The present invention relates generally to memory devices, and particularly to methods and systems for rejuvenating analog memory cells.
Several types of memory devices, such as Flash memories, use arrays of analog memory cells for storing data. Each analog memory cell stores a quantity of an analog value, also referred to as a storage value, such as an electrical charge or voltage. This analog value represents the information stored in the cell. In Flash memories, for example, each analog memory cell holds a certain amount of electrical charge. The range of possible analog values is typically divided into intervals, each interval corresponding to one or more data bit values. Data is written to an analog memory cell by writing a nominal analog value that corresponds to the desired bit or bits.
Some memory devices, commonly referred to as Single-Level Cell (SLC) devices, store a single bit of information in each memory cell, i.e., each memory cell can be programmed to assume either of two possible programming levels. Higher-density devices, often referred to as Multi-Level Cell (MLC) devices, store two or more bits per memory cell, i.e., can be programmed to assume more than two possible programming levels.
An embodiment of the present invention provides a method for data storage, including:
in a memory that includes multiple analog memory cells fabricated using respective physical media, identifying a group of the memory cells whose physical media have deteriorated over time below a given storage quality level;
applying to the identified group a rejuvenation process, which causes the physical media of the memory cells in the group to meet the given storage quality level; and
storing data in the rejuvenated group of the memory cells.
In an embodiment, applying the rejuvenation process includes causing removal of electrical charge that is trapped in the physical media of the memory cells in the group. In a disclosed embodiment, applying the rejuvenation process includes inhibiting programming of the memory cells in the group for a given time period.
In some embodiments, applying the rejuvenation process includes heating the memory cells in the group. Heating the memory cells may include activating a heating device that is thermally coupled to the group of the memory cells. Alternatively, heating the memory cells may include applying memory access operations to some of the memory cells in the memory. Further alternatively, heating the memory cells may include preventing heat removal from the group. In an alternative embodiment, heating the memory cells includes directing to the memory cells in the group heat generated by another component that is not part of the group.
In another embodiment, applying the rejuvenation process includes attempting to erase or program the memory cells in the group. In yet another embodiment, applying the rejuvenation process includes copying the data from the group to an alternative location in the memory before rejuvenating the group. In a disclosed embodiment, applying the rejuvenation process includes heating the memory cells in the group while periodically refreshing the data stored in the memory cells in the group. Periodically refreshing the data may include refreshing the data during the rejuvenation process at a rate that is higher than a nominal refresh rate used for refreshing the data in the memory.
In some embodiments, identifying the group includes programming respective storage values into the memory cells in the group, measuring a shift that develops in the programmed storage values over a predefined time period, and determining, based on the measured shift, that the physical media have deteriorated below the given storage quality level. In an embodiment, the method includes copying the data from the group to another group of memory cells before programming the respective storage values into the memory cells in the group.
In some embodiments, identifying the group includes making a prediction that the physical media of the group of the memory cells is expected to deteriorate below the given storage quality level, so as to apply the rejuvenation process responsively to the prediction. In an embodiment, making the prediction includes estimating an integral of a temperature of the memory cells in the group over time, and initiating the rejuvenation process responsively to the integral. In another embodiment, making the prediction includes estimating one or more statistical properties of analog values stored in the memory cells in the group, and initiating the rejuvenation process responsively to the estimated statistical properties. Estimating the statistical properties may include predicting a number of errors in the group of the memory cells based on the statistical properties.
There is additionally provided, in accordance with an embodiment of the present invention, apparatus for data storage, including:
an interface for communicating with a memory that includes multiple analog memory cells fabricated using respective physical media; and
circuitry, which is configured to identify a group of the memory cells whose physical media have deteriorated over time below a given storage quality level, to apply to the identified group a rejuvenation process, which causes the physical media of the memory cells in the group to meet the given storage quality level, and to store data in the rejuvenated group of the memory cells.
There is also provided, in accordance with an embodiment of the present invention, a method for data storage, including:
in a memory that includes multiple analog memory cells, storing data in a group of the analog memory cells by writing respective storage values into the memory cells in the group;
estimating an integral of a temperature of the memory cells in the group over time;
setting at least one read threshold for reading the memory cells in the group responsively to the estimated integral; and
reading the analog storage values from the memory cells in the group using the at least one read threshold, so as to reconstruct the stored data.
There is further provided, in accordance with an embodiment of the present invention, apparatus for data storage, including:
an interface for communicating with a memory that includes multiple analog memory cells; and
circuitry, which is configured to store data in a group of the analog memory cells by writing respective storage values into the memory cells in the group, to estimate an integral of a temperature of the memory cells in the group over time, to set at least one read threshold for reading the memory cells in the group responsively to the estimated integral, and to read the analog storage values from the memory cells in the group using the at least one read threshold, so as to reconstruct the stored data.
There is additionally provided, in accordance with an embodiment of the present invention, a method for data storage, including:
operating a memory, which includes a plurality of analog memory cells and generates internal heat;
heating at least some of the memory cells by applying to the memory external heat, in addition to the internal heat generated by the memory; and
storing data in the heated memory cells.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
Analog memory cells of a certain type are fabricated using certain physical media. For example, NAND Flash memory cells are typically implemented using floating-gate transistors that are disposed on a semiconductor substrate. Other types of non-volatile memory cells are implemented using other semiconductor configurations. Extensive use of analog memory cells sometimes causes aging effects in the cells' physical memory media, which causes the storage quality of the memory cells to deteriorate. In NAND Flash memory cells, for example, charge trapping in the boundary regions between memory cells decreases floating gate isolation, and may cause read errors and increase the memory cells' sensitivity to interference and charge loss. In known memory management schemes, when the deterioration of the physical memory media in a given group of memory cells becomes intolerable, the group is marked as faulty and taken out of service. Thus, the available storage capacity of a memory device decreases over time, and at some point drops below its specified capacity.
Embodiments of the present invention that are described hereinbelow provide improved methods and systems for managing memory devices comprising analog memory cells. The disclosed methods and systems apply various rejuvenation processes to memory cells whose physical memory media have deteriorated below a tolerable level. Rejuvenation may involve, for example, heating the memory cells or inhibiting programming of the memory cells for certain time periods. The techniques described herein return the storage quality of the rejuvenated memory cells to a tolerable level, so that the memory cells can be put back in service. Rejuvenation can be applied at different granularities, such as to individual groups of memory cells in a semiconductor die, individual dies within a multi-die memory device, individual memory devices within a multi-device assembly, or even individual memory assemblies (e.g., solid state disks) in a storage system. Several examples of memory management schemes that use rejuvenation processes are also described below.
In order to understand the disclosed techniques, it is important to differentiate between (1) deterioration of the physical memory media of the memory cells and (2) distortion or impairments in the analog values stored in the memory cells. It is similarly important to distinguish between (1) rejuvenation of the physical memory media of the memory cells and (2) refreshing of the analog values stored in the memory cells. The methods and systems described herein are concerned with repairing the deterioration of the physical memory media (e.g., eliminate charge traps in the oxide between and/or below the memory cells), irrespective of analog values or data that may be stored in the memory cells. Impairments in the analog values that represent the data stored in the memory cells, e.g., cell charge levels or threshold voltages, can be corrected by other means, which are beyond the scope of the present disclosure.
When using the disclosed rejuvenation techniques, memory cell groups that would otherwise be declared irreversibly faulty can continue to store data reliably. As a result, the overall storage capacity of a memory system or device decreases over time at a slower rate, and its effective lifetime is thus extended. Moreover, the disclosed techniques enable the design of memory systems and devices with less spare capacity, and therefore the size and cost of memory systems and devices can be reduced.
System 20 comprises multiple memory devices 28, each comprising multiple analog memory cells. In the present example, devices 28 comprise non-volatile NAND Flash devices, although any other suitable memory type, such as NOR and Charge Trap Flash (CTF) Flash cells, phase change RAM (PRAM, also referred to as Phase Change Memory—PCM), Nitride Read Only Memory (NROM), Ferroelectric RAM (FRAM), magnetic RAM (MRAM) and/or Dynamic RAM (DRAM) cells, can also be used.
In the context of the present patent application and in the claims, the term “analog memory cell” is used to describe any memory cell that holds a continuous, analog value of a physical parameter, such as an electrical voltage or charge. Any suitable type of analog memory cells, such as the types listed above, can be used. In the present example, each memory device 28 comprises a non-volatile memory of NAND Flash cells. The charge levels stored in the cells and/or the analog voltages or currents written into and read out of the cells are referred to herein collectively as analog values or storage values. Although the embodiments described herein mainly address threshold voltages, the methods and systems described herein may be used with any other suitable kind of storage values.
