The present invention relates to the field of removing chemical mechanical polishing (CMP) residue and contaminants such as trace metals from semiconductor wafers. More particularly, the present invention relates to the field of removing CMP residue and contaminants such as trace metals from semiconductor wafers using supercritical carbon dioxide.
Chemical mechanical polishing (CMP) is an established semiconductor manufacturing process step. CMP has been widely employed in the manufacture of semiconductor devices to eliminate topographic variations and accomplish global planarization of wafer surfaces. Particulate surface contamination of semiconductor wafers after the CMP process is a serious problem that affects yield in the industry. Micrometer and sub-micrometer particle removal from the device feature surfaces is related to high productivity, low cost-of-ownership manufacturing. For more than 30 years the semiconductor industry has upheld Moore's Law, i.e., the theory that computational power will double every 18 months, largely because decreases in device feature sizes have produced increases in the operational speed of logic devices and corresponding reductions in production costs—and sustained the historical rate of cost reduction of new semiconductor products. Continued reduction in feature sizes has driven more stringent performance requirements for every step in the manufacture of integrated circuits, including the post-CMP cleaning step. Post-CMP cleaning is a process to minimize particles and other contaminants that come from various sources in the CMP process. In the semiconductor industry, during the early development of the CMP and cleaning processes, the two processes were evaluated independently of one another. Under the current paradigm, the CMP and post-CMP cleaning processes are interrelated and the performance of a post-CMP cleaning process is related to high productivity and low production costs.
When device feature sizes shrink to less than 0.18 μm, the complexity of interconnect structures becomes a significant factor affecting integrated circuit design and performance. As semiconductor device feature sizes decrease with advancing technologies, there is a need for effective post-CMP cleaning methods to remove CMP residue and reduce particulate contamination to acceptable levels, e.g., <1013 atoms/cm2.
In recent years, as the semiconductor industry approached the 180-nm technology node (Ref.: International Technology Roadmap for Semiconductors (ITRS) 1999, laying out a 15-year outlook for the industry), the performance limitations of aluminum and silicon interconnects presented challenges to industry efforts to sustain Moore's Law. In general, interconnection delays have been found to increase with the square of the reduction in feature size. As device geometries shrink, more emphasis must be placed on the interconnect structures to minimize resistance-capacitance time delays. One approach to minimizing interconnection delays has been to add more layers of metal. Adding more layers of metal, however, has the disadvantages of increasing production costs and generating additional heat, with adverse effect on device performance and reliability.
Strategies to minimize interconnect delays include improving conductivity and lowering the dielectric constant (k) value by employing low-k films. For example, copper (Cu) has emerged as a replacement for conventional aluminum (Al) as the interconnect metal in advanced devices. Copper has greater conductivity than aluminum (thus reducing resistance-capacitance time delays) and also is less subject to electromigration when compared to conventional Al metallization. The material properties of Cu present challenges to the CMP and post-CMP cleaning processes. One challenge in Cu CMP is minimizing the formation of micro-scratches (a common problem in CMP processes), which can degrade device performance. Copper is softer than other materials such as tungsten and thus scratches more easily. Other challenges include the problems of dishing, erosion, and thinning of Cu lines beyond the target thickness that can generate increased line resistance and resistance-capacitance time delays—all of which are due to the relative softness of Cu metal. There is a need for post-CMP cleaning methods to remove residual slurry particles (CMP slurry is a mix of liquids and abrasive powder) with complex compositions, pieces of polishing pad used in CMP, and copper contamination such as trace levels of Cu metal ions.
The adhesion of slurry particles and Cu metal ions to wafers is a problem in post-CMP cleaning processes. Adhesion forces, which can be a combination of bonding forces such as long range van der Waals forces, chemical or hydrogen bonds, and electrostatic forces, are responsible for the adhesion of particles on the surface of the wafer. There is a need for post-CMP cleaning methods that are capable of overcoming these forces.
Additionally, tendency of Cu to diffuse into underlying substrates such as silicon makes the use of diffusion barrier materials, such as tantalum (Ta)- and tungsten (W)-based diffusion barrier materials, a necessity. Effective CMP of Cu structures requires removal of both the Cu and barrier layers. Barrier materials are typically more difficult than Cu to planarize using conventional slurries (conventional slurries contain a single type of abrasive), which necessitates tailoring slurries to the characteristics of Cu and the Ta- and W-based barrier materials. After the CMP process, a large quantity of slurry particles, along with pieces of polishing pad, metal contaminants, and diffusion barrier material remaining on the device's surface must be removed. There is a need for effective post-CMP cleaning methods that are independent of the film materials.
