCATCACTCCATGGCAGGATCCAA



TTTCAAGAGGGCACCCTGATGTCTG
TCAGATCACACCTCCCAGCAGCACCT



GATGAACTTCAGGGCAACAAAATAG
CATTGCAAGATCCAAACAGACCACCC



CGGGCAGGTGAGCAGTTGAAGACAC
CTCATTACCCTATCCTTATAAAATCC



CCAGACACTGGGCCTGACCAAGGTG
GGCCCAGCCCCCAGCCTGGGGAGGCA



GGGTGGTGGGGATGGCACAGGAGGA
GATGTGAGTGGTTTTTTTCTGTCTCC



CACAGGATGGGAATTAATGAGGGCA
TTGCCAGACTACCAGCAAAAAGGTTT



GGGGCTTTGTCTTGCTCACTGATAA
TCTTTTTTCAAAAGCTGGTGCCAT



GTCCATGGCACATAGAGGGTGATCG
(SEQ ID NO: 85)



(SEQ ID NO: 84)






mfGJB2 GRE2
CCGTTAGGAAAAGAAAAACAGAAGG
TTGCTGGGTGCTATTTCTGTCCTTGT



AATTGTGTTCTCTGGAGGGCAGGGC
CCATCTCCCCACCACAGCATGCACTT



TCTGAGTACTGAGTCTCATGTTTTC
TGGATTCCAAGCATGCTCCTTGAGTG



AAAGTCGGAAAGTGTCCACAGTTAA
TGACCCCGAGGCCCTCTGTGGGCTCT



TATTTGGATGGGCCCACAGTGCCCG
TGGAGCAGGGCAGAGTTGGGTGTGCC



TCTTGCTCGCCGGAGCCCAGGCCTG
AGGGCGCGACACGGGCCGGATGCCCT



TCCCATCACAGACAAAGGGCTCTTG
GAGGTTGTTTGTTGTGCTGGGCTGGA



CTGTGCACCTGTGGAGAGGGGAGCT
GGCGTTGGAAGAAATGTCCAAGGAGG



TGGCTGGGGAAGGCAGGGTCAGCCT
CTGCTAGACTCAGTTCTTTCTTTCTG



CTTTGTGCTCTTTTTGTTTGAAGCA
TTTCCCCTCCAGCTCCTCTGCTGGTA



GAGTTTTGCAAAGGGAGTGGCTCTG
GAAGCTTCATGTCTCCCCGTCTCGTG



GAAGAAAAGCAGAGCGTGGAGTGTC
AGCTGGCAAACACCCCGCTTCCGTGG



AGAGGCCGGCGTGTTGTGAAATGCA
TTCAGTGTTGTCCTTGGCGGCGGGCG



TAAGCCCTGGAGACCCTCTGTAACT
TGTGTGAAGGCCAGTTACAGAGGGTC



GGCCTTCACACACGCCCGCCGCCAA
TCCAGGGCTTATGCATTTCACAACAC



GGACAACACTGAACCACGGAAGCGG
GCCGGCCTCTGACACTCCACGCTCTG



GGTGTTTGCCAGCTCACGAGACGGG
CTTTTCTTCCAGAGCCACTCCCTTTG



GAGACATGAAGCTTCTACCAGCAGA
CAAAACTCTGCTTCAAACAAAAAGAG



GGAGCTGGAGGGGAAACAGAAAGAA
CACAAAGAGGCTGACCCTGCCTTCCC



AGAACTGAGTCTAGCAGCCTCCTTG
CAGCCAAGCTCCCCTCTCCACAGGTG



GACATTTCTTCCAACGCCTCCAGCC
CACAGCAAGAGCCCTTTGTCTGTGAT



CAGCACAACAAACAACCTCAGGGCA
GGGACAGGCCTGGGCTCCGGCGAGCA



TCCGGCCCGTGTCGCGCCCTGGCAC
AGACGGGCACTGTGGGCCCATCCAAA



ACCCAACTCTGCCCTGCTCCAAGAG
TATTAACTGTGGACACTTTCCGACTT



CCCACAGAGGGCCTCGGGGTCACAC
TGAAAACATGAGACTCAGTACTCAGA



TCAAGGAGCATGOTTGGAATCCAAA
GCCCTGCCCTCCAGAGAACACAATTC



GTGCATGCTGTGGTGGGGAGATGGA
CTTCTGTTTTTCTTTTCCTAACGG



CAAGGACAGAAATAGCACCCAGCAA
(SEQ ID NO: 87)



(SEQ ID NO: 86)






mfGJB2 GRE3
AAAAAAGAATCACAATTGCCACCAA
CTGGGATGCCAATCTGAGGAATCCTT



GGCTCTATGTTTTCGCAAAAGTCCA
CCTTTCCTAAGCAAAGGAGAAACAAA



GCATTTAAAAGAAACTTCCTGCATG
ATAATTCTGATGGGGGAGTGACTGAC



GCCTACATCTGCTGATTGGTAATTT
CCCAGTCTGGCTTACCGGCTGCTGTG



GTCGTTCAGGTTAAAAACAAAACAA
AAGTCCTGAGTGTCCTCTGGCAGCCA



GCGGGCATTGTTGTGATATCATCCT
CCTTTGAAAGCGCAGTGGTGTCCGGC



TGATAACATCCCAAGAAAACTCTAG
ACTCGCCACTGAATAGCGTTTGTTCT



AGCTGGCAAGAGAGGAAAGCAGATA
CAGAAGGGAGCCCAGTGGAAAATTTT



ATGGTCAAAGCTGTCATCTGAGTTT
AAGCTGCAGTTAGGAGCCGTGTGTAT



TAAAAACACTGTGATTTTTCTTTTA
GGCCTTGGAAACTGAAGATGTTCCTT



AAGGAACATCTTCAGTTTCCAAGGC
TAAAAGAAAAATCACAGTGTTTTTAA



CATACACACGGCTCCTAACTGCAGC
AACTCAGATGACAGCTTTGACCATTA



TTAAAATTTTCCACTGGGCTCCCTT
TCTGCTTTCCTCTCTTGCCAGCTCTA



CTGAGAACAAACGCTATTCAGTGGC
GAGTTTTCTTGGGATGTTATCAAGGA



GAGTGCCGGACACCACTGCGCTTTC
TGATATCACAACAATGCCCGCTTGTT



AAAGGTGGCTGCCAGAGGACACTCA
TTGTTTTTAACCTGAACGACAAATTA



GGACTTCACAGCAGCCGGTAAGCCA
CCAATCAGCAGATGTAGGCCATGCAG



GACTGGGGTCAGTCACTCCCCCATC
GAAGTTTCTTTTAAATGCTGGACTTT



AGAATTATTTTGTTTCTCCTTTGCT
TGCGAAAACATAGAGCCTTGGTGGCA



TAGGAAAGGAAGGATTCCTCAGATT
ATTGTGATTCTTTTTT



GGCATCCCAG
(SEQ ID NO: 89)



(SEQ ID NO: 88)






mfGJB2GRE4 
ATAATGAGCAACATAAGGTTAAAAT
GCCATTCTGCATTAGGTTTGGTTAAA



AACATTGCAACCCCATGGAAGCAAG
AAAATGAAACTATCGGCTGAGCTGGG



AGAAATGGAAATTATTAATAAATGG
TAAACACTGGTTTTGGTCAAATATGG



ACCACATGTAAGGGAATGCTGTGGT
AATGAGACGGTGCCACGTATTTCCAA



TCTATTGTAGAGATTACAGAGAGCA
TGGGGCTGCTCAGTGACTCGTGAGCG



ATTTAGGAGAGCCAGGCGCTGGGGG
TGTGTGGAATGTGAGTCTGGTCTCCC



CAAGAGGGAAATGAAACGAAAACCG
AGGATACTTCAAAGGTGTACAGGTCC



AAGGGATTTGTTCAGGAAGAAAAAT
CTTTGTCGGTGCCACACGTCCCCGCT



GAAAACAGATAAAAGGTGTTCATTT
CATGGGTATAACATGCCTGGAGATTT



CAAAGCTTCCCTCTTTCCCAGCATT
GCACAGGCAGTTTTCAGGGCTGTCAA



TTTCTGAAGTAGAGTTTGAAAGGAA
GGAGCCAGGTGACCCAGAACGGGAGG



AGCAAAATAACTGCAAACCAATACA
CGGGGCTGGAGATCTCTGGACGTCGT



GTGGCACGAGTTCACTGACGCAGAG
TCCTAGCTCTGCGTCAGTGAACTCGT



CTAGGAACGACGTCCAGAGATCTCC
GCCACTGTATTGGTTTGCAGTTATTT



AGCCCCGCCTCCCGTTCTGGGTCAC
TGCTTTCCTTTCAAACTCTACTTCAG



CTGGCTCCTTGACAGCCCTGAAAAC
AAAAATGCTGGGAAAGAGGGAAGCTT



TGCCTGTGCAAATCTCCAGGCATGT
TGAAATGAACACCTTTTATCTGTTTT



TATACCCATGAGCGGGGACGTGTGG
CATTTTTCTTCCTGAACAAATCCCTT



CACCGACAAAGGGACCTGTACACCT
CGGTTTTCGTTTCATTTCCCTCTTGC



TTGAAGTATCCTGGGAGACCAGACT
CCCCAGCGCCTGGCTCTCCTAAATTG



CACATTCCACACACGCTCACGAGTC
CTCTCTGTAATCTCTACAATAGAACC



ACTGAGCAGCCCCATTGGAAATACG
ACAGCATTCCCTTACATGTGGTCCAT



TGGCACCGTCTCATTCCATATTTGA
TTATTAATAATTTCCATTTCTCTTGC



CCAAAACCAGTGTTTACCCAGCTCA
TTCCATGGGGTTGCAATGTTATTTTA



GCCGATAGTTTCATTTTTTTAACCA
ACCTTATGTTGCTCATTAT



AACCTAATGCAGAATGGC
(SEQ ID NO: 91)



(SEQ ID NO: 90)






mfGJB2 GRE5
CACGTCTTGTAATTTTTTTACTGAA
ACCTTTAAGAAAAATCTGCCAAAAGA



TGTTAGACATTGCATATAAAAGACT
TTTGGAGCTGGATTGGAATTTAGAAG



ATCCAGGAGTGTTTTGTTTTTGTTT
TCCACCAAATGCAAAAATAGTTTGGC



TTTCTAGTGAGTGCAAGTCCCTTGC
TCAACGTCACCCCCATCCGTGATTTT



TCTCTGCCAGTTGGCTGGAATGAGA
ACTGCAAAAGTGGCTGTGGAGGCAAG



ATCTGATCAGATTTCATCAAGAGTC
ACTGGAAAACAGTTAAACAATTTCAT



AGGTTGAGCTGAGACTGAGCGGTAG
AGTGCTTGAATTGTGGAGCCATGTTA



TGTTCACTAAATTGAGTGCACCACT
GATGCAAGGGAAGCCAAAATGATATG



GATATCTAATGGAAACAAGGACATT
AAATCTATGTCTCAACCTGCTTCCAG



TTACTTTGCTCCTCAGCCTAACCTG
CTCACACATTAGGAGAACCAAAGAAA



AATTTCCTATGCCACCACTGTATAA
CCAGCCATTATACAGTGGTGGCATAG



TGGCTGGTTTCTTTGGTTCTCCTAA
GAAATTCAGGTTAGGCTGAGGAGCAA



TGTGTGAGCTGGAAGCAGGTTGAGA
AGTAAAATGTCCTTGTTTCCATTAGA



CATAGATTTCATATCATTTTGGCTT
TATCAGTGGTGCACTCAATTTAGTGA



CCCTTGCATCTAACATGGCTCCACA
ACACTACCGCTCAGTCTCAGCTCAAC



ATTCAAGCACTATGAAATTGTTTAA
CTGACTCTTGATGAAATCTGATCAGA



CTGTTTTCCAGTCTTGCCTCCACAG
TTCTCATTCCAGCCAACTGGCAGAGA



CCACTTTTGCAGTAAAATCACGGAT
GCAAGGGACTTGCACTCACTAGAAAA



GGGGGTGACGTTGAGCCAAACTATT
AACAAAAACAAAACACTCCTGGATAG



TTTGCATTTGGTGGACTTCTAAATT
TCTTTTATATGCAATGTCTAACATTC



CCAATCCAGCTCCAAATCTTTTGGC
AGTAAAAAAATTACAAGACGTG



AGATTTTTCTTAAAGGT
(SEQ ID NO: 93)



(SEQ ID NO: 92)






mfGJB2 GRE6
CGGCAGAGACCTACAGACCAAAGTA
TTGCAAAGCCTCTCTTTGGGGATCGG



CATTTCACACTGGATCCAGGACACA
ACATGGAGTCTGTGGTCTTAGAATTC



CATCAGTCTGAAAGCACACACATGA
AGAACTGGGATAATGTGTTAGCCACT



ACCAAACGTTTCCTAAAGCATTACT
CATCTAAGCCATTCCTTAAACGCTTT



TACCCTTGCTAATAGCAACACATTC
CAGAGCCATCTCCACTGTGGGGAAAG



TCATATTCTTTTATACTTCATTTAA
AAGTTCTTTGTGTTCTCTCATTTAGT



TTTCATTTAAAAAAGAAAAAGATAG
CTCATTCTAAAAAAAAAAAAAAAAAA



GAAAGAAATCTATTTCTCCGCCCAT
AAAAAAGGCTATTGCAGTACCCAGAG



TAATAAGGTCAGACGCAGCAACGCT
CGCACAGTAGATGGCACTGACACTTG



AGACTAGAAGAAAAGTTTACCTACT
TCGGAAAGCTGTGCGCACTCAGGAGG



GATTTTTCTCCCACCTCCTGAGTGC
TGGGAGAAAAATCAGTAGGTAAACTT



GCACAGCTTTCCGACAAGTGTCAGT
TTCTTCTAGTCTAGCGTTGCTGCGTC



GCCATCTACTGTGCGCTCTGGGTAC
TGACCTTATTAATGGGCGGAGAAATA



TGCAATAGCCTTTTTTTTTTTTTTT
GATTTCTTTCCTATCTTTTTCTTTTT



TTTTTTTTTAGAATGAGACTAAATG
TAAATGAAATTAAATGAAGTATAAAA



AGAGAACACAAAGAACTTCTTTCCC
GAATATGAGAATGTGTTGCTATTAGC



CACAGTGGAGATGGCTCTGAAAGCG
AAGGGTAAGTAATGCTTTAGGAAACG



TTTAAGGAATGGCTTAGATGAGTGG
TTTGGTTCATGTGTGTGCTTTCAGAC



CTAACACATTATCCCAGTTCTGAAT
TGATGTGTGTCCTGGATCCAGTGTGA



TCTAAGACCACAGACTCCATGTCCG
AATGTACTTTGGTCTGTAGGTCTCTG



ATCCCCAAAGAGAGGCTTTGCAA
CCG



(SEQ ID NO: 94)
(SEQ ID NO: 95)





mfGJB2 GRE7
GGTGTGTATATCAGGTGGTTACTTT
TGTATGCTTGTGTGAATTTTTGTTTT



ACAAAACAGGATGTGGCAAGCTGGA
TAACTTTTTGTGAGTGCCCTAACAAA



CCTGATAGACACATCAAAGCCTCTG
GACTACACATTGGGAATACAAACACC



AACAGAGTTCAGGGCATGAAATGGT
AGAGCAATGGAAACAGTGACACTTTT



TTCTTTTGGGGGTCTTCAGGAACAA
GTGGAAGGTCCACGTGGCCGTTCAGG



TTTCATGAAAGCTAAATCATGAAAG
TGGTTGTAACACAGGCTGGCGCCCCT



ATAGCAGACTTTTGCCAGGAAAAAA
GCCCTGCAGTGGGAATCCCCAAGGCA



AAACAAAACAAAACGAGACTAGTGA
TTGGGGGATTCAGCCTCTCGCAGTGA



TTAGTTTGGCGTTTTCGGTTTCTTT
CCTCTTGTAAGACAGCAGATGGCAGC



GAGAAGCGAAATAACTTATCAAGGA
AGAGAGAGGCTTTGCACATCCCTGCA



CTCTTTGTGCCGCTTGATGTTCTAA
GGTTCTAGTTTGCAGAAAGGGCTTCT



TCGGTTGATGGGTCTCTCAGAAGCC
GAGAGACCCATCAACCGATTAGAACA



CTTTCTGCAAACTAGAACCTGCAGG
TCAAGCGGCACAAAGAGTCCTTGATA



GATGTGCAAAGCCTCTCTCTGCTGC
AGTTATTTCGCTTCTCAAAGAAACCG



CATCTGCTGTCTTACAAGAGGTCAC
AAAACGCCAAACTAATCACTAGTCTC



TGCGAGAGGCTGAATCCCCCAATGC
GTTTTGTTTTGTTTTTTTTTCCTGGC



CTTGGGGATTCCCACTGCAGGGCAG
AAAAGTCTGCTATCTTTCATGATTTA



GGGCGCCAGCCTGTGTTACAACCAC
GCTTTCATGAAATTGTTCCTGAAGAC



CTGAACGGCCACGTGGACCTTCCAC
CCCCAAAAGAAACCATTTCATGCCCT



AAAAGTGTCACTGTTTCCATTGCTC
GAACTCTGTTCAGAGGCTTTGATGTG



TGGTGTTTGTATTCCCAATGTGTAG
TCTATCAGGTCCAGCTTGCCACATCC



TCTTTGTTAGGGCACTCACAAAAAG
TGTTTTGTAAAGTAACCACCTGATAT



TTAAAAACAAAAATTCACACAAGCA
ACACACC



TACA
(SEQ ID NO: 97)



(SEQ ID NO: 96)






mfGJB2 GRE8
GGTCAGGATTTGAAAGACCTTAGCT
CACCATCATCTTAGCTCCAACATGTC



TTGTGTGACCTTCAGTTTTATCATT
ATTATTCCTTCCTCACTGAGGACTTT



CAGTTTGAATATGTGCCCCAGAAAA
TCTGCCTCCTAATTGGTTGTTGAAGA



CCTTTATGTAATTTCCTAATATTTC
CGAGGCCCCCATGCTCTTTTAAGAAA



AGTAACATATTTCACAACATACAAG
ACCTGTTCTGCCCCAGGCTTGGCTGC



CAGCACATTCTCTTTTTTTAGAATG
GACGGGTACTGACTCATAGAGAAGTA



GTGTCTCGCTGATGACTTTGACGAC
GAAAGGCCTGCTGAATCATCAACACT



AGCTCACGTGAGAGGGAAGTATTTC
CCCGCGACGCCCCTGCATTTTCATTA



AGCAATCAGACCGAAGGAGAATCCA
ATGACGGCCTCCCTGCTACACGTGAA



AAAACCCCACTATTGCGGGGTCAAG
TCACTCCAGCCTGAGATCTGAAACCC



AGTGCACGTGTTTGAATTCTGAAAG
GGGCACACCCCAGGGGCGAGGTGACA



ATGTAAGCCAAGGCAAACAGAAGGA
CTGAGTGAGCCCAGCTGTGTCCCCTT



AATGATCTTCCACTAATCCCTGCAT
CAGGAGAAGTCAGAGCACAGGGCTCT



TTACTTCCTCCTCTCTGGAGGGGAC
GTGTGTGTGGCCGTCCCCTCCAGAGA



GGCCACACACACAGAGCCCTGTGCT
GGAGGAAGTAAATGCAGGGATTAGTG



CTGACTTCTCCTGAAGGGGACACAG
GAAGATCATTTCCTTCTGTTTGCCTT



CTGGGCTCACTCAGTGTCACCTCGC
GGCTTACATCTTTCAGAATTCAAACA



CCCTGGGGTGTGCCCGGGTTTCAGA
CGTGCACTCTTGACCCCGCAATAGTG



TCTCAGGCTGGAGTGATTCACGTGT
GGGTTTTTGGATTCTCCTTCGGTCTG



AGCAGGGAGGCCGTCATTAATGAAA
ATTGCTGAAATACTTCCCTCTCACGT



ATGCAGGGGCGTCGCGGGAGTGTTG
GAGCTGTCGTCAAAGTCATCAGCGAG



ATGATTCAGCAGGCCTTTCTACTTC
ACACCATTCTAAAAAAAGAGAATGTG



TCTATGAGTCAGTACCCGTCGCAGC
CTGCTTGTATGTTGTGAAATATGTTA



CAAGCCTGGGGCAGAACAGGTTTTC
CTGAAATATTAGGAAATTACATAAAG



TTAAAAGAGCATGGGGGCCTCGTCT
GTTTTCTGGGGCACATATTCAAACTG



TCAACAACCAATTAGGAGGCAGAAA
AATGATAAAACTGAAGGTCACACAAA



AGTCCTCAGTGAGGAAGGAATAATG
GCTAAGGTCTTTCAAATCCTGACC



ACATGTTGGAGCTAAGATGATGGTG
(SEQ ID NO: 99)



(SEQ ID NO: 98)






mfGJB2 GRE9
GTTTTTTCATGCATCTTAAACTTTG
GTTTCCTTCTCATTTGGTTTCAAGGA



GTGCTTAAAGAAAAGCACCATTAAA
AGACAGTGTTTAGGACAATTTCAGGG



TCCTGCTCTCACACGAACACACACA
AGAAATATGTGTCTATGTAGATATAC



AGATTACCACGTTTGCTCTGGGCTG
TCATATGTCAAACTGATTAGTGCTGA



CCGCGTATAGGAAGGACATATACAT
ATTCTCAATCGACGGGTCACATTTCC



TCAATAAATATTTGTTGAACTTCCA
ACATTCTAATAACATTTCTAGCAAAG



TTCTGTACACAAAGCACAAAGAAAG
AAAGGGACACAGTGAAGAGAGAATTG



ATTCGTTCACAGTCCGCGTGGGTAC
CCCGCATTGTCATTGTCTCTCTTTGA



AGGAAAGCAGTTCCAGCCCTGCCTG
GCCTAGAACACCTAACACTTGGGTAT



CCAGGGGGCACCCCAGGCAAGCACA
AGAGAGAGACTCAGCCTCAACTCGCT



TCTCAGTGGCTGCAAGAAAGTCAGC
GACTTTCTTGCAGCCACTGAGATGTG



GAGTTGAGGCTGAGTCTCTCTCTAT
CTTGCCTGGGGTGCCCCCTGGCAGGC



ACCCAAGTGTTAGGTGTTCTAGGCT
AGGGCTGGAACTGCTTTCCTGTACCC



CAAAGAGAGACAATGACAATGCGGG
ACGCGGACTGTGAACGAATCTTTCTT



CAATTCTCTCTTCACTGTGTCCCTT
TGTGCTTTGTGTACAGAATGGAAGTT



TCTTTGCTAGAAATGTTATTAGAAT
CAACAAATATTTATTGAATGTATATG



GTGGAAATGTGACCCGTCGATTGAG
TCCTTCCTATACGCGGCAGCCCAGAG



AATTCAGCACTAATCAGTTTGACAT
CAAACGTGGTAATCTTGTGTGTGTTC



ATGAGTATATCTACATAGACACATA
GTGTGAGAGCAGGATTTAATGGTGCT



TTTCTCCCTGAAATTGTCCTAAACA
TTTCTTTAAGCACCAAAGTTTAAGAT



CTGTCTTCCTTGAAACCAAATGAGA
GCATGAAAAAAC



AGGAAAC
(SEQ ID NO: 101)



(SEQ ID NO: 100)









In some embodiments, the human GJB2 GREs share homology with the mfGJB2 GREs. In some embodiments, the human GJB2 GREs correspond to mfGJB2 GREs as set forth in Table 5:









TABLE 5





Homology between Human GJB2 GREs and mfGJB2 GREs


















hGJB2 GRE9
mfGJB2 GRE9



hGJB2 GRE7
mfGJB2 GRE8



hGJB2 GRE5
mfGJB2 GRE7



hGJB2 GRE3
mfGJB2 GRE6



hGJB2 GRE2
mfGJB2 GRE5










In some embodiments, the isolated nucleic acid comprises one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 9, or more) enhancers (e.g., GJB2 enhancers). In some embodiments, the isolated nucleic acid comprises more than one enhancer, and the more than one enhancer are the same enhancers or different enhancers. In some embodiments, the GJB2 GRE is positioned 5′ to the promoter. In other embodiments, the GJB2 GRE is positioned 3′ to the promoter. In some embodiments, the presence of the GJB2 enhancer(s) in the isolated nucleic acid facilitates cell-type specific expression of the GJB2 protein encoded by the isolated nucleic acid. In some embodiments, cells that normally express the GJB2 gene (e.g., fibrocytes and supporting cells of the organ of Corti and nearby regions) have the transcriptional network to activate GJB2 expression regulated by the GJB2 enhancers, but not in cells that do not normally express GJB2 (e.g., hair cells and spiral ganglion neurons).


In some embodiments, the expression cassette of the isolated nucleic acid further comprises a 5′ UTR. In some embodiments, the 5′ UTR is a native 5′ UTR of the genomic GJB2 gene. The 5′ untranslated region (5′ UTR) (also known as a leader sequence or leader RNA) is the region of an mRNA that is directly upstream of the initiation codon. The 5′ UTR plays important roles in both transcriptional and translational regulation of the downstream gene (e.g., the GJB2 gene). In some embodiments, the isolated nucleic acid comprising a nucleotide sequence encoding a GJB2 5′ UTR is also capable of expression GJB2 in a cell-specific manner (e.g., expressing GJB2 in cells that normally express it). In some embodiments, the nucleotide sequence encoding the GJB2 5′ UTR comprises a portion of a nucleotide sequence encoding a full-length human GJB2 gene 5′ UTR. In some embodiments, the 5′ UTR is a human GJB2 gene exon 1 5′ UTR. In some embodiments, the nucleotide sequence encoding a 5′ UTR comprises at least 100 consecutive nucleotides, at least 200 consecutive nucleotides, at least 300 consecutive nucleotides, at least 400 consecutive nucleotides, at least 500 consecutive nucleotides, at least 600 consecutive nucleotides, at least 700 consecutive nucleotides, at least 800 consecutive nucleotides, at least 900 consecutive nucleotides, at least 1000 consecutive nucleotides, or more of a native full-length 5′ UTR (e.g., the human GJB2 gene exon 1 5′ UTR). In some embodiments, the expression cassette comprises a nucleotide sequence encoding the 5′ UTR having at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to a nucleotide sequence encoding a human GJB2 gene 5′ UTR (e.g., human GJB2 exon 1 5′ UTR). In some embodiments, the expression cassette comprises a nucleotide sequence encoding the 5′ UTR having at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to a nucleotide sequence encoding a consecutive 300 bp of a human GJB2 gene 5′ UTR (e.g., the human GJB2 gene exon 1 5′ UTR) as set forth in SEQ ID NO: 53. In some embodiments, an exemplary nucleotide sequence encoding the 300 bp of the human GJB2 gene exon 1 5′ UTR has a nucleotide sequence as set forth in SEQ ID NO: 53:









GGGGTGCGGTTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGC





AGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCCGG





CCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGC





CGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAAC





CGCCCAGAGTAG






In some embodiments, the cell specific GJB2 expression is achieved by incorporation of a nucleotide sequence encoding a basal promoter and a GJB2 5′ UTR or a portion thereof (basal promoter/5′ UTR). In some embodiments, an expression cassette (e.g., GJB2 expression cassette) comprises a nucleotide sequence encoding a 5′ UTR. In some embodiments, the isolated nucleic acid can further comprise additional nucleotide sequence encoding one or more GJB2 GREs (e.g., GJB2 enhancers). The nucleotide sequence encoding the GJB2 GREs and the nucleotide sequence encoding the basal promoter/5′ UTR can be placed in any order. In some embodiments, the nucleotide sequence encoding the GJB2 GREs is placed 5′ to the nucleotide sequence encoding the basal promoter/5′ UTR. In some embodiments, the isolated nucleic acid comprising a nucleotide sequence encoding a GJB2 basal promoter/5′ UTR is also capable of expressing GJB2 in a cell-specific manner (e.g., expressing GJB2 in cells that normally express it). In some embodiments, the nucleotide sequence encoding the basal promoter/5′ UTR comprises a portion of a nucleotide sequence encoding a full-length human GJB2 gene 5′ UTR. In some embodiments, the 5′ UTR comprises at least 100 consecutive nucleotides, at least 200 consecutive nucleotides, at least 300 consecutive nucleotides, at least 400 consecutive nucleotides, at least 500 consecutive nucleotides, at least 600 consecutive nucleotides, at least 700 consecutive nucleotides, at least 800 consecutive nucleotides, at least 900 consecutive nucleotides, at least 1000 consecutive nucleotides, or more of a native full-length 5′ UTR (e.g., the GJB2 5′ UTR). In some embodiments, the 5′ UTR is a human GJB2 gene exon 1 5′ UTR. In some embodiments, the expression cassette comprises a nucleotide sequence encoding a basal promoter/5′ UTR having at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to a nucleotide sequence encoding the basal promoter and about 300 bp of a human GJB2 gene 5′ UTR (e.g., the human GJB2 gene exon 1 5′ UTR) (SEQ ID NO: 30). In some embodiments, an exemplary nucleotide sequence encoding the 300 bp of the human GJB2 gene basal promoter/exon 1 5′ UTR has a nucleotide sequence as set forth in SEQ ID NO: 30:










GGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCGGGAAGCTC







TGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCCGT







AACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAA






GGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTC





CTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTA





GGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCCGCCCC





GGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTAG






In some embodiments, a nucleotide sequence encoding a basal promoter/5′ UTR (e.g., a human GJB2 basal promoter/exon 1 5′ UTR) within the expression cassette (e.g., GJB2 expression cassette) further comprises an intron or a portion thereof. In some embodiments, the expression cassette of the isolated nucleic acid (e.g., GJB2 expression cassette) further comprises a conserved sequence of intron 1 of the GJB2 gene. In some embodiments, the nucleotide sequence encoding an intron (e.g., human GJB2 intron 1) has at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 54. An exemplary nucleotide sequence encoding the conserved sequence of GJB2 intron 1 is set forth in SEQ ID NO: 54:









AAGCAGGTGAGTTTGTGGTGTCGCCGATGTCCCTTCGGGGTACTCTAGCG





CAGCCGCCTGGCTACTTGACCCACTGCCACCAAACGTTTTAAATTCACCG





AAAGCTTAGCTTCGAAGCAAAGCTCCGTTTCGCCGGTGAAGCAGGAAGCC





TTCGCTGCAGGAACTGACCTTTACCTCTTGGAGCGGCTTCTGCAGAAAAA





TCCCCGGGCAGAGATTTGGGCGGAGTTTGCCTAGAACTAACGCGGAGCCA





GCCGATCCCGGCCTACCCCGGGGCCAAGATTTTAAGGGGTGAAGAGTCCC





TTTTGCCTTTTCTGGATCCTGGTGATTCACCTAGTGTCTTCCCTAAGGAA





CTGAACCAACTCCTCCGCTGGCCTCTGGCAGCCCTCCAGGCGGTGCAGGA





TGGCGTGGGCCCGGTAGGAAGCTGCATGTAACCGCCCAGGGTCGGGAGGC





CAGGAGGGCAGCTCCTCCTCTGACTTGAATATTGAAAACAAGAGGATGCT





TTTAAGAAAAAGAAGAAGGAGGATTCACTACCAGCTCTGAAGGGTGGAAA





AGAGATGATTCATCCGGATTGTGGAGAGGGTGGAATCTTGTTTAGGAGAG





CGTTGGTTGTGGCAGGCAGGGTGTAACTATGAATCAGTGAAGACAATTCA





CATCCTGGGATGAAAAGAAGGCCATGGGCTCACAGGAGATTATCCACTGG





CCTCTCCACATCCGCTTGCAGTAAGGAGTGTGGGACTCTCCCAAGCTTCA





GCGCTGAACTGCAATGCAGTGACGTCGCTTAAGA






In some embodiments, the nucleotide sequence encoding a basal promoter/5′ UTR/intron has at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 31. An exemplary nucleotide sequence encoding human GJB2 basal promoter/5′UTR/conserved sequence of intron 1 is set forth in SEQ ID NO: 31:










GGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCGGGAAGCTC







TGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCCGT







AACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGT
GGGGTGCGGTTAAAA







GGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTC







CTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTA







GGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCCGCCCC







GGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTAGAAG






CAGGTGAGTTTGTGGTGTCGCCGATGTCCCTTCGGGGTACTCTAGCGCAG





CCGCCTGGCTACTTGACCCACTGCCACCAAACGTTTTAAATTCACCGAAA





GCTTAGCTTCGAAGCAAAGCTCCGTTTCGCCGGTGAAGCAGGAAGCCTTC





GCTGCAGGAACTGACCTTTACCTCTTGGAGCGGCTTCTGCAGAAAAATCC





CCGGGCAGAGATTTGGGCGGAGTTTGCCTAGAACTAACGCGGAGCCAGCC





GATCCCGGCCTACCCCGGGGCCAAGATTTTAAGGGGTGAAGAGTCCCTTT





TGCCTTTTCTGGATCCTGGTGATTCACCTAGTGTCTTCCCTAAGGAACTG





AACCAACTCCTCCGCTGGCCTCTGGCAGCCCTCCAGGCGGTGCAGGATGG





CGTGGGCCCGGTAGGAAGCTGCATGTAACCGCCCAGGGTCGGGAGGCCAG





GAGGGCAGCTCCTCCTCTGACTTGAATATTGAAAACAAGAGGATGCTTTT





AAGAAAAAGAAGAAGGAGGATTCACTACCAGCTCTGAAGGGTGGAAAAGA





GATGATTCATCCGGATTGTGGAGAGGGTGGAATCTTGTTTAGGAGAGCGT





TGGTTGTGGCAGGCAGGGTGTAACTATGAATCAGTGAAGACAATTCACAT





CCTGGGATGAAAAGAAGGCCATGGGCTCACAGGAGATTATCCACTGGCCT





CTCCACATCCGCTTGCAGTAAGGAGTGTGGGACTCTCCCAAGCTTCAGCG





CTGAACTGCAATGCAGTGACGTCGCTTAAGA






In some embodiments, the expression cassette (e.g., GJB2 expression cassette) comprises a nucleotide sequence encoding a proximal promoter of the human GJB2 gene. In some embodiments, the proximal promoter of the human GJB2 gene has at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the nucleotide sequence set forth in SEQ ID NO: 102. In some embodiments, an exemplary nucleotide sequence encoding the human GJB2 gene proximal promoter has a nucleotide sequence as set forth in SEQ ID NO: 102. In some embodiments, the expression cassette (e.g., GJB2 expression cassette) comprises SEQ ID NO: 102:









GACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGG





TTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCC





CGCGGCGCCGCCCCCTCCGT






In some embodiments, the expression cassette (e.g., GJB2 expression cassette) comprises a nucleotide sequence encoding a 5′ UTR of the human GJB2 gene. In some embodiments, the 5′ UTR of the human GJB2 gene has at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the nucleotide sequence set forth in SEQ ID NO: 103 or CC. In some embodiments, an exemplary nucleotide sequence encoding the human GJB2 gene 5′ UTR has a nucleotide sequence as set forth in SEQ ID NO: 103 or CC. In some embodiments, an exemplary nucleotide sequence encoding the human GJB2 gene 5′ UTR has a nucleotide sequence comprising SEQ ID NO: 103 and SEQ ID NO: 104. In some embodiments, the expression cassette (e.g., GJB2 expression cassette) comprises SEQ ID NO: 103:









AACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAA





GGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTC





CTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTA





GGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCCGCCCC





GGCCCCGCCGCGCTTCCTCCCGACGCAG






In some embodiments, the expression cassette (e.g., GJB2 expression cassette) comprises SEQ ID NO: 104:











AGCAAACCGCCCAGAGTAGAAG






In some embodiments, the expression cassette (e.g., GJB2 expression cassette) comprises a nucleotide sequence encoding a proximal promoter and a 5′ UTR of the human GJB2 gene. In some embodiments, the proximal promoter and the 5′ UTR of the human GJB2 gene has at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the nucleotide sequence set forth in SEQ ID NO: 105. In some embodiments, an exemplary nucleotide sequence encoding the human GJB2 gene proximal promoter and 5′ UTR has a nucleotide sequence as set forth in SEQ ID NO: 105. In some embodiments, the expression cassette (e.g., GJB2 expression cassette) comprises SEQ ID NO: 105:









GACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGG





TTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCC





CGCGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGG





GGTGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCGGC





CCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGGCG





CCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCC





AACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAG





CAAACCGCCCAGAGTAGAAG






An isolated nucleic acid described herein may also contain an artificial intron, desirably located between the promoter/enhancer sequence and the protein coding sequence (e.g., nucleotide sequence encoding GJB2 protein). In some embodiments, an intron is a synthetic or artificial (e.g., heterologous) intron. Examples of synthetic introns include an intron sequence derived from SV-40 (referred to as the SV-40 T intron sequence) and intron sequences derived from chicken beta-actin gene. In some embodiments, a transgene described by the disclosure comprises one or more (1, 2, 3, 4, 5, or more) artificial introns. In some embodiments, the one or more artificial introns are positioned between a promoter and a nucleotide sequence encoding the GJB2 protein.