System 20 stores data in the analog memory cells by programming the cells to assume respective memory states, which are also referred to as programming levels. The programming levels are selected from a finite set of possible levels, and each level corresponds to a certain nominal storage value. For example, a 2 bit/cell MLC can be programmed to assume one of four possible programming levels by writing one of four possible nominal storage values into the cell. The memory cells are typically arranged in rows and columns. Typically, a given memory device comprises multiple erasure blocks (also referred to as memory blocks), i.e., groups of memory cells that are erased together.
Each memory device 28 may comprise a packaged device or an unpackaged semiconductor chip or die. A typical SSD may comprise a number of 4 GB devices. Generally, however, system 20 may comprise any suitable number of memory devices of any desired type and size. Although the system configuration of
System 20 comprises a memory controller 32, which accepts data from host 24 and stores it in memory devices 28, and retrieves data from the memory devices and provides it to the host. Memory controller 32 comprises a host interface 36 for communicating with host 24, a memory interface 40 for communicating with memory devices 28, and a processor 44 that processes the stored and retrieved data. In some embodiments, controller 32 encodes the stored data with an Error Correction Code (ECC). In these embodiments, controller 32 comprises an ECC unit 48, which encodes the data before stored in devices 28 and decodes the ECC of data retrieved from devices 28. The functions of processor 44 can be implemented, for example, using software running on a suitable Central Processing Unit (CPU), using hardware (e.g., state machine or other logic), or using a combination of software and hardware elements.
Memory controller 32, and in particular processor 44, may be implemented in hardware. Alternatively, the memory controller may comprise a microprocessor that runs suitable software, or a combination of hardware and software elements. In some embodiments, processor 44 comprises a general-purpose processor, which is programmed in software to carry out the functions described herein. The software may be downloaded to the processor in electronic form, over a network, for example, or it may, alternatively or additionally, be provided and/or stored on tangible media, such as magnetic, optical, or electronic memory.
The system configuration of
In the exemplary system configuration shown in
The analog memory cells in memory devices 28 are fabricated using certain physical media. In the present example, devices 28 comprise NAND Flash devices, and the analog memory cells comprise floating-gate transistors that are disposed on a semiconductor substrate. In alternative embodiments, memory devices 28 may comprise any other type of analog memory cells, which are implemented using any other suitable physical media.
The physical memory media of the analog memory cells is typically specified and designed to provide a certain level of storage quality. The storage quality can be defined in any suitable way, such as the number of errors found per page during read operation, the maximal retention time during which that the data hold, or using any other suitable quality metric. In practice, however, the storage quality level often deteriorates with continued use of the memory cells. This deterioration is sometimes referred to as cell wearing or aging. In NAND Flash memory cells, for example, charge traps are gradually formed in the boundary regions between the memory cells (sometimes referred to as inter-cell oxide) and/or in the oxide that isolates the floating gate from the device channel (sometimes referred to as bottom oxide or tunnel oxide). The charge traps decrease the isolation of the cells' floating gates, and as a result the memory cells become more sensitive to interference (e.g., disturb noise) and charge loss. Other physical media types used in other memory cell types suffer from other kinds of storage quality deterioration.
At some point in time, the storage reliability of a certain group of memory cells may drop below a certain tolerable level, and the cell group may be regarded as unsuitable for storing data. In known memory management schemes, when the deterioration of the physical memory media in a given group of memory cells becomes intolerable, the group is typically marked as faulty and taken out of service. Thus, the available storage capacity of a memory device decreases over time, and at some point drops below its specified capacity.
Embodiments of the present invention provide methods and systems that automatically rejuvenate the physical memory media of analog memory cells in device 28. The rejuvenation methods described herein improve the storage reliability of the physical media, bringing it back to a tolerable level. Once rejuvenated, a group of memory cells can be put back in service and used for subsequent data storage. As a result, the overall storage capacity of system 20 decreases at slower rate, and its effective lifetime is extended.
Various criteria and conditions can be defined for deciding whether a group of memory cells has an intolerable storage quality, and should therefore be rejuvenated. For example, a memory block may be regarded a candidate for rejuvenation if the shift in the distribution of the cells' analog storage values (e.g., threshold voltages) over a predefined time period exceeds a certain tolerable level. As another example, a memory block may be regarded a candidate for rejuvenation if it fails to erase properly. A memory block may be regarded as faulty, for example, following a single erase failure, following a given number of consecutive erase failures, or following M erase failure out of N attempts. As another example, a group of memory cells (e.g., a memory block or page) may be regarded as having insufficient storage quality if it fails to program correctly, e.g., following a single programming attempt, several programming attempts, or M programming failures out of N attempts.
As yet another example, a group of memory cells can be regarded as a candidate for rejuvenation if a high number of read errors are encountered when reading data from this group. In an example embodiment, the memory controller may run a background task that reads pages from various memory blocks according to a certain pattern (e.g., reads the Nth page from each block, and later the N+1th page from each block, etc., or reads randomly-selected pages from the blocks). The memory controller may alternatively read parts of pages (e.g., sectors), read from only a subset of the blocks, or read different pages from different blocks. For each read operation, the memory controller applies ECC decoding, and counts the number of errors corrected in each page. Based on the numbers of corrected errors, the memory controller assesses the health status of each memory block.
Alternatively, any other suitable quality level or criterion can be used. The storage quality is also sometimes referred to as the health level of the memory cell group.
Memory controller 32 selects a certain group of memory cells, such as a memory block, a memory die or a packaged multi-die memory device, at a group selection step 54. The memory controller assesses the storage quality of the selected cell group, at a quality assessment step 58. For example, the memory controller may attempt to erase or program some or all of the memory cells in the group in order to assess whether the selected cell group is functional or faulty.
As another example, the memory controller may test a given group of memory cells by programming the memory cells, reading the memory cells after a predefined time period, and measuring the shift that developed in the distribution of the cells' analog storage values (e.g., threshold voltages) during this time period. If the shift is larger than a certain tolerable value, the controller may select this memory cell group as a candidate for rejuvenation. When using this technique, the memory controller may program the memory cells in the group with dummy data, or with user data as part of the normal storage process.
As can be appreciated, when the memory controller applies the above-described technique, it should refrain from programming or erasing the cell group in question during the predefined time period. In some applications, however, the data in this cell group needs to be updated or erased frequently. Thus, in some embodiments the memory controller first copies the data from the group to another memory location before testing it. When the group comprises a memory block, for example, the memory controller may copy the block content to another block, remove the block temporarily from the pool of available blocks, and then apply the above-described quality testing process. Based on the testing result, the memory controller can decide whether to return the block to the pool of available blocks or rejuvenate it.
Memory controller 32 checks whether the assessed storage quality of the selected cell group meets the tolerable quality level defined at step 50 above, at a checking step 62. If the storage quality is sufficient, the method loops back to step 54, in which the memory controller selects another group of memory cells for evaluation.
If, on the other hand, the assessed storage quality is insufficient, the memory controller initiates a rejuvenation process, which improves the storage quality of the physical media of the memory cells in the group. Several examples of rejuvenation processes are described further below. In some embodiments, the memory controller moves data that is stored in the cell group to an alternative location before rejuvenation, at a copying step 66. The memory controller may move the data, for example, to another block, die or memory device. In a system that includes multiple disks (e.g., multiple SSDs in a redundant RAID configuration) the memory controller may move the data to a different SSD. Once the data is copied to the alternative location, the memory controller rejuvenates the physical media of the cell group in question, at a rejuvenation step 70. In alternative embodiments, the data stored in the cell group is not copied to another location. Instead, the memory controller refreshes the stored data in-place in order to prevent data loss. An example method of this sort is described in
Once the group of memory cells is rejuvenated, it remains in service. In other words, memory controller 32 permits subsequent data storage in this cell group. The method loops back to step 54 above, and the memory controller selects another cell group for evaluation.
In some embodiments, memory controller 32 rejuvenates a group of memory cells by inhibiting programming of the memory cells in the group for a certain time period. In Flash devices, refraining from programming the memory cells for a certain time period causes spontaneous de-trapping of electrons from the inter-cell oxide and/or bottom oxide, and therefore reduces the degradation of the physical memory media and improves the storage quality of the memory cells. In some practical cases, refraining from programming the memory cells for a period of between forty-eight hours and one week causes sufficient charge de-trapping, although any other suitable time period can also be used.