The emergence of dual-damascene processing (techniques for the simultaneous formation of a conductive plug in electrical contact with a conductive line) includes developing processes that are highly flexible, including those for CMP and post-CMP cleaning. Dual-damascene processing of copper for the patterning of Cu metal into interconnect structures that also include low-k dielectric materials presents still additional challenges, because of the lower density, inferior mechanical properties, and typically increased organic content of low-k materials.
Post-CMP cleaning has become a challenging cleaning application in semiconductor manufacturing. Effective post-CMP cleaning processes are needed to ensure that the challenges of replacing Al metallization with Cu dual-damascene structures, integrating Cu and low-k materials, along with decreasing device feature sizes, and the transition to 300-mm size wafers, are met. There is a need for effective post-CMP cleaning processes to achieve improved device performance with higher productivity and reduced production costs.
The current post-CMP cleaning practices include non-contact cleaning using megasonic baths and contact cleaning using brush scrubbers. The brush (contact) cleaning methods are based on a direct contact between a brush and the wafer surface. Brush cleaning requires that the wafer surface be mechanically washed or brushed by a commercially available equipment called a scrubber. The scrubber may employ heat or ultrasonic augmentation and typically requires immersion times of two to twenty minutes to achieve complete removal of the CMP residue from the wafer surface. While high brush pressure is desirable for the purposes of increasing the contact between the particle and the brush to a point where the adhesion forces can be overcome, high pressure above a certain point can contribute to scratching of the wafer surface by the removed particle. In practice, brush cleaning effectiveness depends on the brush pressure and speed, rate of flow of cleaning solution, and cleaning time. Megasonic (non-contact) cleaning uses high-frequency acoustic pressure waves to remove particles from the wafer surface. Megasonic cleaning effectiveness depends on the megasonic intensity, solution temperature, chemistry, and cleaning time.
It is well known that particulate surface contamination of semiconductor wafers after the CMP process degrades device performance and affects yield in the industry. Additionally, it is well known that the cost of manufacturing a semiconductor is proportional to the time employed for each processing step. It would be advantageous to be able to remove the CMP residue and contaminants without using the mechanical washing or brushing employed by the scrubber in order to reduce an amount of the defects and the scratches. Further, it would be advantageous to more effectively remove the CMP residue and contaminants from the surface features on the wafer surface.
What is needed is an effective post-CMP cleaning method to remove the CMP process residue and contaminants that does not use the mechanical washing, brushing or megasonic baths.
What is further needed is a method of removing the CMP residue and contaminants from the surface features that is more effective than the current post-CMP cleaning methods including mechanical washing, brushing, or megasonic cleaning.
What is additionally needed is a post-CMP cleaning method to achieve improved device performance with higher productivity and reduced production costs.
One embodiment of the present invention is for a method of removing CMP residue from a surface of a semiconductor substrate. The semiconductor substrate, including the CMP residue on the surface, is placed within a pressure chamber. The pressure chamber is then pressurized. Supercritical carbon dioxide and a solvent are introduced into the pressure chamber. The supercritical carbon dioxide and the solvent are maintained in contact with the semiconductor substrate until the CMP residue is removed from the semiconductor substrate. The pressure chamber is then flushed and vented.
A second embodiment of the invention is for a method of post chemical mechanical polishing (CMP) cleaning to remove a CMP residue from a surface of an object. The object is placed the within a pressure chamber. The pressure chamber is pressurized. A supercritical carbon dioxide process is performed to remove a residual CMP residue from the surface of the object. The pressure chamber is vented.
A third embodiment of the invention is for a method of post-CMP cleaning to remove a CMP residue from a surface of an object. The object is placed the within a pressure chamber. The pressure chamber is pressurized. A liquid carbon dioxide process is performed to remove a residual CMP residue from the surface of the object. The pressure chamber is vented.
The present invention utilizes high solvency and cleaning characteristics of supercritical carbon dioxide to assist in a post-CMP cleaning process. In the preferred embodiment, a small amount of a chemical, i.e., a solvent or a solvent mixture, is added to affect the post-CMP cleaning process as compared to the prior art. In the present invention, the supercritical carbon dioxide carries a small amount of the chemical to a wafer surface to be cleaned and is then recycled back for reuse.
The chemical is soluble or insoluble in carbon dioxide and is not damaging to semiconductor device materials. The high solvency and solubilizing ability of the supercritical carbon dioxide makes this method fast, safe, and very quick. High turbulence at wafer surface features in conjunction with hyper-efficient mass transport of a chemical co-solvent package can clean the wafer surface. CMP residue of CMP chemicals and abrasive particles is effectively removed without direct mechanical contact, in contrast to current methods. Another advantage of the present invention is that the wafer surface contains fewer defects as compared to mechanical scrubber methods.