In some embodiments, the expression cassette (e.g., the GJB2) further comprises a nucleotide sequence encoding a 3′ UTR located 3′ of the nucleotide sequence encoding the GJB2 protein. In some embodiments, the 3′ UTR is a GJB2 gene 3′ UTR. In some embodiments, the 3′UTR is a GJB2 gene exon 2 3′ UTR. In some embodiments, the nucleotide sequence encoding the 3′ UTR has at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 32. An exemplary nucleotide sequence encoding GJB2 gene exon 2 3′ UTR is set forth in SEQ ID NO: 32:









CGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAG





GCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACA





AAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGT





GAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACA





AAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCC





ACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATT





TTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAA





AAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGG





TTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCAT





TTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCTT





AAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTA





TTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAG





AGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTA





ATTTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAG





GCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTGTAGCCT





CAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAA





ATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGAC





TGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATC





TCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAA





AGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATGGGGAGGAC





AAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGA





AAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCA





AAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATAT





AGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGA





GCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATG





GTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCC





TGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGC





TTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACAT





TTAAAACATTAAAATATAATCTCTATAATAA






In some embodiments, the expression cassette of the isolated nucleic acid comprises a de-targeting agent that restricts or reduces the transgene expression (e.g., GJB2 expression) in a cell type (e.g., hair cell or spiral ganglion neurons). In some embodiments, incorporation of one or more miRNA binding sites into an expression allows for de-targeting of transgene expression in a cell-type specific manner (e.g., in hair cell or spiral ganglion neurons). In some embodiments, one or more miRNA binding sites are positioned in the 3′ UTR (e.g., GJB2 exon 2 3′ UTR of the expression cassette of the isolated nucleic acid).


In some embodiments, an expression cassette comprises one or more (e.g., 1, 2, 3, 4, 5, or more) miRNA binding sites that de-target expression of GJB2 from cells that do not normally express GJB2 (e.g., hair cell or spiral ganglion neurons). In some embodiments, the expression cassette of the isolated nucleic acid comprises one or more miR binding sites for detargeting neuron cells (e.g., spiral ganglion neurons), e.g., binding sites for neuron enriched miRs as described in Jovičić et al., Comprehensive Expression Analyses of Neural Cell-Type-Specific miRNAs Identify New Determinants of the Specification and Maintenance of Neuronal Phenotypes, J Neurosci. 2013 Mar. 20; 33(12): 5127-5137, which is incorporated herein by reference. Non-limiting examples of neuron enriched miRs include miR-124, miR-127, miR-129, miR-129*, miR-136, miR-136*, miR-137, miR-154, miR-300-3p, miR-323, miR-329, miR-341, miR-369-5p, miR-376a, miR-376b-3p, miR-376c, miR-379, miR-382, miR-382*, miR-410, miR-411, miR-433, miR-434, miR-495, miR-541, miR-543*, miR-551b, miR-143, miR-449a, miR-219-2-3p, miR-126, miR-126*, miR-141, miR-142-3p, miR-142-5p, miR-146a, miR-150, miR-200c, or miR-223. In some embodiments, the expression cassette of the isolated nucleic acid comprises one or more miR binding sites for detargeting hair cells (e.g., inner or outer hair cell), e.g., binding sites for hair cell enriched miRs as described in Li et al., MicroRNAs in hair cell development and deafness, Curr Opin Otolaryngol Head Neck Surg. 2010 October; 18(5): 459-465, which is incorporated herein by reference. Non-limiting examples of neuron enriched miRs include miR-96, miR-182, miR-183, miR-18a, or miR-99a. In some embodiments, the GJB2 exon 2 3′ UTR of the expression cassette comprises one or more miR binding sites for detargeting neuron cells and hair cells. In some embodiments, the GJB2 exon 2 3′ UTR of the expression cassette comprises one or more miR binding sites for miR-124.


Aspects of the disclosure relate to gene therapy vectors comprising an isolated nucleic acid as described herein. A gene therapy vector may be a viral vector (e.g., a lentiviral vector, an adeno-associated virus vector, an adenoviral (Ad) vector, etc.), a plasmid, a closed-ended DNA (e.g., ceDNA), a lipid/DNA nanoparticle, etc. In some embodiments, a gene therapy vector is a viral vector. In some embodiments, an expression cassette encoding a protein (e.g., GJB2 protein) is flanked by one or more viral replication sequences, for example, lentiviral long terminal repeats (LTRs) or adeno-associated virus (AAV) inverted terminal repeats (ITRs).


The isolated nucleic acids of the disclosure may be recombinant adeno-associated virus (AAV) vectors (rAAV vectors). In some embodiments, an isolated nucleic acid as described by the disclosure comprises two adeno-associated virus (AAV) inverted terminal repeat (ITR) sequences, or variants thereof. The isolated nucleic acid (e.g., the recombinant AAV vector) may be packaged into a capsid protein and administered to a subject and/or delivered to a selected target cell. “Recombinant AAV (rAAV) vectors” are typically composed of, at a minimum, an expression cassette (e.g., expression cassette for GJB2), and 5′ and 3′ AAV inverted terminal repeats (ITRs). The isolated nucleic acids may also comprise a region encoding, for example, 5′ and 3′ untranslated regions (UTRs), and/or an expression control sequence (e.g., a poly-A tail).


Generally, ITR sequences are about 145 bp in length. Preferably, substantially the entire sequence encoding the ITR is used in the isolated nucleic acid, although some degree of minor modification of these sequences is permissible. The ability to modify these ITR sequences is within the skill of one in the art. (See, e.g., texts such as Sambrook et al., Molecular Cloning. A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory, New York (1989); and K. Fisher et al., J Virol., 70:520 532 (1996)). An example of such a molecule employed in the present invention is an isolated nucleic acid comprising an expression cassette encoding a GJB2 protein, in which the expression cassette comprising the nucleotide sequences GJB2 protein and GJB2 gene regulatory elements (GREs) are flanked by the 5′ and 3′ AAV ITR sequences. The AAV ITR sequences may be obtained from any known AAV, including presently identified mammalian AAV types. In some embodiments, the isolated nucleic acid (e.g., the rAAV vector) comprises at least one ITR having a serotype selected from AAV1, AAV2, AAV5, AAV6, AAV6.2, AAV7, AAV8, AAV9, AAV10, AAV11, and variants thereof. In some embodiments, the isolated nucleic acid comprises a region (e.g., a first region) encoding an AAV2 ITR.


In some embodiments, the isolated nucleic acid further comprises a region (e.g., a second region, a third region, a fourth region, etc.) comprising a second AAV ITR. In some embodiments, the second AAV ITR has a serotype selected from AAV1, AAV2, AAV5, AAV6, AAV6.2, AAV7, AAV8, AAV9, AAV10, AAV11, and variants thereof. In some embodiments, the second AAV ITR is an AAV2 ITR. In some embodiments, the second ITR is a mutant ITR that lacks a functional terminal resolution site (TRS). The term “lacking a terminal resolution site” can refer to an AAV ITR that comprises a mutation (e.g., a sense mutation such as a non-synonymous mutation, or missense mutation) that abrogates the function of the terminal resolution site (TRS) of the ITR, or to a truncated AAV ITR that lacks a nucleic acid sequence encoding a functional TRS (e.g., a ATRS ITR, or AITR). Without wishing to be bound by any particular theory, an rAAV vector comprising an ITR lacking a functional TRS produces a self-complementary rAAV vector, for example, as described by McCarthy (2008) Molecular Therapy 16(10):1648-1656. In some embodiments, the isolated nucleic acid comprises a 5′ AAV2 ITR and a 3′ AAV2 ITR.


An exemplary 5′ AAV2 ITR nucleotide sequence is set forth in SEQ ID NO: 34:









TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACC





AAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGC





GAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTAGAT






An exemplary 5′ ITR nucleotide sequence is set forth in SEQ ID NO: 106:









CTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCG





GGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGG





GAGTGGCCAACTCCATCACTAGGGGTTCCT






exemplary 3′ AAV2 ITR nucleotide sequence is set forth in SEQ ID NO: 35:









CCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCAC





TGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGG





CCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCA






An exemplary 3′ ITR nucleotide sequence is set forth in SEQ ID NO: 107:









AGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCG





CTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCG





GGCGGCCTCAGTGAGCGAGCGAGCGCGCAG






In some embodiments, the isolated nucleic acid (e.g., rAAV vector) described herein comprises a 5′ ITR sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 34 or 106.


In some embodiments, the isolated nucleic acid (e.g., rAAV vector) described herein comprises a 3′ ITR sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 35 or 107.


In some embodiments, the isolated nucleic acid (e.g., rAAV vector) described herein comprises a posttranscriptional response element. As used herein, the term “posttranscriptional response element” refers to a nucleic acid sequence that, when transcribed, adopts a tertiary structure that enhances expression of a gene. Examples of posttranscriptional regulatory elements include, but are not limited to, woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), mouse RNA transport element (RTE), constitutive transport element (CTE) of the simian retrovirus type 1 (SRV-1), the CTE from the Mason-Pfizer monkey virus (MPMV), and the 5′ untranslated region of the human heat shock protein 70 (Hsp70 5′ UTR). In some embodiments, the isolated nucleic acid (e.g., rAAV vector) comprises a woodchuck hepatitis virus posttranscriptional regulatory element (WPRE).


In some embodiments, the isolated nucleic acid (e.g., rAAV vector) described herein comprises a posttranscriptional response element having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 108. An exemplary posttranscriptional response element is set forth in SEQ ID NO: 108:









GATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCT





TAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTT





TGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTAT





AAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCA





ACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGG





GCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTC





CCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGAC





AGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAAT





CATCGTCCTTTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGC





GGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCC





TTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTC





GCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCATCGGACT





AG






In some embodiments, the vector further comprises conventional control elements which are operably linked with elements of the GJB2 coding sequence in a manner that permits its transcription, translation, and/or expression in a cell transfected with the vector or infected with the virus produced by the disclosure. Expression control sequences include appropriate transcription initiation, termination; efficient RNA processing signals, such as splicing and polyadenylation (polyA) signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (e.g., Kozak consensus sequence); sequences that enhance protein stability. A polyadenylation sequence generally is inserted following the coding sequences and optionally before a 3′ AAV ITR sequence. A rAAV construct useful in the disclosure may also contain an intron, desirably located between the promoter/enhancer sequence and the transgene.


In some embodiments, the isolated nucleic acid (e.g., rAAV vector) described herein comprises a polyadenylation signal sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 109. An exemplary polyadenylation signal sequence is set forth in SEQ ID NO: 109:









GTCGACTAGAGCTCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGC





CATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCC





ACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCT





GAGTAGGIGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGG





GGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGA






In some embodiments, an AAV vector described herein comprises a GJB2 proximal promoter (e.g., SEQ ID NO: 102), a GJB2 5′ UTR (e.g., SEQ ID NO: 103 and CC), a nucleotide sequence encoding a GJB2 gene product (e.g., SEQ ID NO: 2), a GJB2 3′ UTR (e.g., SEQ ID NO: 32), a WPRE (e.g., SEQ ID NO: 108), and a bovine growth hormone poly A signal (e.g., SEQ ID NO: 109). In some embodiments, an AAV vector described herein comprises a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 110. An exemplary AAV vector sequence is set forth in SEQ ID NO: 110:










GACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCG






GGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACT





TTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAG





ACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGG





CGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGA





CCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCG





GATCCGCCACCATGGATTGGGGCACGCTGCAGACGATCCTGGGGGGTGTGAACAAACACTCC





ACCAGCATTGGAAAGATCTGGCTCACCGTCCTCTTCATTTTTCGCATTATGATCCTCGTTGT





GGCTGCAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCTGCAACACCCTGCAGCCAG





GCTGCAAGAACGTGTGCTACGATCACTACTTCCCCATCTCCCACATCCGGCTATGGGCCCTG





CAGCTGATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGCACGTGGCCTACCGGAGACA





TGAGAAGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAGTGAATTTAAGGACATCGAGGAGA





TCAAAACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGTGGACCTACACAAGCAGCATCTTC





TTCCGGGTCATCTTCGAAGCCGCCTTCATGTACGTCTTCTATGTCATGTACGACGGCTTCTC





CATGCAGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCAACACTGTGGACTGCTTTGTGT





CCCGGCCCACGGAGAAGACTGTCTTCACAGTGTTCATGATTGCAGTGTCTGGAATTTGCATC





CTGCTGAATGTCACTGAATTGTGTTATTTGCTAATTAGATATTGTTCTGGGAAGTCAAAAAA





GCCAGTTTACCCATACGATGTTCCAGATTACGCTTAAGGCGCGCCACCCCTGCAGGGAATTC





CGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCT





CAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACC





ATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCT





AAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTT





CCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAG





GATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACA





CAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGA





ACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTG





CCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATG





TAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGT





AAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACT





TTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTG





TAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCC





TCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTA





CTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCAT





CGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATG





GGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGA





CTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTA





CCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAG





CTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTAT





GCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTG





TTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCT





TGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATAATCTCTAT





AATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATGATAATC





AACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTT





ACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTT





CATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTG





TCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATT





GCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGA





ACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATT





CCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTGTGTTGCCACCTGG





ATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTC





CCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTC





GGATCTCCCTTTGGGCCGCCTCCCCGCATCGGACTAGGAATTCATCGATACCGAGCGCTGCT





CGAGAGATCTGTGATAGCGGCCATCAAGCTGGGTCGACTAGAGCTCGCTGATCAGCCTCGAC





TGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGG





AAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGT





AGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGA





CAATAGCAGGCATGCTGGGGA






In some embodiments, an AAV vector described herein comprises a 5′ ITR (e.g., SEQ ID NO: 106), a GJB2 proximal promoter (e.g., SEQ ID NO: 102), a GJB2 5′ UTR (e.g., SEQ ID NO: 103 and CC), a nucleotide sequence encoding a GJB2 gene product (e.g., SEQ ID NO: 2), a GJB2 3′ UTR (e.g., SEQ ID NO: 32), a WPRE (e.g., SEQ ID NO: 108), a bovine growth hormong poly A signal (e.g., SEQ ID NO: 109), and a 3′ ITR (e.g., SEQ ID NO: 107). In some embodiments, an AAV vector described herein comprises a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 111. An exemplary AAV vector sequence is set forth in SEQ ID NO: 111:










CTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGG






TCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGG





GTTCCTTGTAGTTAATGATTAACCCGCCATGCTACTTATCTACCAGGGTAATGGGGATCCTC





TAGAACGCGTTTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGT





CGGGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGC





GCCGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAA





AAGGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGA





CTCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCA





GAGACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAA





CCGCCCAGAGTAGAAGCGGATCCGCCACCATGGATTGGGGCACGCTGCAGACGATCCTGGGG





GGTGTGAACAAACACTCCACCAGCATTGGAAAGATCTGGCTCACCGTCCTCTTCATTTTTCG





CATTATGATCCTCGTTGTGGCTGCAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCT





GCAACACCCTGCAGCCAGGCTGCAAGAACGTGTGCTACGATCACTACTTCCCCATCTCCCAC





ATCCGGCTATGGGCCCTGCAGCTGATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGCA





CGTGGCCTACCGGAGACATGAGAAGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAGTGAAT





TTAAGGACATCGAGGAGATCAAAACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGTGGACC





TACACAAGCAGCATCTTCTTCCGGGTCATCTTCGAAGCCGCCTTCATGTACGTCTTCTATGT





CATGTACGACGGCTTCTCCATGCAGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCAACA





CTGTGGACTGCTTTGTGTCCCGGCCCACGGAGAAGACTGTCTTCACAGTGTTCATGATTGCA





GTGTCTGGAATTTGCATCCTGCTGAATGTCACTGAATTGTGTTATTTGCTAATTAGATATTG





TTCTGGGAAGTCAAAAAAGCCAGTTTACCCATACGATGTTCCAGATTACGCTTAAGGCGCGC





CACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGG





GATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATT





CTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACA





ATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTT





CTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACT





TTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGC





CAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTT





TCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAG





TGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTA





TGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAG





GCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGT





CTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCA





TAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGC





TTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGAC





TGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCAT





GACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTG





ACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTA





AAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTT





CAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAAC





ATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAA





CCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTG





AGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAA





TAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACA





TTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCA





AGCTTATCGATGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTT





AACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTAT





TGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATG





AGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACC





CCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCT





CCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGC





TGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTC





GCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAA





TCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCC





TTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCATCGGACTAGGAATTCA





TCGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGGTCGACTAGAGC





TCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCG





TGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATT





GCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAA





GGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCG





GTACCAAACCTAGGTAATACCCATTACCCTGGTAGATAAGTAGCATGGCGGGTTAATCATTA





ACTACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACT





GAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGA





GCGAGCGCGCAG






In some embodiments, an AAV vector described herein comprises 5′ ITR, a GJB2 basal promoter, a 5′ UTR (e.g., GJB2 exon 1 5′ UTR), Kozak sequence, nucleotide sequence encoding a gene product (e.g., GJB2 or GFP), an optional HA tag, a 3′ UTR (e.g., GJB2 exon 2 3′ UTR), a WPRE, a bovine growth hormone poly A signal, and a 3′ ITR (e.g., vector c70). In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 36. An exemplary nucleotide sequence for vector c70 encoding a mouse GJB2 protein with an HA tag is set forth in SEQ ID NO: 36 (mouse GJB2 coding sequence in boldface; HA tag underlined):










TTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCG






CCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCG





CGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTTTAATTAA





GACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCG





GGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACT





TTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAG





ACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGG





CGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGA





CCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCG





GATCCGCCACCATGGATTGGGGCACACTCCAGAGCATCCTCGGGGGTGTCAACAAACACTCC






ACCAGCATTGGAAAGATCTGGCTCACGGTCCTCTTCATCTTCCGCATCATGATCCTCGTGGT







GGCTGCAAAGGAGGTGTGGGGAGATGAGCAAGCCGATTTTGTCTGCAACACGCTCCAGCCTG







GCTGCAAGAATGTATGCTACGACCACCACTTCCCCATCTCTCACATCCGGCTCTGGGCTCTG







CAGCTGATCATGGTGTCCACGCCAGCCCTCCTGGTAGCTATGCATGTGGCCTACCGGAGACA







TGAAAAGAAACGGAAGTTCATGAAGGGAGAGATAAAGAACGAGTTTAAGGACATCGAAGAGA







TCAAAACCCAGAAGGTCCGTATCGAAGGGTCCCTGTGGTGGACCTACACCACCAGCATCTTC







TTCCGGGTCATCTTTGAAGCCGTCTTCATGTACGTCTTTTACATCATGTACAATGGCTTCTT







CATGCAACGTCTGGTGAAATGCAACGCTTGGCCCTGCCCCAATACAGTGGACTGCTTCATTT







CCAGGCCCACAGAAAAGACTGTCTTCACCGTGTTTATGATTTCTGTGTCTGGAATTTGCATT







CTGCTAAATATCACAGAGCTGTGCTATTTGTTCGTTAGGTATTGCTCAGGAAAGTCCAAAAG







ACCAGTC
TACCCATACGATGTTCCAGATTACGCTTAAGGCGCGCCACCCCTGCAGGGAATTC






CGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCT





CAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACC





ATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCT





AAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTT





CCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAG





GATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACA





CAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGA





ACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTG





CCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATG





TAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGT





AAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACT





TTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTG





TAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCC





TCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTA





CTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCAT





CGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATG





GGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGA





CTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTA





CCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAG





CTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTAT





GCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTG





TTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCT





TGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATAATCTCTAT





AATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAAC





CTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACG





CTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCAT





TTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCA





GGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCC





ACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACT





CATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCG





TGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATT





CTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCG





CGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGA





TCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTG





ATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCC





CGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAA





TTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGC





AAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCG





CAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGC





CGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG





CGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATT





TCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCG





GGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTT





CGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGG





GGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTG





GGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGA





GTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGG





GCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTG





ATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCAC





TCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCG





CTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTC





TCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGG





CCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAG





GTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCA





AATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAA





GAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTC





CTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCA





CGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGA





AGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTA





TTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAG





TACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGC





TGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGA





AGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAA





CCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGC





AACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA





TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGC





TGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT





GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTA





TGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTG





TCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAG





GATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGT





TCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTG





CGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGA





TCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATA





CTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACA





TACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTAC





CGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTT





CGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAG





CTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAG





GGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTC





CTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGG





AGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTT






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 61. An exemplary nucleotide sequence for vector c70 encoding a human GJB2 protein with an HA tag is set forth in SEQ ID NO: 61 (human GJB2 coding sequence in boldface; HA tag underlined):










TTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCG






CCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCG





CGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTTTAATTAA





GACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCG





GGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACT





TTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAG





ACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGG





CGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGA





CCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCG





GATCCGCCACCATGGATTGGGGCACGCTGCAGACGATCCTGGGGGGTGTGAACAAACACTCC






ACCAGCATTGGAAAGATCTGGCTCACCGTCCTCTTCATTTTTCGCATTATGATCCTCGTTGT







GGCTGCAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCTGCAACACCCTGCAGCCAG







GCTGCAAGAACGTGTGCTACGATCACTACTTCCCCATCTCCCACATCCGGCTATGGGCCCTG







CAGCTGATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGCACGTGGCCTACCGGAGACA







TGAGAAGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAGTGAATTTAAGGACATCGAGGAGA







TCAAAACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGTGGACCTACACAAGCAGCATCTTC







TTCCGGGTCATCTTCGAAGCCGCCTTCATGTACGTCTTCTATGTCATGTACGACGGCTTCTC







CATGCAGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCAACACTGTGGACTGCTTTGTGT







CCCGGCCCACGGAGAAGACTGTCTTCACAGTGTTCATGATTGCAGTGTCTGGAATTTGCATC







CTGCTGAATGTCACTGAATTGTGTTATTTGCTAATTAGATATTGTTCTGGGAAGTCAAAAAA







GCCAGTT
TACCCATACGATGTTCCAGATTACGCTTAAGGCGCGCCACCCCTGCAGGGAATTC






CGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCT





CAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACC





ATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCT





AAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTT





CCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAG





GATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACA





CAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGA





ACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTG





CCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATG





TAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGT





AAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACT





TTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTG





TAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCC





TCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTA





CTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCAT





CGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATG





GGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGA





CTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTA





CCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAG





CTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTAT





GCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTG





TTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCT





TGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATAATCTCTAT





AATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAAC





CTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACG





CTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCAT





TTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCA





GGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCC





ACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACT





CATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCG





TGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATT





CTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCG





CGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGA





TCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTG





ATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCC





CGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAA





TTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGC





AAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCG





CAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGC





CGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG





CGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATT





TCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCG





GGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTT





CGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGG





GGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTG





GGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGA





GTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGG





GCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTG





ATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCAC





TCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCG





CTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTC





TCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGG





CCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAG





GTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCA





AATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAA





GAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTC





CTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCA





CGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGA





AGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTA





TTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAG





TACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGC





TGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGA





AGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAA





CCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGC





AACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA





TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGC





TGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT





GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTA





TGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTG





TCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAG





GATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGT





TCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTG





CGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGA





TCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATA





CTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACA





TACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTAC





CGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTT





CGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAG





CTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAG





GGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTC





CTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGG





AGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTT






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 62. An exemplary nucleotide sequence for vector c70 encoding a mouse GJB2 protein with an HA tag is set forth in SEQ ID NO: 62 (mouse GJB2 coding sequence in boldface; no HA tag):










CAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAG






GCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTG





GTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAAT





TTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAG





TTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTT





TTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTT





TGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATA





CCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACC





GCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGT





GTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACG





GGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACA





GCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAA





GCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTT





TATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGG





GGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCT





GGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGG





GCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAG





AGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTTTAATTAAGACCT





CGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCGGGAAG





CTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACTTTCCC





AGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAGACAGG





TGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCC





GGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCC





GCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCGGATCC





GCCACCATGGATTGGGGCACACTCCAGAGCATCCTCGGGGGTGTCAACAAACACTCCACCAG





CATTGGAAAGATCTGGCTCACGGTCCTCTTCATCTTCCGCATCATGATCCTCGTGGTGGCTG






CAAAGGAGGTGTGGGGAGATGAGCAAGCCGATTTTGTCTGCAACACGCTCCAGCCTGGCTGC







AAGAATGTATGCTACGACCACCACTTCCCCATCTCTCACATCCGGCTCTGGGCTCTGCAGCT







GATCATGGTGTCCACGCCAGCCCTCCTGGTAGCTATGCATGTGGCCTACCGGAGACATGAAA







AGAAACGGAAGTTCATGAAGGGAGAGATAAAGAACGAGTTTAAGGACATCGAAGAGATCAAA







ACCCAGAAGGTCCGTATCGAAGGGTCCCTGTGGTGGACCTACACCACCAGCATCTTCTTCCG







GGTCATCTTTGAAGCCGTCTTCATGTACGTCTTTTACATCATGTACAATGGCTTCTTCATGC







AACGTCTGGTGAAATGCAACGCTTGGCCCTGCCCCAATACAGTGGACTGCTTCATTTCCAGG







CCCACAGAAAAGACTGTCTTCACCGTGTTTATGATTTCTGTGTCTGGAATTTGCATTCTGCT







AAATATCACAGAGCTGTGCTATTTGTTCGTTAGGTATTGCTCAGGAAAGTCCAAAAGACCAG







TCTAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGA






CAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCC





AACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACT





CCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCC





TGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTG





GTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACA





AGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCT





TTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTT





AATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAA





AACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCC





CCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAAT





TTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTAT





TCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTT





CCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTA





AGAAATACAGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATC





TCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTG





GGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAG





TTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAG





CTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAAT





ATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTAT





AGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCA





CATATTTCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGT





AATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAAT





ACATTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGA





ACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACT





GGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTA





TCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGT





CTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCT





GACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGC





TTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAG





GGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCT





TGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTC





GGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGC





GTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCAT





CGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAG





TTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTC





CCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCT





ATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCA





TGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCC





CTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCT





TTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGG





TATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTAC





GCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC





ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCG





CCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTA





CGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTG





ATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCC





AAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCG





ATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAA





AATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGT





TAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCG





GCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC





GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATG





TCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACC





CCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTG





ATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCC





TTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAA





GTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAG





CGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAG





TTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGC





ATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGA





TGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCA





ACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGG





GATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGA





GCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAAC





TACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGA





CCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGA





GCGTGGGTCTCGCGGTATCATTG






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 63. An exemplary nucleotide sequence for vector c70 encoding a mouse GJB2 protein with a HA tag is set forth in SEQ ID NO: 63 (human GJB2 coding sequence in boldface; no HA tag):










CAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAG






GCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTG





GTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAAT





TTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAG





TTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTT





TTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTT





TGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATA





CCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACC





GCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGT





GTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACG





GGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACA





GCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAA





GCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTT





TATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGG





GGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCT





GGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGG





GCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAG





AGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTTTAATTAAGACCT





CGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCGGGAAG





CTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACTTTCCC





AGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAGACAGG





TGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCC





GGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCC





GCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCGGATCC





GCCACCATGGATTGGGGCACGCTGCAGACGATCCTGGGGGGTGTGAACAAACACTCCACCAG






CATTGGAAAGATCTGGCTCACCGTCCTCTTCATTTTTCGCATTATGATCCTCGTTGTGGCTG







CAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCTGCAACACCCTGCAGCCAGGCTGC







AAGAACGTGTGCTACGATCACTACTTCCCCATCTCCCACATCCGGCTATGGGCCCTGCAGCT







GATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGCACGTGGCCTACCGGAGACATGAGA







AGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAGTGAATTTAAGGACATCGAGGAGATCAAA







ACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGTGGACCTACACAAGCAGCATCTTCTTCCG







GGTCATCTTCGAAGCCGCCTTCATGTACGTCTTCTATGTCATGTACGACGGCTTCTCCATGC







AGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCAACACTGTGGACTGCTTTGTGTCCCGG







CCCACGGAGAAGACTGTCTTCACAGTGTTCATGATTGCAGTGTCTGGAATTTGCATCCTGCT







GAATGTCACTGAATTGTGTTATTTGCTAATTAGATATTGTTCTGGGAAGTCAAAAAAGCCAG







TTTAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGA






CAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCC





AACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACT





CCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCC





TGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTG





GTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACA





AGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCT





TTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTT





AATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAA





AACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCC





CCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAAT





TTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTAT





TCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTT





CCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTA





AGAAATACAGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATC





TCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTG





GGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAG





TTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAG





CTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAAT





ATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTAT





AGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCA





CATATTTCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGT





AATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAAT





ACATTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGA





ACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACT





GGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTA





TCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGT





CTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCT





GACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGC





TTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAG





GGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCT





TGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTC





GGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGC





GTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCAT





CGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAG





TTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTC





CCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCT





ATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCA





TGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCC





CTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCT





TTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGG





TATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTAC





GCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTAC





ACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCG





CCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTA





CGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTG





ATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCC





AAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCG





ATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAA





AATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGT





TAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCG





GCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACC





GTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATG





TCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACC





CCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTG





ATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCC





TTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAA





GTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAG





CGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAG





TTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGC





ATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGA





TGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCA





ACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGG





GATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGA





GCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAAC





TACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGA





CCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGA





GCGTGGGTCTCGCGGTATCATTG






In some embodiments, an AAV vector described herein comprises an AAV 5′ ITR, a GJB2 GRE enhancer (hGJB2 GRE1), a GJB2 basal promoter, a GJB2 exon 1 5′ UTR, Kozak sequence, nucleotide sequence encoding a gene product (e.g., GJB2 or GFP), a GJB2 exon 2 3′ UTR, a WPRE, a bovine growth hormone poly A signal, and an AAV 3′ ITR (e.g., vector c81.1).