In alternative embodiments, the memory controller may rejuvenate a group of memory cells that was previously declared as faulty by re-attempting to use (erase or program) the group. These attempts may be conducted periodically, for example, or in response to events such as power-up.
Further alternatively, the memory controller may rejuvenate a group of memory cells by applying heating to the memory cells in the group. Heating the memory cells increases the likelihood (and rate) of charge de-trapping, and therefore considerably improves the storage quality of the memory cells' physical memory media. In some practical cases, heating the memory cells to a temperature on the order of 125° C. for a period of three hours causes sufficient charge de-trapping, although any other suitable temperature and heating period can also be used. As can be appreciated, heating the memory cells shortens the rejuvenation period considerably, in comparison with techniques that only inhibit programming of the memory cells. Typically, some of the physical media deterioration is irrecoverable, and therefore rejuvenation cannot be applied infinitely. Nevertheless, the rate of degradation can be reduced considerably, thus providing a significant lifetime extension. The memory system may comprise various means for applying heat to groups of memory cells.
In some embodiments, system 80 comprises a temperature sensor 96 that is mounted in the vicinity of memory devices 28. The temperature sensed by sensor 96 is read by the memory controller. In some embodiments, the memory controller can implement a closed loop that maintains the memory devices at the appropriate temperature during the rejuvenation period. Alternatively, memory controller 32 may operate heating plate 88 in open loop. The memory controller may disconnect power supply from the memory devices prior to heating. In some embodiments, once the rejuvenation cycle is completed, the memory controller tests the memory devices in order to verify whether rejuvenation was successful.
Heating devices 104 may comprise, for example, thermocouple heaters, polyimide heaters, silicon heaters, mica heaters, or any other suitable heater type. Each heating device 104 typically applies heat on the order of several watts locally to a given memory device 28. Devices 104 can be attached to memory devices 28 using any suitable means, such as by gluing. In some embodiments, the memory controller disconnects the power supply from a given memory device before activating the corresponding heating device.
In alternative embodiments, memory controller 32 can apply heat to a given group of memory cells by performing a stream of memory access operations (e.g., read or write operations) on the cell group in question or on a neighboring cell group. This technique is particularly suitable for applying heat to specific word lines (rows of memory cells within a block) or to an entire memory block.
Further alternatively, the system can heat memory devices using the self-heating of system components. In an example embodiment, the memory devices can be heated by preventing heat removal from the memory devices. For example, airflow over the memory devices and/or heat dissipation from the memory devices can be blocked in order to increase the device temperatures. As another example, the system can heat the memory devices by directing heat to these devices from other system components (e.g., from a Central Processing Unit—CPU). Further additionally or alternatively, the memory system may use any other suitable technique for applying heat to the memory cell groups in order to rejuvenate the memory cell physical media.
In some embodiments, memory controller 32 rejuvenates a given group of memory cells by heating, but does not first copy the data from the cell group to another cell group that is not being heated. In this scenario, data errors may develop relatively quickly because of the high temperature. For example, the rate at which the threshold voltages of NAND cells drift increases with temperature. Therefore, heating the memory cells for a long time period may cause considerable threshold voltage drift and potential read errors. In order to prevent data loss, memory controller 32 refreshes the programming of the memory cells in the group at a relatively high rate during the heating period. This refreshing process is typically carried out by applying one or more programming pulses to the memory cells, in order to compensate for the threshold voltage drift. In the description that follows, the memory controller refreshes the programming of the memory cells in-place, i.e., without copying the data to another location. In alternative embodiments, however, the memory controller refreshes the programming of the memory cells by copying the data to another group of memory cells (which is being heated, as well).
At some stage, memory controller 32 identifies a faulty memory device that is to be rejuvenated, at a fault identification step 114. The memory controller applies heat to the identified memory device, at a heating rejuvenation step 118. Any suitable heating scheme, such as the schemes of
When applying any of the rejuvenation techniques described herein, the memory controller may use any suitable management scheme and/or data structures for tracking the health level of memory cell groups and/or for selecting cell groups for rejuvenation. For example, the memory controller may hold a data structure that records the assessed health level of each cells group (e.g., of each memory block, memory die, packaged memory device or multi-device memory assembly such as SSD). In particular, such a data structure may hold the status/condition, endurance and usage of each cell group.
In some embodiments, the health-related information may be soft rather than binary. For example, the memory controller may record whether a programming attempt failed completely, or whether the programmed levels deviated from the desired levels only slightly. As another example, when a group of memory cells failed to erase properly, the memory controller may record the distance between the erased values of the memory cells from the specified erase threshold.
The memory controller may initiate rejuvenation of a given cell group when a given cell group is found to be faulty, or when the group's health level reaches a certain end-of-life condition. Selection of cell groups for rejuvenation may be carried out, for example, by a background task whose priority is lower than that of memory access operations. The background process can be repeated periodically, e.g., every few hours or days, or in response to a certain condition or event such as a level of memory access activity or power metric.
In some embodiments, when the memory controller intends to rejuvenate a given cell group, it notifies higher levels (e.g., an operating system or host) that this cell group is unavailable, and then proceeds with rejuvenation.
In some embodiments, when a certain cell group (e.g., die) is found to be faulty, the memory controller moves the data stored in this group to alternative memory locations, and adds the faulty cell group to a list or pool of faulty groups. Copying can be performed, for example, by mapping the logical addresses of the data items stored in the faulty group to new physical addresses. At a later time, e.g., using a background task, the memory controller selects cell groups from this list or pool and attempts to rejuvenate them. If rejuvenation of a given cell group is successful, the rejuvenated cell group is removed from the list or pool of faulty groups. Higher layers may be notified that the cell group in question is operational.
Some of the disclosed techniques consume considerable amounts of power (e.g., heating) and/or computational and bandwidth resources (e.g., refreshing). In these embodiments, rejuvenation is typically performed at relatively large intervals. For example, rejuvenation of faulty SSDs (or of individual memory devices in a SSD) can be performed during scheduled system maintenance periods. In these embodiments, rejuvenation can be performed using external heating means.
In some embodiments, memory controller 32 rejuvenates each memory device 28 when the memory device reaches a certain level of use, e.g., a certain number of Programming and Erasure (P/E) cycles. Typically, however, the memory device should avoid rejuvenating a large number of memory devices at the same time. In an example embodiment, the memory controller rejuvenates different memory devices when they reach different numbers of P/E cycles. For example, the memory device may assign each memory device a number of P/E cycles in the range 9000-11000, and rejuvenate each memory device when it reaches its designated number of P/E cycles.
In some embodiments, memory controller 32 attempts to rejuvenate a group of memory cells whose current storage quality is still acceptable, but is predicted to deteriorate below the acceptable level shortly. Thus, in some embodiments the memory controller predicts the future health level of a memory cell group based on characteristics that are currently observable, and rejuvenates the memory cell group is the predicted storage quality is too low.
The method begins with memory controller 32 observing characteristics of a given memory block, at a current observation step 120. Based on the observed characteristics, the memory controller predicts the future health level of the block, at a prediction step 124. If the predicted health level is insufficient (e.g., lower than a predefined threshold), the memory controller rejuvenates the memory block, at a block rejuvenation step 128. Any of the rejuvenation techniques described herein can be used.
Memory controller 32 may use any suitable method for predicting the future health level of the memory block. In some embodiments, the memory controller calculates a metric denoted TM, which estimates an integral of the operating temperature of the block over time. The metric is thus given by TM=∫T(t)dt, wherein T(t) denotes the temperature of the memory block at time t. In a discrete-time implementation, the memory controller measures the temperature at t0-second intervals, and the integral is estimated by TM=ΣP(t−t0)t0.
The memory controller may estimate T(t), for example, by directly measuring the temperature in the vicinity of the memory block. The memory controller may use the readings of temperature sensor 96 of
The memory controller then estimates the health level of the block based on the above-described TM metric. For example, the metric value is typically indicative of the threshold voltage drift that is expected in the block. If the memory controller measures a drift that is considerably different (typically faster) than the expected drift, the block may be assumed to have poor health condition. Such cells may be regarded as candidates for rejuvenation.