The solvency of supercritical carbon dioxide increases with pressure. Diffusivity and viscosity at or above a critical point of carbon dioxide remains similar to that of a gas phase. Because density above the critical point of the carbon dioxide is nearly equal to that of a liquid state, the supercritical carbon dioxide carries the chemical onto the wafer surface and cleans sub-micron surface features of a modern semiconductor device. In the present invention, the supercritical carbon dioxide also functions to carry away the CMP residue, including the CMP chemicals and abrasive particles, from the sub-micron surface features of the modern semiconductor device. Thus, a small amount of the chemical mixed with the supercritical carbon dioxide performs the post-CMP cleaning process and also cleans away any remaining unwanted chemicals and the CMP residue.
One embodiment of the post-CMP cleaning process of the present invention is illustrated in
The chemical is preferably selected from a preferred group including the isopropyl alcohol, the propylene carbonate, the ethylene glycol, the ozone, the hydrogen fluoride, the ammonium hydroxide, and the citric acid, or a mixture thereof.
The chemical is alternatively selected from an alternative group including the alcohols related to the isopropyl alcohol, the carbonates related to the propylene carbonate, the glycols related to the ethylene glycol, the fluorides related to the hydrogen fluoride, the hydroxides related to the ammonium hydroxide, and the acids related to the citric acid, or a mixture selected from these chemicals and the preferred group.
The post-CMP cleaning process continues with recirculation of the supercritical carbon dioxide and with mixing, i.e., agitating, thereof inside the pressure chamber until the CMP residue is removed, typically from one-half to fifteen minutes, in a fourth process step 26. The pressure chamber is then flushed with pure supercritical carbon dioxide or liquid carbon dioxide to remove all traces of any remaining chemicals, in a fifth process step 28. Finally, the chamber is vented to atmosphere and the wafer is removed, in a sixth process step 30. At this point, an optional rinse in DI (deionized) or ultra pure water may be performed to finish the cleaning process.
The present invention uses the supercritical carbon dioxide in combination with the small amount of a chemical admixture to remove the CMP residue from the surfaces of the semiconductor devices in a post-CMP cleaning system. The post-CMP cleaning system includes a wafer process chamber, a pump, a sensor system, a pressure and flow regulating system, and a recovery chamber. The wafer process chamber holds the semiconductor wafer or semiconductor wafers. The pump is capable of compressing liquid carbon dioxide beyond the critical point. The sensor system measures temperature, pressure and flows. The pressure and flow regulating system connects a carbon dioxide source to the wafer chamber at the desired conditions. The recovery chamber collects solid and liquid material exhausted from the wafer chamber.
The post-CMP cleaning system preferably includes a temperature control system for heating the wafer process chamber.
The post-CMP cleaning system preferably includes a chemical introduction system for adding precise amounts of the chemical into the supercritical carbon dioxide process stream.
The post-CMP cleaning process of the present invention includes the following steps. The wafer is placed in the wafer process chamber. The post-CMP cleaning system is preferably purged with inert gas or the carbon dioxide. Alternatively, the post-CMP cleaning system is not purged. Next, the post-CMP cleaning system is pressurized with the carbon dioxide to achieve supercritical conditions. A desired amount of the chemical is added into the carbon dioxide, which forms chemical laden supercritical carbon dioxide. The chemical-laden supercritical carbon dioxide is contacted with the wafer. The wafer process chamber is preferably flushed using the supercritical carbon dioxide to remove contaminants. Alternatively, the wafer process chamber is flushed using the liquid carbon dioxide. The post CMP cleaning system is then depressurized to allow removal of the wafer.
The post-CMP cleaning process results in the wafer surface having a defect level that is much lower than current cleaning methods, which utilize mechanical contact of the wafer with roller or brush equipment.
The post-CMP cleaning process removes the CMP residue from semiconductors, bare silicon wafers, metallic covered wafers, and memory storage devices. It will be readily apparent to one of ordinary skill in the art that the post-CMP cleaning process removes the CMP residue from other substrates, including other semiconductor substrates, that have been polished or planarized in the CMP process.
The present invention is directed to processes of removing CMP residue and contaminants such as trace metals from semiconductor wafers using supercritical carbon dioxide. The methods in accordance with the present invention utilize the low viscosity and high solvating and solubilizing properties of supercritical carbon dioxide to assist in the cleaning process.