In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 64. An exemplary nucleotide sequence for vector c81.1 encoding eGFP is set forth in SEQ ID NO: 64 (hGJB2 GRE1 underlined; eGFP coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTA





AGAGAGCACTTGGGAAGAGCCCCCGAGGGCAGCCGGGGCTTGCCGCCTCACCCTTTTGGTTT






CACATCCCAGAAATCAGTAAGGCAGGAATTGGAGGCTGCTTCTTGCCTTAGCAACTCGGTGA







CCTTAGGCAGAACAGTTCAGCCTTCTGAGTGTCCTTCCTCTTCTGTAAGGGGAGCGTAAACC







GTCCTCCATGCAGAACGTGTACTGTGCCTGGCACAGCACTGGGGCATTAGGATCTCCAAATT







AAAGGCTCACTCTGCGGGATGGAGGCAGCCACAGCTGGAAGAAGGAACATTTGGGGCCAGAA







GTCCCCCTACCTCCGTCCTAAGAGAGAAGATGGGAATAACGACCCTCGCTGAAATGATTGCT







CTCTGGCCAGCTCGCCTCGCATCCACATCCAAATCTGGGAGGCACAGAGCGCATCAGGACAT







CGGGTTCTGTCAGTGTAATGGGCGTGGCTCCTGACCTTCTGTCTGTATCAGAGAAGATAAGG







GAGAACATTTGAAAGAAAGGAGAAAGAAGATAGCCACTGGAGAACAGAGCAAAGGAGCCAGC







AGAAAAAGACGAGACGGCTGTAGCCCCACAGGAAGCAGAAACCGATAGGCTAAGTAGGATAC







ACACAAAGAAAAGTAGATCCCGAGAGGCATTTCCCCGAGGGCTTTCATGTGGTTTCTCGTGA







GGAGAAGCTGACTGCAGGGTGTTTGAAAGAACGACTTATGCAGCCATAAAAAATGATGAGTT






CATGTCCTTTGTAGGGACATGGATGATTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGG





GGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGC





GCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGG





TGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGC





GCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCG





CAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCT





CCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCCATGGTGAGCAAGGGCGAGGAGCTGTTCA






CCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTG







TCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCAC







CGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCT







TCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGC







TACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGT







GAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGG







ACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATG







GCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGG







CAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGC







TGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGC







GATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCT







GTACAAGTAATAAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTA






AGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTA





GCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCA





GGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAA





TTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAG





GGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCT





CTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCC





TGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTT





GGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTT





GGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTA





TATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTA





TGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGT





CTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGA





CTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAA





TTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTC





CAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGA





GGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGG





AGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATT





AAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTA





AGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAG





CAGATCTATAGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAAT





GGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAA





GCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAAT





GTATCAAATACATTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGT





TTTAATAGAACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAA





AGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAAT





GCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCT





GGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACT





GTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGG





GACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCT





GCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCG





TCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTA





CGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGC





CTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCG





CGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGT





GCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAG





GTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGG





TGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAA





TAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTT





GGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGAC





GCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGC





CTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAA





CCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGT





GACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCG





CCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTT





AGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCC





ATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGAC





TCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGG





ATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAA





TTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATG





CCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGT





CTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAG





GTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTAT





AGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTG





CGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACA





ATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCC





GTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACG





CTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGA





TCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCA





CTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTC





GGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCA





TCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACA





CTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCAC





AACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACC





AAACGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 65. An exemplary nucleotide sequence for vector c81.1 encoding human GJB2 is set forth in SEQ ID NO: 65 (hGJB2 GRE1 underlined; human GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTA





AGAGAGCACTTGGGAAGAGCCCCCGAGGGCAGCCGGGGCTTGCCGCCTCACCCTTTTGGTTT






CACATCCCAGAAATCAGTAAGGCAGGAATTGGAGGCTGCTTCTTGCCTTAGCAACTCGGTGA







CCTTAGGCAGAACAGTTCAGCCTTCTGAGTGTCCTTCCTCTTCTGTAAGGGGAGCGTAAACC







GTCCTCCATGCAGAACGTGTACTGTGCCTGGCACAGCACTGGGGCATTAGGATCTCCAAATT







AAAGGCTCACTCTGCGGGATGGAGGCAGCCACAGCTGGAAGAAGGAACATTTGGGGCCAGAA







GTCCCCCTACCTCCGTCCTAAGAGAGAAGATGGGAATAACGACCCTCGCTGAAATGATTGCT







CTCTGGCCAGCTCGCCTCGCATCCACATCCAAATCTGGGAGGCACAGAGCGCATCAGGACAT







CGGGTTCTGTCAGTGTAATGGGCGTGGCTCCTGACCTTCTGTCTGTATCAGAGAAGATAAGG







GAGAACATTTGAAAGAAAGGAGAAAGAAGATAGCCACTGGAGAACAGAGCAAAGGAGCCAGC







AGAAAAAGACGAGACGGCTGTAGCCCCACAGGAAGCAGAAACCGATAGGCTAAGTAGGATAC







ACACAAAGAAAAGTAGATCCCGAGAGGCATTTCCCCGAGGGCTTTCATGTGGTTTCTCGTGA







GGAGAAGCTGACTGCAGGGTGTTTGAAAGAACGACTTATGCAGCCATAAAAAATGATGAGTT






CATGTCCTTTGTAGGGACATGGATGATTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGG





GGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGC





GCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGG





TGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGC





GCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCG





CAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCT





CCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCCATGGATTGGGGCACGCTGCAGACGATCC






TGGGGGGTGTGAACAAACACTCCACCAGCATTGGAAAGATCTGGCTCACCGTCCTCTTCATT







TTTCGCATTATGATCCTCGTTGTGGCTGCAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTT







TGTCTGCAACACCCTGCAGCCAGGCTGCAAGAACGTGTGCTACGATCACTACTTCCCCATCT







CCCACATCCGGCTATGGGCCCTGCAGCTGATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCC







ATGCACGTGGCCTACCGGAGACATGAGAAGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAG







TGAATTTAAGGACATCGAGGAGATCAAAACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGT







GGACCTACACAAGCAGCATCTTCTTCCGGGTCATCTTCGAAGCCGCCTTCATGTACGTCTTC







TATGTCATGTACGACGGCTTCTCCATGCAGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCC







CAACACTGTGGACTGCTTTGTGTCCCGGCCCACGGAGAAGACTGTCTTCACAGTGTTCATGA







TTGCAGTGTCTGGAATTTGCATCCTGCTGAATGTCACTGAATTGTGTTATTTGCTAATTAGA







TATTGTTCTGGGAAGTCAAAAAAGCCAGTTTAAAGGCGCGCCACCCCTGCAGGGAATTCCGC






ATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCTCAG





CTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACCATT





TGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAA





GCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCA





CTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAGGAT





ATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACACAG





AGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACA





TTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCT





TAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATGTAA





AGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGTAAA





TGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACTTTG





CAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTGTAG





CCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCCTCA





TGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTACTA





CCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCATCGG





AAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATGGGG





AGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGACTG





CTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAGCTA





AGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTATGCT





TCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCTTGT





AACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATAATCTCTATAAT





AATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAACCTC





TGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTA





TGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTT





AACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACC





ACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCAT





CGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGG





TGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATTCTG





CGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGG





CCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCT





CCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTGATA





GCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGT





GCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTG





CATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAG





GGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCAG





GAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGG





GCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGC





GCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCA





CACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGT





GTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGC





TTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGC





TCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGT





GATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTC





CACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCT





ATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATT





TAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCT





CAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTG





ACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCC





GGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCT





CGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTG





GCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAAT





ATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAG





TATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTG





TTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGA





GTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGA





ACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTG





ACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTAC





TCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGC





CATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGG





AGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCG





GAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 66. An exemplary nucleotide sequence for vector c81.1 encoding mouse GJB2 is set forth in SEQ ID NO: 66 (hGJB2 GRE1 underlined; mouse GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTA






AGAGAGCACTTGGGAAGAGCCCCCGAGGGCAGCCGGGGCTTGCCGCCTCACCCTTTTGGTTT







CACATCCCAGAAATCAGTAAGGCAGGAATTGGAGGCTGCTTCTTGCCTTAGCAACTCGGTGA







CCTTAGGCAGAACAGTTCAGCCTTCTGAGTGTCCTTCCTCTTCTGTAAGGGGAGCGTAAACC







GTCCTCCATGCAGAACGTGTACTGTGCCTGGCACAGCACTGGGGCATTAGGATCTCCAAATT







AAAGGCTCACTCTGCGGGATGGAGGCAGCCACAGCTGGAAGAAGGAACATTTGGGGCCAGAA







GTCCCCCTACCTCCGTCCTAAGAGAGAAGATGGGAATAACGACCCTCGCTGAAATGATTGCT







CTCTGGCCAGCTCGCCTCGCATCCACATCCAAATCTGGGAGGCACAGAGCGCATCAGGACAT







CGGGTTCTGTCAGTGTAATGGGCGTGGCTCCTGACCTTCTGTCTGTATCAGAGAAGATAAGG







GAGAACATTTGAAAGAAAGGAGAAAGAAGATAGCCACTGGAGAACAGAGCAAAGGAGCCAGC







AGAAAAAGACGAGACGGCTGTAGCCCCACAGGAAGCAGAAACCGATAGGCTAAGTAGGATAC







ACACAAAGAAAAGTAGATCCCGAGAGGCATTTCCCCGAGGGCTTTCATGTGGTTTCTCGTGA







GGAGAAGCTGACTGCAGGGTGTTTGAAAGAACGACTTATGCAGCCATAAAAAATGATGAGTT







CATGTCCTTTGTAGGGACATGGATGATTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGG






GGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGC





GCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGG





TGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGC





GCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCG





CAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCT





CCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCCATGGATTGGGGCACACTCCAGAGCATCC






TCGGGGGTGTCAACAAACACTCCACCAGCATTGGAAAGATCTGGCTCACGGTCCTCTTCATC







TTCCGCATCATGATCCTCGTGGTGGCTGCAAAGGAGGTGTGGGGAGATGAGCAAGCCGATTT







TGTCTGCAACACGCTCCAGCCTGGCTGCAAGAATGTATGCTACGACCACCACTTCCCCATCT







CTCACATCCGGCTCTGGGCTCTGCAGCTGATCATGGTGTCCACGCCAGCCCTCCTGGTAGCT







ATGCATGTGGCCTACCGGAGACATGAAAAGAAACGGAAGTTCATGAAGGGAGAGATAAAGAA







CGAGTTTAAGGACATCGAAGAGATCAAAACCCAGAAGGTCCGTATCGAAGGGTCCCTGTGGT







GGACCTACACCACCAGCATCTTCTTCCGGGTCATCTTTGAAGCCGTCTTCATGTACGTCTTT







TACATCATGTACAATGGCTTCTTCATGCAACGTCTGGTGAAATGCAACGCTTGGCCCTGCCC







CAATACAGTGGACTGCTTCATTTCCAGGCCCACAGAAAAGACTGTCTTCACCGTGTTTATGA







TTTCTGTGTCTGGAATTTGCATTCTGCTAAATATCACAGAGCTGTGCTATTTGTTCGTTAGG







TATTGCTCAGGAAAGTCCAAAAGACCAGTCTACCCATACGATGTTCCAGATTACGCTTAAAG






GCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCAT





GAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACA





GCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTT





AATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAA





GGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAA





AAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGC





CAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTC





TAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTT





GTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTT





TCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAA





TATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTG





TGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGT





GATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAAT





TTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATT





TTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTG





TCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGT





AATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAG





ATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATT





TCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAAT





AAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACATTT





AAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCG





ATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATT





CTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGC





TATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTT





ACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCC





CCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTC





GGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTG





CTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCT





CAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTC





GCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATAC





CGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCA





GCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTG





TCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTG





GGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGG





GGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCT





GCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCC





GGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTT





CTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCC





TGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGC





CAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCT





TTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCAC





CTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGAC





GGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTG





GAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCG





GCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATT





AACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCC





AGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCC





GCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATC





ACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGA





TAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATT





TGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAAT





GCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTC





CCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAA





GATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAA





GATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGC





TATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACAC





TATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCAT





GACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTAC





TTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCAT





GTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGA





CACCA






In some embodiments, an AAV vector described herein comprises an AAV 5′ ITR, a GJB2 GRE enhancer (hGJB2 GRE2), a GJB2 basal promoter, a GJB2 exon 1 5′ UTR, Kozak sequence, nucleotide sequence encoding a gene product (e.g., GJB2 or GFP), a GJB2 exon 2 3′ UTR, a WPRE, a bovine growth hormone poly A signal, and an AAV 3′ ITR (e.g., vector c81.2).


In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 48. An exemplary nucleotide sequence for vector c81.2 encoding eGFP is set forth in SEQ ID NO: 48 (hGJB2 GRE2 underlined; eGFP coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTC





AGTGATGCCTGAAACCTCAGATGGTACTGAACCCTCTATATAATCTGTTTTTTCCTATACAT






ACAAACCTACCATAAGGCTTAATGGTAAGAGATTAACAATAAAGAATAATAAAACAACACTT







ATAACAATGTATAACAATATATTGTAATATAAGTTTTTGGATGCAGTCTCTCTCTCAAAATG







CTATCATATTTTCCAACTGTGGTTGACTACAGGTAACTGGAACCACAAAAATGAAACAGTGG







ATAAGAGGGCGACTCCTGTACCAAAGAAAAAAATAGAGTGTTGCAGCTGTAACATAGTTGAA







TGACTGAGTTAGACTGCATAACTGACACACAAAACCACATAAATATAAATGAAGGAATCTCT







GGGTGTAATCTGGTGCAAAGGTGACTGTGTTAATCATTAATCCACAAGTTGCTATCCTGAAG







TGTGCCAAATGCTTTATGTTTATTTCATCACATAGCTCTATAAAGAAAGGATTTGTAATTCC







TTTCTACAGAAGTGGAAAGTAAGTCTTAAGACTCAAAAAACTTTAAAAACTACAATGAAGTA







ACAACTTTTATTAATTTATTTTGTGTCTTTCCAGAATTTCTATATATATAGGAATGTGATAT







GAATCTATATGTGAATTGAATCTACATGAATATTGATGACTTTTATTTCCCCTTTTGCACAT







AAGATAGAATATTTTACCTACTATTCCACACTTTGCTTTTCTTAACATATCATGGGATCTTT






TTATATAAGTGAACAAAGAGTTTCTTCATTCTTTCACACAGTTTAATTAAGACCTCGAAGGG





GACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCGGGAAGCTCTGAG





GACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCC





GAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCG





GCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAG





GACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCCGCCCCGG





CCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCCATGGTGAGCAAG






GGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGG







CCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGA







AGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACC







TACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTC







CGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACA







AGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGC







ATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCA







CAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCC







ACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGC







GACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGA







CCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTC







TCGGCATGGACGAGCTGTACAAGTAAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCC






AGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAA





GGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACC





CCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAA





AACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGAC





CCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCA





TTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGT





TTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTC





TTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTC





TGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTT





CTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATG





TCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACA





GCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAAT





CGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAA





TATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTACTACCTGTAA





TGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAAC





GCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAA





AATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTA





AAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGC





CTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTA





GATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATG





GTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAA





TAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAA





ATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATAATCTCTATAATAATTTAA





AATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTA





CAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGAT





ACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCC





CGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTC





AGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCC





TGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTC





GGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGA





CGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTG





CCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTG





GGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCA





TCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCC





TTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCA





TTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGG





ATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCC





TAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCA





AAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTG





CCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCA





TACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGG





TTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTC





CCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTT





AGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTT





CACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTC





TTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTT





TGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAA





AATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACA





ATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCC





CTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCT





GCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATA





CGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTT





TCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATC





CGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGT





ATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGC





TCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTT





ACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTT





CCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGG





GCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAG





TCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACC





ATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC





CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGA





ATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 67. An exemplary nucleotide sequence for vector c81.2 encoding human GJB2 is set forth in SEQ ID NO: 67 (hGJB2 GRE2 underlined; human GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTC





AGTGATGCCTGAAACCTCAGATGGTACTGAACCCTCTATATAATCTGTTTTTTCCTATACAT






ACAAACCTACCATAAGGCTTAATGGTAAGAGATTAACAATAAAGAATAATAAAACAACACTT







ATAACAATGTATAACAATATATTGTAATATAAGTTTTTGGATGCAGTCTCTCTCTCAAAATG







CTATCATATTTTCCAACTGTGGTTGACTACAGGTAACTGGAACCACAAAAATGAAACAGTGG







ATAAGAGGGCGACTCCTGTACCAAAGAAAAAAATAGAGTGTTGCAGCTGTAACATAGTTGAA







TGACTGAGTTAGACTGCATAACTGACACACAAAACCACATAAATATAAATGAAGGAATCTCT







GGGTGTAATCTGGTGCAAAGGTGACTGTGTTAATCATTAATCCACAAGTTGCTATCCTGAAG







TGTGCCAAATGCTTTATGTTTATTTCATCACATAGCTCTATAAAGAAAGGATTTGTAATTCC







TTTCTACAGAAGTGGAAAGTAAGTCTTAAGACTCAAAAAACTTTAAAAACTACAATGAAGTA







ACAACTTTTATTAATTTATTTTGTGTCTTTCCAGAATTTCTATATATATAGGAATGTGATAT







GAATCTATATGTGAATTGAATCTACATGAATATTGATGACTTTTATTTCCCCTTTTGCACAT







AAGATAGAATATTTTACCTACTATTCCACACTTTGCTTTTCTTAACATATCATGGGATCTTT






TTATATAAGTGAACAAAGAGTTTCTTCATTCTTTCACACAGTTTAATTAAGACCTCGAAGGG





GACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCGGGAAGCTCTGAG





GACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCC





GAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCG





GCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAG





GACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCCGCCCCGG





CCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCCATGGATTGGGGC






ACGCTGCAGACGATCCTGGGGGGTGTGAACAAACACTCCACCAGCATTGGAAAGATCTGGCT







CACCGTCCTCTTCATTTTTCGCATTATGATCCTCGTTGTGGCTGCAAAGGAGGTGTGGGGAG







ATGAGCAGGCCGACTTTGTCTGCAACACCCTGCAGCCAGGCTGCAAGAACGTGTGCTACGAT







CACTACTTCCCCATCTCCCACATCCGGCTATGGGCCCTGCAGCTGATCTTCGTGTCCACGCC







AGCGCTCCTAGTGGCCATGCACGTGGCCTACCGGAGACATGAGAAGAAGAGGAAGTTCATCA







AGGGGGAGATAAAGAGTGAATTTAAGGACATCGAGGAGATCAAAACCCAGAAGGTCCGCATC







GAAGGCTCCCTGTGGTGGACCTACACAAGCAGCATCTTCTTCCGGGTCATCTTCGAAGCCGC







CTTCATGTACGTCTTCTATGTCATGTACGACGGCTTCTCCATGCAGCGGCTGGTGAAGTGCA







ACGCCTGGCCTTGTCCCAACACTGTGGACTGCTTTGTGTCCCGGCCCACGGAGAAGACTGTC






TTCACAGTGTTCATGATTGCAGTGTCTGGAATTTGCATCCTGCTGAATGTCACTGAATTGTG






TTATTTGCTAATTAGATATTGTTCTGGGAAGTCAAAAAAGCCAGTTTAAAGGCGCGCCACCC






CTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGA





GGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGAC





CTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGA





GCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTC





ACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCAT





ATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGT





TCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCC





ACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGAC





AAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATA





GGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCA





GATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTT





GGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCA





CCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATG





ATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGAT





GTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTG





TGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACA





GTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAAC





AGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAA





GTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTG





AAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGA





ATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGT





AAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCT





TTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAA





ATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTT





ATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGT





TGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCC





GTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTG





TGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGG





TTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTG





CCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGC





ACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGT





TGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGG





ACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCT





CAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCT





CGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTG





TTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAA





TAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGT





GGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCG





GACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCT





CGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCA





GTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCA





TCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGC





ATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAG





CGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAA





GCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAA





AAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCC





CTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTC





AACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTT





AAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAA





TTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACAC





CCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACA





AGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCG





CGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTT





TCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTT





CTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAAT





ATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCG





GCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGA





TCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGA





GTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCG





GTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAA





TGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAG





AATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACG





ATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCT





TGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 68. An exemplary nucleotide sequence for vector c81.2 encoding mouse GJB2 is set forth in SEQ ID NO: 68 (hGJB2 GRE2 underlined; mouse GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTC





AGTGATGCCTGAAACCTCAGATGGTACTGAACCCTCTATATAATCTGTTTTTTCCTATACAT






ATAACAATGTATAACAATATATTGTAATATAAGTTTTTGGATGCAGTCTCTCTCTCAAAATG







CTATCATATTTTCCAACTGTGGTTGACTACAGGTAACTGGAACCACAAAAATGAAACAGTGG







ATAAGAGGGCGACTCCTGTACCAAAGAAAAAAATAGAGTGTTGCAGCTGTAACATAGTTGAA







TGACTGAGTTAGACTGCATAACTGACACACAAAACCACATAAATATAAATGAAGGAATCTCT







GGGTGTAATCTGGTGCAAAGGTGACTGTGTTAATCATTAATCCACAAGTTGCTATCCTGAAG







TGTGCCAAATGCTTTATGTTTATTTCATCACATAGCTCTATAAAGAAAGGATTTGTAATTCC







TTTCTACAGAAGTGGAAAGTAAGTCTTAAGACTCAAAAAACTTTAAAAACTACAATGAAGTA







ACAACTTTTATTAATTTATTTTGTGTCTTTCCAGAATTTCTATATATATAGGAATGTGATAT







GAATCTATATGTGAATTGAATCTACATGAATATTGATGACTTTTATTTCCCCTTTTGCACAT







AAGATAGAATATTTTACCTACTATTCCACACTTTGCTTTTCTTAACATATCATGGGATCTTT






TTATATAAGTGAACAAAGAGTTTCTTCATTCTTTCACACAGTTTAATTAAGACCTCGAAGGG





GACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCGGACCCGGGAAGCTCTGAG





GACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCC





GAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCG





GCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAG





GACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACGCCGAGACCCCCGCCCCGG





CCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTAGAAGCCATGGATTGGGGC






ACACTCCAGAGCATCCTCGGGGGTGTCAACAAACACTCCACCAGCATTGGAAAGATCTGGCT







CACGGTCCTCTTCATCTTCCGCATCATGATCCTCGTGGTGGCTGCAAAGGAGGTGTGGGGAG







ATGAGCAAGCCGATTTTGTCTGCAACACGCTCCAGCCTGGCTGCAAGAATGTATGCTACGAC







CACCACTTCCCCATCTCTCACATCCGGCTCTGGGCTCTGCAGCTGATCATGGTGTCCACGCC







AGCCCTCCTGGTAGCTATGCATGTGGCCTACCGGAGACATGAAAAGAAACGGAAGTTCATGA







AGGGAGAGATAAAGAACGAGTTTAAGGACATCGAAGAGATCAAAACCCAGAAGGTCCGTATC







GAAGGGTCCCTGTGGTGGACCTACACCACCAGCATCTTCTTCCGGGTCATCTTTGAAGCCGT







CTTCATGTACGTCTTTTACATCATGTACAATGGCTTCTTCATGCAACGTCTGGTGAAATGCA







ACGCTTGGCCCTGCCCCAATACAGTGGACTGCTTCATTTCCAGGCCCACAGAAAAGACTGTC







TTCACCGTGTTTATGATTTCTGTGTCTGGAATTTGCATTCTGCTAAATATCACAGAGCTGTG







CTATTTGTTCGTTAGGTATTGCTCAGGAAAGTCCAAAAGACCAGTCTACCCATACGATGTTC






CAGATTACGCTTAAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATT





AAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCT





AGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTC





AGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTA





ATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTA





GGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTC





TCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTC





CTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTT





TGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTT





TGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATT





ATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACT





ATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTG





TCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAG





ACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTA





ATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGT





CCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAG





AGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGG





GAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGAT





TAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTT





AAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGA





GCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAA





AGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAA





TGTATCAAATACATTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGG





TTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGA





AAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAA





TGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCC





TGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCG





GGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGC





TGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATC





GTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCT





ACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGG





CCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCC





GCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTG





TGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAA





GGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAG





GTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACA





ATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGT





TGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGA





CGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCG





CCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCA





ACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCG





TGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTC





GCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATT





TAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGC





CATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGA





CTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGG





GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGA





ATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGAT





GCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTG





TCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGA





GGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTA





TAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGT





GCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGAC





AATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTC





CGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAAC





GCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGG





ATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGC





ACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACT





CGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGC





ATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAAC





ACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCA





CAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATAC





CAAACGACGAGCGTGACACCA






In some embodiments, an AAV vector described herein comprises an AAV 5′ ITR, a GJB2 GRE enhancer (hGJB2 GRE3), a GJB2 basal promoter, a GJB2 exon 1 5′ UTR, Kozak sequence, nucleotide sequence encoding a gene product (e.g., GJB2 or GFP), a GJB2 exon 2 3′ UTR, a WPRE, a bovine growth hormone poly A signal, and an AAV 3′ ITR (e.g., vector c.81.3).


In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 49. An exemplary nucleotide sequence for vector c.81.3 is set forth in SEQ ID NO: 49 (hGJB2 GRE3 underlined; eGFP coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTG





CTATCTATCATCTTGAAGGGCTTCTGGAACAAGTTAGAATAGAGTCAACACTCATGAACTGC





TGTAGCAAAAAAAACTATAGATGTAGGATTGACAAGGGCAATAGAGCGATGACTCCCTGGCT






GTGTTGTATTTGATGGACGGCAGTAGCTTTTCACAAAATGCTCATTTGGATGTTTCAAATTA







AAACGTTTCACTTTCTAGAACCAATTACGTGGTCAGTTTAGCTCCTGAGGTCCCAGTCAGAG







GGGTATTCTGTAGCTTGCAAAGCCTCTCTTTGGGGACTGGACATGGAGTCTGTGGTCTTAGA







ATTCAGAACCGGGAGAATGTGTTAGCCACTCATCTAAGCTATTCCTTAAACGCTTTCAGAGC







CATCTCCACTGTGGGGAAAGAAGTTCTTTGTGTTCTCTGACTTAGTCTCATTCTAAAAAAAA







AAAAAAAAAAAAAAAAAAAGCAATTGCAATACCCAGAGCGCACAGTAGATGGCACTGAGACT







TGTCGGAAAGCTGGACGCACTCAAGAGGTGGCAGAAAAATCTATAGGTAAGCTTTTCTTCTA







GTCTGGTGTTGCTGCTCCTGACCTTATTAATGGGCTGAGAAATAGATTTCTTTCCTTTCCTT







TTCTTTTTTATATGAAATTAAATGAAGTATAAAAGAATATGAGAATGTGTTGCTATTAGCAA







GGATAAGTAATGCTTTAGGAAACGTTTGGTTCATGTGTGTGTTTTCAGACTGATGTGTGTCC







TGGATCCAGTGTAAAATGTACTTCTGTCTGTAGGTCTCTGCCACAGAAAAGTTGGAAAGCCA






TTGTTGTATTCCATTTCCAGGGCAACAAAAGATACCACTGTCACTTCATGTGAAATGGTGTT





GTTTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTT





CGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCC





CTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCC





ACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGC





CCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCC





AACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAG





AGTAGAAGCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCG






AGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCC







ACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCC







CACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGA







AGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC







TTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGT







GAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC







TGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATC







AAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTA







CCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCA







CCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTC







GTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGGCGCGCCACCCC






TGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAG





GCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACC





CTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCA





CTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATA





TTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTT





CCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCA





CGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACA





AAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAG





GTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAG





ATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTG





GTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCAC





CTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGA





TAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATG





TACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGT





GGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAG





TACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACA





GATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAG





TTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGA





AAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAA





TATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTA





AGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTT





TAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAA





TATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTA





TCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT





GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCG





GGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGT





TGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGC





CACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCA





CTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTT





GCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGA





CCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTC





AGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTC





GAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGT





TTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAAT





AAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTG





GGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGG





ACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTC





GCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAG





TGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCAT





CTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCA





TTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGC





GCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAG





CTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAA





AAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCC





TTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCA





ACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTA





AAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAAT





TTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACC





CGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAA





GCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGC





GAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTT





CTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTC





TAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATA





TTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGG





CATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGAT





CAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAG





TTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGG





TATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAAT





GACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGA





ATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGA





TCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTT





GATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 70. An exemplary nucleotide sequence for vector c.81.3 is set forth in SEQ ID NO: 70 (hGJB2 GRE3 underlined; human GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTG





CTATCTATCATCTTGAAGGGCTTCTGGAACAAGTTAGAATAGAGTCAACACTCATGAACTGC





TGTAGCAAAAAAAACTATAGATGTAGGATTGACAAGGGCAATAGAGCGATGACTCCCTGGCT






GTGTTGTATTTGATGGACGGCAGTAGCTTTTCACAAAATGCTCATTTGGATGTTTCAAATTA







AAACGTTTCACTTTCTAGAACCAATTACGTGGTCAGTTTAGCTCCTGAGGTCCCAGTCAGAG







GGGTATTCTGTAGCTTGCAAAGCCTCTCTTTGGGGACTGGACATGGAGTCTGTGGTCTTAGA







ATTCAGAACCGGGAGAATGTGTTAGCCACTCATCTAAGCTATTCCTTAAACGCTTTCAGAGC







CATCTCCACTGTGGGGAAAGAAGTTCTTTGTGTTCTCTGACTTAGTCTCATTCTAAAAAAAA







AAAAAAAAAAAAAAAAAAAGCAATTGCAATACCCAGAGCGCACAGTAGATGGCACTGAGACT






TGTCGGAAAGCTGGACGCACTCAAGAGGTGGCAGAAAAATCTATAGGTAAGCTTTTCTTCTA






GTCTGGTGTTGCTGCTCCTGACCTTATTAATGGGCTGAGAAATAGATTTCTTTCCTTTCCTT







TTCTTTTTTATATGAAATTAAATGAAGTATAAAAGAATATGAGAATGTGTTGCTATTAGCAA







GGATAAGTAATGCTTTAGGAAACGTTTGGTTCATGTGTGTGTTTTCAGACTGATGTGTGTCC







TGGATCCAGTGTAAAATGTACTTCTGTCTGTAGGTCTCTGCCACAGAAAAGTTGGAAAGCCA






TTGTTGTATTCCATTTCCAGGGCAACAAAAGATACCACTGTCACTTCATGTGAAATGGTGTT





GTTTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTT





CGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCC





CTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCC





ACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGC





CCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCC





AACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAG





AGTAGAAGCCATGGATTGGGGCACGCTGCAGACGATCCTGGGGGGTGTGAACAAACACTCCA






CCAGCATTGGAAAGATCTGGCTCACCGTCCTCTTCATTTTTCGCATTATGATCCTCGTTGTG







GCTGCAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCTGCAACACCCTGCAGCCAGG







CTGCAAGAACGTGTGCTACGATCACTACTTCCCCATCTCCCACATCCGGCTATGGGCCCTGC







AGCTGATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGCACGTGGCCTACCGGAGACAT







GAGAAGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAGTGAATTTAAGGACATCGAGGAGAT







CAAAACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGTGGACCTACACAAGCAGCATCTTCT







TCCGGGTCATCTTCGAAGCCGCCTTCATGTACGTCTTCTATGTCATGTACGACGGCTTCTCC







ATGCAGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCAACACTGTGGACTGCTTTGTGTC







CCGGCCCACGGAGAAGACTGTCTTCACAGTGTTCATGATTGCAGTGTCTGGAATTTGCATCC







TGCTGAATGTCACTGAATTGTGTTATTTGCTAATTAGATATTGTTCTGGGAAGTCAAAAAAG







CCAGTTTAAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAA






ATAGACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCAT





TTCCCAACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTG





AAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCT





ATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGT





TATTGGTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGA





GGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGG





GTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAA





GTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAA





GTGAAAACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATG





TTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGAT





TTAATTTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGT





TGTATTCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAG





AAGTTCCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTT





GTGTAAGAAATACAGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAAC





ACATCTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTC





GCTTGGGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGG





AGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAG





AAAATATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGA





TCTATAGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTA





TTTGTAATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTAT





CAAATACATTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTA





ATAGAACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGAT





TGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCT





TTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTT





GCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGT





TTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACT





TTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTG





GACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCT





TTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTC





CCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCT





TCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAA





TTCATCGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCT





TCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGC





CACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTC





ATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGC





AGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCC





ACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCC





GGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGA





TGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCAT





AGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACC





GCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCAC





GTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTG





CTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCG





CCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTT





GTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTT





TGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTT





AACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGC





ATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGC





TCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTT





TCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGT





TAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCG





GAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAA





CCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGT





CGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGG





TGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTC





AACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTT





TAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTC





GCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTT





ACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGC





GGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACA





TGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAAC





GACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 71. An exemplary nucleotide sequence for vector c.81.3 is set forth in SEQ ID NO: 71 (hGJB2 GRE3 underlined; mouse GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTG





CTATCTATCATCTTGAAGGGCTTCTGGAACAAGTTAGAATAGAGTCAACACTCATGAACTGC





TGTAGCAAAAAAAACTATAGATGTAGGATTGACAAGGGCAATAGAGCGATGACTCCCTGGCT






GTGTTGTATTTGATGGACGGCAGTAGCTTTTCACAAAATGCTCATTTGGATGTTTCAAATTA







AAACGTTTCACTTTCTAGAACCAATTACGTGGTCAGTTTAGCTCCTGAGGTCCCAGTCAGAG







GGGTATTCTGTAGCTTGCAAAGCCTCTCTTTGGGGACTGGACATGGAGTCTGTGGTCTTAGA







ATTCAGAACCGGGAGAATGTGTTAGCCACTCATCTAAGCTATTCCTTAAACGCTTTCAGAGC







CATCTCCACTGTGGGGAAAGAAGTTCTTTGTGTTCTCTGACTTAGTCTCATTCTAAAAAAAA







AAAAAAAAAAAAAAAAAAAGCAATTGCAATACCCAGAGCGCACAGTAGATGGCACTGAGACT







TGTCGGAAAGCTGGACGCACTCAAGAGGTGGCAGAAAAATCTATAGGTAAGCTTTTCTTCTA







GTCTGGTGTTGCTGCTCCTGACCTTATTAATGGGCTGAGAAATAGATTTCTTTCCTTTCCTT







TTCTTTTTTATATGAAATTAAATGAAGTATAAAAGAATATGAGAATGTGTTGCTATTAGCAA







GGATAAGTAATGCTTTAGGAAACGTTTGGTTCATGTGTGTGTTTTCAGACTGATGTGTGTCC







TGGATCCAGTGTAAAATGTACTTCTGTCTGTAGGTCTCTGCCACAGAAAAGTTGGAAAGCCA






TTGTTGTATTCCATTTCCAGGGCAACAAAAGATACCACTGTCACTTCATGTGAAATGGTGTT





GTTTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTT





CGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCC





CTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCC





ACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGC





CCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCC





AACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAG





AGTAGAAGCCATGGATTGGGGCACACTCCAGAGCATCCTCGGGGGTGTCAACAAACACTCCA






CCAGCATTGGAAAGATCTGGCTCACGGTCCTCTTCATCTTCCGCATCATGATCCTCGTGGTG







GCTGCAAAGGAGGTGTGGGGAGATGAGCAAGCCGATTTTGTCTGCAACACGCTCCAGCCTGG







CTGCAAGAATGTATGCTACGACCACCACTTCCCCATCTCTCACATCCGGCTCTGGGCTCTGC







AGCTGATCATGGTGTCCACGCCAGCCCTCCTGGTAGCTATGCATGTGGCCTACCGGAGACAT







GAAAAGAAACGGAAGTTCATGAAGGGAGAGATAAAGAACGAGTTTAAGGACATCGAAGAGAT







CAAAACCCAGAAGGTCCGTATCGAAGGGTCCCTGTGGTGGACCTACACCACCAGCATCTTCT







TCCGGGTCATCTTTGAAGCCGTCTTCATGTACGTCTTTTACATCATGTACAATGGCTTCTTC







ATGCAACGTCTGGTGAAATGCAACGCTTGGCCCTGCCCCAATACAGTGGACTGCTTCATTTC







CAGGCCCACAGAAAAGACTGTCTTCACCGTGTTTATGATTTCTGTGTCTGGAATTTGCATTC







TGCTAAATATCACAGAGCTGTGCTATTTGTTCGTTAGGTATTGCTCAGGAAAGTCCAAAAGA







CCAGTCTACCCATACGATGTTCCAGATTACGCTTAAAGGCGCGCCACCCCTGCAGGGAATTC






CGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCT





CAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACC





ATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCT





AAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTT





CCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAG





GATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACA





CAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGA





ACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTG





CCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATG





TAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGT





AAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACT





TTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTG





TAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCC





TCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTA





CTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCAT





CGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATG





GGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGA





CTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTA





CCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAG





CTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTAT





GCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTG





TTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCT





TGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATAATCTCTAT





AATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAAC





CTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACG





CTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCAT





GGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCC





ACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACT





CATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCG





TGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATT





CTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCG





CGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGA





TCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTG





ATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCC





CGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAA





TTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGC





AAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCG





CAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGC





CGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAG





CGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATT





TCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCG





GGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTT





CGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGG





GGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTG





GGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGA





GTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGG





GCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTG





ATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCAC





TCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCG





CTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTC





TCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGG





CCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAG





GTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCA





AATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAA





GAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTC





CTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCA





CGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGA





AGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTA





TTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAG





TACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGC





TGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGA





AGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAA





CCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AAV vector described herein comprises an AAV 5′ ITR, a GJB2 GRE enhancer (hGJB2 GRE4), a GJB2 basal promoter, a GJB2 exon 1 5′ UTR, Kozak sequence, nucleotide sequence encoding a gene product (e.g., GJB2 or GFP), a GJB2 exon 2 3′ UTR, a WPRE, a bovine growth hormone poly A signal, and an AAV 3′ ITR (e.g., vector c.81.4).