The temperature integral metric TM described above provides an accurate measure of the threshold voltage shift in the memory cells, considering the actual temperature at which the memory cells operate. As such, this metric can be used for various other purposes, which do not necessarily involve rejuvenation of memory cells. For example, the memory controller may estimate TM for a certain group of memory cells, and then adjust the read thresholds that are used for reading data from the memory cells in the group based on the estimated TM value. The memory controller can then read the threshold voltages of the memory cells in the group using the adjusted read thresholds, so as to reconstruct the data stored in the cells. Since the optimal read threshold positions typically depend on the threshold voltage shift that develops in the memory cells, this technique enables accurate read threshold adaptation.
In some embodiments, the health level of a group of memory cells can be estimated based on statistical properties of the analog values (e.g., threshold voltages) stored in the cells. The description that follows refers to memory pages, although the disclosed techniques can be used with various other groups of memory cells. In these techniques, statistical properties of the cells' threshold voltages at a given measurement time are used for estimating the number of read errors this cell group will have at a certain future time. The future time can be defined, for example, as the given measurement time, plus a certain number of P/E cycles, plus a certain retention period. Alternatively, any other suitable definition of the future time can also be used.
In an example embodiment, the following statistical properties are evaluated a-priori:
These properties can be evaluated, for example, by reading the cell threshold voltages and counting errors over a large number of sample memory blocks. During operation, the memory controller can use these properties to estimate the number of errors a particular page is expected to have at the future time. In an embodiment, the expected future-time number of errors is estimated by:
Typically, the memory controller stores the relationship between the number of errors at the present measurement time and the predicted number of errors at the future time, such as in one or more tables. the tables may hold relationships for several future time points. Using this information, the memory controller may estimate the number of errors that a given page is expected to have at the future time point, and decide whether or not to rejuvenate it based on the predicted number of errors.
In an alternative embodiment, the number of future-time errors in a page is estimated based on the width of the threshold voltage distribution of the cells associated with a given programming level. In this context, the width of a given programming level is defined as the size of the threshold voltage interval, which includes a certain percentage (e.g., 99.7%) of the threshold voltages of the cells programmed to that programming level.
In an example embodiment, a correlation coefficient between the width of the programming level and the number of errors the page will have at the future time point is estimated for each programming level in a page. The correlation coefficient of the ith programming level is given by:
Typically, the programming level having the largest correlation coefficient is chosen, and the number of future-time errors is estimated from the width of this programming level at measurement time. The empirical variances and covariance in the above equation can be estimated, for example, by reading the cell threshold voltages and counting errors over a large number of sample memory blocks. The memory controller typically stores the relationship between the preset distribution width and the predicted number of errors at the future time point, e.g., in one or more tables. During operation, the memory controller uses these relationships to estimate the number of errors a particular page is expected to have at the future time point. In an embodiment, the expected future-time number of errors is estimated by:
In many practical cases, the number of errors in a page has is affected by both the shapes and the widths of the programming levels' threshold voltage distributions. In the early stages of the memory cells' operation, the number of errors is often more correlated with the shapes of the distributions than with their widths, because long distribution tails are often responsible for start-of-life errors. The widths of the distributions at the future time point are typically correlated with the widths of the respective distributions in earlier life stages. The number of errors at the future time point is typically highly correlated with the distribution widths at end-of-life. Because of these typical relationships, it is often advantageous to estimate the number of future-time errors in a given page based on (1) the widths of the programming level distributions in the page, and (2) the number of errors in the page at measurement time.
Thus, in some embodiments, the memory controller estimates the number of future-time errors in a given page (and therefore the health level of the page) by:
In some embodiments, system 20 can apply heat to one or more memory devices, without explicitly identifying certain memory cell groups as requiring rejuvenation. Constant heating of memory cells is advantageous in many practical scenarios, since it rejuvenates the physical media of the memory. In floating-Gate Flash devices, for example, constant heating increases the rate of charge de-trapping from tunnel oxide.
During operation of system 20, each memory device generates internal heat during its operation. The term “internal heat” refers to heat that is generated by the memory device circuitry during operation, i.e., heat that originates from the electrical power consumed by the memory circuitry. In some embodiments, system 20 applies to one or more of the memory devices external heat, in addition to the internal heat generated by the memory devices. The external heat increases the operating temperature of the memory devices, and causes accelerated charge de-trapping. As a result, the performance of the memory cells is improved. The operating temperature is increased by the external heat, but typically remains within the operating temperature range specified for the devices. For example, an increased temperature on the order of 80-90° C., or any other suitable temperature, can be used.