In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 72. An exemplary nucleotide sequence for vector c.81.4 is set forth in SEQ ID NO: 72 (hGJB2 GRE4 underlined; eGFP coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTA





ACTGGGCAATGCGTTAAACTGGCTTTTTTGACTTCCCAGAACAATATCTAATTAGCAAATAA





CACAATTCAGTGACATTCAGCAGGATGCAAATTCCAGACACTGCAATCATGAACACTGTGAA






GACAGTCTTCTCCGTGGGCCGGGACACAAAGCAGTCCACAGTGTTGGGACAAGGCCAGGCGT







TGCACTTCACCAGCCGCTGCATGGAGAAGCCGTCGTACATGACATAGAAGACGTACATGAAG







GCGGCTTCGAAGATGACCCGGAAGAAGATGCTGCTTGTGTAGGTCCACCACAGGGAGCCTTC







GATGCGGACCTTCTGGGTTTTGATCTCCTCGATGTCCTTAAATTCACTCTTTATCTCCCCCT







TGATGAACTTCCTCTTCTTCTCATGTCTCCGGTAGGCCACGTGCATGGCCACTAGGAGCGCT







GGCGTGGACACGAAGATCAGCTGCAGGGCCCATAGCCGGATGTGGGAGATGGGGAAGTAGTG







ATCGTAGCACACGTTCTTGCAGCCTGGCTGCAGGGTGTTGCAGACAAAGTCGGCCTGCTCAT







CTCCCCACACCTCCTTTGCAGCCACAACGAGGATCATAATGCGAAAAATGAAGAGGACGGTG







AGCCAGATCTTTCCAATGCTGGTGGAGTGTTTGTTCACACCCCCCAGGATCGTCTGCAGCGT







GCCCCAATCCATCTTCTACTCTGGGCGGTTTGCTCTGGAAAAGACGAATGCACACAACACAG







GAATCACTAGCTAGGACAGAACAGGGAGACTTCTCTGAGTCTGGGTAAGCAAGCATGCTTAA






ATCTCTTCCTGAGCAAACACCAACTCTTACACAACCTCACCAAAACAGGTGAAGACAGAACC





AACTTAGTTTGTCATTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGG





CGGTCGGGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCG





CGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGG





TTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCC





CCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAG





CGCAGAGACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAG





CAAACCGCCCAGAGTAGAAGCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGC






CCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGC






GAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCC






CGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACC







CCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAG







CGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGG







CGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCC







TGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAG







AAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCT







CGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACC







ACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTC







CTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAATA






AAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAG





CATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAAC





ACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCA





GATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGT





CTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTG





TAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGA





GAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTT





TGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAAT





CTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAAC





TTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCT





GTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTG





AAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCA





TTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCT





AGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGA





AATACAGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATCTCC





CTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGA





ATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTT





CTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTT





TGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATA





GCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGG





AAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACAT





ATTTCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAAT





AATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACA





TTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACA





GCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGT





ATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCA





TGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTC





TTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGAC





GCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTT





CCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGG





CTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGG





CTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGC





CCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTC





TTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGA





TACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTG





CCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCA





CTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATT





CTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGC





TGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTC





TCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTG





CCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTAT





TTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCG





CCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACT





TGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCG





GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGG





CACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACTTAGTGGGCCATCGCCCTGATA





GACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAA





CTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATT





TCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAAT





ATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAA





GCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCA





TCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTC





ATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCA





TGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCT





ATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATA





AATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTA





TTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTA





AAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGG





TAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTC





TGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATA





CACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGG





CATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACT





TACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGAT





CATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCG





TGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 73. An exemplary nucleotide sequence for vector c.81.4 is set forth in SEQ ID NO: 73 (hGJB2 GRE4 underlined; human GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTA





ACTGGGCAATGCGTTAAACTGGCTTTTTTGACTTCCCAGAACAATATCTAATTAGCAAATAA





CACAATTCAGTGACATTCAGCAGGATGCAAATTCCAGACACTGCAATCATGAACACTGTGAA






GACAGTCTTCTCCGTGGGCCGGGACACAAAGCAGTCCACAGTGTTGGGACAAGGCCAGGCGT







TGCACTTCACCAGCCGCTGCATGGAGAAGCCGTCGTACATGACATAGAAGACGTACATGAAG







GCGGCTTCGAAGATGACCCGGAAGAAGATGCTGCTTGTGTAGGTCCACCACAGGGAGCCTTC







GATGCGGACCTTCTGGGTTTTGATCTCCTCGATGTCCTTAAATTCACTCTTTATCTCCCCCT







TGATGAACTTCCTCTTCTTCTCATGTCTCCGGTAGGCCACGTGCATGGCCACTAGGAGCGCT







GGCGTGGACACGAAGATCAGCTGCAGGGCCCATAGCCGGATGTGGGAGATGGGGAAGTAGTG







ATCGTAGCACACGTTCTTGCAGCCTGGCTGCAGGGTGTTGCAGACAAAGTCGGCCTGCTCAT







CTCCCCACACCTCCTTTGCAGCCACAACGAGGATCATAATGCGAAAAATGAAGAGGACGGTG







AGCCAGATCTTTCCAATGCTGGTGGAGTGTTTGTTCACACCCCCCAGGATCGTCTGCAGCGT







GCCCCAATCCATCTTCTACTCTGGGCGGTTTGCTCTGGAAAAGACGAATGCACACAACACAG







GAATCACTAGCTAGGACAGAACAGGGAGACTTCTCTGAGTCTGGGTAAGCAAGCATGCTTAA






ATCTCTTCCTGAGCAAACACCAACTCTTACACAACCTCACCAAAACAGGTGAAGACAGAACC





AACTTAGTTTGTCATTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGG





CGGTCGGGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCG





CGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGG





TTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCC





CCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAG





CGCAGAGACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAG





CAAACCGCCCAGAGTAGAAGCCATGGATTGGGGCACGCTGCAGACGATCCTGGGGGGTGTGA






ACAAACACTCCACCAGCATTGGAAAGATCTGGCTCACCGTCCTCTTCATTTTTCGCATTATG







ATCCTCGTTGTGGCTGCAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCTGCAACAC







CCTGCAGCCAGGCTGCAAGAACGTGTGCTACGATCACTACTTCCCCATCTCCCACATCCGGC







TATGGGCCCTGCAGCTGATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGCACGTGGCC







TACCGGAGACATGAGAAGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAGTGAATTTAAGGA







CATCGAGGAGATCAAAACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGTGGACCTACACAA







GCAGCATCTTCTTCCGGGTCATCTTCGAAGCCGCCTTCATGTACGTCTTCTATGTCATGTAC







GACGGCTTCTCCATGCAGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCAACACTGTGGA







CTGCTTTGTGTCCCGGCCCACGGAGAAGACTGTCTTCACAGTGTTCATGATTGCAGTGTCTG







GAATTTGCATCCTGCTGAATGTCACTGAATTGTGTTATTTGCTAATTAGATATTGTTCTGGG







AAGTCAAAAAAGCCAGTTTAAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTG






TTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTC





AGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGT





AGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAA





AGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAG





GCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGT





TTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGG





TGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCA





TTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTA





CACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGA





TACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATT





CGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGA





GAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGT





GAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTT





AGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTACTACCTGTAATGACA





GGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGA





TTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGG





GGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTC





TGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCA





ATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAA





ATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTC





CAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCA





TTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAAT





TTTGTAATGTATCAAATACATTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCT





AATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAA





TTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCT





GCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTA





TAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGG





TGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTC





CTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCT





TGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGA





AATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCC





TTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGC





TCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCG





CCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAG





CTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGAC





CCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTC





TGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGG





GAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTG





ATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGT





CGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGC





AGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGT





CAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACG





CGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTC





CTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGT





TCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGT





AGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAA





TAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATT





TATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTT





AACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTG





CTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGAC





GGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATG





TGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCT





ATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGG





GAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTC





ATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCA





ACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACC





CAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATC





GAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAAT





GATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAG





AGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACA





GAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAG





TGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT





TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAA





GCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 74. An exemplary nucleotide sequence for vector c.81.4 is set forth in SEQ ID NO: 74 (hGJB2 GRE4 underlined; mouse GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTA





ACTGGGCAATGCGTTAAACTGGCTTTTTTGACTTCCCAGAACAATATCTAATTAGCAAATAA





CACAATTCAGTGACATTCAGCAGGATGCAAATTCCAGACACTGCAATCATGAACACTGTGAA






GACAGTCTTCTCCGTGGGCCGGGACACAAAGCAGTCCACAGTGTTGGGACAAGGCCAGGCGT







TGCACTTCACCAGCCGCTGCATGGAGAAGCCGTCGTACATGACATAGAAGACGTACATGAAG







GCGGCTTCGAAGATGACCCGGAAGAAGATGCTGCTTGTGTAGGTCCACCACAGGGAGCCTTC







GATGCGGACCTTCTGGGTTTTGATCTCCTCGATGTCCTTAAATTCACTCTTTATCTCCCCCT







TGATGAACTTCCTCTTCTTCTCATGTCTCCGGTAGGCCACGTGCATGGCCACTAGGAGCGCT







GGCGTGGACACGAAGATCAGCTGCAGGGCCCATAGCCGGATGTGGGAGATGGGGAAGTAGTG







ATCGTAGCACACGTTCTTGCAGCCTGGCTGCAGGGTGTTGCAGACAAAGTCGGCCTGCTCAT







CTCCCCACACCTCCTTTGCAGCCACAACGAGGATCATAATGCGAAAAATGAAGAGGACGGTG







AGCCAGATCTTTCCAATGCTGGTGGAGTGTTTGTTCACACCCCCCAGGATCGTCTGCAGCGT







GCCCCAATCCATCTTCTACTCTGGGCGGTTTGCTCTGGAAAAGACGAATGCACACAACACAG







GAATCACTAGCTAGGACAGAACAGGGAGACTTCTCTGAGTCTGGGTAAGCAAGCATGCTTAA






ATCTCTTCCTGAGCAAACACCAACTCTTACACAACCTCACCAAAACAGGTGAAGACAGAACC





AACTTAGTTTGTCATTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGG





CGGTCGGGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCG





CGGCGCCGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGG





TTAAAAGGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCC





CCGACTCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAG





CGCAGAGACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAG





CAAACCGCCCAGAGTAGAAGCCATGGATTGGGGCACACTCCAGAGCATCCTCGGGGGTGTCA






ACAAACACTCCACCAGCATTGGAAAGATCTGGCTCACGGTCCTCTTCATCTTCCGCATCATG







ATCCTCGTGGTGGCTGCAAAGGAGGTGTGGGGAGATGAGCAAGCCGATTTTGTCTGCAACAC







GCTCCAGCCTGGCTGCAAGAATGTATGCTACGACCACCACTTCCCCATCTCTCACATCCGGC







TCTGGGCTCTGCAGCTGATCATGGTGTCCACGCCAGCCCTCCTGGTAGCTATGCATGTGGCC







TACCGGAGACATGAAAAGAAACGGAAGTTCATGAAGGGAGAGATAAAGAACGAGTTTAAGGA







CATCGAAGAGATCAAAACCCAGAAGGTCCGTATCGAAGGGTCCCTGTGGTGGACCTACACCA







CCAGCATCTTCTTCCGGGTCATCTTTGAAGCCGTCTTCATGTACGTCTTTTACATCATGTAC







AATGGCTTCTTCATGCAACGTCTGGTGAAATGCAACGCTTGGCCCTGCCCCAATACAGTGGA







CTGCTTCATTTCCAGGCCCACAGAAAAGACTGTCTTCACCGTGTTTATGATTTCTGTGTCTG







GAATTTGCATTCTGCTAAATATCACAGAGCTGTGCTATTTGTTCGTTAGGTATTGCTCAGGA







AAGTCCAAAAGACCAGTCTACCCATACGATGTTCCAGATTACGCTTAAAGGCGCGCCACCCC






TGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAG





GCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACC





TTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAG





CTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCA





CTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATA





TTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTT





CCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCA





CGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACA





AAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAG





GTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAG





ATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTG





GTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCAC





CTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGA





TAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATG





TACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGT





GGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAG





TACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACA





GATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAG





TTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGA





AAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAA





TATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTA





AGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTT





TAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAA





TATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTA





TCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTT





GCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCG





TATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGT





GGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGT





TGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGC





CACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCA





CTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTT





GCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGA





CCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTC





AGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTC





GAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGT





TTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAAT





AAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTG





GGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGG





ACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTC





GCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAG





TGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCAT





CTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCA





TTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGC





GCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAG





CTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAA





AAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCC





TTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCA





ACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTA





AAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAAT





TTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACC





CGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAA





GCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGC





GAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTT





CTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTC





TAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATA





TTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGG





CATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGAT





CAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAG





TTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGG





TATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAAT





GACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGA





ATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGA





TCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTT





GATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AAV vector described herein comprises an AAV 5′ ITR, a GJB2 GRE enhancer (hGJB2 GRE5), a GJB2 basal promoter, a GJB2 exon 1 5′ UTR, Kozak sequence, nucleotide sequence encoding a gene product (e.g., GJB2 or GFP), a GJB2 exon 2 3′ UTR, a WPRE, a bovine growth hormone poly A signal, and an AAV 3′ ITR (e.g., vector c.81.5).


In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 50. An exemplary nucleotide sequence for vector c.81.5 is set forth in SEQ ID NO: 50 (hGJB2 GRE5 underlined; eGFP coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTA





AGCTACTAACTACAACCACGAGATTATAGATGTTTGCTGATATTGTTCTCAGTTTGGTTATT





GTGTTGTTTATGAATGAAAGTAGTGTATGTTTGTGTGAATTTTTGTTTTTAATTTTTTATGA






GTGCCCTAACAAAGATTACAAATTGGGAATACAAACTCCAGAGCAATGGAGACAGTGACACT







TTTGTGGAGGGGTACATGTGGCTGTTCGGGTGGTTATTAACACAGGCTGCTGCCCCTGCCCT







GCAATGGGAATCCCCAGGGCATTGGAGGATTCAACCTCTTGCAGTTACCTCTTGTAAGACAG







CAGATGGCAGCAGAGAGAGGCTTTGCACATCCCTGCAGGTTCTAGTTTGCACAAAGGGCTTC







TGAGAGACCTATCAACCAATTATAACATCAAGTGGCAAAAAGAGTCCTTGATAAGTTATTTC







GCTTCTCAAAGAAACCGAAAACGCCAAACTAATCACTAGTCTTGTTTTTTTTTTTCCTGGCA







AAAGCCTGCTATCTTTCATGATTTAGCTTTCATGAAATTGTTCCTGAAGACCCCCAAAAGAA







ACAATTTCATGCCCCGAACTCTGTTCAGAGACTTTGCTGTGCCTGTCATGTCCAGCTTGCCA







TATCCTGTTTTGTAAAGTAGCCACCTTATATACACACCTGCTGTCTGCACTGTGACCTCCTT







TCAAAATCATCTTTGGTTCTTCAGAGGCCTGGAATAATGCTCTGCCCAGATGAAGATCTCCG







TAAATGTGTTTTTGAAATGGCTAATCAAATAATGGATACCCTTAGGTATTTTTGCAGAAACA






CTTGGCAGCCTTCCATAATATCCCTACTATGAAATGGAAACTTGTGAATGAGATGTGGCTTT





AATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCG





GACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCC





GTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGG





CGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCT





CGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACG





CCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTA





GAAGCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCT






GGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCT







ACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACC







CTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCA







GCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA







AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAAC







CGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGA







GTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGG







TGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAG







CAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCA







GTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGA







CCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGGCGCGCCACCCCTGCA






GGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAA





CCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAA





ATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCT





GCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTA





AGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTT





AAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCAC





AGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTT





AAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGT





TACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTA





TTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTG





TAATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTA





TGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAA





CAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGC





AAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACC





ACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTA





GCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACC





ATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATT





TGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTG





TTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAG





AATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATT





GCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTA





TTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAAT





GATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATA





ATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGA





TAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTC





CTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATG





GCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCC





CGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGG





GCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACG





GCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGA





CAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCA





CCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTT





CCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGAC





GAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGA





GATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGC





CCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAA





TGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGC





AGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCG





AGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTC





ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAG





CGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGT





GCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAA





GCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCC





GCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCT





AAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAAC





TTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTG





ACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCC





TATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAA





ATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTA





TGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCC





AACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTG





TGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGA





CGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTA





GACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAA





TACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGA





AAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATT





TTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGT





TGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTT





CGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATT





ATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACT





TGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTA





TGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGG





AGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATC





GTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 75. An exemplary nucleotide sequence for vector c.81.5 is set forth in SEQ ID NO: 75 (hGJB2 GRE5 underlined; human GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTA





AGCTACTAACTACAACCACGAGATTATAGATGTTTGCTGATATTGTTCTCAGTTTGGTTATT





GTGTTGTTTATGAATGAAAGTAGTGTATGTTTGTGTGAATTTTTGTTTTTAATTTTTTATGA






GTGCCCTAACAAAGATTACAAATTGGGAATACAAACTCCAGAGCAATGGAGACAGTGACACT







TTTGTGGAGGGGTACATGTGGCTGTTCGGGTGGTTATTAACACAGGCTGCTGCCCCTGCCCT







GCAATGGGAATCCCCAGGGCATTGGAGGATTCAACCTCTTGCAGTTACCTCTTGTAAGACAG







CAGATGGCAGCAGAGAGAGGCTTTGCACATCCCTGCAGGTTCTAGTTTGCACAAAGGGCTTC







TGAGAGACCTATCAACCAATTATAACATCAAGTGGCAAAAAGAGTCCTTGATAAGTTATTTC







GCTTCTCAAAGAAACCGAAAACGCCAAACTAATCACTAGTCTTGTTTTTTTTTTTCCTGGCA







AAAGCCTGCTATCTTTCATGATTTAGCTTTCATGAAATTGTTCCTGAAGACCCCCAAAAGAA







ACAATTTCATGCCCCGAACTCTGTTCAGAGACTTTGCTGTGCCTGTCATGTCCAGCTTGCCA







TATCCTGTTTTGTAAAGTAGCCACCTTATATACACACCTGCTGTCTGCACTGTGACCTCCTT







TCAAAATCATCTTTGGTTCTTCAGAGGCCTGGAATAATGCTCTGCCCAGATGAAGATCTCCG







TAAATGTGTTTTTGAAATGGCTAATCAAATAATGGATACCCTTAGGTATTTTTGCAGAAACA






CTTGGCAGCCTTCCATAATATCCCTACTATGAAATGGAAACTTGTGAATGAGATGTGGCTTT





AATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCG





GACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCC





GTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGG





CGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCT





CGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACG





CCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTA





GAAGCCATGGATTGGGGCACGCTGCAGACGATCCTGGGGGGTGTGAACAAACACTCCACCAG






CATTGGAAAGATCTGGCTCACCGTCCTCTTCATTTTTCGCATTATGATCCTCGTTGTGGCTG







CAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCTGCAACACCCTGCAGCCAGGCTGC







AAGAACGTGTGCTACGATCACTACTTCCCCATCTCCCACATCCGGCTATGGGCCCTGCAGCT







GATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGCACGTGGCCTACCGGAGACATGAGA







AGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAGTGAATTTAAGGACATCGAGGAGATCAAA







ACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGTGGACCTACACAAGCAGCATCTTCTTCCG







GGTCATCTTCGAAGCCGCCTTCATGTACGTCTTCTATGTCATGTACGACGGCTTCTCCATGC







AGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCAACACTGTGGACTGCTTTGTGTCCCGG







CCCACGGAGAAGACTGTCTTCACAGTGTTCATGATTGCAGTGTCTGGAATTTGCATCCTGCT







GAATGTCACTGAATTGTGTTATTTGCTAATTAGATATTGTTCTGGGAAGTCAAAAAAGCCAG







TTTAAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAG






ACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCC





CAACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAAC





TCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGC





CTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATT





GGTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGAC





AAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTC





TTTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTT





TAATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGA





AAACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCC





CCCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAA





TTTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTA





TTCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGT





TCCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGT





AAGAAATACAGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACAT





CTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTT





GGGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAA





GTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGA





GCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAA





TATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTA





TAGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCC





ACATATTTCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTG





TAATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAA





TACATTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAG





AACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGAC





TGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGT





ATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTG





TCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGC





TGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCG





CTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACA





GGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCC





TTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTT





CGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCG





CGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCA





TCGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTA





GTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACT





CCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTC





TATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGC





ATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTC





CCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGC





TTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCG





GTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTA





CGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTA





CACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTC





GCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTT





ACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCT





GATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTC





CAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCC





GATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACA





AAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAG





TTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCC





GGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCAC





CGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAAT





GTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAAC





CCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT





GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCC





CTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAA





AGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACA





GCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAA





GTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCG





CATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGG





ATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCC





AACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGG





GGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACG





AGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 76. An exemplary nucleotide sequence for vector c.81.5 is set forth in SEQ ID NO: 76 (hGJB2 GRE5 underlined; mouse GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTA





AGCTACTAACTACAACCACGAGATTATAGATGTTTGCTGATATTGTTCTCAGTTTGGTTATT





GTGTTGTTTATGAATGAAAGTAGTGTATGTTTGTGTGAATTTTTGTTTTTAATTTTTTATGA






GTGCCCTAACAAAGATTACAAATTGGGAATACAAACTCCAGAGCAATGGAGACAGTGACACT







TTTGTGGAGGGGTACATGTGGCTGTTCGGGTGGTTATTAACACAGGCTGCTGCCCCTGCCCT







GCAATGGGAATCCCCAGGGCATTGGAGGATTCAACCTCTTGCAGTTACCTCTTGTAAGACAG







CAGATGGCAGCAGAGAGAGGCTTTGCACATCCCTGCAGGTTCTAGTTTGCACAAAGGGCTTC







TGAGAGACCTATCAACCAATTATAACATCAAGTGGCAAAAAGAGTCCTTGATAAGTTATTTC







GCTTCTCAAAGAAACCGAAAACGCCAAACTAATCACTAGTCTTGTTTTTTTTTTTCCTGGCA







AAAGCCTGCTATCTTTCATGATTTAGCTTTCATGAAATTGTTCCTGAAGACCCCCAAAAGAA







ACAATTTCATGCCCCGAACTCTGTTCAGAGACTTTGCTGTGCCTGTCATGTCCAGCTTGCCA







TATCCTGTTTTGTAAAGTAGCCACCTTATATACACACCTGCTGTCTGCACTGTGACCTCCTT







TCAAAATCATCTTTGGTTCTTCAGAGGCCTGGAATAATGCTCTGCCCAGATGAAGATCTCCG







TAAATGTGTTTTTGAAATGGCTAATCAAATAATGGATACCCTTAGGTATTTTTGCAGAAACA






CTTGGCAGCCTTCCATAATATCCCTACTATGAAATGGAAACTTGTGAATGAGATGTGGCTTT





AATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCG





GACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCC





GTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGG





CGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCT





CGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACG





CCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTA





GAAGCCATGGATTGGGGCACACTCCAGAGCATCCTCGGGGGTGTCAACAAACACTCCACCAG






CATTGGAAAGATCTGGCTCACGGTCCTCTTCATCTTCCGCATCATGATCCTCGTGGTGGCTG







CAAAGGAGGTGTGGGGAGATGAGCAAGCCGATTTTGTCTGCAACACGCTCCAGCCTGGCTGC







AAGAATGTATGCTACGACCACCACTTCCCCATCTCTCACATCCGGCTCTGGGCTCTGCAGCT







GATCATGGTGTCCACGCCAGCCCTCCTGGTAGCTATGCATGTGGCCTACCGGAGACATGAAA







AGAAACGGAAGTTCATGAAGGGAGAGATAAAGAACGAGTTTAAGGACATCGAAGAGATCAAA







ACCCAGAAGGTCCGTATCGAAGGGTCCCTGTGGTGGACCTACACCACCAGCATCTTCTTCCG







GGTCATCTTTGAAGCCGTCTTCATGTACGTCTTTTACATCATGTACAATGGCTTCTTCATGC







AACGTCTGGTGAAATGCAACGCTTGGCCCTGCCCCAATACAGTGGACTGCTTCATTTCCAGG







CCCACAGAAAAGACTGTCTTCACCGTGTTTATGATTTCTGTGTCTGGAATTTGCATTCTGCT







AAATATCACAGAGCTGTGCTATTTGTTCGTTAGGTATTGCTCAGGAAAGTCCAAAAGACCAG







TCTACCCATACGATGTTCCAGATTACGCTTAAAGGCGCGCCACCCCTGCAGGGAATTCCGCA






TTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGC





TGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACCATTT





GAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAG





CCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCAC





TGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAGGATA





TCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGA





GAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACAT





TGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCTT





AAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATGTAAA





GATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGTAAAT





GGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACTTTGC





AGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTGTAGC





CTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCCTCAT





GTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTACTAC





CTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGA





AAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATGGGGA





GGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGG





ACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCC





TTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAGCTAA





GGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTATGCTT





GACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTGTTGT





CAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCTTGTA





ACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATAATCTCTATAATA





ATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAACCTCT





GGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTAT





GTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTC





TCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCA





ACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCA





CCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATC





GCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGT





GTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGC





GCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGC





CTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTC





CCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTGATAG





CGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTG





CCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGC





ATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGG





GGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGG





AACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGG





CGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCG





CAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCAC





ACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTG





TGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCT





TTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCT





CCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTG





ATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCC





ACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTA





TTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTT





AACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTC





AGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGA





CGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCG





GGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTC





GTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGG





CACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATA





TGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGT





ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGT





TTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAG





TGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAA





CGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGA





CGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACT





CACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCC





ATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGA





GCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGG





AGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AAV vector described herein comprises an AAV 5′ ITR, a GJB2 GRE enhancer (hGJB2 GRE7), a GJB2 basal promoter, a GJB2 exon 1 5′ UTR, Kozak sequence, nucleotide sequence encoding a gene product (e.g., GJB2 or GFP), a GJB2 exon 2 3′ UTR, a WPRE, a bovine growth hormone poly A signal, and an AAV 3′ ITR (e.g., vector c.81.7).


In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 51. An exemplary nucleotide sequence for vector c.81.7 is set forth in SEQ ID NO: 51 (hGJB2 GRE7 underlined; eGFP coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTC





TCAGCTGGAGTGACGCACCTCATCCATGCGGGCCTGGCGTCTGGAAGGTGGCTGGGTCTCTC





GGGCTTGAGCACCATCATCTTAGCTCCAACATGTCATTATTCCTTCCTCACTGAGGACTTTT






CTGCTTCCTAATTGGTTGTTGAAGATGAGGCCCCCATGCTCTTTTAAGAAAACCTGTTGTGC







CCCAGGCTTGGCTGTGATGGGCACTGACTCATACAGAAGTAGAAAGGCCTGCTGAGTCATCA







ACACTCGTGCGACGCCCTCGCATTTTCATTAATGATGGCCTCCCTGCCACACGTGAATCACT







CCAGCCCGAGATCTGAAACCAGGACACACCCCAGGGGCGAGGTGACGCTGAGTGAGCCCAGC







TGTGTCCCTTTCATGAGAACTCAGAGCACAGGGCTCTGTGTGCATGGCCGTCCCCTCCAGAG







AGGAGGAAGTAAATGCCGGGATTAGTGGAAGATCATTTCCTTCTATTTGCCTTGGCTTACGT






CTTTCAGAATTCAAACACGTGCACTGTTGACCCTGCAATGGTGGAGTTTTTGGATTTTCCTT






CAGTCCGATTGCTAAAATACTTCCCTCTCATGTGAGCTGTTGTGAAAGTCATCAGCCAGATA







CCATTCTAAAAACAAAGAATGTGCTTCTCGTATGTTGCATGCTGGTTACTGAAATATTAGGG







AATTACATAAAGGTTTTCTGGGGCACATATTCAAGCTGAATGATAAAATTGAAGGTCACACA







AAGCTAAGGTCTTTCAAATCCTGACCCAATTAGCTCTCTGTTAGCTCTCTGACTTTGGACAA






GCTGTCTGGTCCTCTGAAGCATACTTTGTTCGCCCTGGGTAGGGGCCCTCTGTTTTAACAGC





GTTTGGCATTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCG





GGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGC





CGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAA





GGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACT





CGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGA





GACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACC





GCCCAGAGTAGAAGCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCC






TGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGC







GATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCC







CTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACC







ACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACC







ATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACAC







CCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGC







ACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAAC







GGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGA







CCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACC







TGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTG







GAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGGCGCGC






CACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGG





GATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATT





CTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACA





ATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTT





CTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACT





TTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGC





CAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTT





TCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAG





TGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTA





TGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAG





GCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGT





CTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCA





TAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGC





TTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGAC





TGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCAT





GACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTG





ACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTA





AAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTT





CAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAAC





ATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAA





CCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTG





AGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAA





TAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACA





TTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCA





AGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAAC





TATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGC





TTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGG





AGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCC





ACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCC





TATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGT





TGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCC





TATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCC





AGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTC





GCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCG





CTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATC





TGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTT





CCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGT





GGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACAC





GTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGC





TCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGG





CCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTT





ACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGC





GGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGC





CCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCC





GTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGAC





CCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTT





TCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAA





CACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTAT





TGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTT





TACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCC





GACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTAC





AGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAA





ACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAA





TGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA





TTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCA





ATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTT





TTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCT





GAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCT





TGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTG





GCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCT





CAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGT





AAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGA





CAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACT





CGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 77. An exemplary nucleotide sequence for vector c.81.7 is set forth in SEQ ID NO: 77 (hGJB2 GRE7 underlined; human GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTC





TCAGCTGGAGTGACGCACCTCATCCATGCGGGCCTGGCGTCTGGAAGGTGGCTGGGTCTCTC





GGGCTTGAGCACCATCATCTTAGCTCCAACATGTCATTATTCCTTCCTCACTGAGGACTTTT






CTGCTTCCTAATTGGTTGTTGAAGATGAGGCCCCCATGCTCTTTTAAGAAAACCTGTTGTGC







CCCAGGCTTGGCTGTGATGGGCACTGACTCATACAGAAGTAGAAAGGCCTGCTGAGTCATCA







ACACTCGTGCGACGCCCTCGCATTTTCATTAATGATGGCCTCCCTGCCACACGTGAATCACT







CCAGCCCGAGATCTGAAACCAGGACACACCCCAGGGGCGAGGTGACGCTGAGTGAGCCCAGC







TGTGTCCCTTTCATGAGAACTCAGAGCACAGGGCTCTGTGTGCATGGCCGTCCCCTCCAGAG







AGGAGGAAGTAAATGCCGGGATTAGTGGAAGATCATTTCCTTCTATTTGCCTTGGCTTACGT







CTTTCAGAATTCAAACACGTGCACTGTTGACCCTGCAATGGTGGAGTTTTTGGATTTTCCTT







CAGTCCGATTGCTAAAATACTTCCCTCTCATGTGAGCTGTTGTGAAAGTCATCAGCCAGATA







CCATTCTAAAAACAAAGAATGTGCTTCTCGTATGTTGCATGCTGGTTACTGAAATATTAGGG







AATTACATAAAGGTTTTCTGGGGCACATATTCAAGCTGAATGATAAAATTGAAGGTCACACA







AAGCTAAGGTCTTTCAAATCCTGACCCAATTAGCTCTCTGTTAGCTCTCTGACTTTGGACAA






GCTGTCTGGTCCTCTGAAGCATACTTTGTTCGCCCTGGGTAGGGGCCCTCTGTTTTAACAGC





GTTTGGCATTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCG





GGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGC





CGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAA





GGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACT





CGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGA





GACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACC





GCCCAGAGTAGAAGCCATGGATTGGGGCACGCTGCAGACGATCCTGGGGGGTGTGAACAAAC






ACTCCACCAGCATTGGAAAGATCTGGCTCACCGTCCTCTTCATTTTTCGCATTATGATCCTC







GTTGTGGCTGCAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCTGCAACACCCTGCA







GCCAGGCTGCAAGAACGTGTGCTACGATCACTACTTCCCCATCTCCCACATCCGGCTATGGG







CCCTGCAGCTGATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGCACGTGGCCTACCGG







AGACATGAGAAGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAGTGAATTTAAGGACATCGA







GGAGATCAAAACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGTGGACCTACACAAGCAGCA







TCTTCTTCCGGGTCATCTTCGAAGCCGCCTTCATGTACGTCTTCTATGTCATGTACGACGGC







TTCTCCATGCAGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCAACACTGTGGACTGCTT







TGTGTCCCGGCCCACGGAGAAGACTGTCTTCACAGTGTTCATGATTGCAGTGTCTGGAATTT







GCATCCTGCTGAATGTCACTGAATTGTGTTATTTGCTAATTAGATATTGTTCTGGGAAGTCA







AAAAAGCCAGTTTAAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGAT






TAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGC





TAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCT





CAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCT





AATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTT





AGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTT





CTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCT





CCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCT





TTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTT





TTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCAT





TATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTAC





TATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCT





GTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACA





GACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGT





AATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTG





TCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAA





GAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGG





GGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGA





TTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTT





TAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTG





AGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAA





ATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAA





AAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTA





ATGTATCAAATACATTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATG





GTTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTG





AAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTA





ATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATC





CTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCA





CTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCC





GGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCG





CTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCAT





CGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGC





TACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCG





GCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCC





CGCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCT





GTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGA





AGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTA





GGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGAC





AATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAG





TTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCG





ACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGC





GCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGC





AACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGC





GTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCT





CGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGAT





TTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGG





CCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGG





ACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAG





GGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCG





AATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGA





TGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTT





GTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAG





AGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTT





ATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATG





TGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGA





CAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTT





CCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAA





CGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTG





GATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAG





CACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAAC





TCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAG





CATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAA





CACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGC





ACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATA





CCAAACGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 78. An exemplary nucleotide sequence for vector c.81.7 is set forth in SEQ ID NO: 78 (hGJB2 GRE7 underlined; mouse GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTC





TCAGCTGGAGTGACGCACCTCATCCATGCGGGCCTGGCGTCTGGAAGGTGGCTGGGTCTCTC





GGGCTTGAGCACCATCATCTTAGCTCCAACATGTCATTATTCCTTCCTCACTGAGGACTTTT






CTGCTTCCTAATTGGTTGTTGAAGATGAGGCCCCCATGCTCTTTTAAGAAAACCTGTTGTGC







CCCAGGCTTGGCTGTGATGGGCACTGACTCATACAGAAGTAGAAAGGCCTGCTGAGTCATCA







ACACTCGTGCGACGCCCTCGCATTTTCATTAATGATGGCCTCCCTGCCACACGTGAATCACT







CCAGCCCGAGATCTGAAACCAGGACACACCCCAGGGGCGAGGTGACGCTGAGTGAGCCCAGC







TGTGTCCCTTTCATGAGAACTCAGAGCACAGGGCTCTGTGTGCATGGCCGTCCCCTCCAGAG







AGGAGGAAGTAAATGCCGGGATTAGTGGAAGATCATTTCCTTCTATTTGCCTTGGCTTACGT







CTTTCAGAATTCAAACACGTGCACTGTTGACCCTGCAATGGTGGAGTTTTTGGATTTTCCTT







CAGTCCGATTGCTAAAATACTTCCCTCTCATGTGAGCTGTTGTGAAAGTCATCAGCCAGATA







CCATTCTAAAAACAAAGAATGTGCTTCTCGTATGTTGCATGCTGGTTACTGAAATATTAGGG







AATTACATAAAGGTTTTCTGGGGCACATATTCAAGCTGAATGATAAAATTGAAGGTCACACA







AAGCTAAGGTCTTTCAAATCCTGACCCAATTAGCTCTCTGTTAGCTCTCTGACTTTGGACAA






GCTGTCTGGTCCTCTGAAGCATACTTTGTTCGCCCTGGGTAGGGGCCCTCTGTTTTAACAGC





GTTTGGCATTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCG





GGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGC





CGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAA





GGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACT





CGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGA





GACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACC





GCCCAGAGTAGAAGCCATGGATTGGGGCACACTCCAGAGCATCCTCGGGGGTGTCAACAAAC






ACTCCACCAGCATTGGAAAGATCTGGCTCACGGTCCTCTTCATCTTCCGCATCATGATCCTC






GTGGTGGCTGCAAAGGAGGTGTGGGGAGATGAGCAAGCCGATTTTGTCTGCAACACGCTCCA






GCCTGGCTGCAAGAATGTATGCTACGACCACCACTTCCCCATCTCTCACATCCGGCTCTGGG







CTCTGCAGCTGATCATGGTGTCCACGCCAGCCCTCCTGGTAGCTATGCATGTGGCCTACCGG







AGACATGAAAAGAAACGGAAGTTCATGAAGGGAGAGATAAAGAACGAGTTTAAGGACATCGA







AGAGATCAAAACCCAGAAGGTCCGTATCGAAGGGTCCCTGTGGTGGACCTACACCACCAGCA







TCTTCTTCCGGGTCATCTTTGAAGCCGTCTTCATGTACGTCTTTTACATCATGTACAATGGC







TTCTTCATGCAACGTCTGGTGAAATGCAACGCTTGGCCCTGCCCCAATACAGTGGACTGCTT







CATTTCCAGGCCCACAGAAAAGACTGTCTTCACCGTGTTTATGATTTCTGTGTCTGGAATTT







GCATTCTGCTAAATATCACAGAGCTGTGCTATTTGTTCGTTAGGTATTGCTCAGGAAAGTCC







AAAAGACCAGTCTACCCATACGATGTTCCAGATTACGCTTAAAGGCGCGCCACCCCTGCAGG






GAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACC





CGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAAT





GCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGC





TCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAG





TTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAA





ACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAG





AGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAA





AGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTA





CCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATT





TTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTA





ATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATG





AATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACA





ACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAA





ATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCAC





CAACTACTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGC





CAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCAT





TTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTG





GAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTT





TGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAA





TAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGC





CATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATT





TTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGA





TATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATAAT





CTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATA





ATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCT





TTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGC





TTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCG





TTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGC





ATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGC





GGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACA





ATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACC





TGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCC





TTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGA





GTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGAGA





TCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCC





CTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATG





AGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAG





GACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAG





CGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCAC





TGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCG





AGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGC





GGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGC





GCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGC





TCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAA





ATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTT





GATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGAC





GTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTA





TCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAAT





GAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATG





GTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAA





CACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTG





ACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACG





AAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGA





CGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATA





CATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAA





AAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTT





GCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTG





GGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCG





CCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTAT





CCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTG





GTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATG





CAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAG





GACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGT





TGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AAV vector described herein comprises an AAV 5′ ITR, a GJB2 GRE enhancer (hGJB2 GRE8), a GJB2 basal promoter, a GJB2 exon 1 5′ UTR, Kozak sequence, nucleotide sequence encoding a gene product (e.g., GJB2 or GFP), a GJB2 exon 2 3′ UTR, a WPRE, a bovine growth hormone poly A signal, and an AAV 3′ ITR (e.g., vector c.81.8).


In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 79. An exemplary nucleotide sequence for vector c.81.8 is set forth in SEQ ID NO: 79 (hGJB2 GRE8 underlined; eGFP coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTT






ACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACT





TCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTG





GGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATC





TACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGC





CTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATT





TAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACC





AAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGG





ATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGC





TACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGC





TTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTT





CAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTG





CCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCG





CAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACAC





CGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGG





CGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGG





GGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATT





TTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTAC





GGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCG





CTCACTGAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGT





GAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCA





CGCGTCGACCTGAACGATTAAGGCAAAACTTCGAAATGTGCCCCAGCAGAGATTTATTTTTC





AGGGGGTGTTTTGCATTCCAGCCCCTCTGCCTTCCTGGCGTTTAGTGCGATTTGTTTAGCCA






TGTGCTCCCTGGTGTGTGTTTTTGAATGTGTGTGAGATGGGTTGTCTCTCGGGACCTGGCAG







GTGCGGCCACCAGGTCAGGGCTGCCCCCCAACCCTGTGCCTCCTTCCTCCTAGACTCTGGCC







CCCTCAGTGCTGAGGGTGATACAGAGCACTTTTCAAGCTGGATTTGGAATGTGGCCTCTCCC







CTCCAAACTCCTGGAGATCATGCAAAGGCCTTTGGAGCCAGCCAGTCACCTGGAAGGTGACA







TTCCCACCAGCTGAGGCCTCACCTTCAGCGGGGGCTGGGCAGCTTTGGAGCCTGGGGCCAGC







CAAGCTCACTCTGCCCATATCCCTGCCACGTGTGGCCCAGCGGATGATCACCTGTCTTCATC







TGCGTACTGGGCCACATCCCTCCTGCCGTCCCCCACTTCCCTGATGACACCTACAGCAAGCC







CCTACCCAAGTGTTCTGTGATCCCCTGTAAATGTGGCCTCCCTAGCTACTTGCTTTTATGAA







ACCAACAATCCTGGGGACACAGTTTTCGGCTGTCTCAAGACGGGGCAACCACTCTTTTCCCC







AGGCCTGTGGGTCCCAGGCCTGGAGCTAGGGTTGGCATTCTTGCCTGAATTCTCCACTCTAT







CCCAACCCCTGAGGCCGCCTGAGGAGGCTCAGACTGTGTCAGGCTAGGAGGACAGTCAAACC






ACAAAAACATGCCTTTTAAGAAGTATAAGCACAAATCCCTCTTTGATGTTATATAAAAGCTC





AGTGTCACTTTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTC





GGGGGTTCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCG





CCGCCCCCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAA





AGGCGCCACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGAC





TCGGAGCCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAG





AGACCCCAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAAC





CGCCCAGAGTAGAAGCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATC






CTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGG







CGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGC







CCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGAC







CACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCAC







CATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACA







CCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGG







CACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAA







CGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCG







ACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTAC







CTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCT







GGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAATAAAGGC






GCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGA





GAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAA





GATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGC





CACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAA





TTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGG





TACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAA





AAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCA





ACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTA





ACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGT





AGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTC





AGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATA





TGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTG





GTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGA





TGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATAC





AGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTT





CCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTT





ATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTC





GTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCT





ACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAA





TAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGAT





TGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTC





AGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAA





AGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAA





AACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGAT





ATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCT





TAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTA





TTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTAT





GAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAAC





CCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCC





TCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGG





CTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCT





CGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCA





ATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGC





CTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCG





AGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGC





CATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTC





CTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGG





GGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGG





ACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGC





GCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGG





GCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCT





CCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTG





TAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCA





GCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTT





CCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCT





CGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGG





TTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGA





ACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGC





CTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAA





CGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAG





CCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGC





TTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCAC





CGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATA





ATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTG





TTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGC





TTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCC





TTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGA





TGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGA





TCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTA





TGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTA





TTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGA





CAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTT





CTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGT





AACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACA





CCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 80. An exemplary nucleotide sequence for vector c.81.8 is set forth in SEQ ID NO: 80 (hGJB2 GRE8 underlined; human GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTC





GACCTGAACGATTAAGGCAAAACTTCGAAATGTGCCCCAGCAGAGATTTATTTTTCAGGGGG





TGTTTTGCATTCCAGCCCCTCTGCCTTCCTGGCGTTTAGTGCGATTTGTTTAGCCATGTGCT





CCCTGGTGTGTGTTTTTGAATGTGTGTGAGATGGGTTGTCTCTCGGGACCTGGCAGGTGCGG






CCACCAGGTCAGGGCTGCCCCCCAACCCTGTGCCTCCTTCCTCCTAGACTCTGGCCCCCTCA







GTGCTGAGGGTGATACAGAGCACTTTTCAAGCTGGATTTGGAATGTGGCCTCTCCCCTCCAA







ACTCCTGGAGATCATGCAAAGGCCTTTGGAGCCAGCCAGTCACCTGGAAGGTGACATTCCCA







CCAGCTGAGGCCTCACCTTCAGCGGGGGCTGGGCAGCTTTGGAGCCTGGGGCCAGCCAAGCT







CACTCTGCCCATATCCCTGCCACGTGTGGCCCAGCGGATGATCACCTGTCTTCATCTGCGTA







CTGGGCCACATCCCTCCTGCCGTCCCCCACTTCCCTGATGACACCTACAGCAAGCCCCTACC







CAAGTGTTCTGTGATCCCCTGTAAATGTGGCCTCCCTAGCTACTTGCTTTTATGAAACCAAC







AATCCTGGGGACACAGTTTTCGGCTGTCTCAAGACGGGGCAACCACTCTTTTCCCCAGGCCT







GTGGGTCCCAGGCCTGGAGCTAGGGTTGGCATTCTTGCCTGAATTCTCCACTCTATCCCAAC







CCCTGAGGCCGCCTGAGGAGGCTCAGACTGTGTCAGGCTAGGAGGACAGTCAAACCACAAAA






ACATGCCTTTTAAGAAGTATAAGCACAAATCCCTCTTTGATGTTATATAAAAGCTCAGTGTC





ACTTTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGT





TCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCC





CCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGC





CACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAG





CCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCC





CAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCA





GAGTAGAAGCCATGGATTGGGGCACGCTGCAGACGATCCTGGGGGGTGTGAACAAACACTCC






ACCAGCATTGGAAAGATCTGGCTCACCGTCCTCTTCATTTTTCGCATTATGATCCTCGTTGT







GGCTGCAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCTGCAACACCCTGCAGCCAG







GCTGCAAGAACGTGTGCTACGATCACTACTTCCCCATCTCCCACATCCGGCTATGGGCCCTG







CAGCTGATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGCACGTGGCCTACCGGAGACA







TGAGAAGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAGTGAATTTAAGGACATCGAGGAGA







TCAAAACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGTGGACCTACACAAGCAGCATCTTC







TTCCGGGTCATCTTCGAAGCCGCCTTCATGTACGTCTTCTATGTCATGTACGACGGCTTCTC







CATGCAGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCAACACTGTGGACTGCTTTGTGT







CCCGGCCCACGGAGAAGACTGTCTTCACAGTGTTCATGATTGCAGTGTCTGGAATTTGCATC







CTGCTGAATGTCACTGAATTGTGTTATTTGCTAATTAGATATTGTTCTGGGAAGTCAAAAAA







GCCAGTTTAAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGA






AATAGACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCA





TTTCCCAACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGT





GAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTC





TATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGG





TTATTGGTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTG





AGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGG





GGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGA





AGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGA





AGTGAAAACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATAT





GTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGA





TTTAATTTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTG





TTGTATTCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTA





GAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTT





TGTGTAAGAAATACAGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAA





CACATCTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGT





CGCTTGGGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGG





GAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAA





GATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGT





GAAAATATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAG





ATCTATAGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGT





ACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCA





TTTTGTAATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTA





TCAAATACATTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTT





AATAGAACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGA





TTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCC





TTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGT





TGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTG





TTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGAC





TTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCT





GGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCC





TTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGT





CCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTC





TTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGA





ATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCC





TTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTG





CCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGT





CATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAG





CAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGC





CACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCC





CGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTG





ATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCA





TAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGAC





CGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCA





CGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGT





GCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATC





GCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCT





TGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATT





TTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTT





TAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCG





CATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTG





CTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTT





TTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGG





TTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGC





GGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA





ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTG





TCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTG





GTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCT





CAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTT





TTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGT





CGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCT





TACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTG





CGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAAC





ATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAA





CGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 81. An exemplary nucleotide sequence for vector c.81.8 is set forth in SEQ ID NO: 81 (hGJB2 GRE8 underlined; mouse GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTC





GACCTGAACGATTAAGGCAAAACTTCGAAATGTGCCCCAGCAGAGATTTATTTTTCAGGGGG





TGTTTTGCATTCCAGCCCCTCTGCCTTCCTGGCGTTTAGTGCGATTTGTTTAGCCATGTGCT






CCCTGGTGTGTGTTTTTGAATGTGTGTGAGATGGGTTGTCTCTCGGGACCTGGCAGGTGCGG







CCACCAGGTCAGGGCTGCCCCCCAACCCTGTGCCTCCTTCCTCCTAGACTCTGGCCCCCTCA







GTGCTGAGGGTGATACAGAGCACTTTTCAAGCTGGATTTGGAATGTGGCCTCTCCCCTCCAA







ACTCCTGGAGATCATGCAAAGGCCTTTGGAGCCAGCCAGTCACCTGGAAGGTGACATTCCCA







CCAGCTGAGGCCTCACCTTCAGCGGGGGCTGGGCAGCTTTGGAGCCTGGGGCCAGCCAAGCT







CACTCTGCCCATATCCCTGCCACGTGTGGCCCAGCGGATGATCACCTGTCTTCATCTGCGTA







CTGGGCCACATCCCTCCTGCCGTCCCCCACTTCCCTGATGACACCTACAGCAAGCCCCTACC







CAAGTGTTCTGTGATCCCCTGTAAATGTGGCCTCCCTAGCTACTTGCTTTTATGAAACCAAC







AATCCTGGGGACACAGTTTTCGGCTGTCTCAAGACGGGGCAACCACTCTTTTCCCCAGGCCT







GTGGGTCCCAGGCCTGGAGCTAGGGTTGGCATTCTTGCCTGAATTCTCCACTCTATCCCAAC







CCCTGAGGCCGCCTGAGGAGGCTCAGACTGTGTCAGGCTAGGAGGACAGTCAAACCACAAAA






ACATGCCTTTTAAGAAGTATAAGCACAAATCCCTCTTTGATGTTATATAAAAGCTCAGTGTC





ACTTTAATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGT





TCGCGGACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCC





CCTCCGTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGC





CACGGCGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAG





CCCCTCGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCC





CAACGCCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCA





GAGTAGAAGCCATGGATTGGGGCACACTCCAGAGCATCCTCGGGGGTGTCAACAAACACTCC






ACCAGCATTGGAAAGATCTGGCTCACGGTCCTCTTCATCTTCCGCATCATGATCCTCGTGGT







GGCTGCAAAGGAGGTGTGGGGAGATGAGCAAGCCGATTTTGTCTGCAACACGCTCCAGCCTG







GCTGCAAGAATGTATGCTACGACCACCACTTCCCCATCTCTCACATCCGGCTCTGGGCTCTG







CAGCTGATCATGGTGTCCACGCCAGCCCTCCTGGTAGCTATGCATGTGGCCTACCGGAGACA







TGAAAAGAAACGGAAGTTCATGAAGGGAGAGATAAAGAACGAGTTTAAGGACATCGAAGAGA







TCAAAACCCAGAAGGTCCGTATCGAAGGGTCCCTGTGGTGGACCTACACCACCAGCATCTTC







TTCCGGGTCATCTTTGAAGCCGTCTTCATGTACGTCTTTTACATCATGTACAATGGCTTCTT







CATGCAACGTCTGGTGAAATGCAACGCTTGGCCCTGCCCCAATACAGTGGACTGCTTCATTT







CCAGGCCCACAGAAAAGACTGTCTTCACCGTGTTTATGATTTCTGTGTCTGGAATTTGCATT







CTGCTAAATATCACAGAGCTGTGCTATTTGTTCGTTAGGTATTGCTCAGGAAAGTCCAAAAG







ACCAGTCTACCCATACGATGTTCCAGATTACGCTTAAAGGCGCGCCACCCCTGCAGGGAATT






CCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGC





TCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAAC





CATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCC





TAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGT





TCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGA





GGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGAC





ACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTG





AACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGT





GCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGAT





GTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATG





TAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATAC





TTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATT





GTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGC





CTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACT





ACTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCA





TCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAAT





GGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAG





ACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTT





ACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAA





GCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTA





TGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCT





GTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGC





TTGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATAATCTCTA





TAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAA





CCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTAC





GCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCA





TTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTC





AGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGC





CACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAAC





TCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCC





GTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGAT





TCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCC





GCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGG





ATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGT





GATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCC





CCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAA





ATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAG





CAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCC





GCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGG





CCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGA





GCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTAT





TTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGC





GGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTT





TCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGG





GGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTT





GGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGG





AGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCG





GGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCT





GATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCA





CTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCC





GCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGT





CTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGG





GCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCA





GGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTC





AAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGA





AGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTT





CCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGC





ACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCG





AAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGT





ATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGA





GTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTG





CTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCG





AAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGA





ACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AAV vector described herein comprises an AAV 5′ ITR, a GJB2 GRE enhancer (hGJB2 GRE9), a GJB2 basal promoter, a GJB2 exon 1 5′ UTR, Kozak sequence, nucleotide sequence encoding a gene product (e.g., GJB2 or GFP), a GJB2 exon 2 3′ UTR, a WPRE, a bovine growth hormone poly A signal, and an AAV 3′ ITR (e.g., vector c.81.9).


In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 52. An exemplary nucleotide sequence for vector c.81.9 is set forth in SEQ ID NO: 52 (hGJB2 GRE9 underlined; eGFP coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTT






CTAGGTAGACAACTAAGATGTTCATCTTATGGTTTAATGTTTAGTTGTAAAGGTTGTTTGCT







TCTCATTTGGTTCCAAGAAAGAGTATTTAGGCCAATTTCAGGGAGAAATATGTGTATAGATA







TATTCATATGTCAAACTGATTAGTGCTGAATGTCACATTTCCATATTCTAATAACATTTCTA







GCAAAGAAGAGGACACAGTGAAGAGAGAATTGCCCGCATTGTCATTGTCTCTTTCTGAGCCT







AGAACGCCTAACACTTGGGTGTGGAGAGACTCAGCCTCAATTCACTTTCTAGCAGCCACTGA







GATGTGCTTGCCTGGGGTGCCCCCTGGCAGGCAGGGCTGGAACTGCTTTCCAGTACCCACAC







GGACTGTGAACGAATCTTTCTTTGTGCTTTGTGTACAGAATGGAAGTTCAACAAATATTTGT







TGAATGTGTATGTCCTTCCAATACGCAGCAGCCCAGAGCAAACGTGGTAATCTTGTGTGTGT







TCATGTGAAAGCAGAATTTAATGGTGCTTTTAAGCACCAAAGTTTAAGATGCACGAGAAAAC







TGTATCTCCATTTTTTCCTTTTCGTTTACAATTACTTGTATAAGCCAGGCACGGTGGTGGCT







CACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACATGAGGTCGGGAGTT






AATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCG





GACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCC





GTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGG





CGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCT





CGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACG





CCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTA





GAAGCCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCT






GGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCT







ACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACC







CTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCA







GCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCA







AGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAAC







CGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGA







GTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGG







TGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAG






CAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCA






GTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGA







CCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGGCGCGCCACCCCTGCA






GGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAA





CCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAA





ATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCT





GCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTA





AGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTT





AAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCAC





AGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTT





AAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGT





TACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTA





TTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTG





TAATATGTAAATGGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTA





TGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAA





CAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGC





AAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACC





ACCAACTACTACCTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTA





GCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACC





ATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATT





TGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTG





TTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAG





AATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATT





GCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTA





TTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAAT





GATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATA





ATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGA





TAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTC





CTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATG





GCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCC





CGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGG





GCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACG





GCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGA





CAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCA





CCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTT





CCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGAC





GAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGA





GATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGC





CCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAA





TGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGC





AGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCG





AGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTC





ACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAG





CGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGT





GCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAA





GCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCC





GCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCT





AAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAAC





TTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTG





ACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCC





TATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAA





ATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTA





TGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCC





AACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTG





TGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGA





CGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTA





GACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAA





TACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGA





AAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATT





TTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGT





TGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTT





CGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATT





ATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACT





TGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTA





TGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGG





AGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATC





GTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 82. An exemplary nucleotide sequence for vector c.81.9 is set forth in SEQ ID NO: 82 (hGJB2 GRE9 underlined; human GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTT






CTAGGTAGACAACTAAGATGTTCATCTTATGGTTTAATGTTTAGTTGTAAAGGTTGTTTGCT







TCTCATTTGGTTCCAAGAAAGAGTATTTAGGCCAATTTCAGGGAGAAATATGTGTATAGATA







TATTCATATGTCAAACTGATTAGTGCTGAATGTCACATTTCCATATTCTAATAACATTTCTA







GCAAAGAAGAGGACACAGTGAAGAGAGAATTGCCCGCATTGTCATTGTCTCTTTCTGAGCCT







AGAACGCCTAACACTTGGGTGTGGAGAGACTCAGCCTCAATTCACTTTCTAGCAGCCACTGA







GATGTGCTTGCCTGGGGTGCCCCCTGGCAGGCAGGGCTGGAACTGCTTTCCAGTACCCACAC







GGACTGTGAACGAATCTTTCTTTGTGCTTTGTGTACAGAATGGAAGTTCAACAAATATTTGT







TGAATGTGTATGTCCTTCCAATACGCAGCAGCCCAGAGCAAACGTGGTAATCTTGTGTGTGT







TCATGTGAAAGCAGAATTTAATGGTGCTTTTAAGCACCAAAGTTTAAGATGCACGAGAAAAC







TGTATCTCCATTTTTTCCTTTTCGTTTACAATTACTTGTATAAGCCAGGCACGGTGGTGGCT







CACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACATGAGGTCGGGAGTT






AATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCG





GACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCC





GTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGG





CGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCT





CGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACG





CCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTA





GAAGCCATGGATTGGGGCACGCTGCAGACGATCCTGGGGGGTGTGAACAAACACTCCACCAG






CATTGGAAAGATCTGGCTCACCGTCCTCTTCATTTTTCGCATTATGATCCTCGTTGTGGCTG







CAAAGGAGGTGTGGGGAGATGAGCAGGCCGACTTTGTCTGCAACACCCTGCAGCCAGGCTGC







AAGAACGTGTGCTACGATCACTACTTCCCCATCTCCCACATCCGGCTATGGGCCCTGCAGCT







GATCTTCGTGTCCACGCCAGCGCTCCTAGTGGCCATGCACGTGGCCTACCGGAGACATGAGA







AGAAGAGGAAGTTCATCAAGGGGGAGATAAAGAGTGAATTTAAGGACATCGAGGAGATCAAA







ACCCAGAAGGTCCGCATCGAAGGCTCCCTGTGGTGGACCTACACAAGCAGCATCTTCTTCCG







GGTCATCTTCGAAGCCGCCTTCATGTACGTCTTCTATGTCATGTACGACGGCTTCTCCATGC







AGCGGCTGGTGAAGTGCAACGCCTGGCCTTGTCCCAACACTGTGGACTGCTTTGTGTCCCGG







CCCACGGAGAAGACTGTCTTCACAGTGTTCATGATTGCAGTGTCTGGAATTTGCATCCTGCT







GAATGTCACTGAATTGTGTTATTTGCTAATTAGATATTGTTCTGGGAAGTCAAAAAAGCCAG







TTTAAAGGCGCGCCACCCCTGCAGGGAATTCCGCATTGCCCAGTTGTTAGATTAAGAAATAG






ACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGCTGTCAAGGCTCAGTCGCTAGCATTTCC





CAACACAAAGATTCTGACCTTAAATGCAACCATTTGAAACCCCTGTAGGCCTCAGGTGAAAC





TCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAGCCTCAAAACAAAGGCCTAATTCTATGC





CTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCACTGAGACCCCAGGCTGTTAGGGGTTATT





GGTGTAAGGTACTTTCATATTTTAAACAGAGGATATCGGCATTTGTTTCTTTCTCTGAGGAC





AAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGAGAAGGTTTGGGTGTCCTCCTGGGGTTC





TTTTTGCCAACTTTCCCCACGTTAAAGGTGAACATTGGTTCTTTCATTTGCTTTGGAAGTTT





TAATCTCTAACAGTGGACAAAGTTACCAGTGCCTTAAACTCTGTTACACTTTTTGGAAGTGA





AAACTTTGTAGTATGATAGGTTATTTTGATGTAAAGATGTTCTGGATACCATTATATGTTCC





CCCTGTTTCAGAGGCTCAGATTGTAATATGTAAATGGTATGTCATTCGCTACTATGATTTAA





TTTGAAATATGGTCTTTTGGTTATGAATACTTTGCAGCACAGCTGAGAGGCTGTCTGTTGTA





TTCATTGTGGTCATAGCACCTAACAACATTGTAGCCTCAATCGAGTGAGACAGACTAGAAGT





TCCTAGTGATGGCTTATGATAGCAAATGGCCTCATGTCAAATATTTAGATGTAATTTTGTGT





AAGAAATACAGACTGGATGTACCACCAACTACTACCTGTAATGACAGGCCTGTCCAACACAT





CTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGAAAGAACGCTGATTTAAAGAGGTCGCTT





GGGAATTTTATTGACACAGTACCATTTAATGGGGAGGACAAAATGGGGCAGGGGAGGGAGAA





GTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGGACTCTAAAGTCTGTTGATTAAAGATGA





GCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCCTTCAGCCTCCAATTTTTTAAGTGAAAA





TATAGCTAATAACATGTGAAAAGAATAGAAGCTAAGGTTTAGATAAATATTGAGCAGATCTA





TAGGAAGATTGAACCTGAATATTGCCATTATGCTTGACATGGTTTCCAAAAAATGGTACTCC





ACATATTTCAGTGAGGGTAAGTATTTTCCTGTTGTCAAGAATAGCATTGTAAAAGCATTTTG





TAATAATAAAGAATAGCTTTAATGATATGCTTGTAACTAAAATAATTTTGTAATGTATCAAA





TACATTTAAAACATTAAAATATAATCTCTATAATAATTTAAAATCTAATATGGTTTTAATAG





AACAGCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGAC





TGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGT





ATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTG





TCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGC





TGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCG





CTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACA





GGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCC





TTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTT





CGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCG





CGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCGAATTCA





TCGATACCGAGCGCTGCTCGAGAGATCTGTGATAGCGGCCATCAAGCTGGCTGTGCCTTCTA





GTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACT





CCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTC





TATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGC





ATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTC





CCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGC





TTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGCTGCCTGCAGGGGCGCCTGATGCG





GTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAGTA





CGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTA





CACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTC





GCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTT





ACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCT





GATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTC





CAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCC





GATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACA





AAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAG





TTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCC





GGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCAC





CGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAAT





GTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAAC





CCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCT





GATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCC





CTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAA





AGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACA





GCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAA





GTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCG





CATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGG





ATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCC





AACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGG





GGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACG





AGCGTGACACCA






In some embodiments, an AVV vector described herein comprises a nucleotide sequence at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to SEQ ID NO: 83. An exemplary nucleotide sequence for vector c.81.9 is set forth in SEQ ID NO: 83 (hGJB2 GRE9 underlined; mouse GJB2 coding sequence in bold face):










CGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTA






GCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCG





CTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC





GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG





ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT





GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAAC





TTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC





TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG





CGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC





AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAA





CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG





GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG





TCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT





GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA





GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAAC





GCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTG





ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCC





TGGCCTTTTGCTGGCCTTTTGCTCACATGTCCTGCAGGCAGCTGCGCGCTCGCTCGCTCACT





GAGGCCGCCCGGGCAAAGCCCGGGCGTCGGGCGACCTTTGGTCGCCCGGCCTCAGTGAGCGA





GCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATCACTAGGGGTTCCTGCGGCCGCACGCGTT