System 20 may use any suitable mechanism for applying external heat to the memory devices. For example, the system may use various types of heaters coupled to the memory devices, direct heat from other system components, or use any of the heating schemes described in this application. Note that a heater fitted inside the memory device package is still considered a source of external heat, since its heat does not originate from the memory circuitry. Heating may be performed in open-loop or in closed-loop. Heating may be performed continuously or at periodic time intervals. In some embodiments, the system increases the rate at which the data stored in the heated cells is refreshed, in order to compensate for the accelerated threshold voltage drift caused by the heating (as described, for example, in
Although the embodiments described herein mainly address rejuvenation of non-volatile solid-state memory cells, the methods and systems described herein can also be used for memory cell rejuvenation in other memory and physical media types, such as in Random Access Memory (RAM) and/or in magnetic Hard Disk Drives (HDD).
It will thus be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and sub-combinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
This application claims the benefit of U.S. Provisional Patent Application 61/141,842, filed Dec. 31, 2008, U.S. Provisional Patent Application 61/234,688, filed Aug. 18, 2009, U.S. Provisional Patent Application 61/243,726, filed Sep. 18, 2009, U.S. Provisional Patent Application 61/244,500, filed Sep. 22, 2009, and U.S. Provisional Patent Application 61/251,787, filed Oct. 15, 2009, whose disclosures are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3668631 | Griffith et al. | Jun 1972 | A |
3668632 | Oldham | Jun 1972 | A |
4058851 | Scheuneman | Nov 1977 | A |
4112502 | Scheuneman | Sep 1978 | A |
4394763 | Nagano et al. | Jul 1983 | A |
4413339 | Riggle et al. | Nov 1983 | A |
4556961 | Iwahashi et al. | Dec 1985 | A |
4558431 | Satoh | Dec 1985 | A |
4608687 | Dutton | Aug 1986 | A |
4654847 | Dutton | Mar 1987 | A |
4661929 | Aoki et al. | Apr 1987 | A |
4768171 | Tada | Aug 1988 | A |
4811285 | Walker et al. | Mar 1989 | A |
4899342 | Potter et al. | Feb 1990 | A |
4910706 | Hyatt | Mar 1990 | A |
4993029 | Galbraith et al. | Feb 1991 | A |
5056089 | Furuta et al. | Oct 1991 | A |
5077722 | Geist et al. | Dec 1991 | A |
5126808 | Montalvo et al. | Jun 1992 | A |
5163021 | Mehrotra et al. | Nov 1992 | A |
5172338 | Mehrottra et al. | Dec 1992 | A |
5182558 | Mayo | Jan 1993 | A |
5182752 | DeRoo et al. | Jan 1993 | A |
5191584 | Anderson | Mar 1993 | A |
5200959 | Gross et al. | Apr 1993 | A |
5237535 | Mielke et al. | Aug 1993 | A |
5272669 | Samachisa et al. | Dec 1993 | A |
5276649 | Hoshita et al. | Jan 1994 | A |
5287469 | Tsuboi | Feb 1994 | A |
5365484 | Cleveland et al. | Nov 1994 | A |
5388064 | Khan | Feb 1995 | A |
5416646 | Shirai | May 1995 | A |
5416782 | Wells et al. | May 1995 | A |
5446854 | Khalidi et al. | Aug 1995 | A |
5450424 | Okugaki et al. | Sep 1995 | A |
5469444 | Endoh et al. | Nov 1995 | A |
5473753 | Wells et al. | Dec 1995 | A |
5479170 | Cauwenberghs et al. | Dec 1995 | A |
5508958 | Fazio et al. | Apr 1996 | A |
5519831 | Holzhammer | May 1996 | A |
5532962 | Auclair et al. | Jul 1996 | A |
5533190 | Binford et al. | Jul 1996 | A |
5541886 | Hasbun | Jul 1996 | A |
5600677 | Citta et al. | Feb 1997 | A |
5638320 | Wong et al. | Jun 1997 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5675540 | Roohparvar | Oct 1997 | A |
5682352 | Wong et al. | Oct 1997 | A |
5687114 | Khan | Nov 1997 | A |
5696717 | Koh | Dec 1997 | A |
5726649 | Tamaru et al. | Mar 1998 | A |
5726934 | Tran et al. | Mar 1998 | A |
5742752 | De Koening | Apr 1998 | A |
5748533 | Dunlap et al. | May 1998 | A |
5748534 | Dunlap et al. | May 1998 | A |
5751637 | Chen et al. | May 1998 | A |
5761402 | Kaneda et al. | Jun 1998 | A |
5798966 | Keeney | Aug 1998 | A |
5799200 | Brant et al. | Aug 1998 | A |
5801985 | Roohparvar et al. | Sep 1998 | A |
5838832 | Barnsley | Nov 1998 | A |
5860106 | Domen et al. | Jan 1999 | A |
5867114 | Barbir | Feb 1999 | A |
5867428 | Ishii et al. | Feb 1999 | A |
5867429 | Chen et al. | Feb 1999 | A |
5877986 | Harari et al. | Mar 1999 | A |
5889937 | Tamagawa | Mar 1999 | A |
5901089 | Korsh et al. | May 1999 | A |
5909449 | So et al. | Jun 1999 | A |
5912906 | Wu et al. | Jun 1999 | A |
5930167 | Lee et al. | Jul 1999 | A |
5937424 | Leak et al. | Aug 1999 | A |
5942004 | Cappelletti | Aug 1999 | A |
5946716 | Karp et al. | Aug 1999 | A |
5969986 | Wong et al. | Oct 1999 | A |
5982668 | Ishii et al. | Nov 1999 | A |
5991517 | Harari et al. | Nov 1999 | A |
5995417 | Chen et al. | Nov 1999 | A |
6009014 | Hollmer et al. | Dec 1999 | A |
6009016 | Ishii et al. | Dec 1999 | A |
6023425 | Ishii et al. | Feb 2000 | A |
6034891 | Norman | Mar 2000 | A |
6040993 | Chen et al. | Mar 2000 | A |
6041430 | Yamauchi | Mar 2000 | A |
6073204 | Lakhani et al. | Jun 2000 | A |
6101614 | Gonzales et al. | Aug 2000 | A |
6128237 | Shirley et al. | Oct 2000 | A |
6134140 | Tanaka et al. | Oct 2000 | A |
6134143 | Norman | Oct 2000 | A |
6134631 | Jennings | Oct 2000 | A |
6141261 | Patti | Oct 2000 | A |
6151246 | So et al. | Nov 2000 | A |
6157573 | Ishii et al. | Dec 2000 | A |
6166962 | Chen et al. | Dec 2000 | A |
6169691 | Pasotti et al. | Jan 2001 | B1 |
6178466 | Gilbertson et al. | Jan 2001 | B1 |
6185134 | Tanaka et al. | Feb 2001 | B1 |
6209113 | Roohparvar | Mar 2001 | B1 |
6212654 | Lou et al. | Apr 2001 | B1 |
6219276 | Parker | Apr 2001 | B1 |
6219447 | Lee et al. | Apr 2001 | B1 |
6222762 | Guterman et al. | Apr 2001 | B1 |
6230233 | Lofgren et al. | May 2001 | B1 |
6240458 | Gilbertson | May 2001 | B1 |
6259627 | Wong | Jul 2001 | B1 |
6275419 | Guterman et al. | Aug 2001 | B1 |
6278632 | Chevallier | Aug 2001 | B1 |
6279069 | Robinson et al. | Aug 2001 | B1 |
6288944 | Kawamura | Sep 2001 | B1 |
6292394 | Cohen et al. | Sep 2001 | B1 |
6301151 | Engh et al. | Oct 2001 | B1 |
6304486 | Yano | Oct 2001 | B1 |
6307776 | So et al. | Oct 2001 | B1 |
6314044 | Sasaki et al. | Nov 2001 | B1 |
6317363 | Guterman et al. | Nov 2001 | B1 |
6317364 | Guterman et al. | Nov 2001 | B1 |
6345004 | Omura et al. | Feb 2002 | B1 |
6360346 | Miyauchi et al. | Mar 2002 | B1 |
6363008 | Wong | Mar 2002 | B1 |
6363454 | Lakhani et al. | Mar 2002 | B1 |
6366496 | Torelli et al. | Apr 2002 | B1 |