CTAGGTAGACAACTAAGATGTTCATCTTATGGTTTAATGTTTAGTTGTAAAGGTTGTTTGCT







TCTCATTTGGTTCCAAGAAAGAGTATTTAGGCCAATTTCAGGGAGAAATATGTGTATAGATA







TATTCATATGTCAAACTGATTAGTGCTGAATGTCACATTTCCATATTCTAATAACATTTCTA







GCAAAGAAGAGGACACAGTGAAGAGAGAATTGCCCGCATTGTCATTGTCTCTTTCTGAGCCT







AGAACGCCTAACACTTGGGTGTGGAGAGACTCAGCCTCAATTCACTTTCTAGCAGCCACTGA







GATGTGCTTGCCTGGGGTGCCCCCTGGCAGGCAGGGCTGGAACTGCTTTCCAGTACCCACAC







GGACTGTGAACGAATCTTTCTTTGTGCTTTGTGTACAGAATGGAAGTTCAACAAATATTTGT







TGAATGTGTATGTCCTTCCAATACGCAGCAGCCCAGAGCAAACGTGGTAATCTTGTGTGTGT







TCATGTGAAAGCAGAATTTAATGGTGCTTTTAAGCACCAAAGTTTAAGATGCACGAGAAAAC







TGTATCTCCATTTTTTCCTTTTCGTTTACAATTACTTGTATAAGCCAGGCACGGTGGTGGCT







CACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACATGAGGTCGGGAGTT






AATTAAGACCTCGAAGGGGACTTGGGGGGTTCGGGGCTTTCGGGGGCGGTCGGGGGTTCGCG





GACCCGGGAAGCTCTGAGGACCCAGAGGCCGGGCGCGCTCCGCCCGCGGCGCCGCCCCCTCC





GTAACTTTCCCAGTCTCCGAGGGAAGAGGCGGGGTGTGGGGTGCGGTTAAAAGGCGCCACGG





CGGGAGACAGGTGTTGCGGCCCCGCAGCGCCCGCGCGCTCCTCTCCCCGACTCGGAGCCCCT





CGGCGGCGCCCGGCCCAGGACCCGCCTAGGAGCGCAGGAGCCCCAGCGCAGAGACCCCAACG





CCGAGACCCCCGCCCCGGCCCCGCCGCGCTTCCTCCCGACGCAGAGCAAACCGCCCAGAGTA





GAAGCCATGGATTGGGGCACACTCCAGAGCATCCTCGGGGGTGTCAACAAACACTCCACCAG






CATTGGAAAGATCTGGCTCACGGTCCTCTTCATCTTCCGCATCATGATCCTCGTGGTGGCTG







CAAAGGAGGTGTGGGGAGATGAGCAAGCCGATTTTGTCTGCAACACGCTCCAGCCTGGCTGC







AAGAATGTATGCTACGACCACCACTTCCCCATCTCTCACATCCGGCTCTGGGCTCTGCAGCT







GATCATGGTGTCCACGCCAGCCCTCCTGGTAGCTATGCATGTGGCCTACCGGAGACATGAAA







AGAAACGGAAGTTCATGAAGGGAGAGATAAAGAACGAGTTTAAGGACATCGAAGAGATCAAA







ACCCAGAAGGTCCGTATCGAAGGGTCCCTGTGGTGGACCTACACCACCAGCATCTTCTTCCG







GGTCATCTTTGAAGCCGTCTTCATGTACGTCTTTTACATCATGTACAATGGCTTCTTCATGC







AACGTCTGGTGAAATGCAACGCTTGGCCCTGCCCCAATACAGTGGACTGCTTCATTTCCAGG







CCCACAGAAAAGACTGTCTTCACCGTGTTTATGATTTCTGTGTCTGGAATTTGCATTCTGCT







AAATATCACAGAGCTGTGCTATTTGTTCGTTAGGTATTGCTCAGGAAAGTCCAAAAGACCAG







TCTACCCATACGATGTTCCAGATTACGCTTAAAGGCGCGCCACCCCTGCAGGGAATTCCGCA






TTGCCCAGTTGTTAGATTAAGAAATAGACAGCATGAGAGGGATGAGGCAACCCGTGCTCAGC





TGTCAAGGCTCAGTCGCTAGCATTTCCCAACACAAAGATTCTGACCTTAAATGCAACCATTT





GAAACCCCTGTAGGCCTCAGGTGAAACTCCAGATGCCACAATGGAGCTCTGCTCCCCTAAAG





CCTCAAAACAAAGGCCTAATTCTATGCCTGTCTTAATTTTCTTTCACTTAAGTTAGTTCCAC





TGAGACCCCAGGCTGTTAGGGGTTATTGGTGTAAGGTACTTTCATATTTTAAACAGAGGATA





TCGGCATTTGTTTCTTTCTCTGAGGACAAGAGAAAAAAGCCAGGTTCCACAGAGGACACAGA





GAAGGTTTGGGTGTCCTCCTGGGGTTCTTTTTGCCAACTTTCCCCACGTTAAAGGTGAACAT





TGGTTCTTTCATTTGCTTTGGAAGTTTTAATCTCTAACAGTGGACAAAGTTACCAGTGCCTT





AAACTCTGTTACACTTTTTGGAAGTGAAAACTTTGTAGTATGATAGGTTATTTTGATGTAAA





GATGTTCTGGATACCATTATATGTTCCCCCTGTTTCAGAGGCTCAGATTGTAATATGTAAAT





GGTATGTCATTCGCTACTATGATTTAATTTGAAATATGGTCTTTTGGTTATGAATACTTTGC





AGCACAGCTGAGAGGCTGTCTGTTGTATTCATTGTGGTCATAGCACCTAACAACATTGTAGC





CTCAATCGAGTGAGACAGACTAGAAGTTCCTAGTGATGGCTTATGATAGCAAATGGCCTCAT





GTCAAATATTTAGATGTAATTTTGTGTAAGAAATACAGACTGGATGTACCACCAACTACTAC





CTGTAATGACAGGCCTGTCCAACACATCTCCCTTTTCCATGACTGTGGTAGCCAGCATCGGA





AAGAACGCTGATTTAAAGAGGTCGCTTGGGAATTTTATTGACACAGTACCATTTAATGGGGA





GGACAAAATGGGGCAGGGGAGGGAGAAGTTTCTGTCGTTAAAAACAGATTTGGAAAGACTGG





ACTCTAAAGTCTGTTGATTAAAGATGAGCTTTGTCTACTTCAAAAGTTTGTTTGCTTACCCC





TTCAGCCTCCAATTTTTTAAGTGAAAATATAGCTAATAACATGTGAAAAGAATAGAAGCTAA





GGTTTAGATAAATATTGAGCAGATCTATAGGAAGATTGAACCTGAATATTGCCATTATGCTT





GACATGGTTTCCAAAAAATGGTACTCCACATATTTCAGTGAGGGTAAGTATTTTCCTGTTGT





CAAGAATAGCATTGTAAAAGCATTTTGTAATAATAAAGAATAGCTTTAATGATATGCTTGTA





ACTAAAATAATTTTGTAATGTATCAAATACATTTAAAACATTAAAATATAATCTCTATAATA





ATTTAAAATCTAATATGGTTTTAATAGAACAGCGATATCAAGCTTATCGATAATCAACCTCT





GGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTAT





GTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTC





TCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCA





ACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCA





CCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATC





GCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGT





GTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTATGTTGCCACCTGGATTCTGC





GCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGC





CTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTC





CCTTTGGGCCGCCTCCCCGCGAATTCATCGATACCGAGCGCTGCTCGAGAGATCTGTGATAG





CGGCCATCAAGCTGGCTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTG





CCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGC





ATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGG





GGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGACACGTGCGGACCGAGCGGCCGCAGG





AACCCCTAGTGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGG





CGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCG





CAGCTGCCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCAC





ACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTG





TGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCT





TTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCT





CCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTG





ATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCC





ACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTA





TTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTT





AACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTC





AGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGA





CGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCG





GGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTC





GTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGG





CACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATA





TGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGT





ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGT





TTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAG





TGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAA





CGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGA





CGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACT





CACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCC





ATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGA





GCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGG





AGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCA







II. Recombinant Adeno-Associated Viruses (rAAVs)


In some aspects, the disclosure provides isolated AAVs. As used herein with respect to AAVs, the term “isolated” refers to an AAV that has been artificially produced, engineered, or obtained. Isolated AAVs may be produced using recombinant methods. Such AAVs are referred to herein as “recombinant AAVs”. Recombinant AAVs (rAAVs) preferably have tissue-specific targeting capabilities, such that a transgene of the rAAV will be delivered specifically to one or more predetermined tissue(s). The AAV capsid is an important element in determining these tissue-specific targeting capabilities. Thus, a rAAV having a capsid appropriate for the tissue being targeted can be selected.


Methods for obtaining recombinant AAVs having a desired capsid protein are known in the art. (See, for example, US 2003/0138772, which is incorporated herein by reference). Typically the methods involve culturing a host cell which contains a nucleic acid sequence encoding an AAV capsid protein; a functional rep gene; a recombinant AAV vector composed of AAV inverted terminal repeats (ITRs) and an expression cassette (e.g., GJB2 expression cassette); and a helper plasmid expressing the E2b and E4 transcripts from adenovirus to permit packaging of the recombinant AAV vector into the AAV capsid. In some embodiments, capsid proteins are structural proteins encoded by the cap gene of an AAV. AAVs comprise three capsid proteins, virion proteins 1 to 3 (named VP1, VP2 and VP3), all of which are transcribed from a single cap gene via alternative splicing. In some embodiments, the molecular weights of VP1, VP2 and VP3 are respectively about 87 kDa, about 72 kDa, and about 62 kDa. In some embodiments, upon translation, capsid proteins form a spherical 60-mer protein shell around the viral genome. In some embodiments, the functions of the capsid proteins are to protect the viral genome, deliver the genome, and/or interact with the host. In some aspects, capsid proteins deliver the viral genome to a host in a tissue specific manner (e.g., to cells in the inner ear).


The present disclosure is based in part on the finding that certain AAV serotype capsids are capable of delivering a transgene (e.g., GJB2 gene) to the ear (e.g., cells in the inner ear). In some embodiments, an AAV capsid protein is of an AAV serotype selected from the group consisting of AAV9.PHP.B, AAV9.PHP.eB, exoAAV, Anc80, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAV9, AAV10, AAVrh10, and AAV-S. AAV2.7m8 is capable of delivering a transgene targeting cochlear hair cells and supporting cells and the retina. AAV2.7m8 shows good transduction to the inner ear (Isgrig et al., “AAV2.7m8 is a powerful viral vector for inner ear gene therapy,” Nature Communications volume 10, Article number: 427 (2019)). In some embodiments, the capsid protein is of AAV serotype 9 (AAV9). In some embodiments, an AAV capsid protein is of a serotype derived from AAV9 (e.g., an AAV9 capsid variant), for example, AAV9.PHP.B. In some embodiments, the AAV9 capsid variant is AAV9.PHP.B. In some embodiments, the AAV9 capsid variant is AAV-S. AAV-S is an AAV9 capsid protein variant originally developed for targeting central nervous system (CNS) (Hanlon et al, Selection of an Efficient AAV Vector for Robust CNS Transgene Expression, Molecular Therapy Method & Clinical Development, vol. 15, pp. 320-332, Dec. 13, 2019, and PCT/US2020/025720, which are incorporated herein by reference). Surprisingly, AAV-S showed good transducing efficiency for inner ear cells, (see., e,g., Hanlon et al., AAV-S: A novel AAV vector selected in brain transduces the inner ear with high efficiency, Molecular Therapy Vol 18 No 4S1, Apr. 28, 2020, Abstract 151, which is incorporated herein by reference), including, but not limited to: outer hair cells (OHCs), inner hair cells (IHCs), supporting cells (e.g., border cell, inner phalangeal cell, inner pillar cell, outer pillar cell, Deiters' cell, Hensen's, or Claudius' cell), spiral ganglion neuron, spiral limbus cells (e.g., glial cell or interdental cell), outer sulcus cells, lateral wall, stria vascularis (e.g., basal cell and intermediate cell), inner sulcus, spiral ligament (e.g., fibrocytes), or cells of the vestibular system. In some embodiments, the AAV capsid is AAV-S. An exemplary amino acid sequence for AAV-S is set forth in SEQ ID NO: 33. In some embodiments, the AAV capsid is an exoAAV. An exoAAV refers to an exosome-associated AAV. An exoAAV capsid protein may be selected from the group consisting of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAV9, AAV10, AAVrh10, and AAV.PHP.B. In some examples, the exoAAV is exoAAV1 or exoAAV9.


Exemplary amino acid sequence for AAV-S is set forth in SEQ ID NO: 33:









MAADGYLPDWLEDNLSEGIREWWALKPGAPQPKANQQHQDNARGLVLPG





YKYLGPGNGLDKGEPVNAADAAALEHDKAYDQQLKAGDNPYLKYNHADA





EFQERLKEDTSFGGNLGRAVFQAKKRLLEPLGLVEEAAKTAPGKKRPVE





QSPQEPDSSAGIGKSGAQPAKKRLNFGQTGDTESVPDPQPIGEPPAAPS





GVGSLTMASGGGAPVADNNEGADGVGSSSGNWHCDSQWLGDRVITTSTR





TWALPTYNNHLYKQISNSTSGGSSNDNAYFGYSTPWGYFDFNRFHCHFS





PRDWQRLINNNWGFRPKRLNFKLFNIQVKEVTDNNGVKTIANNLTSTVQ





VFTDSDYQLPYVLGSAHEGCLPPFPADVFMIPQYGYLTLNDGSQAVGRS





SFYCLEYFPSQMLRTGNNFQFSYEFENVPFHSSYAHSQSLDRLMNPLID





QYLYYLSKTINGSGQNQQTLKFSVAGPSNMAVQGRNYIPGPSYRQQRVS





TTVTQNNNSEFAWPGASSWALNGRNSLMNPGPAMASHKEGEDRFFPLSG





SLIFGKQGTGRDNVDADKVMITNEEEIKTTNPVATESYGQVATNHQSAQ






STTLYSPAQAQTGWVQNQGILPGMVWQDRDVYLQGPIWAKIPHTDGNFH






PSPLMGGFGMKHPPPQILIKNTPVPADPPTAFNKDKLNSFITQYSTGQV





SVEIEWELQKENSKRWNPEIQYTSNYYKSNNVEFAVNTEGVYSEPRPIG





TRYLTRNL






The skilled artisan will also realize that conservative amino acid substitutions may be made to provide functionally equivalent variants or homologs of the capsid proteins. In some aspects, the disclosure embraces sequence alterations that result in conservative amino acid substitutions. As used herein, a conservative amino acid substitution refers to an amino acid substitution that does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Variants can be prepared according to methods for altering polypeptide sequence known to one of ordinary skill in the art such as are found in references that compile such methods, e.g., Molecular Cloning: A Laboratory Manual, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or Current Protocols in Molecular Biology, F. M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. Conservative substitutions of amino acids include substitutions made among amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D. Therefore, one can make conservative amino acid substitutions to the amino acid sequence of the proteins and polypeptides described herein (e.g., GJB2 protein sequence).


In some embodiments, the rAAV is a single stranded AAV (ssAAV). A ssAAV, as used herein, refers to a rAAV with the coding sequence and complementary sequence of the transgene expression cassette on separate strands and packaged in separate viral capsids. In some embodiments, the rAAV is a self-complementary AAV (scAAV). A scAAV, as used herein, refers to a rAAV with both the coding and complementary sequence of the transgene expression cassette present on the single strand of an AAV genome. The coding region of a scAAV was designed to form an intra-molecular double-stranded DNA template. Upon infection, rather than waiting for cell mediated synthesis of the second strand, the two complementary halves of scAAV will associate to form one double stranded DNA (dsDNA) unit that is ready for immediate replication and transcription.


In some embodiments, the rAAV as provided herein, is capable of delivering the transgene (e.g., GJB2) to a mammal. In some examples, the mammal can be a human or a non-human mammal, such as a mouse, a rat, or a non-human primate (e.g., cynomolgus monkey), a cat, a dog, a pig, a horse, a donkey, a camel, a sheep, or a goat. In certain embodiments, the mammal is a human.


In some embodiments, the rAAV, as provided herein, is capable of delivering the transgene (e.g., GJB2) to the ear. In some instances, the rAAV. as provided herein, is capable of delivering the transgene (e.g., GJB2) to the cells in the inner ear (e.g., cochlea, saccule, utricle and semicircular canals). Non-limiting examples of the target cells are outer hair cells (OHC), inner hair cells (IHC), spiral ganglion neurons, cells of stria vascularis, cells of inner sulcus, cells of spiral ligament, cells of vestibular system, organ of Corti supporting cells (e,g., epithelial cells of the inner and outer sulcus, and interdental cells), interdental cells in the spiral limbus, root cells within the spiral ligament, pillar cells, Deiters' cells, Hensen's cells, Claudius cells, inner phalangeal cells; and border cells, strial intermediate cells, fibrocytes of the lateral wall and suprastrial zone, basal cells of the stria vascularis, fibrocytes in the spiral ligament, fibrocytes in the spiral limbus, mesenchymal cells lining the bony otic capsule facing the scala vestibuli, and supralimbal dark cells. In some embodiments, the combination of an AAV capsid having tropism to the inner ear (e.g., AAV-S or AAV-PHP.B) and the isolated nucleic acid described herein (e.g., an isolated nucleic acid driving GJB2 expression under the control of GJB2 gene regulatory elements) is superior in GJB2 gene replacement therapy to that it limits GJB2 expression to cells that normally express it, and reduces toxicity associated with promiscuous GJB2 expression (e.g., toxicity associated with GJB2 being expressed in hair cells and/or the central nervous system (CNS)).


The components to be cultured in the host cell to package a rAAV vector in an AAV capsid may be provided to the host cell in trans. Alternatively, any one or more of the required components (e.g., recombinant AAV vector, rep sequences, cap sequences, and/or helper functions) may be provided by a stable host cell which has been engineered to contain one or more of the required components using methods known to those of skill in the art. Most suitably, such a stable host cell will contain the required component(s) under the control of an inducible promoter. However, the required component(s) may be under the control of a constitutive promoter. Examples of suitable inducible and constitutive promoters are provided herein, in the discussion of regulatory elements suitable for use with the transgene. In still another alternative, a selected stable host cell may contain selected component(s) under the control of a constitutive promoter and other selected component(s) under the control of one or more inducible promoters. For example, a stable host cell may be generated which is derived from 293 cells (which contain E1 helper functions under the control of a constitutive promoter), but which contain the rep and/or cap proteins under the control of inducible promoters. Still other stable host cells may be generated by one of skill in the art.


In some embodiments, the instant disclosure relates to a host cell containing a nucleic acid that comprises a coding sequence encoding a protein (e.g., GJB2 protein). In some embodiments, the host cell is a mammalian cell (e.g., a human cell), a yeast cell, a bacterial cell, an insect cell, a plant cell, or a fungal cell.


The recombinant AAV vector, rep sequences, cap sequences, and helper functions required for producing the rAAV of the disclosure may be delivered to the packaging host cell using any appropriate genetic element (e.g., vector). The selected genetic element may be delivered by any suitable method, including those described herein and known in the art. The methods used to construct any embodiment of this disclosure are known to those with skill in nucleic acid manipulation and include genetic engineering, recombinant engineering, and synthetic techniques. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. Similarly, methods of generating rAAV virions are known in the art, and the selection of a suitable method is not a limitation on the present disclosure. See, e.g., K. Fisher et al., J. Virol., 70:520-532 (1993) and U.S. Pat. No. 5,478,745, each of which is incorporated herein by reference.


In some embodiments, recombinant AAVs may be produced using the triple transfection method (described in detail in U.S. Pat. No. 6,001,650, which is incorporated herein by reference). Typically, the recombinant AAVs are produced by transfecting a host cell with a recombinant AAV vector (comprising a transgene) to be packaged into AAV particles, an AAV helper function vector, and an accessory function vector. An AAV helper function vector encodes the “AAV helper function” sequences (e.g., rep and cap), which function in trans for productive AAV replication and encapsidation. Preferably, the AAV helper function vector supports efficient AAV vector production without generating any detectable wild-type AAV virions (e.g., AAV virions containing functional rep and cap genes). Non-limiting examples of vectors suitable for use with the present disclosure include pHLP19, described in U.S. Pat. No. 6,001,650 and pRep6cap6 vector, described in U.S. Pat. No. 6,156,303, both of which are incorporated herein by reference. The accessory function vector encodes nucleotide sequences for non-AAV derived viral and/or cellular functions upon which AAV is dependent for replication (i.e., “accessory functions”). The accessory functions include those functions required for AAV replication, including, without limitation, those moieties involved in activation of AAV gene transcription, stage specific AAV mRNA splicing, AAV DNA replication, synthesis of cap expression products, and AAV capsid assembly. Viral-based accessory functions can be derived from any of the known helper viruses, such as adenovirus, herpesvirus (other than herpes simplex virus type-1), and vaccinia virus.


In some aspects, the disclosure provides transfected host cells. The term “transfection” is used to refer to the uptake of foreign DNA by a cell, and a cell has been “transfected” when exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are generally known in the art. See, e.g., Graham et al. (1973) Virology, 52:456, Sambrook et al. (1989) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratories, New York, Davis et al. (1986) Basic Methods in Molecular Biology, Elsevier, and Chu et al. (1981) Gene 13:197. Such techniques can be used to introduce one or more exogenous nucleic acids into suitable host cells.


A “host cell” refers to any cell that harbors, or is capable of harboring, a substance of interest. Often a host cell is a mammalian cell. A host cell may be used as a recipient of an AAV helper construct, an AAV plasmid, an accessory function vector, or other transfer DNA associated with the production of recombinant AAVs. The term includes the progeny of the original cell which has been transfected. Thus, a “host cell,” as used herein, may refer to a cell which has been transfected with an exogenous DNA sequence. It is understood that the progeny of a single parental cell may not necessarily be completely identical in morphology or in genomic or total DNA complement as the original parent, due to natural, accidental, or deliberate mutation or engineering.


As used herein, the term “cell line” refers to a population of cells capable of continuous or prolonged growth and division in vitro. Often, cell lines are clonal populations derived from a single progenitor cell. It is further known in the art that spontaneous or induced changes can occur in karyotype during storage or transfer of such clonal populations. Therefore, cells derived from the cell line referred to may not be precisely identical to the ancestral cells or cultures, and the cell line referred to includes such variants.


As used herein, the term “recombinant cell” refers to a cell into which an exogenous DNA segment, such as DNA segment that leads to the transcription of a biologically-active polypeptide (e.g., GJB2 protein), has been introduced.


As used herein, the term “vector” includes any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, artificial chromosome, virus, virion, etc., which is capable of replication when associated with the proper control elements and which can transfer gene sequences between cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors. In some embodiments, useful vectors are contemplated to be those vectors in which the nucleic acid segment to be transcribed is positioned under the transcriptional control of a promoter. The term “expression vector or construct” means any type of genetic construct containing a nucleic acid in which part or all of the nucleic acid encoding sequence is capable of being transcribed.


The foregoing methods for packaging recombinant vectors in desired AAV capsids to produce the rAAVs of the disclosure are not meant to be limiting and other suitable methods will be apparent to the skilled artisan.


The present disclosure, provides a rAAV comprising a vector (e.g., AAV vectors) for expressing a transgene (e.g., GJB2), such vectors include AAV LTRs (e.g., AAV2 LTRs) and an expression cassette comprising a promoter operably linked to a promoter (e.g., human GJB2 promoter or fragment thereof). In addition, the vector can further comprise certain regulatory elements (e.g., GJB2 enhancers, 5′ and 3′ UTRs of the GJB2 gene, WPRE, and poly adenylation sites). In addition, the rAAV can comprise a capsid protein (e.g., AAV9.PHP.B capsid or AAV-S capsid). Such rAAV can deliver transgenes (e.g., GJB2) to target tissues (e.g., cells that normally express GJB2 in the inner ear). In some embodiments, such a rAAV is capable of delivering transgenes (e.g., GJB2) into specific cells in the target tissue, for example, connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions.


III. Pharmaceutical Composition

The rAAVs may be delivered to a subject in compositions according to any appropriate method known in the art. The rAAV, preferably suspended in a physiologically compatible carrier (i.e., in a composition), may be administered to a subject, e.g., host animal, patient, experimental animal. In some embodiments, the subject is a mammal. In some examples, the mammal is a human. In other embodiments, the mammal can be a non-human mammal, such as a human, mouse, rat, cat, dog, sheep, rabbit, horse, cow, goat, pig, guinea pig, hamster, chicken, turkey, or a non-human primate (e.g., cynomolgus monkey). The subject may be at any stage of development and of any gender.


The rAAV can be delivered to any organ or tissue of interest. In some embodiments, the rAAV is delivered to the inner ear. Delivery of the rAAVs to a mammalian subject may be by, for example, injection to the ear. In some embodiments, the injection is to the ear through the round window membrane of the inner ear, into the scala media of the cochlea, into the scala vestibuli of the cochlea, into a semicircular canal of the inner ear, or into the saccule or the utricle of the inner ear. In some embodiments, the rAAV is delivered to the ear by topical administration (e.g., ear drops). In some embodiments, the injection is not topical administration. Combinations of administration methods (e.g., topical administration and injection through round window membrane of the inner ear) can also be used.


The compositions of the disclosure may comprise a rAAV described herein alone, or in combination with one or more other viruses (e.g., a second rAAV encoding having one or more different transgenes). In some embodiments, a composition comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different rAAVs each having one or more different transgenes.


In some embodiments, a composition further comprises a pharmaceutically acceptable carrier. Suitable carriers may be readily selected by one of skill in the art in view of the indication for which the rAAV is directed. “Acceptable” means that the carrier must be compatible with the rAAV or the isolated nucleic acid of the composition (and preferably, capable of stabilizing the active ingredient) and not deleterious to the subject to be treated. In some embodiments, the pharmaceutically acceptable carrier/excipient is compatible with the mode of administration. Pharmaceutically acceptable excipients (carriers) including buffers, which are well known in the art. See, e.g., Remington: The Science and Practice of Pharmacy 20th Ed. (2000) Lippincott Williams and Wilkins, Ed. K. E. Hoover. For example, one acceptable carrier includes saline, which may be formulated with a variety of buffering solutions (e.g., phosphate buffered saline). Other exemplary carriers include sterile saline, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, sesame oil, and water. The selection of the carrier is not a limitation of the present disclosure.


The rAAV containing pharmaceutical composition disclosed herein may further comprise a suitable buffer agent. A buffer agent is a weak acid or base used to maintain the pH of a solution near a chosen value after the addition of another acid or base. In some examples, the buffer agent disclosed herein can be a buffer agent capable of maintaining physiological pH despite changes in carbon dioxide concentration (e.g., produced by cellular respiration). Exemplary buffer agents include, but are not limited to, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, Dulbecco's phosphate-buffered saline (DPBS) buffer, or phosphate-buffered saline (PBS) buffer. Such buffers may comprise disodium hydrogen phosphate and sodium chloride, or potassium dihydrogen phosphate and potassium chloride.


Optionally, the compositions of the disclosure may contain, in addition to the rAAV and carrier(s), other pharmaceutical ingredients, such as preservatives or chemical stabilizers. Suitable exemplary preservatives include chlorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, the parabens, ethyl vanillin, glycerin, phenol, and parachlorophenol. Suitable chemical stabilizers include gelatin and albumin.


The rAAV containing pharmaceutical composition described herein comprises one or more suitable surface-active agents, such as a surfactant. Surfactants are compounds that lower the surface tension (or interfacial tension) between two liquids, between a gas and a liquid, or between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants. Suitable surfactants include, in particular, non-ionic agents, such as polyoxyethylenesorbitans (e.g., Tween™ 20, 40, 60, 80 or 85) and other sorbitans (e.g., Span™ 20, 40, 60, 80 or 85). Compositions with a surface active agent will conveniently comprise between 0.05 and 5% surface-active agent, and can be between 0.1 and 2.5%. It will be appreciated that other ingredients may be added, for example, mannitol or other pharmaceutically acceptable vehicles, if necessary.


The rAAVs are administered in sufficient amounts to transfect the cells of a desired tissue (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions) and to provide sufficient levels of gene transfer and expression without undue adverse effects. Examples of pharmaceutically acceptable routes of administration include, but are not limited to, direct delivery to the selected organ (e.g., the ear) or tissue, intravenous, intramuscular, subcutaneous, intradermal, intratumoral, and other parental routes of administration. Routes of administration may be combined, if desired.


The dose of rAAV virions required to achieve a particular “therapeutic effect,” e.g., the units of dose in viral genome copies per kilogram of body weight (GC/kg or VG/kg), will vary based on several factors including, but not limited to: the route of rAAV virion administration, the level of gene or RNA expression required to achieve a therapeutic effect, the specific disease or disorder being treated, and the stability of the gene or rAAV product. One of skill in the art can readily determine a rAAV virion dose range to treat a patient having a particular disease or disorder (e.g., nonsyndromic hearing loss and deafness, or any GJB2-associated disorders) based on the aforementioned factors, as well as other factors.


An effective amount of a rAAV is an amount sufficient to infect an animal (e.g., mouse, rat, non-human primate or human) or target a desired tissue or cell (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions). The effective amount will depend primarily on factors, such as the species, age, weight, health of the subject, and the tissue to be targeted, and may thus vary among animals and tissue. For example, an effective amount of the rAAV is generally in the range of from about 1 ml to about 100 ml of solution containing from about 109 to 1016 genome copies. In some cases, a dosage between about 1011 to 1013 rAAV genome copies is appropriate. In certain embodiments, 109 rAAV genome copies are effective to target inner ear tissue (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions). In some embodiments, a dose more concentrated than 109 rAAV genome copies is toxic when administered to the ear of a subject. In some embodiments, an effective amount is produced by multiple doses of a rAAV.


In some embodiments, a dose of rAAV is administered to a subject no more than once per day (e.g., a 24-hour period). In some embodiments, a dose of rAAV is administered to a subject no more than once per 2, 3, 4, 5, 6, or 7 days. In some embodiments, a dose of rAAV is administered to a subject no more than once per week (e.g., 7 calendar days). In some embodiments, a dose of rAAV is administered to a subject no more than bi-weekly (e.g., once in a two-week period). In some embodiments, a dose of rAAV is administered to a subject no more than once per month (e.g., once in 30 calendar days). In some embodiments, a dose of rAAV is administered to a subject no more than once per six months. In some embodiments, a dose of rAAV is administered to a subject no more than once per year (e.g., 365 days or 366 days in a leap year). In some embodiments, a dose of rAAV is administered to a subject once in a lifetime.


In some embodiments, rAAV compositions are formulated to reduce aggregation of AAV particles in the composition, particularly where high rAAV concentrations are present (e.g., ˜1013 GC/ml or more). Appropriate methods for reducing aggregation may be used, including, for example, addition of surfactants, pH adjustment, salt concentration adjustment, etc. (See, e.g., Wright et al., Molecular Therapy (2005) 12, 171-178, the contents of which are incorporated herein by reference.)


Formulation of pharmaceutically acceptable excipients and carrier solutions is well known to those of skill in the art, as is the development of suitable dosing and treatment regimens for using the particular compositions described herein in a variety of treatment regimens. Factors, such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations, will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.


In some embodiments, rAAVs in suitably formulated pharmaceutical compositions disclosed herein are delivered directly to target tissue, e.g., direct to inner ear tissue (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions). However, in certain circumstances it may be desirable to separately or in addition deliver the rAAV-based therapeutic constructs via another route, e.g., subcutaneously, parenterally, intravenously, intramuscularly, intrathecally, orally, or intraperitoneally. In some embodiments, the administration modalities as described in U.S. Pat. Nos. 5,543,158; 5,641,515 and 5,399,363 (each specifically incorporated herein by reference in its entirety) may be used to deliver rAAVs.


The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. In many cases, the form is sterile. It must be stable under the conditions of manufacture and storage and must be preserved to prevent contamination with microorganisms, such as bacteria, fungi, and other viruses. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of contamination by microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or salts (e.g., sodium chloride). Prolonged absorption of the injectable composition can be achieved by the use in the composition of agents delaying absorption, for example, aluminum monostearate and gelatin.


For administration of an injectable aqueous solution, for example, the solution may be suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous administration, intramuscular administration, subcutaneous administration, intraperitoneal administration, and injection through the round window membrane of the inner ear. In this respect, a suitable sterile aqueous medium may be employed. For example, one dosage may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion (see for example, Remington's Pharmaceutical Sciences 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the host. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject/host.


Sterile injectable solutions are prepared by incorporating the active rAAV in the required amount in the appropriate solvent with various of the other ingredients described herein, as required, followed by filter sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


The rAAV compositions disclosed herein may also be formulated in a neutral or salt form. Pharmaceutically-acceptable salts include but are not limited to hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like. Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug-release capsules, and the like.


As used herein, “carrier” includes any and all solvents, dispersion media, vehicles, solvents, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Supplemental active ingredients can also be incorporated into the compositions. The phrase “pharmaceutically acceptable” refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a host.


Delivery vehicles such as liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles, and the like, may be used for the introduction of the compositions of the present disclosure into suitable host cells. In particular, the rAAV vector delivered transgenes may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, a nanoparticle, or the like.


Such formulations may be preferred for the introduction of pharmaceutically acceptable formulations of the nucleic acids or the rAAV constructs disclosed herein. The formation and use of liposomes are generally known to those of skill in the art. Recently, liposomes were developed with improved serum stability and circulation half-times (U.S. Pat. No. 5,741,516, which is incorporated herein by reference). Further, various methods of liposome and liposome-like preparations as potential drug carriers have been described (U.S. Pat. Nos. 5,567,434; 5,552,157; 5,565,213; 5,738,868 and 5,795,587, each of which is incorporated herein by reference).


Alternatively, nanocapsule formulations of the rAAV may be used. Nanocapsules can generally entrap substances in a stable and reproducible way. To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 μm) should be designed using polymers able to be degraded in vivo. Biodegradable polyalkyl-cyanoacrylate nanoparticles that meet these requirements are contemplated for use.


IV. Therapeutic Applications

The present disclosure also provides methods for delivering (e.g., by an isolated nucleic acid, a vector, a rAAV, a host cell, or a pharmaceutical composition described herein) a transgene (e.g., GJB2) to cells that normally express the transgene (e.g., GJB2) in the ear (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions) of a subject for treating hearing loss. In some aspects, the present disclosure provides a method for treating GJB2 associated diseases (e.g., non-syndromic Hearing Loss and Deafness (DFNB1)) in a subject by delivering (e.g., by an isolated nucleic acid, a vector, a rAAV, a host cell, or a pharmaceutical composition described herein) a transgene (e.g., GJB2) to cells that normally express the transgene (e.g., GJB2) in the ear (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions) of a subject. In some aspects, the present disclosure provides a method for targeted GJB2 expression in inner ear supporting cells and/or detargeting GJB2 in neuron and/or cochlear hair cells by delivering (e.g., by an isolated nucleic acid, a vector, a rAAV, a host cell, or a pharmaceutical composition described herein) a transgene (e.g., GJB2) to cells that normally express the transgene (e.g., GJB2) in the ear (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions) of a subject. In some embodiments, the targeted GJB2 expression in inner ear supporting cells and/or detargeting GJB2 in neuron and/or cochlear hair cells is designed to treat GJB2 associated diseases described herein. In some embodiments, the subject is a mammal. In some examples, the subject is a human. In other embodiments, the subject is a non-human mammal, such as a mouse, rat, cow, goat, pig, camel, or non-human primate (e.g., cynomolgus monkey).