6385092 | Ishii et al. | May 2002 | B1 |
6392932 | Ishii et al. | May 2002 | B1 |
6396742 | Korsh et al. | May 2002 | B1 |
6397364 | Barkan | May 2002 | B1 |
6405323 | Lin et al. | Jun 2002 | B1 |
6405342 | Lee | Jun 2002 | B1 |
6418060 | Yong et al. | Jul 2002 | B1 |
6442585 | Dean et al. | Aug 2002 | B1 |
6445602 | Kokudo et al. | Sep 2002 | B1 |
6452838 | Ishii et al. | Sep 2002 | B1 |
6456528 | Chen | Sep 2002 | B1 |
6466476 | Wong et al. | Oct 2002 | B1 |
6467062 | Barkan | Oct 2002 | B1 |
6469931 | Ban et al. | Oct 2002 | B1 |
6480948 | Virajpet et al. | Nov 2002 | B1 |
6490236 | Fukuda et al. | Dec 2002 | B1 |
6522580 | Chen et al. | Feb 2003 | B2 |
6525952 | Araki et al. | Feb 2003 | B2 |
6532556 | Wong et al. | Mar 2003 | B1 |
6538922 | Khalid et al. | Mar 2003 | B1 |
6549464 | Tanaka et al. | Apr 2003 | B2 |
6553510 | Pekny et al. | Apr 2003 | B1 |
6558967 | Wong | May 2003 | B1 |
6560152 | Cernea | May 2003 | B1 |
6567311 | Ishii et al. | May 2003 | B2 |
6577539 | Iwahashi | Jun 2003 | B2 |
6584012 | Banks | Jun 2003 | B2 |
6615307 | Roohparvar | Sep 2003 | B1 |
6621739 | Gonzales et al. | Sep 2003 | B2 |
6640326 | Buckingham et al. | Oct 2003 | B1 |
6643169 | Rudelic et al. | Nov 2003 | B2 |
6646913 | Micheloni et al. | Nov 2003 | B2 |
6678192 | Gongwer et al. | Jan 2004 | B2 |
6683811 | Ishii et al. | Jan 2004 | B2 |
6687155 | Nagasue | Feb 2004 | B2 |
6707748 | Lin et al. | Mar 2004 | B2 |
6708257 | Bao | Mar 2004 | B2 |
6714449 | Khalid | Mar 2004 | B2 |
6717847 | Chen | Apr 2004 | B2 |
6731557 | Beretta | May 2004 | B2 |
6732250 | Durrant | May 2004 | B2 |
6738293 | Iwahashi | May 2004 | B1 |
6751766 | Guterman et al. | Jun 2004 | B2 |
6757193 | Chen et al. | Jun 2004 | B2 |
6774808 | Hibbs et al. | Aug 2004 | B1 |
6781877 | Cernea et al. | Aug 2004 | B2 |
6804805 | Rub | Oct 2004 | B2 |
6807095 | Chen et al. | Oct 2004 | B2 |
6807101 | Ooishi et al. | Oct 2004 | B2 |
6809964 | Moschopoulos et al. | Oct 2004 | B2 |
6819592 | Noguchi et al. | Nov 2004 | B2 |
6829167 | Tu et al. | Dec 2004 | B2 |
6845052 | Ho et al. | Jan 2005 | B1 |
6851018 | Wyatt et al. | Feb 2005 | B2 |
6851081 | Yamamoto | Feb 2005 | B2 |
6856546 | Guterman et al. | Feb 2005 | B2 |
6862218 | Guterman et al. | Mar 2005 | B2 |
6870767 | Rudelic et al. | Mar 2005 | B2 |
6870773 | Noguchi et al. | Mar 2005 | B2 |
6873552 | Ishii et al. | Mar 2005 | B2 |
6879520 | Hosono et al. | Apr 2005 | B2 |
6882567 | Wong | Apr 2005 | B1 |
6894926 | Guterman et al. | May 2005 | B2 |
6907497 | Hosono et al. | Jun 2005 | B2 |
6925009 | Noguchi et al. | Aug 2005 | B2 |
6930925 | Guo et al. | Aug 2005 | B2 |
6934188 | Roohparvar | Aug 2005 | B2 |
6937511 | Hsu et al. | Aug 2005 | B2 |
6958938 | Noguchi et al. | Oct 2005 | B2 |
6963505 | Cohen | Nov 2005 | B2 |
6972993 | Conley et al. | Dec 2005 | B2 |
6988175 | Lasser | Jan 2006 | B2 |
6992932 | Cohen | Jan 2006 | B2 |
6999344 | Hosono et al. | Feb 2006 | B2 |
7002843 | Guterman et al. | Feb 2006 | B2 |
7006379 | Noguchi et al. | Feb 2006 | B2 |
7012835 | Gonzales et al. | Mar 2006 | B2 |
7020017 | Chen et al. | Mar 2006 | B2 |
7023735 | Ban et al. | Apr 2006 | B2 |
7031210 | Park et al. | Apr 2006 | B2 |
7031214 | Tran | Apr 2006 | B2 |
7031216 | You | Apr 2006 | B2 |
7039846 | Hewitt et al. | May 2006 | B2 |
7042766 | Wang et al. | May 2006 | B1 |
7054193 | Wong | May 2006 | B1 |
7054199 | Lee et al. | May 2006 | B2 |
7057958 | So et al. | Jun 2006 | B2 |
7065147 | Ophir et al. | Jun 2006 | B2 |
7068539 | Guterman et al. | Jun 2006 | B2 |
7071849 | Zhang | Jul 2006 | B2 |
7072222 | Ishii et al. | Jul 2006 | B2 |
7079555 | Baydar et al. | Jul 2006 | B2 |
7088615 | Guterman et al. | Aug 2006 | B2 |
7099194 | Tu et al. | Aug 2006 | B2 |
7102924 | Chen et al. | Sep 2006 | B2 |
7113432 | Mokhlesi | Sep 2006 | B2 |
7130210 | Bathul et al. | Oct 2006 | B2 |
7139192 | Wong | Nov 2006 | B1 |
7139198 | Guterman et al. | Nov 2006 | B2 |
7145805 | Ishii et al. | Dec 2006 | B2 |
7151692 | Wu | Dec 2006 | B2 |
7158058 | Yu | Jan 2007 | B1 |
7170781 | So et al. | Jan 2007 | B2 |
7170802 | Cernea et al. | Jan 2007 | B2 |
7173859 | Hemink | Feb 2007 | B2 |
7177184 | Chen | Feb 2007 | B2 |
7177195 | Gonzales et al. | Feb 2007 | B2 |
7177199 | Chen et al. | Feb 2007 | B2 |
7177200 | Ronen et al. | Feb 2007 | B2 |
7184338 | Nagakawa et al. | Feb 2007 | B2 |
7187195 | Kim | Mar 2007 | B2 |
7187592 | Guterman et al. | Mar 2007 | B2 |
7190614 | Wu | Mar 2007 | B2 |
7193898 | Cernea | Mar 2007 | B2 |
7193921 | Choi et al. | Mar 2007 | B2 |
7196644 | Anderson et al. | Mar 2007 | B1 |
7196928 | Chen | Mar 2007 | B2 |
7196933 | Shibata | Mar 2007 | B2 |
7197594 | Raz et al. | Mar 2007 | B2 |
7200062 | Kinsely et al. | Apr 2007 | B2 |
7210077 | Brandenberger et al. | Apr 2007 | B2 |
7221592 | Nazarian | May 2007 | B2 |
7224613 | Chen et al. | May 2007 | B2 |
7231474 | Helms et al. | Jun 2007 | B1 |
7231562 | Ohlhoff et al. | Jun 2007 | B2 |
7243275 | Gongwer et al. | Jul 2007 | B2 |
7254690 | Rao | Aug 2007 | B2 |
7254763 | Aadsen et al. | Aug 2007 | B2 |
7257027 | Park | Aug 2007 | B2 |
7259987 | Chen et al. | Aug 2007 | B2 |
7266026 | Gongwer et al. | Sep 2007 | B2 |
7266069 | Chu | Sep 2007 | B2 |
7269066 | Nguyen et al. | Sep 2007 | B2 |
7272757 | Stocken | Sep 2007 | B2 |
7274611 | Roohparvar | Sep 2007 | B2 |
7277355 | Tanzawa | Oct 2007 | B2 |
7280398 | Lee et al. | Oct 2007 | B1 |
7280409 | Misumi et al. | Oct 2007 | B2 |
7280415 | Hwang et al. | Oct 2007 | B2 |
7283399 | Ishii et al. | Oct 2007 | B2 |
7289344 | Chen | Oct 2007 | B2 |
7301807 | Khalid et al. | Nov 2007 | B2 |
7301817 | Li et al. | Nov 2007 | B2 |
7308525 | Lasser et al. | Dec 2007 | B2 |
7310255 | Chan | Dec 2007 | B2 |
7310269 | Shibata | Dec 2007 | B2 |
7310271 | Lee | Dec 2007 | B2 |
7310272 | Mokhlesi et al. | Dec 2007 | B1 |
7310347 | Lasser | Dec 2007 | B2 |
7312727 | Feng et al. | Dec 2007 | B1 |
7321509 | Chen et al. | Jan 2008 | B2 |
7328384 | Kulkarni et al. | Feb 2008 | B1 |
7342831 | Mokhlesi et al. | Mar 2008 | B2 |
7343330 | Boesjes et al. | Mar 2008 | B1 |
7345924 | Nguyen et al. | Mar 2008 | B2 |
7345928 | Li | Mar 2008 | B2 |
7349263 | Kim et al. | Mar 2008 | B2 |
7356755 | Fackenthal | Apr 2008 | B2 |
7363420 | Lin et al. | Apr 2008 | B2 |
7365671 | Anderson | Apr 2008 | B1 |
7388781 | Litsyn et al. | Jun 2008 | B2 |
7397697 | So et al. | Jul 2008 | B2 |
7405974 | Yaoi et al. | Jul 2008 | B2 |
7405979 | Ishii et al. | Jul 2008 | B2 |
7408804 | Hemink et al. | Aug 2008 | B2 |
7408810 | Aritome et al. | Aug 2008 | B2 |