In some embodiments, the subject is having or suspected of having hearing loss. In certain embodiments, the subject is diagnosed with having non-syndromic Hearing Loss and Deafness (DFNB1). In certain embodiments, the hearing loss is associated with a mutation in the GJB2 gene. In some embodiments, the mutation of GJB2 gene is a point mutation, a missense mutation, a nonsense mutation, a deletion, an insertion, or a combination thereof. Non-limiting examples of mutations in the GJB2 gene are shown in Table 2. A mutation, as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue.









TABLE 2







Exemplary mutations in GJB2 gene (Nucleotide number starting at the ATG of NM_004004.6).










Mutation
Amino Acid Change
Mutation
Amino Acid Change





c.677T > G
p.Val226Gly
c.509_522del
p.Asn170ThrfsTer35


c.677T > A
p.Val226Asp
c.521G > C
p.Cys174Ser


c.674C > T
p.Pro225Leu
c.520T > C
p.Cys174Arg


c.653G > A
p.Cys218Tyr
c.518C > G
p.Pro173Arg


c.647_650del
p.Arg216IlefsTer17
c.517C > T
p.Pro173Ser


c.650A > G
p.Tyr217Cys
c.516G > C
p.Trp172Cys


c.645del
p.Arg216AspfsTer18
c.516G > A
p.Trp172Ter


c.641T > C
p.Leu214Pro
c.514T > A
p.Trp172Arg


c.638T > A
p.Leu213Ter
c.512_513insAACG
p.Trp172ThrfsTer39


c.632_633del
p.Cys211LeufsTer5
c.508_511dup
p.Ala171GlufsTer40


c.633T > A
p.Cys211Ter
c.511G > T
p.Ala171Ser


c.632G > A
p.Cys211Tyr
c.509dup
p.Asn170LysfsTer40


c.622A > C
p.Thr208Pro
c.509A > C
p.Asn170Thr


c.617A > G
p.Asn206Ser
c.506G > A
p.Cys169Tyr


c.617A > C
p.Asn206Thr
c.504_505insAAGG
p.Cys169LysfsTer42


c.614T > C
p.Leu205Pro
c.505T > C
p.Cys169Arg


c.613C > G
p.Leu205Val
c.488T > C
p.Met163Thr


c.608_609delinsAA
p.Ile203Lys
c.487A > G
p.Met163Val


c.605G > T
p.Cys202Phe
c.487A > C
p.Met163Leu


c.592_600delinsCAGTGTTCATGACATTC
p.Val198GlnfsTer4
c.486_487insT
p.Met163TyrfsTer47


c.599G > C
p.Gly200Ala
c.482T > C;
p.Phe161Ser


c.598G > T
p.Gly200Ter
c.476A > T
p.Asp159Val


c.598G > A
p.Gly200Arg
c.458_475dup
p.Val153_Tyr158dup


c.596C > T
p.Ser199Phe
c.475G > A
p.Asp159Asn


c.592G > A
p.Val198Met
c.473A > G
p.Tyr158Cys


c.589G > T
p.Ala197Ser
c.464_465del
p.Tyr155CysfsTer54


c.585G > C
p.Met195Ile
c.465T > A
p.Tyr155Ter


c.584T > C
p.Met195Thr
c.458T > C
p.Val153Ala


c.583A > G
p.Met195Val
c.456C > A
p.Tyr152Ter


c.576del
p.Val193CysfsTer3
c.452T > G
p.Met151Arg


c.575_576del
p.Thr192SerfsTer17
c.431_450del
p.Val144AspfsTer59


c.585G > C
p.Met195Ile
c.439G > T
p.Glu147Ter


c.584T > C
p.Met195Thr
c.439G > A
p.Glu147Lys


c.583A > G
p.Met195Val
c.435_436del
p.Phe146ArgfsTer63


c.576del
p.Val193CysfsTer3
c.428G > T
p.Arg143Leu


c.575_576del
p.Thr192SerfsTer17
c.428G > A
p.Arg143Gln


c.572del
p.Phe191SerfsTer5
c.427C > T
p.Arg143Trp


c.569T > A
p.Val190Asp
c.424_426del
p.Phe142del


c.564_565del
p.Lys188AsnfsTer21
c.426C > G
p.Phe142Leu


c.563A > G
p.Lys188Arg
c.426C > A
p.Phe142Leu


c.559_561del
p.Glu187del
c.424T > C
p.Phe142Leu


c.557C > T
p.Thr186Met
c.424T > A
p.Phe142Ile


c.557C > A
p.Thr186Lys
c.419T > G
p.Ile140Ser


c.551G > C
p.Arg184Pro
c.416G > A
p.Ser139Asn


c.551G > A
p.Arg184Gln
c.415A > T
p.Ser139Cys


c.550C > T
p.Arg184Trp
c.413G > A
p.Ser138Asn


c.550C > G
p.Arg184Gly
c.409dup
p.Thr137AsnfsTer73


c.548C > T
p.Ser183Phe
c.408C > A
p.Tyr136Ter


c.535G > C
p.Asp179His
c.407A > G
p.Tyr136Cys


c.523C > A
p.Pro175Thr
c.405del
p.Tyr136ThrfsTer32


c.535G > A
p.Asp179Asn
c.402del
p.Trp134Ter


c.533T > C
p.Val178Ala
c.401G > A
p.Trp134Ter


c.516_532del
p.Trp172CysfsTer32
c.400T > C
p.Trp134Arg


c.390_399del
p.Ser131GlyfsTer34
c.389G > A
p.Gly130Asp


c.398G > A
p.Trp133Ter
c.384C > G
p.Ile128Met


c.397T > G
p.Trp133Gly
c.377_383dup
p.Glu129ProfsTer83


c.394C > G
p.Leu132Val
c.382A > G
p.Ile128Val


c.389G > T
p.Gly130Val
c.380G > T
p.Arg127Leu


c.389G > C
p.Gly130Ala
c.379C > T
p.Arg127Cys


c.377_378insATGCGGA
p.Arg127CysfsTer85
c.344T > G
p.Phe115Cys


c.370C > T
p.Gln124Ter
c.340G > T
p.Glu114Ter


c.367del
p.Thr123ProfsTer45
c.339T > G
p.Ser113Arg


c.365A > T
p.Lys122Ile
c.336G > T;
p.Lys112Asn


c.363del
p.Thr123ProfsTer45
c.334_335del
p.Lys112GlufsTer2


c.355_363del
p.Glu119_Ile121del
c.335A > T
p.Lys112Met


c.358_360del
p.Glu120del
c.331A > G
p.Ile111Val


c.358G > A
p.Glu120Lys
c.329del
p.Glu110GlyfsTer2


c.355G > A
p.Glu119Lys
c.328del
p.Glu110ArgfsTer2


c.345dup
p.Lys116Ter
c.327_328del
p.Glu110AspfsTer4


c.328G > A
p.Glu110Lys
c.299_300del
p.His100ArgfsTer14


c.327_328delinsA
p.Glu110ArgfsTer2
c.300T > A
p.His100Gln


c.314_327del
p.Lys105ArgfsTer5
c.299A > T
p.His100Leu


c.313_326del
p.Lys105GlyfsTer5
c.299A > C
p.His100Pro


c.326G > T
p.Gly109Val
c.292_298dup
p.His100ProfsTer4


c.326G > A
p.Gly109Glu
c.298del
p.His100MetfsTer12


c.310_323del
p.Arg104GlyfsTer6
c.298C > T
p.His100Tyr


c.317T > A
p.Phe106Tyr
c.296_297del
p.Arg99ThrfsTer2


c.307A > T
p.Lys103Ter
c.290_295delinsCCCG
p.Tyr97SerfsTer4


c.301_303del
p.Glu101del
c.293G > A
p.Arg98Gln


c.302A > G
p.Glu101Gly
c.292C > T
p.Arg98Trp


c.314A > G
p.Lys105Arg
c.290dup
p.Tyr97Ter


c.280_284dup
p.Ala96ThrfsTer18
c.262G > T
p.Ala88Ser


c.283G > A
p.Val95Met
c.262G > C
p.Ala88Pro


c.279G > A
p.Met93Ile
c.258_260del
p.Pro87del


c.278T > C
p.Met93Thr
c.257C > T
p.Thr86Met


c.270_271insT
p.Val91CysfsTer11
c.257C > G
p.Thr86Arg


c.269dup
p.Val91SerfsTer11
c.253T > C
p.Ser85Pro


c.269del
p.Leu90GlnfsTer22
c.251T > C
p.Val84Ala


c.269T > G
p.Leu90Arg
c.250G > T
p.Val84Leu


c.269T > C
p.Leu90Pro
c.250G > C
p.Val84Leu


c.268C > G
p.Leu90Val
c.250G > A
p.Val84Met


c.263C > T
p.Ala88Val
c.247_249del
p.Phe83del


c.263C > G
p.Ala88Gly
c.247T > A
p.Phe83Ile


c.263C > A
p.Ala88Glu
c.246C > G
p.Ile82Met


c.241C > G
p.Leu81Val
c.232dup
p.Ala78GlyfsTer24


c.239A > T
p.Gln80Leu
c.232G > T
p.Ala78Ser


c.239A > G
p.Gln80Arg
c.232G > A
p.Ala78Thr


c.239A > C
p.Gln80Pro
c.231G > A
p.Trp77Ter


c.236_239delinsAGATCCG
p.Leu79_Gln80delinsGlnIleArg
c.230G > A
p.Trp77Ter


c.238C > T
p.Gln80Ter
c.229T > C
p.Trp77Arg


c.238C > A
p.Gln80Lys
c.227T > C
p.Leu76Pro


c.236T > C
p.Leu79Pro
c.224G > A
p.Arg75Gln


c.235del
p.Leu79CysfsTer3
c.223C > T
p.Arg75Trp


c.235C > G
p.Leu79Val
c.2 18A > G
p.His73Arg,


c.217C > T
p.His73Tyr
c.195C > A
p.Tyr65Ter


c.212T > C
p.Ile71Thr
c.194A > G
p.Tyr65Cys


c.212T > A
p.Ile71Asn
c.193T > C
p.Tyr65His


c.209C > T
p.Pro70Leu
c.192C > A
p.Cys64Ter


c.208C > T
p.Pro70Ser
c.176_191del
p.Gly59AlafsTer18


c.208C > G
p.Pro70Ala
c.191G > A
p.Cys64Tyr


c.200A > G
p.His67Arg
c.188T > C
p.Val63Ala


c.196G > C
p.Asp66His
c.187del
p.Val63CysfsTer19


c.196G > A
p.Asp66Asn
c.187G > T
p.Val63Leu


c.195C > G
p.Tyr65Ter
c.187G > A
p.Val63Met


c.184_185insT
p.Asn62IlefsTer40
c.169C > T
p.Gln57Ter


c.181A > C
p.Lys61Gln
c.167del
p.Leu56ArgfsTer26


c.176del
p.Gly59AlafsTer23
c.167T > C
p.Leu56Pro


c.176G > T
p.Gly59Val
c.164C > A
p.Thr55Asn


c.176G > C
p.Gly59Ala
c.163A > C
p.Thr55Pro


c.176G > A
p.Gly59Asp
c.162C > A
p.Asn54Lys


c.175G > C
p.Gly59Arg
c.161A > T
p.Asn54Ile


c.175G > A
p.Gly59Ser
c.161A > G
p.Asn54Ser


c.173C > G
p.Pro58Arg
c.160A > C
p.Asn54His


c.172C > G
p.Pro58Ala
c.155_158del
p.Val52AlafsTer29


c.158G > A
p.Cys53Tyr
c.139G > T
p.Glu47Ter


c.157T > C
p.Cys53Arg
c.139G > C
p.Glu47Gln


c.154G > C
p.Val52Leu
c.139G > A
p.Glu47Lys


c.153del
p.Phe51LeufsTer31
c.138T > G
p.Asp46Glu


c.149A > C
p.Asp50Ala
c.136G > A
p.Asp46Asn


c.148G > T;
p.Asp50Tyr
c.134G > A
p.Gly45Glu


c.148G > A
p.Asp50Asn
c.132G > C
p.Trp44Cys


c.147del
p.Asp50ThrfsTer32
c.132G > A
p.Trp44Ter


c.146C > T
p.Ala49Val
c.131G > T
p.Trp44Leu


c.138_143del
p.Asp46_Gln48delinsGlu
c.131G > C
p.Trp44Ser


c.131G > A
p.Trp44Ter
c.109G > C
p.Val37Leu


c.125_127del
p.Glu42del
c.109G > A
p.Val37Ile


c.127G > A
p.Val43Met
c.107T > C
p.Leu36Pro


c.124G > A
p.Glu42Lys
c.104T > G
p.Ile35Ser


c.119C > T
p.Ala40Val
c.102G > A
p.Met34Ile


c.119C > G
p.Ala40Gly
c.101T > C
p.Met34Thr


c.119C > A
p.Ala40Glu
c.100A > T
p.Met34Leu


c.118G > T
p.Ala40Ser
c.100A > G
p.Met34Val


c.110T > C
p.Val37Ala
c.99del
p.Met34Ter


c.109G > T
p.Val37Phe
c.101 T > G
p.Met34Arg


c.98T > C
p.Ile33Thr
c.85_87del
p.Phe29del


c.98T > A
p.Ile33Asn
c.82C > A
p.Leu28Ile


c.95G > T
p.Arg32Leu
c.71G > A
p.Trp24Ter


c.95G > A
p.Arg32His
c.31_68del
p.Gly11LeufsTer24


c.94C > T
p.Arg32Cys
c.62G > A
p.Gly21Glu


c.94C > A
p.Arg32Ser
c.51_62delinsA
p.Thr18LysfsTer26


c.93del
p.Arg32AlafsTer3
c.61G > A
p.Gly21Arg


c.91T > A
p.Phe31Ile
c.60T > G
p.Ile20Met


c.89T > A
p.Ile30Asn
c.59T > C
p.Ile20Thr


c.88del
p.Ile30PhefsTer5
c.56G > C
p.Ser19Thr


c.88A > G
p.Ile30Val
c.53C > T
p.Thr18Ile


c.50C > T
p.Ser17Phe
c.35dup
p.Val13CysfsTer35


c.50C > A
p.Ser17Tyr
c.35del
p.Gly12ValfsTer2


c.47A > G
p.His16Arg
c.35G > T
p.Gly12Val


c.31_44del
p.Gly11ThrfsTer32
c.35G > A
p.Gly12Asp


c.44A > C
p.Lys15Thr
c.34G > T
p.Gly12Cys


c.42C > G
p.Asn14Lys
c.34G > C
p.Gly12Arg


c.40A > T
p.Asn14Tyr
c.32G > A
p.Gly11Glu


c.40A > G
p.Asn14Asp
c.29T > C
p.Leu10Pro


c.37G > A
p.Val13Met
c.28del
p.Leu10TrpfsTer4


c.24G > A
p.Thr8=
c.28_29delinsTG
p.Leu10Trp


c.23C > T
p.Thr8Met
c.7T > C
p.Trp3Arg


c.20A > C
p.Gln7Pro
c.1A > G
p.Met1?


c.19C > T
p.Gln7Ter
c.−1G > A
N/A


c.17T > C
p.Leu6Pro
c.−22−2A > C
N/A


c.11del
p.Gly4AlafsTer10
c.−22−6T > C
N/A


c.9G > A
p.Trp3Ter
c.−23+1G > A
N/A


c.7dup
p.Trp3LeufsTer45
c.−23G > T
N/A


c.37dup
p.Val13GlyfsTer35
c.475G > T
p.Asp159Tyr









Aspects of the present disclosure relate to methods of treating hearing loss (e.g., DFNB1) by delivering a functional gene product (e.g., GJB2 protein) using gene therapy (e.g., rAAV encoding GJB2 protein) to a target cell (e.g., cells that normally express GJB2, such as fibrocytes and supporting cells of the organ or Corti and nearby regions), which comprise one or more mutations in at least one alleles in a relevant gene (e.g., GJB2) that results in the absence or malfunction of the gene product.


Aspects of the invention relate to certain protein-encoding transgenes (e.g., GJB2) that when delivered to a subject are effective for treating hearing loss (e.g., DFNB1). In some embodiments, the subject has or is suspected of having hearing loss. In some embodiments, the hearing loss is associated with a mutation in the GJB2 gene. In some embodiments, the hearing loss is associated with a mutation in the GJB2 gene listed in Table 2 (above). In some embodiments, the subject is diagnosed with DFNB1.


Accordingly, methods and compositions described by the disclosure are useful, in some embodiments, for the treatment of DFNB1associated with one or more mutations or deletions in the GJB2 gene.


Methods for delivering a transgene (e.g., GJB2) to a subject are provided by the disclosure. The methods typically involve administering to a subject an effective amount of an isolated nucleic acid encoding a GJB2 protein, or a rAAV comprising a nucleic acid for expressing GJB2.


In some embodiments, the GJB2 mutations are, but are not limited to, point mutations, missense mutations, nonsense mutations, insertions, and deletions. In some embodiments, the GJB2 gene mutations associated with DFNB1 include, but are not limited to, mutations in Table 2. In some embodiments, the mutation in GJB2 gene is c.101T>C. In some embodiments, the mutation in GJB2 gene is 35DelG. The GJB2 mutation in a subject (e.g., a subject having or suspected of having DFNB1 associated with a deletion or mutation of GJB2 gene) may be identified from a sample obtained from the subject (e.g., a DNA sample, RNA sample, blood sample, or other biological sample) by any method known in the art. For example, in some embodiments, a nucleic acid (e.g., DNA, RNA, or a combination thereof) is extracted from a biological sample obtained from a subject and nucleic acid sequencing is performed in order to identify a mutation in the GJB2 gene. In some embodiments, a mutation in the GJB2 gene is detected indirectly, for example, by quantifying GJB2 protein expression (e.g., by Western blot) or function (e.g., by analyzing structure, function, etc.), or by direct sequencing of the DNA and comparing the sequence obtained to a control DNA sequence (e.g., a wild-type GJB2 DNA sequence).


In some aspects, the disclosure provides a method for treating DFNB1 in a subject in need thereof, the method comprising administering to a subject having or suspected of having DFNB1 a therapeutically effective amount of an isolated nucleic acid, or a rAAV encoding a transgene (e.g., GJB2). In some embodiments, the rAAV encoding a transgene (e.g., GJB2) is injected through injections to the round window membrane of the inner ear, as described by the disclosure. In some aspects, the present disclosure provides an isolated nucleic acid or an rAAV encoding a transgene (e.g., GJB2), or pharmaceutical compositions thereof, for use in the manufacturing of a medicament in a therapy. In some aspects, the present disclosure provides an isolated nucleic acid or an rAAV encoding a transgene (e.g., GJB2), or pharmaceutical compositions thereof, for use in the manufacturing of a medicament for treating hearing loss and/or deafness associated with the GJB2 gene. In some aspects, the present disclosure provides an isolated nucleic acid or an rAAV encoding a transgene (e.g., GJB2), or pharmaceutical compositions thereof, for use in the manufacturing of a medicament for treating non-syndromic deafness and/or hearing loss (DFNB1).


An “effective amount” of a substance is an amount sufficient to produce a desired effect. In some embodiments, an effective amount of an isolated nucleic acid (e.g., an isolated nucleic acid comprising a transgene encoding GJB2 protein) is an amount sufficient to transfect (or infect in the context of rAAV mediated delivery) a sufficient number of target cells of a target tissue of a subject. In some embodiments, the target tissue is cochlear (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions as described herein). In some embodiments, an effective amount of an isolated nucleic acid (e.g., which may be delivered via an rAAV) may be an amount sufficient to have a therapeutic benefit in a subject, e.g., to increase or supplement the expression of a gene or protein of interest (e.g., GJB2 protein), to improve in the subject one or more symptoms of the disease (e.g., a symptom or sign of DFNB1), etc. The effective amount will depend on a variety of factors, such as, for example, the species, age, weight, health of the subject, and the tissue to be targeted, and may thus vary among subjects and tissue as described elsewhere in the disclosure. In some embodiments, an effective amount of a rAAV may be an amount sufficient to produce a stable somatic transgenic animal model.


An effective amount may also depend on the rAAV used. The invention is based in part on the recognition that a rAAV comprising capsid proteins having a particular serotype (e.g., AAV9.PHP.B or AAV-S) mediates more efficient transduction of cochlear (e.g., inner hair cells, out hair cells) tissue than a rAAV comprising capsid proteins having a different serotype.


In certain embodiments, the effective amount of rAAV is 1010, 1011, 1012, 1013, or 1014 genome copies per kg. In certain embodiments, the effective amount of rAAV is 1010, 1011, 1012, 1013, 1014, or 1015 genome copies per subject.


An effective amount may also depend on the mode of administration. For example, targeting a cochlear (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions) tissue by injection through the round window membrane of the inner ear may require different (e.g., higher or lower) doses, in some cases, than targeting a cochlear (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions) tissue by another method (e.g., systemic administration, topical administration). Thus, in some embodiments, the injection is injection through round window membrane of the inner ear. In some embodiments, administration is topical administration (e.g., topical administration to an ear). In some embodiments, the injection is posterior semicircular canal injection. In some cases, multiple doses of a rAAV are administered.


Without wishing to be bound by any particular theory, efficient transduction of cochlear cells (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions as described herein) by rAAV described herein may be useful for the treatment of a subject having a hereditary hearing loss (e.g., DFNB1). In some embodiments, the composition and method described herein may be useful to treat other GJB2-associated diseases. GJB2-associated diseases, as used herein, refer to conditions and/or disorders caused by GJB2 mutations (e.g., loss of function mutations). Non-limiting GJB2-associated disease include Deafness, autosomal recessive 1A, Deafness, autosomal dominant 3A, DFNB1, Keratitis-ichthyosis-deafness (KID), Ichthyosis, hystrix-like-deafness (HID), Palmoplantar keratoderma-deafness (PPK), Porokeratotic eccrine ostial and dermal duct nevus, Vohwinkel, Burt-Pumphrey, Unususal mucocutaneous-deafness (see, e.g., Srinivas et al., Human diseases associated with connexin mutations, Biochimica et Biophysica Acta (BBA)—Biomembranes, Volume 1860, Issue 1, January 2018, Pages 192-201; Lossa et al., GJB2 Gene Mutations in Syndromic Skin Diseases with Sensorineural Hearing Loss, Curr Genomics. 2011 November; 12(7): 475-785)


Accordingly, methods and compositions for treating hereditary hearing loss are also provided herein. In some aspects, the disclosure provides a method for treating hereditary hearing loss (e.g., DFNB1) or any other GJB2-associated diseases described herein, the method comprising administering to a subject having or suspected of having hereditary hearing loss an effective amount of rAAV, wherein the rAAV comprises (i) a capsid protein having a serotype of AAV9.PHP.B, or AAV-S, and (ii) an isolated nucleic acid comprising two adeno-associated virus (AAV) inverted terminal repeats (ITRs) flanking an expression cassette, wherein the expression cassette comprises a promoter operably linked to a nucleotide sequence encoding a GJB2 gene regulatory element (GRE), and a nucleotide sequence encoding a gap junction beta 2 (GJB2) protein


In some embodiments, the rAAV (e.g., rAAV encoding GJB2) can be administered to a patient (e.g., a patient with DFNB1) at the age of 1 day, 10 days, 1 month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 6 years, 7 years, 8 years, 9, years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, or older. In some embodiments, the patient is an infant, a child, or an adult. In some embodiments, the window of treating GJB2-associated diseases (e.g., DFNB1) is normally from birth to pre-school age (e.g., from birth to 1 year old, from 1 to 2 years old, from 2-3 years old, from 3-4 years old, from 4-5 years old, or from 5-6 years old). In some embodiments, the rAAV (e.g., rAAV encoding GJB2) is administered to the patient (e.g., patients with DFNB1) once in a life-time, every 10 years, every 5 years, every 2 years, every year, every 6 months, every 3 months, every month, every two weeks, or every week. In other embodiments, the administration of the rAAV (e.g., rAAV encoding GJB2) is administered to the patient (e.g., patients with DFNB1) in combination with other known treatment methods for GJB2-associated diseases (e.g., DFNB1).


V. Kits and Related Composition

The agents described herein may, in some embodiments, be assembled into pharmaceutical or research kits to facilitate their use in therapeutic, or research applications. A kit may include one or more containers housing the components (e.g., nucleic acids, rAAV) of the disclosure and instructions for use. Specifically, such kits may include one or more agents described herein, along with instructions describing the intended application and the proper use of these agents. In certain embodiments, agents in a kit may be in a pharmaceutical formulation and dosage suitable for a particular application and for a method of administration of the agents. Kits for research purposes may contain the components in appropriate concentrations or quantities for performing various experiments.


In some embodiments, the instant disclosure relates to a kit for administering a rAAV as described herein. In some embodiments, the kit comprises a container housing the rAAV, and devices (e.g., syringe) for extracting the rAAV from the housing. In some embodiments, the device for extracting the rAAV from the housing is also used for administration (e.g., injection).


In some embodiments, the instant disclosure relates to a kit for producing a rAAV, the kit comprising a container housing an isolated nucleic acid comprising a transgene encoding a protein (e.g., GJB2). In some embodiments, the kit further comprises a container housing an isolated nucleic acid encoding an AAV capsid protein, for example, an AAV.PHP.B capsid protein or an AAV-S capsid protein. In some embodiments, the kit further comprises vectors encoding the rep/cap genes, and the host for producing the rAAV.


In some embodiments, the instant disclosure relates to a kit for treating hearing loss (e.g., DFNB1). In some embodiments, the kit is for delivering a functional (e.g., DFNB1) to a target cell (e.g., connective tissue cells of the cochlea and supporting cells of the organ of Corti and nearby regions as described herein) using gene therapy (e.g., rAAV described herein).


The kit may be designed to facilitate use of the methods described herein by researchers and can take many different forms. Each of the compositions of the kit, where applicable, may be provided in liquid form (e.g., in solution), or in solid form (e.g., a dry powder). In certain cases, some of the compositions may be constitutable or otherwise processable (e.g., to an active form), for example, by the addition of a suitable solvent or other medium (for example, water or a cell culture medium), which may or may not be provided in the kit. As used herein, “instructions” can include a component of instruction and/or promotion, and typically involve written instructions on or associated with the packaging. Instructions also can include any oral or electronic instructions provided in any manner such that a user will clearly recognize that the instructions are to be associated with the kit, for example, audiovisual (e.g., videotape, DVD, CD-ROM, website links for downloadable file, etc.), Internet, and/or web-based communications, etc. The written instructions may be in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals or biological products, which instructions can also reflect approval by the agency of manufacture, use, or sale for animal administration.


The kit may contain any one or more of the components described herein in one or more containers. As an example, in one embodiment, the kit may include instructions for mixing one or more components of the kit and/or isolating and mixing a sample and applying to a subject. The kit may include a container housing the rAAV described herein. The rAAV may be in the form of a liquid, gel, or solid (powder). The rAAV may be prepared sterilely, packaged in a syringe, and shipped refrigerated. Alternatively, the rAAV may be housed in a vial or other container for storage. A second container may have other agents prepared sterilely. Alternatively, the kit may include the rAAV premixed and shipped in a syringe, vial, tube, or other container.


VI. General Techniques

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry, and immunology, which are within the skill of the art. Molecular Cloning: A Laboratory Manual, second edition (Sambrook, et al., 1989) Cold Spring Harbor Press; Oligonu□leotide Synthesis (M. J. Gait, ed., 1984); Methods in Mole□ular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J. E. Cellis, ed., 1998) A□ademi□Press; Animal Cell Culture (R. I. Freshney, ed., 1987); Introduction to Cell and Tissue Culture (J. P. Mather and P. E. Roberts, 1998) Plenum Press; Cell and Tissue Culture: Laboratory Pro□edures (A. Doyle, J. B. Griffiths, and D. G. Newell, eds., 1993-8) J. Wiley and Sons; Methods in Enzymology (A□ademi□Press, In□); Handbook of Experimental Immunology (D. M. Weir and C. C. Bla□kwell, eds.); Gene Transfer Ve□ors for Mammalian Cells (J. M. Miller and M. P. Calos, eds., 1987); Current Protocols in Molecular Biology (F. M. Ausubel, et al., eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis, et al., eds., 1994); Current Proto□ols in Immunology (J. E. Coligan et al., eds., 1991); Short Proto□ols in Mole□ular Biology (Wiley and Sons, 1999); Immunobiology (C. A. Janeway and P. Travers, 1997); Antibodies (P. Fin□h, 1997); Antibodies: a pra□ti□al approa□h (D. Catty., ed., IRL Press, 1988-1989); Mono□lonal antibodies: a pra□ti□al approa□h (P. Shepherd and C. Dean, eds., Oxford University Press, 2000); Using antibodies: a laboratory manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999)); The Antibodies (M. Zanetti and J. D. Capra, eds., Harwood Academic Publishers, 1995).


Without further elaboration, it is believed that one skilled in the art can, based on the present disclosure, utilize the present invention to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. All publications cited herein are incorporated by reference for the purposes or subject matter referenced herein.


Exemplary embodiments of the invention will be described in more detail by the following examples. These embodiments are exemplary of the invention, which one skilled in the art will recognize is not limited to the exemplary embodiments.


EXAMPLES

Hearing impairment of genetic origin occurs in about 1 in 1,000 births; most are autosomal recessive and nonsyndromic. Although over 70 different deafness genes have been identified, nearly half of all cases of severe to profound autosomal recessive nonsyndromic hearing loss result from mutations in just one gene: GJB2, encoding the gap-junction protein connexin26, which contains six subunits to form a hemichannel. Each subunit has four transmembrane helices, which assemble in the plane of the membrane to form a large central pore (FIG. 1A). GJB2 hemichannels from adjacent cells join to create a channel from the cytoplasm of one cell to the cytoplasm of the other. Gap junctions are formed by hundreds or thousands of channels packed in a junctional plaque.


In the cochlea, GJB2 is expressed in two cell groups: an epithelial system comprising supporting cells of the organ of Corti, epithelial cells of the inner and outer sulcus, and interdental cells; and a cytoplasmic system comprising fibrocytes of the lateral wall and suprastrial zone, basal cells of the stria vascularis, and supralimbal dark cells (See, e.g., Kikuchi et al., (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191:101-118). It is not expressed in hair cells. In the cochlea, the epithelial system is largely post-mitotic. In contrast, fibroblasts of the cytoplasmic system turn over slowly, but there is some cell division observed with BrdU labeling (Lang et al., 2002; Li et al., 2017). Structure of the cochlea and the fibrocytes/Corti supporting cell network are shown in FIGS. 1A-1B.


GJB2 expression is critical for cochlear function. For example, the K+ that enters hair cells through transduction channels and leaves through basal K+ channels is shuttled away from the organ of Corti by the epithelial system and conveyed by the cytoplasmic system to the stria, where it is pumped back into the endolymph. Further, GJB2 plays a role in development of the cochlea, as mice lacking GJB2 in the inner ear have reduced endocochlear potential and profound apoptotic loss of hair cells and supporting cells by P30, even though hair cells do not express Gjb2 (Cohen-Salmon et al., 2002; Wang et al., 2009; Sun et al., 2009; Crispino et al., 2011; Johnson et al., 2017). If Gjb2 is deleted after P6, the phenotype is much milder (Chang et al., 2015). However there remains a long-term requirement for GJB2: hair cell loss occurs after months even with deletion as late as P14 (Ma et al., 2020). Not wishing to be bound by the theories described herein, GJB2's function in shuttling K+ may be related in its role in development of the cochlea: If K+ is not carried away from hair cells by a gap junction network, K+ accumulation could depolarize hair cells, leading to Ca2+ influx and eventual cell death. The gap junction network may also be required to transport glucose and nutrients from blood vessels to the sensory epithelium and its absence could lead to cell death (Chang et al., 2008; Mammano, 2019).


Loss of GJB2 expression underlies a disorder termed Nonsyndromic Hearing Loss and Deafness, (DFNB1), characterized by recessive, mild-to-profound sensorineural hearing impairment (Kelsell et al., 1997; Kenna et al., 2010). Over 100 mutations have since been described in patients, but nearly 60% of patients have a single base deletion (35delG) leading to a frameshift and stop (Kenna et al., 2010). In the United States alone, about 3,500 children are born each year with two mutations in the causative gene, GJB2 (Kelsell et al., 1997; Zelante et al., 1997; Azaiez et al., 2018). Many are born with profound hearing loss, which is probably irreversible even at birth. Two-thirds have some residual hearing at birth and the majority of those lose hearing over the next few years, suggesting that a window exists for therapeutic intervention (Kenna et al., 2010). There are thus 5-10,000 preschool-age children who are potential candidates for treatment of DFNB1 (FIG. 1D).


Because the cochlea is a surgically accessible and relatively immunoprotected environment, gene therapy using viral vectors is an attractive approach. The GJB2 coding sequence is small (˜680 bp) and will easily fit in an AAV vector. Although AAV does not insert into the genome and is diluted in dividing cells, most cochlear cells do not divide and AAV can drive expression for decades or more. The injection of rAAV carrying the coding sequence of GJB2 is normally injected through the round window membrane (RWM) (FIG. 2A). However, previous trials of gene therapy failed to rescue hearing even though gene addition of GJB2 rescued cell survival and the gap junction network.


Surprisingly, it was found that indiscriminate expression of GJB2 in the cochlea compromises the function of hair cells and neurons even as it rescues function in the fibrocytes and supporting cells. Further, promiscuous expression of GJB2 in the inner ear damaged hearing of the wild-type mice (FIG. 2B).


Gap junctions create a low-resistance path between adjacent cells. Hair cells and neurons of the cochlea, however, rely on high-resistance membranes to generate depolarization with small transduction or synaptic currents. If either is electrically coupled to adjacent cells, the depolarization would be shunted and the signal to the brain lost. The surprising phenomenon of hearing loss caused by promiscuous GJB2 expression could be explained by indiscriminate gap-junction coupling of hair cells, which do not normally express GJB2. Therefore, effective gene therapy treatment should lead to cell-specific expression of exogenous GJB2 in cells that normally express the gene (e.g., fibrocytes and supporting cells) in order to rescue hearing in subjects with GJB2 mutations.