7409473 | Conley et al. | Aug 2008 | B2 |
7409623 | Baker et al. | Aug 2008 | B2 |
7420847 | Li | Sep 2008 | B2 |
7433231 | Aritome | Oct 2008 | B2 |
7433697 | Karaoguz et al. | Oct 2008 | B2 |
7434111 | Sugiura et al. | Oct 2008 | B2 |
7437498 | Ronen | Oct 2008 | B2 |
7440324 | Mokhlesi | Oct 2008 | B2 |
7440331 | Hemink | Oct 2008 | B2 |
7441067 | Gorobetz et al. | Oct 2008 | B2 |
7447970 | Wu et al. | Nov 2008 | B2 |
7450421 | Mokhlesi et al. | Nov 2008 | B2 |
7453737 | Ha | Nov 2008 | B2 |
7457163 | Hemink | Nov 2008 | B2 |
7457897 | Lee et al. | Nov 2008 | B1 |
7460410 | Nagai et al. | Dec 2008 | B2 |
7460412 | Lee et al. | Dec 2008 | B2 |
7466592 | Mitani et al. | Dec 2008 | B2 |
7468907 | Kang et al. | Dec 2008 | B2 |
7468911 | Lutze et al. | Dec 2008 | B2 |
7469049 | Feng | Dec 2008 | B1 |
7471581 | Tran et al. | Dec 2008 | B2 |
7483319 | Brown | Jan 2009 | B2 |
7487329 | Hepkin et al. | Feb 2009 | B2 |
7487394 | Forhan et al. | Feb 2009 | B2 |
7492641 | Hosono et al. | Feb 2009 | B2 |
7508710 | Mokhlesi | Mar 2009 | B2 |
7526711 | Orio | Apr 2009 | B2 |
7539061 | Lee | May 2009 | B2 |
7539062 | Doyle | May 2009 | B2 |
7551492 | Kim | Jun 2009 | B2 |
7558109 | Brandman et al. | Jul 2009 | B2 |
7558839 | McGovern | Jul 2009 | B1 |
7568135 | Cornwell et al. | Jul 2009 | B2 |
7570520 | Kamei et al. | Aug 2009 | B2 |
7574555 | Porat et al. | Aug 2009 | B2 |
7590002 | Mokhlesi et al. | Sep 2009 | B2 |
7593259 | Kim | Sep 2009 | B2 |
7594093 | Kancherla | Sep 2009 | B1 |
7596707 | Vemula | Sep 2009 | B1 |
7609787 | Jahan et al. | Oct 2009 | B2 |
7613043 | Cornwell et al. | Nov 2009 | B2 |
7616498 | Mokhlesi et al. | Nov 2009 | B2 |
7619918 | Aritome | Nov 2009 | B2 |
7631245 | Lasser | Dec 2009 | B2 |
7633798 | Sarin et al. | Dec 2009 | B2 |
7633802 | Mokhlesi | Dec 2009 | B2 |
7639532 | Roohparvar et al. | Dec 2009 | B2 |
7644347 | Alexander et al. | Jan 2010 | B2 |
7656734 | Thorp et al. | Feb 2010 | B2 |
7660158 | Aritome | Feb 2010 | B2 |
7660183 | Ware et al. | Feb 2010 | B2 |
7661000 | Ueda et al. | Feb 2010 | B2 |
7661054 | Huffman et al. | Feb 2010 | B2 |
7665007 | Yang et al. | Feb 2010 | B2 |
7680987 | Clark et al. | Mar 2010 | B1 |
7733712 | Walston et al. | Jun 2010 | B1 |
7742351 | Inoue et al. | Jun 2010 | B2 |
7761624 | Karamcheti et al. | Jul 2010 | B2 |
7797609 | Neuman | Sep 2010 | B2 |
7810017 | Radke | Oct 2010 | B2 |
7848149 | Gonzales et al. | Dec 2010 | B2 |
7869273 | Lee et al. | Jan 2011 | B2 |
7885119 | Li | Feb 2011 | B2 |
7904783 | Brandman et al. | Mar 2011 | B2 |
7928497 | Yaegashi | Apr 2011 | B2 |
7929549 | Talbot | Apr 2011 | B1 |
7930515 | Gupta et al. | Apr 2011 | B2 |
7945825 | Cohen et al. | May 2011 | B2 |
7978516 | Olbrich et al. | Jul 2011 | B2 |
8014094 | Jin | Sep 2011 | B1 |
8037380 | Cagno et al. | Oct 2011 | B2 |
8040744 | Gorobets et al. | Oct 2011 | B2 |
8065583 | Radke | Nov 2011 | B2 |
20010002172 | Tanaka et al. | May 2001 | A1 |
20010006479 | Ikehashi et al. | Jul 2001 | A1 |
20020038440 | Barkan | Mar 2002 | A1 |
20020056064 | Kidorf et al. | May 2002 | A1 |
20020118574 | Gongwer et al. | Aug 2002 | A1 |
20020133684 | Anderson | Sep 2002 | A1 |
20020166091 | Kidorf et al. | Nov 2002 | A1 |
20020174295 | Ulrich et al. | Nov 2002 | A1 |
20020196510 | Hietala et al. | Dec 2002 | A1 |
20030002348 | Chen et al. | Jan 2003 | A1 |
20030103400 | Van Tran | Jun 2003 | A1 |
20030161183 | Tran | Aug 2003 | A1 |
20030189856 | Cho et al. | Oct 2003 | A1 |
20040057265 | Mirabel et al. | Mar 2004 | A1 |
20040057285 | Cernea et al. | Mar 2004 | A1 |
20040083333 | Chang et al. | Apr 2004 | A1 |
20040083334 | Chang et al. | Apr 2004 | A1 |
20040105311 | Cernea et al. | Jun 2004 | A1 |
20040114437 | Li | Jun 2004 | A1 |
20040160842 | Fukiage | Aug 2004 | A1 |
20040223371 | Roohparvar | Nov 2004 | A1 |
20050007802 | Gerpheide | Jan 2005 | A1 |
20050013165 | Ban | Jan 2005 | A1 |
20050024941 | Lasser et al. | Feb 2005 | A1 |
20050024978 | Ronen | Feb 2005 | A1 |
20050030788 | Parkinson et al. | Feb 2005 | A1 |
20050086574 | Fackenthal | Apr 2005 | A1 |
20050121436 | Kamitani et al. | Jun 2005 | A1 |
20050144361 | Gonzalez et al. | Jun 2005 | A1 |
20050157555 | Ono et al. | Jul 2005 | A1 |
20050162913 | Chen | Jul 2005 | A1 |
20050169051 | Khalid et al. | Aug 2005 | A1 |
20050189649 | Maruyama et al. | Sep 2005 | A1 |
20050213393 | Lasser | Sep 2005 | A1 |
20050224853 | Ohkawa | Oct 2005 | A1 |
20050240745 | Iyer et al. | Oct 2005 | A1 |
20050243626 | Ronen | Nov 2005 | A1 |
20060004952 | Lasser | Jan 2006 | A1 |
20060028875 | Avraham et al. | Feb 2006 | A1 |
20060028877 | Meir | Feb 2006 | A1 |
20060101193 | Murin | May 2006 | A1 |
20060106972 | Gorobets et al. | May 2006 | A1 |
20060107136 | Gongwer et al. | May 2006 | A1 |
20060129750 | Lee et al. | Jun 2006 | A1 |
20060133141 | Gorobets | Jun 2006 | A1 |
20060156189 | Tomlin | Jul 2006 | A1 |
20060179334 | Brittain et al. | Aug 2006 | A1 |
20060190699 | Lee | Aug 2006 | A1 |
20060203546 | Lasser | Sep 2006 | A1 |
20060218359 | Sanders et al. | Sep 2006 | A1 |
20060221692 | Chen | Oct 2006 | A1 |
20060221705 | Hemink et al. | Oct 2006 | A1 |
20060221714 | Li et al. | Oct 2006 | A1 |
20060239077 | Park et al. | Oct 2006 | A1 |
20060239081 | Roohparvar | Oct 2006 | A1 |
20060256620 | Nguyen et al. | Nov 2006 | A1 |
20060256626 | Werner et al. | Nov 2006 | A1 |
20060256891 | Yuan et al. | Nov 2006 | A1 |
20060271748 | Jain et al. | Nov 2006 | A1 |
20060285392 | Incarnati et al. | Dec 2006 | A1 |
20060285396 | Ha | Dec 2006 | A1 |
20070006013 | Moshayedi et al. | Jan 2007 | A1 |
20070019481 | Park | Jan 2007 | A1 |
20070033581 | Tomlin et al. | Feb 2007 | A1 |
20070047314 | Goda et al. | Mar 2007 | A1 |
20070047326 | Nguyen et al. | Mar 2007 | A1 |
20070050536 | Kolokowsky | Mar 2007 | A1 |
20070058446 | Hwang et al. | Mar 2007 | A1 |
20070061502 | Lasser et al. | Mar 2007 | A1 |
20070067667 | Ikeuchi et al. | Mar 2007 | A1 |
20070074093 | Lasser | Mar 2007 | A1 |
20070086239 | Litsyn et al. | Apr 2007 | A1 |
20070086260 | Sinclair | Apr 2007 | A1 |
20070089034 | Litsyn et al. | Apr 2007 | A1 |
20070091677 | Lasser et al. | Apr 2007 | A1 |
20070091694 | Lee et al. | Apr 2007 | A1 |
20070103978 | Conley et al. | May 2007 | A1 |
20070103986 | Chen | May 2007 | A1 |
20070104211 | Opsasnick | May 2007 | A1 |
20070109845 | Chen | May 2007 | A1 |
20070109849 | Chen | May 2007 | A1 |
20070115726 | Cohen et al. | May 2007 | A1 |
20070118713 | Guterman et al. | May 2007 | A1 |
20070143378 | Gorobetz | Jun 2007 | A1 |
20070143531 | Atri | Jun 2007 | A1 |