To achieve cell specific GJB2 expression, cis-regulatory elements of the GJB2 gene were evaluated. Large genomic deletions upstream of GJB2, from 130 to >300 kb, have been found to cause congenital profound deafness. Overlap analysis of these deletions reveals a shared region of ˜95 kb (FIG. 3A), suspected to house the critical enhancer(s) for GJB2 expression in the inner ear.


To identify the cis-regulatory enhancer of GJB2 in human patients, a combination of patient genomic data, ATAC-Seq and in vitro assays was used. Patients with suspected GJB2-related hearing loss were screened with either targeted genomic enrichment coupled with massively parallel sequencing or genome sequencing to search for non-coding disease-causing variants within the ˜95.4 kb window (FIG. 3B). The genotype and phenotype of patients who were screened with the OtoSCOPE panel were reviewed. The initial round of selection included all patients that were heterozygous for a known or predicted pathogenic variant in the GJB2 coding sequence and had a negative genetic diagnosis for their hearing loss. Next, the cohort of patients were refined based on phenotype. Patients carrying a loss-of-function mutation in trans with a mutation in the cis-regulatory element should have congenital severe to profound deafness. Families with recessive deafness that have linkage/allele segregation to the GJB2 locus and absence of coding variants in GJB2 were also studied.


After sequencing, the data was analyzed by a custom bioinformatics pipeline following The Broad Institute's GATK best practices. Briefly, raw sequences were mapped to the genome using Burrows-Wheeler Aligner, followed by Picard to remove duplicates, Genome Analysis Tool Kit (GATK) for variant calling, and Ensembl Variant Effect Predictor and dbNSFP to annotate for variant annotation. After annotation, variants were filtered based on quality, minor allele frequency and location (within the ˜95 kb window). Variants were prioritized based on variants that fall within regulatory elements, as defined by the Encyclopedia of DNA Elements (ENCODE) and the Genotype-Tissue Expression. Over 100 patients were sequenced, and more than 200 candidate variants were identified. Roughly 5-10% of DFNB1 patients have a second disease-causing allele in a non-coding region.


In mice and non-human primates, ATAC-Seq (Assay for Transposase-Accessible Chromatin using Sequencing; Buenrostro et al., 2013) was used to identify enhancers for genes active in the cochlea. ATAC-Seq employs a hyperactive mutant Tn5 transposase that inserts sequencing adapters into open regions of the genome. The genomic DNA was then sequenced from the adapters to identify open chromatin.


Cochleae were dissected from neonatal mice at ages P2, P5 and P8, the time that the cochlea acquires normal function. One cochlea was dissected from an adult macaque monkey. This data set is an important contribution to studies of gene regulation in the cochlea. It can be used, for instance, to drive gene expression in specific cell types that are frequently impaired in both hereditary and acquired hearing loss, such as hair cells, the adjacent stem cells, and spiral ganglion neurons.


Eighteen candidate enhancers associated with the mouse Gjb2 gene were identified. FIG. 3C shows ˜200 kb of mouse genomic sequence in the region of the mouse Gjb2 gene; highlighted are regions with many ATAC-Seq reads. The subsequent studies focused on those enhancers that are near the mouse Gjb2 gene, which are conserved among mammalian species. FIG. 3C (top) shows the identification of mouse Gjb2 gene regulatory elements (GREs), in UCSC Genome Browser views of ATAC-Seq from mouse cochlea at developmental stages P2, P5 and P8, over ˜300 kb in the region of the mouse Gjb2 gene. Shaded regions mark regions containing putative GREs (Human and mouse reginal sequences containing GREs are listed in Table 1). X-axis is the genomic region on chr14 in the mouse genome. Y-axis is the number of reads from the ATAC-Seq that align to a specific region in the genome. Light blue highlight denotes regions of open chromatin, which are the hallmarks of transcriptionally active regions that are enriched for read pile up, suggesting higher activity in these regions. Regions A and B mark the transcriptionally active sequences within mouse Gjb2 itself. Regions C-M are regions that are transcriptionally active around Gjb2 that might be part of a cis-regulatory network. GJB2 GRE sequences were identified with the regional sequences listed in Table 1. FIG. 3C (bottom) shows transcriptionally active regions in and around the light-blue shaded regions that have been identified as specific mouse Gjb2 GREs (GREs 2, 3, 5, 7, and 9). Human GJB2 GRE sequences were identified in silico by modeling the mouse Gjb2 GREs. The nucleotide sequences of human GREs 1, 2, 3, 4, 5, 7 and 9 are set forth in Table 3, and were tested in subsequent experiments.


Further, the promoter, 5′ UTR and/or 3′ UTR of the GJB2 gene also contains native regulatory sequences. Constructs including the promoter, 5′ UTR and/or 3′ UTR were designed and tested for their capability in cell specific GJB2 expression. The constructs were packaged into rAAVs and injected into the inner ear of mice. The cell types expressing the marker gene were compared against cell types that express GJB2. For instance, a C15 vector was constructed to include 500 bp of the human GJB2 promoter, and 300 bp of the 5′ UTR, followed by a coding sequence for GFP and human GJB2 3′ UTR, (Vector C15 in FIG. 3D). The C15 vector packaged into rAAV using AAV9-PHP.B capsid, which is previously found to be effective in transducing many cochlear cell types (Gyorgy et al., 2018). The AAV9-PHP.B-C15 virus was injected into inner ears of P0 mouse pups. GJB2 expression was detected by immunofluorescent using an antibody targeting GJB2 (FIG. 3F, middle panel). Cells transduced with the AAV9-PHP.B-c15 vector and expressing the GFP marker gene under GJB2 enhancers are shown in the left panel. The expression pattern of GJB2 in the inner ear was consistent with what was reported by Kikuchi. In the right panel, IHCs and OHCs (indicated) are also identified by labeling actin with fluorescent phalloidin. In the right panel, IHCs and OHCs (indicated) are also identified by labeling actin with fluorescent phalloidin. Notably, AAV9-PHP.B-C15 is capable of efficiently transducing hair cells, but no GFP expression was observed in hair cells. This is likely because the Gjb2 enhancers are not active in hair cells. FIG. 3F shows a segment of the mouse cochlea, from the lateral wall (top) to the interdental cells (bottom). Cells transduced with the AAV9-PHP.B-C15 vector and expressing the GFP marker gene under Gjb2 enhancers are shown in the left panel. Cells normally expressing Gjb2 are shown in the middle panel. In the right panel, IHCs and OHCs (indicated) are also identified by labeling actin with fluorescent phalloidin. The expression pattern of GFP, which was driven by the c15 construct, is consistent with native Gjb2 expression reported in Kikuchi et al., 1995 using the same antibody against GJB2. Notably, c15 does not drive GFP expression in hair cells.


Further, other constructs (C20-C23) were designed to test exogenous GJB2 expression under a promiscuous chicken beta Actin (CBA) promoter. In C20 vector, the human GJB2 coding sequence was driven by the CBA promoter (FIG. 3E, vector C20). C20 vector was packaged into rAAVs and injected it into P0 cochleae in mice. GJB2 expression was confirmed in hair cells with immunofluorescence using the GJB2 antibody (FIG. 3G). Expression of GJB2 by hair cells would produce electrical coupling to adjacent supporting cells and short-circuit the normal sensory receptor potential. To test this theory, several other vectors were designed. C21 vector includes a CBA promoter operably linked to the human GJB2 coding sequence harboring a 35delG mutation. No active GJB2 protein can be produced by C21 vector. C22 vector includes a CBA promoter with no GJB2 coding sequence. C23 vector includes a CBA promoter driving the expression of human Clarin 1, which is a protein normally expressed by hair cells. The vectors were packaged into rAAVs using AAV1 or AAV9-PHP.B capsid. The rAAVs were injected into the inner ear of mice through the round window membrane at P1, and Auditory Brainstem Response (ABR) was measured at P30 (threshold at 8, 11 and 16 kHz averaged). As shown in FIG. 3H, uninfected wild-type mice had ABR thresholds near 30 dB, and saline mock injection did not change the ABR threshold in wild-type mice. GJB2 expression with a CBA promoter in either AAV1 or AAV9-PHP.B capsids elevated thresholds by 30-40 dB. For comparison, the conditional knockout Cre+, Gjb2fl/fl mice had no response at the highest level tested (90 dB). Further, it was observed that mice injected with AAV9-PHP.B-C20 often showed neurological symptoms including seizures and often death. No lethality was observed in vector AAV9-PHP.B-C21 (expressed GJB2 with an inactivating mutation), AAV9-PHP.B-C22 (no GJB2 coding sequence), or AAV9-PHP.B-C23 (expressed Clarin 1, a normal hair-cell protein). Further, if the rAAV was diluted 10-or 100-fold prior to injection, no toxicity or lethality was observed with any of the vectors. It is possible that a small amount of rAAV encoding GJB2 was reaching the brain due to the brain tropism of AAV9-PHP.B, where electrical coupling of neurons is impairing neural regulation of homeostatic systems. This unexpectedly but dramatically illustrated the need to restrict GJB2 expression to the appropriate cells to reduce toxicity.


The Sox10-Cre+,Gjb2fl/fl knockout mice have no response at the highest level tested (90 dB) (FIG. 3H). In the knockout, AAV1-CBA-GJB2 or AAV9-PHP.B-CBA-GJB2 rAAVs produced no rescue. A C70 construct was produced to test the enhancers in rescuing hearing. The C70 construct includes an AAV 5′ ITR, a GJB2 basal promoter, a GJB2 exon 1 5′ UTR, Kozak sequence, mouse or human GJB2 coding sequence, an optional HA tag, a GJB2 exon 2 3′ UTR, a WPRE, a bovine growth hormone poly A signal, and an AAV 3′ ITR. The C70 construct was packaged into rAAVs using AAV9-PHP.B capsid protein and injected into the inner ear of both wild-type mice and the Sox10-Cre+,Gjb2fl/fl knockout mice. Gjb2 expression rescued hearing by 15-20 dB in Sox10-Cre+,Gjb2fl/fl knockout mice. The same vector did not damage hearing in wild-type mice (FIG. 3H). FIGS. 3I-3L shows the map of the c70 vector plasmid encoding mouse GJB2 or human GJB2 with or without an HA tag. FIG. 3M shows schematics of vector c.70 encoding mouse GJB2 or human GJB2 with or without the HA tag. FIG. 3N shows additional vectors that were created and tested.


Moreover, other AAV capsid proteins having tropisms to inner ear cells were tested for their capability in delivering a transgene (e.g., GJB2 or GFP) to appropriate inner ear cells in both mouse and primates and rescuing hearing. AAV-S capsid protein, originally developed for brain tropism, showed good transduction of GJB2-expressing cells in both mouse and primate cochlea (FIG. 4). An rAAV comprising the AAV-S capsid protein and the c70 vector, which drives expression of GJB2 under the GJB2 basal promoter and 5′ UTR, was packaged. The AAV-S-C70 rAAV is injected into Gjb2 conditional knockout mice. The hearing of these mice is tested. The AAV-S-C70 rAAV is capable of rescuing hearing similarly to AAV9-PHP.B-C70 rAAV, or even better.


The AAV-S-C70 rAAV is injected into wild-type mice. The C70 vector includes an HA tag, which allows easy detection of GJB2 expression in the inner ear with an anti-HA antibody. It is expected that GJB2 expression is only detected in supporting cells of the organ of Corti and fibrocytes, which normally express GJB2. The hearing of the injected wild-type mice is also tested to assess GJB2-associated toxicity.


Further, the ability of AAV-S to transduce inner ear cells of non-human primates (NHP) was tested. An rAAV comprising an AAV-S capsid protein and a vector encoding GFP was injected into both ears of non-human primates. Animals were euthanized three weeks later and the cochleas prepared for histology. GFP expression is evaluated in the cochleas in these animals. Similar experiments in mice were carried out in parallel.


An AAV-S vector encoding GFP was injected into the inner ear of an adult mouse, using the posterior canal route (which robustly delivers vector throughout the inner ear in mouse). The animal was euthanized 20 days after the injection and the cochlea harvested.


In order to test whether GJB2 GREs listed in Table 3 permit GJB2 expression in cells that normally express it, and prevent GJB2 expression in cells that do not normal express GJB2, the GREs were each incorporated into AAV vectors that drive GFP, human GJB2, or mouse Gjb2 expression under the control of the basal GJB2 promoter, and the GJB2 exon 1 5′ UTR. The vector maps are shown in FIGS. 5A-5U. The vectors include, from 5′ to 3′, an AAV 5′ ITR, a human GJB2 GRE, a GJB2 basal promoter, a human GJB2 exon 1 5′ UTR, a nucleotide sequence encoding an eGFR, a human GJB2 or a mouse Gjb2, and a GJB2 exon 2 3′ UTR. Vector c.81.1 includes human GJB2 GRE1; Vector c.81.2 includes human GJB2 GRE2; Vector c.81.3 includes human GJB2 GRE3; Vector c.81.4 includes human GJB2 GRE4; Vector c.81.5 includes human GJB2 GRE 5; Vector c.81.7 includes human GJB2 GRE7; Vector c.81.8 includes human GJB2 GRE8; Vector c.81.9 includes human GJB2 GRE9 (FIGS. 5A-5U). FIG. 5V shows schematics of c81.2, c81.3, c81.5, c81.7 and c81.9 encoding eGFP, mouse GJB2 and human GJB2 as described above.


The c.81.2, c81.3, c81.5, c81.7, and c81.9 vectors encoding GFP were respectively packaged into rAAVs using AAV9.PHP.B capsid protein and injected through the round window membrane at postnatal day 1 of wild-type mice. The cochlea was fixed for histology at P6, and GFP expression was evaluated in the cochlea tissues.


It was found that GJB2 gene regulatory element 5 (GJB2 GRE5, in vector c81.5 encoding eGFP as a reporter) helped target expression of eGFP to GJB2-expressing cells. FIG. 6A shows a fluorescent image of eGFP expressing cells, including a variety of supporting cells in, and medial to, the organ of Corti. FIG. 6B shows antibody label of endogenous GJB2 in the region of the organ of Corti. GJB2 expression largely overlapped that of exogenous eGFP. FIG. 6C is an overlay of FIGS. 6A and 6B, with a third staining of actin, which revealed stereocilia of hair cells. No eGFP was expressed in the hair cells. FIG. 6D shows a frozen section immunofluorescence image of eGFP and a protein marker for hair cells, MYO7A. eGFP was expressed in a variety of supporting cells in the organ of Corti, but did not overlap with MYO7A expression, which was expressed in hair cells. The vectors encoding human GJB2 or mouse GJB2 will be tested for GJB2 expression in the intended cells.



FIGS. 7A-7D show eGFP expression pattern by vector c.81.5 in the lateral wall of the cochlea. FIG. 7A shows eGFP expression in cells including fibrocytes of the lateral wall. FIG. 7B shows an antibody labeling of endogenous GJB2 in the region of the lateral wall. GJB2 expression largely overlaps that of exogenous GFP. FIG. 7C is an overlay image of FIGS. 7A and 7B. Note that eGFP was expressed in the cells expressing Gjb2. FIGS. 7D-7E show frozen section immunofluorescences of GFP (FIG. 7D) and GJB2 in supporting cells of the organ of Corti and fibrocytes of the lateral wall (FIG. 7E).


Human GJB2 enhancers identified based on human deletions are capable of rescue hearing, and similarly does not lead to GJB2 associated toxicity.


REFERENCES



  • Buenrostro J D, Giresi P G, Zaba L C, Chang H Y, Greenleaf W J (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature methods 10:1213-1218.

  • Cohen-Salmon M, Ott T, Michel V, Hardelin J P, Perfettini I, Eybalin M, Wu T, Marcus D C, Wangemann P, Willecke K, Petit C (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12:1106-1111.

  • Crispino G, Di Pasquale G, Scimemi P, Rodriguez L, Galindo Ramirez F, De Siati R D, Santarelli R M, Arslan E, Bortolozzi M, Chiorini J A, Mammano F (2011) BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice. PloS one 6:e23279.

  • Deverman B E, Pravdo P L, Simpson B P, Kumar S R, Chan K Y, Banerjee A, Wu W L, Yang B, Huber N, Pasca S P, Gradinaru V (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34:204-209.

  • Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J, Sohl G, Willecke K, Ammermuller J, Weiler R (2004) Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J Neurosci 24:3325-3334.

  • Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G (2003) Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessment of connexin composition in mammals. J Comp Neurol 467:207-231.

  • Gyorgy B, Sage C, Indzhykulian A A, Scheffer D I, Brisson A R, Tan S, Wu X, Volak A, Mu D, Tamvakologos P I, Li Y, Fitzpatrick Z, Ericsson M, Breakefield X O, Corey D P, Maguire C A (2017) Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol Ther 25:379-391.

  • Gyorgy B, Meijer E J, Ivanchenko M V, Tenneson K, Emond F, Hanlon K S, Indzhykulian A A, Volak A, Karavitaki K D, Tamvakologos P I, Vezina M, Berezovskii V K, Born R T, O'Brien M, Lafond J F, Arsenijevic Y, Kenna M A, Maguire C A, Corey D P (2018) Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate. Mol Ther Methods Clin Dev 13:1-13.

  • Iizuka T, Kamiya K, Gotoh S, Sugitani Y, Suzuki M, Noda T, Minowa O, Ikeda K (2015) Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet 24:3651-3661.

  • Kelsell D P, Dunlop J, Stevens H P, Lench N J, Liang J N, Parry G, Mueller R F, Leigh I M (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80-83.

  • Kenna M A, Feldman H A, Neault M W, Frangulov A, Wu B L, Fligor B, Rehm H L (2010) Audiologic phenotype and progression in GJB2 (Connexin 26) hearing loss. Arch Otolaryngol Head Neck Surg 136:81-87.

  • Kikuchi T, Kimura R S, Paul D L, Adams J C (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191:101-118.

  • Li W, Wu J, Yang J, Sun S, Chai R, Chen Z Y, Li H (2015) Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proceedings of the National Academy of Sciences of the United States of America 112:166-171.

  • Lin F R, Niparko J K, Ferrucci L (2011) Hearing loss prevalence in the United States. Arch Intern Med 171:1851-1852.

  • Mason J A, Herrmann K R (1998) Universal infant hearing screening by automated auditory brainstem response measurement. Pediatrics 101:221-228.

  • Shu Y, Tao Y, Wang Z, Tang Y, Li H, Dai P, Gao G, Chen Z Y (2016) Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes. Hum Gene Ther 27:687-699.

  • Sun Y, Tang W, Chang Q, Wang Y, Kong W, Lin X (2009) Connexin30 null and conditional connexin26 null mice display distinct pattern and time course of cellular degeneration in the cochlea. J Comp Neurol 516:569-579.

  • Takada Y, Beyer L A, Swiderski D L, O'Neal A L, Prieskorn D M, Shivatzki S, Avraham K B, Raphael Y (2014) Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hearing research 309:124-135.

  • Wang Y, Chang Q, Tang W, Sun Y, Zhou B, Li H, Lin X (2009) Targeted connexin26 ablation arrests postnatal development of the organ of Corti. Biochem Biophys Res Commun 385:33-37.

  • Watanabe K, Takeda K, Katori Y, Ikeda K, Oshima T, Yasumoto K, Saito H, Takasaka T, Shibahara S (2000) Expression of the Sox10 gene during mouse inner ear development. Brain Res Mol Brain Res 84:141-145.

  • Wise A K, Tu T, Atkinson P J, Flynn B O, Sgro B E, Hume C, O'Leary S J, Shepherd R K, Richardson R T (2011) The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection. Hearing research 278:69-76.

  • Yu Q, Wang Y, Chang Q, Wang J, Gong S, Li H, Lin X (2014) Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther 21:71-80.

  • Zelante L, Gasparini P, Estivill X, Melchionda S, D'Agruma L, Govea N, Mila M, Monica M D, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605-1609.



Other Embodiments

All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, each feature disclosed is only an example of a generic series of equivalent or similar features.


From the above description, one skilled in the art can easily ascertain the essential characteristics of the present invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, other embodiments are also within the claims.


EQUIVALENTS

While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.


All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.

Claims
  • 1. An isolated nucleic acid comprising an expression cassette, wherein the expression cassette comprises a Gap Junction beta 2 (GJB2) gene regulatory element (GRE), and a nucleotide sequence encoding a GJB2 protein.
  • 2. The isolated nucleic acid of claim 1, wherein the GJB2 protein is a human GJB2 protein.
  • 3. The isolated nucleic acid of claim 2, wherein the GJB2 protein comprises an amino acid sequence at least 80% identical to SEQ ID NO: 1.
  • 4. The isolated nucleic acid of any one of claims 1-3, wherein the nucleotide sequence encoding a GJB2 protein comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 2.
  • 5. The isolated nucleic acid of any one of claims 1-4, wherein the expression cassette further comprises a promoter operably linked to the nucleotide sequence encoding a GJB2 protein.
  • 6. The isolated nucleic acid of claim 5, wherein the promoter is a human GJB2 promoter.
  • 7. The isolated nucleic acid of claim 6, wherein the promoter comprises 500 nucleotides of a human GJB2 promoter.
  • 8. The isolated nucleic acid of claim 7, wherein the promoter comprises a nucleic acid sequence at least 80% identical to SEQ ID NO: 5.
  • 9. The isolated nucleic acid of claim 6, wherein the promoter comprises a nucleic acid sequence at least 80% identical to SEQ ID NO: 102, optionally 100% identical to SEQ ID NO: 102.
  • 10. The isolated nucleic acid of any one of claims 1-9, wherein the Gap Junction beta 2 (GJB2) gene regulatory element (GRE) comprises a nucleotide sequence encoding a 5′ UTR.
  • 11. The isolated nucleic acid of claim 9, wherein the 5′ UTR is positioned between the promoter and the nucleotide sequence encoding a GJB2 protein.
  • 12. The isolated nucleic acid of claim 10 or 11, wherein the 5′ UTR comprises about 300 nucleotides of a human GJB2 gene 5′ UTR.
  • 13. The isolated nucleic acid of claim 12, wherein the promoter and the 5′ UTR comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 30.
  • 14. The isolated nucleic acid of any one of claims 1-13, wherein the GJB2 gene regulatory element further comprises an enhancer.
  • 15. The isolated nucleic acid of claim 14, wherein the enhancer is positioned 5′ to the promoter.
  • 16. The isolated nucleic acid of claim 14 or 15, wherein the enhancer is normally present within approximately 200 kb upstream or downstream of a GJB2 gene.
  • 17. The isolated nucleic acid of any one of claims 14-16, wherein the enhancer is normally present within approximately 95 kb of a GJB2 gene.
  • 18. The isolated nucleic acid of any one of claims 14-17, wherein the GJB2 GRE comprises one or more enhancers.
  • 19. The isolated nucleic acid of claim 18, wherein the one or more enhancers are the same enhancers or different enhancers.
  • 20. The isolated nucleic acid of any one of claims 14-19, wherein the enhancer comprises a nucleotide sequence at least 80% identical to a nucleotide sequence or a fragment thereof as set forth in any one of SEQ ID NOs: 6 to 29.
  • 21. The isolated nucleic acid of any one of claims 14-20, wherein the enhancer comprises a nucleotide sequence at least 80% identical to a GJB2 enhancer as set forth in any one of SEQ ID NOs: 37-46.
  • 22. The isolated nucleic acid of claim 21, wherein the enhancer comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 42.
  • 23. An isolated nucleic acid comprising an expression cassette, wherein the expression cassette comprises a Gap Junction beta 2 (GJB2) promoter, and a nucleotide sequence encoding a GJB2 protein.
  • 24. The isolated nucleic acid of claim 23, wherein the GJB2 promoter comprises a nucleic acid sequence at least 80% identical to SEQ ID NO: 102, optionally 100% identical to SEQ ID NO: 102.
  • 25. The isolated nucleic acid of claim 23 or 24, wherein the expression cassette further comprises a 5′ UTR.
  • 26. The isolated nucleic acid of claim 25, wherein the 5′ UTR comprises: a first nucleic acid sequence at least 80% identical to SEQ ID NO: 103, optionally 100% identical to SEQ ID NO: 103; and/ora second nucleic acid sequence at least 80% identical to SEQ ID NO: 104, optionally 100% identical to SEQ ID NO: 104.
  • 27. The isolated nucleic acid of any one of claims 23-27, wherein the isolated nucleic acid comprises a nucleic acid sequence at least 80% identical to SEQ ID NO: 105, optionally 100% identical to SEQ ID NO: 105.
  • 28. The isolated nucleic acid of any one of claim 1-27, wherein the isolated nucleic acid is capable of expressing GJB2 in cells that normally express the GJB2 gene.
  • 29. The isolated nucleic acid of claim 28, wherein the isolated nucleic acid is capable of expressing GJB2 in cochlear connective tissue cells and supporting cells of the organ of Corti.
  • 30. The isolated nucleic acid of claim 29, wherein the supporting cell of the organ of Corti are pillar cells, Deiters' cells, Hensen's cells, Claudius cells, inner phalangeal cells, and border cells.
  • 31. The isolated nucleic acid of claim 29, wherein the cochlear connective tissue cells are strial intermediate cells, fibrocytes of the lateral wall and suprastrial zone, basal cells of the stria vascularis, fibrocytes in the spiral ligament, fibrocytes in the spiral limbus, mesenchymal cells lining the bony otic capsule facing the scala vestibuli, and supralimbal dark cells.
  • 32. The isolated nucleic acid of any one of claims 1-31, wherein the expression cassette is flanked by two adeno-associated virus inverted terminal repeats (ITRs).
  • 33. The isolated nucleic acid of claim 32, wherein the AAV ITR is from a serotype selected from the group consisting of AAV1 ITR, AAV2 ITR, AAV3 ITR, AAV4 ITR, AAV5 ITR, and AAV6 ITR.
  • 34. The isolated nucleic acid of claim 32 or 33, wherein the AAV ITR is AAV2 ITR.
  • 35. The isolated nucleic acid of claim 32 or 33, wherein the expression cassette comprises: a 5′ ITR having a nucleotide sequence at least 80% identical to SEQ ID NO: 106, optionally 100% identical to SEQ ID NO: 106; and/ora 3′ ITR having a nucleotide sequence at least 80% identical to SEQ ID NO: 107, optionally 100% identical to SEQ ID NO: 107.
  • 36. The isolated nucleic acid of any one of claims 1-35, wherein the expression cassette further comprises a Woodchuck Hepatitis Virus (WHP) Posttranscriptional Regulatory Element (WPRE) 3′ to the nucleotide sequence encoding the GJB2 protein.
  • 37. The isolated nucleic acid of claim 36, wherein the WPRE comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 108, optionally 100% identical to SEQ ID NO: 108.
  • 38. The isolated nucleic acid of any one of claims 1-37, wherein the expression cassette further comprises a nucleotide sequence encoding a 3′ UTR located 3′ of the WPRE.
  • 39. The isolated nucleic acid of claim 38, wherein the 3′ UTR is a GJB2 3′ UTR.
  • 40. The isolated nucleic acid of claim 39, wherein the GJB2 3′ UTR comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 32.
  • 41. The isolated nucleic acid of any one of claims 1-40, wherein the expression cassette further comprises a poly A signal.
  • 42. The isolated nucleic acid of claim 41, wherein the poly A signal is a bovine growth hormone poly A signal.
  • 43. The isolated nucleic acid of claim 41, wherein the poly A signal comprises a nucleotide sequence at least 80% identical to SEQ ID NO: 109, optionally 100% identical to SEQ ID NO: 109.
  • 44. An isolated nucleic acid comprising a nucleotide sequence at least 80% identical to SEQ ID NO: 110 or 111, optionally 100% identical to SEQ ID NO: 110 or 111.
  • 45. A vector comprising the isolated nucleic acid of any one of claims 1-44.
  • 46. The vector of claim 45, wherein the vector is a plasmid or a viral vector.
  • 47. The vector of claim 46, wherein the viral vector is an AAV vector.
  • 48. A vector comprising from 5′ to 3′: (a) a 5′ ITR;(b) a GJB2 promoter, or a basal GJB2 promoter sequence thereof;(c) a GJB2 5′ UTR;(d) a nucleotide sequence encoding a GJB2 protein;(e) a GJB2 3′ UTR;(f) a bovine growth hormone poly A signal; and(g) a 3′ ITR.
  • 49. A vector comprising from 5′ to 3′: (a) a 5′ ITR;(b) a GJB2 enhancer;(c) a GJB2 promoter, or a basal GJB2 promoter sequence thereof;(d) a GJB2 5′ UTR;(e) a nucleotide sequence encoding a GJB2 protein;(f) a GJB2 3′ UTR;(g) a bovine growth hormone poly A signal; and(h) a 3′ ITR.
  • 50. A recombinant adeno-associated virus (rAAV) comprising: (i) a capsid protein; and(ii) the isolated nucleic acid of any one of claims 1-44.
  • 51. A recombinant adeno-associated virus (rAAV) comprising: (i) a capsid protein; and(ii) an isolated nucleic acid comprising: (a) a 5′ ITR;(b) a GJB2 promoter, or a basal GJB2 promoter sequence thereof;(c) a GJB2 5′ UTR;(d) a nucleotide sequence encoding a GJB2 protein;(e) a GJB2 3′ UTR;(f) a bovine growth hormone poly A signal; and(g) a 3′ ITR.
  • 52. A recombinant adeno-associated virus (rAAV) comprising: (i) a capsid protein; and(ii) an isolated nucleic acid comprising: (a) a 5′ ITR;(b) a GJB2 enhancer;(c) a GJB2 promoter, or a basal GJB2 promoter sequence thereof;(d) a GJB2 5′ UTR;(e) a nucleotide sequence encoding a GJB2 protein;(f) a GJB2 3′ UTR;(g) a bovine growth hormone poly A signal; and(h) a 3′ ITR.
  • 53. The rAAV of any one of claims claim 50-52, wherein the rAAV has tropism for a subset of cochlear cells that normally express the GJB2 gene.
  • 54. The rAAV of any one of claims 50-53, wherein the rAAV has tropism for cells of the inner ear.
  • 55. The rAAV of any one of claims 50-54, wherein the capsid protein is an AAV1 capsid protein, an AAV2 capsid protein, an AAV5 capsid protein, an AAV7 capsid protein, an AAV8 capsid protein, an AAV9 capsid protein, an AAV-S capsid protein, or a variant thereof.
  • 56. The rAAV of any one of claims 50-55, wherein the AAV capsid is AAV9.PHP.B, AAV9.PHP.eB, or AAV-S.
  • 57. The rAAV of claim 56, wherein the AAV capsid protein is AAV-S.
  • 58. A cell comprising the isolated nucleic acid of any one of claims 1-44, the vector of any one of claims 45-49, or the rAAV of any one of claims 50-57.
  • 59. A pharmaceutical composition comprising the isolated nucleic acid of any one of claims 1-44, the vector of any one of claims 45-49, the rAAV of any one of claims 50-57, or the cell of claim 58.
  • 60. The pharmaceutical composition of claim 59 further comprising a pharmaceutically acceptable carrier.
  • 61. A method for specifically expressing GJB2 in cells that normally expresses the GJB2 gene in a subject, the method comprising administering to the subject an effective amount of the isolated nucleic acid of any one of claims 1-44, the vector of any one of claims 45-49, the rAAV of any one of claims 50-57, the cell of claim 58, or the pharmaceutical composition of claim 59 or 60.
  • 62. A method for treating Non-syndromic Hearing Loss and Deafness (DFNB1) in a subject in need thereof, the method comprising administering to the subject an effective amount of the isolated nucleic acid of any one of claims 1-44, the vector of any one of claims 45-49, the rAAV of any one of claims 50-57, the cell of claim 58, or the pharmaceutical composition of claim 59 or 60.
  • 63. A method for treating a GJB2-associated disease in a subject in need thereof, the method comprising administering to the subject an effective amount of the isolated nucleic acid of any one of claims 1-44, the vector of any one of claims 45-49, the rAAV of any one of claims 50-57, the cell of claim 58, or the pharmaceutical composition of claim 59 or 60.
  • 64. The method of any one of claims 61-63, wherein the subject is a mammal.
  • 65. The method of claim 64, wherein the mammal is a human.
  • 66. The method of claim 64, wherein the mammal is a non-human mammal.
  • 67. The method of claim 66, wherein the non-human mammal is mouse, rat, or non-human primate.
  • 68. The method of any one of claims 61-67, wherein the hearing loss is associated with a mutation in the GJB2 gene.
  • 69. The method of claim 68, wherein the mutation in the GJB2 gene is a point mutation, a missense mutation, a nonsense mutation, a deletion, an insertion, or a combination thereof.
  • 70. The method of claim 69, wherein the subject is human; and the mutation is a mutation listed in Table 2 or a combination thereof.
  • 71. The method of claim 69 or 70, wherein the mutation is c 101.T>C or Del35G.
  • 72. The method of any one of claims 61-71, wherein the step of administrating results in expression of GJB2 protein in cochlear connective tissue cells and supporting cells of the organ of Corti.
  • 73. The method of claim 72, wherein the supporting cells of the organ of Corti are pillar cells, Deiters' cells, Hensen's cells, Claudius cells, inner phalangeal cells, and border cells.
  • 74. The method of claim 72, wherein the cochlear connective tissue cells are strial intermediate cells, fibrocytes of the lateral wall and suprastrial zone, basal cells of the stria vascularis, fibrocytes in the spiral ligament, fibrocytes in the spiral limbus, mesenchymal cells lining the bony otic capsule facing the scala vestibuli, and supralimbal dark cells.
  • 75. The method of any one of claims 61-74, wherein the administration is via injection.
  • 76. The method of claim 75, wherein the injection is through the round window membrane of the cochlea, into the scala media of the cochlea, into the scala vestibuli of the cochlea, into a semicircular canal of the inner ear, or into the saccule or the utricle of the inner ear.
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application, U.S. Ser. No. 63/161,619, filed Mar. 16, 2021, and to U.S. Provisional Application, U.S. Ser. No. 63/078,233, filed Sep. 14, 2020, each of which is incorporated herein by reference.

FEDERALLY SPONSORED RESEARCH

This invention was made with Government support under DA048787 awarded by the National Institutes of Health. The Government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/050205 9/14/2021 WO
Provisional Applications (1)
Number Date Country
63078233 Sep 2020 US