20070159889 | Kang et al. | Jul 2007 | A1 |
20070159892 | Kang et al. | Jul 2007 | A1 |
20070159907 | Kwak | Jul 2007 | A1 |
20070168837 | Murin | Jul 2007 | A1 |
20070171714 | Wu et al. | Jul 2007 | A1 |
20070183210 | Choi et al. | Aug 2007 | A1 |
20070189073 | Aritome | Aug 2007 | A1 |
20070195602 | Fong et al. | Aug 2007 | A1 |
20070206426 | Mokhlesi | Sep 2007 | A1 |
20070208904 | Hsieh et al. | Sep 2007 | A1 |
20070226599 | Motwani | Sep 2007 | A1 |
20070236990 | Aritome | Oct 2007 | A1 |
20070253249 | Kang et al. | Nov 2007 | A1 |
20070256620 | Viggiano et al. | Nov 2007 | A1 |
20070263455 | Cornwell et al. | Nov 2007 | A1 |
20070266232 | Rodgers et al. | Nov 2007 | A1 |
20070271424 | Lee et al. | Nov 2007 | A1 |
20070280000 | Fujiu et al. | Dec 2007 | A1 |
20070291571 | Balasundaram | Dec 2007 | A1 |
20070297234 | Cernea et al. | Dec 2007 | A1 |
20080010395 | Mylly et al. | Jan 2008 | A1 |
20080025121 | Tanzawa | Jan 2008 | A1 |
20080043535 | Roohparvar | Feb 2008 | A1 |
20080049504 | Kasahara et al. | Feb 2008 | A1 |
20080049506 | Guterman | Feb 2008 | A1 |
20080052446 | Lasser et al. | Feb 2008 | A1 |
20080055993 | Lee | Mar 2008 | A1 |
20080080243 | Edahiro et al. | Apr 2008 | A1 |
20080082730 | Kim et al. | Apr 2008 | A1 |
20080089123 | Chae et al. | Apr 2008 | A1 |
20080104309 | Cheon et al. | May 2008 | A1 |
20080104312 | Lasser | May 2008 | A1 |
20080109590 | Jung et al. | May 2008 | A1 |
20080115017 | Jacobson | May 2008 | A1 |
20080123420 | Brandman et al. | May 2008 | A1 |
20080123426 | Lutze et al. | May 2008 | A1 |
20080126686 | Sokolov et al. | May 2008 | A1 |
20080130341 | Shalvi et al. | Jun 2008 | A1 |
20080148115 | Sokolov et al. | Jun 2008 | A1 |
20080151618 | Sharon et al. | Jun 2008 | A1 |
20080151667 | Miu et al. | Jun 2008 | A1 |
20080158958 | Sokolov et al. | Jul 2008 | A1 |
20080181001 | Shalvi | Jul 2008 | A1 |
20080198650 | Shalvi et al. | Aug 2008 | A1 |
20080198654 | Toda | Aug 2008 | A1 |
20080209116 | Caulkins | Aug 2008 | A1 |
20080209304 | Winarski et al. | Aug 2008 | A1 |
20080215798 | Sharon et al. | Sep 2008 | A1 |
20080219050 | Shalvi et al. | Sep 2008 | A1 |
20080239093 | Easwar et al. | Oct 2008 | A1 |
20080239812 | Abiko et al. | Oct 2008 | A1 |
20080253188 | Aritome | Oct 2008 | A1 |
20080263262 | Sokolov et al. | Oct 2008 | A1 |
20080263676 | Mo et al. | Oct 2008 | A1 |
20080270730 | Lasser et al. | Oct 2008 | A1 |
20080282106 | Shalvi et al. | Nov 2008 | A1 |
20080288714 | Salomon et al. | Nov 2008 | A1 |
20090013233 | Radke | Jan 2009 | A1 |
20090024905 | Shalvi et al. | Jan 2009 | A1 |
20090034337 | Aritome | Feb 2009 | A1 |
20090043831 | Antonopoulos et al. | Feb 2009 | A1 |
20090043951 | Shalvi et al. | Feb 2009 | A1 |
20090049234 | Oh et al. | Feb 2009 | A1 |
20090073762 | Lee et al. | Mar 2009 | A1 |
20090086542 | Lee et al. | Apr 2009 | A1 |
20090089484 | Chu | Apr 2009 | A1 |
20090091979 | Shalvi | Apr 2009 | A1 |
20090094930 | Schwoerer | Apr 2009 | A1 |
20090106485 | Anholt | Apr 2009 | A1 |
20090112949 | Ergan et al. | Apr 2009 | A1 |
20090132755 | Radke | May 2009 | A1 |
20090144600 | Perlmutter et al. | Jun 2009 | A1 |
20090150894 | Huang et al. | Jun 2009 | A1 |
20090157950 | Selinger | Jun 2009 | A1 |
20090157964 | Kasorla et al. | Jun 2009 | A1 |
20090158126 | Perlmutter et al. | Jun 2009 | A1 |
20090168524 | Golov et al. | Jul 2009 | A1 |
20090172257 | Prins et al. | Jul 2009 | A1 |
20090172261 | Prins et al. | Jul 2009 | A1 |
20090193184 | Yu et al. | Jul 2009 | A1 |
20090199074 | Sommer et al. | Aug 2009 | A1 |
20090204824 | Lin et al. | Aug 2009 | A1 |
20090204872 | Yu et al. | Aug 2009 | A1 |
20090213653 | Perlmutter et al. | Aug 2009 | A1 |
20090213654 | Perlmutter et al. | Aug 2009 | A1 |
20090225595 | Kim | Sep 2009 | A1 |
20090228761 | Perlmutter et al. | Sep 2009 | A1 |
20090240872 | Perlmutter et al. | Sep 2009 | A1 |
20090265509 | Klein | Oct 2009 | A1 |
20090300227 | Nochimowski et al. | Dec 2009 | A1 |
20090323412 | Mokhlesi et al. | Dec 2009 | A1 |
20090327608 | Eschmann | Dec 2009 | A1 |
20100017650 | Chin et al. | Jan 2010 | A1 |
20100034022 | Dutta et al. | Feb 2010 | A1 |
20100057976 | Lasser | Mar 2010 | A1 |
20100061151 | Miwa et al. | Mar 2010 | A1 |
20100082883 | Chen et al. | Apr 2010 | A1 |
20100083247 | Kanevsky et al. | Apr 2010 | A1 |
20100110580 | Takashima | May 2010 | A1 |
20100131697 | Alrod et al. | May 2010 | A1 |
20100142268 | Aritome | Jun 2010 | A1 |
20100142277 | Yang et al. | Jun 2010 | A1 |
20100169547 | Ou | Jul 2010 | A1 |
20100169743 | Vogan et al. | Jul 2010 | A1 |
20100174847 | Paley et al. | Jul 2010 | A1 |
20100211803 | Lablans | Aug 2010 | A1 |
20100287217 | Borchers et al. | Nov 2010 | A1 |
20110010489 | Yeh | Jan 2011 | A1 |
20110060969 | Ramamoorthy et al. | Mar 2011 | A1 |
20110066793 | Burd | Mar 2011 | A1 |
20110075482 | Shepard et al. | Mar 2011 | A1 |
20110107049 | Kwon et al. | May 2011 | A1 |
20110149657 | Haratsch et al. | Jun 2011 | A1 |
20110199823 | Bar-Or et al. | Aug 2011 | A1 |
20110302354 | Miller | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
0783754 | Jul 1997 | EP |
1434236 | Jun 2004 | EP |
1605509 | Dec 2005 | EP |
9610256 | Apr 1996 | WO |
9828745 | Jul 1998 | WO |
02100112 | Dec 2002 | WO |
03100791 | Dec 2003 | WO |
2007046084 | Apr 2007 | WO |
2007132452 | Nov 2007 | WO |
2007132453 | Nov 2007 | WO |
2007132456 | Nov 2007 | WO |
2007132457 | Nov 2007 | WO |
2007132458 | Nov 2007 | WO |
2007146010 | Dec 2007 | WO |
2008026203 | Mar 2008 | WO |
2008053472 | May 2008 | WO |
2008053473 | May 2008 | WO |
2008068747 | Jun 2008 | WO |
2008077284 | Jul 2008 | WO |
2008083131 | Jul 2008 | WO |
2008099958 | Aug 2008 | WO |
2008111058 | Sep 2008 | WO |
2008124760 | Oct 2008 | WO |
2008139441 | Nov 2008 | WO |
2009037691 | Mar 2009 | WO |
2009037697 | Mar 2009 | WO |
2009038961 | Mar 2009 | WO |
2009050703 | Apr 2009 | WO |
2009053961 | Apr 2009 | WO |
2009053962 | Apr 2009 | WO |
2009053963 | Apr 2009 | WO |
2009063450 | May 2009 | WO |
2009072100 | Jun 2009 | WO |
2009072101 | Jun 2009 | WO |
2009072102 | Jun 2009 | WO |
2009072103 | Jun 2009 | WO |
2009072104 | Jun 2009 | WO |
2009072105 | Jun 2009 | WO |
2009074978 | Jun 2009 | WO |
2009074979 | Jun 2009 | WO |
2009078006 | Jun 2009 | WO |
2009095902 | Aug 2009 | WO |
2011024015 | Mar 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20100165689 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
61141842 | Dec 2008 | US | |
61234688 | Aug 2009 | US | |
61243726 | Sep 2009 | US | |
61244500 | Sep 2009 | US | |
61251787 | Oct 2009 | US |