For purposes of the invention, “carbon dioxide” should be understood to refer to carbon dioxide (CO2) employed as a fluid in a liquid, gaseous or supercritical (including near-supercritical) state. “Liquid carbon dioxide” refers to CO2 at vapor-liquid equilibrium conditions. If gaseous CO2 is used, the temperature employed is preferably below 30.5° C. “Supercritical carbon dioxide” refers herein to CO2 at conditions above the critical temperature (30.5° C.) and critical pressure (1070.4 psi). When CO2 is subjected to temperatures and pressures above 30.5° C. and 1070.4 psi, respectively, it is determined to be in the supercritical state. “Near-supercritical carbon dioxide” refers to CO2 within about 85% of absolute critical temperature and critical pressure.
“Cleaning fluid” refers herein to liquid or supercritical carbon dioxide that can, in a preferred embodiment, be provided as a composition. Liquid or supercritical CO2 compositions preferred for use in the methods of the present invention can include supercritical CO2 and a cleaning chemistry such as solvents, co-solvents and/or surfactants. Preferably, the cleaning chemistry enhances the properties of the supercritical CO2 to promote association of the amphiphilic species with the contaminant and to remove the contaminant in the cleaning fluid.
Various objects can be cleaned using the processes of the present invention such as semiconductor wafers, substrates and other flat media requiring low contamination levels. For the purposes of the invention, “cleaning” should be understood to be consistent with its conventional meaning in the art. As used herein, “substrate” includes a wide variety of structures. A substrate can be a single layer of material, such as a silicon wafer, or can include any number of layers. A substrate can comprise various materials, including metals, ceramics, glass, or compositions thereof.
In a preferred embodiment of the present invention, a supercritical carbon dioxide process (120) is performed to remove a residual CMP residue from the surface of the object. In one embodiment of the invention, a liquid carbon dioxide process is performed to remove a residual CMP residue from the surface of the object. In a preferred embodiment, in the supercritical CO2 process (120), a cleaning fluid is introduced into the pressure chamber. In one embodiment, the cleaning fluid includes a cleaning chemistry. The pressure chamber is then pressurized with CO2. Preferably, the pressure chamber is pressurized above the CO2 critical pressure (1070.4 psi). In a preferred embodiment, the cleaning fluid is recirculated within the pressure chamber. Preferably, the cleaning fluid is recirculated within the pressure chamber for a period of time to remove a residual CMP residue from the surface of the object.
In one embodiment of the present invention, the CMP residue includes: CMP slurry particles such as silica and alumina, CMP slurry chemicals, CMP polishing pad materials, metal contaminants such as copper metal ions, diffusion barrier materials such as tantalum (Ta)- and tungsten (W)-based diffusion barrier materials (e.g., TaN, TaSiN, WN, WSiN), substrate materials such as SiO2, low-k dielectric materials, or compositions thereof.
In one embodiment of the invention, the CMP residue includes slurry particles and/or slurry chemicals, and the cleaning chemistry comprises benzotriazole (BTA).
In one embodiment of the invention, the CMP residue includes polishing pad materials. In this embodiment, the cleaning chemistry comprises acetone, methyl isobutyl ketone (MIK), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), ozone, hydrogen peroxide, or ammonium persulfate.
In one embodiment, the CMP residue includes copper contaminants. In this embodiment of the invention, the cleaning chemistry comprises hexafluoroacetyl acetonate (HFAC), tetramethylheptane dionate (THD), cyclo octa diene (COD), ethylenediaminetetraacetatothulate (TmEDTA), nitrilotriacetate (NTA), pentamethyldiethylenetriamine (PMDETA), nitric acid, or acetylacetonate (ACAC).
In one embodiment, the CMP residue includes tantalum-based materials, and the cleaning chemistry comprises ferro cyanide or hexafluoroacetyl acetonate (HFAC).
In one embodiment, the CMP residue includes SiO2, F—SiO2, C—SiO2, LKD, hydrogen silsequioxane (HSQ), and/or methyl silsequioxane (MSQ). In this embodiment, the cleaning chemistry comprises HF, ammonium fluoride, or quad fluoride.
In one embodiment, the CMP residue includes FLARE™, SiLK™, organic polymers, and/or polymer-based low-k dielectric materials. In this embodiment of the invention, the cleaning chemistry comprises a surfactant.
In one embodiment, the CMP residue includes tungsten-based materials, and the cleaning chemistry comprises potassium ferro cyanide, hydrogen peroxide, or perchloic acid (PCA).
As shown in
In one embodiment of the invention, after venting the pressure chamber (170), a rinse process (175) including immersion baths, megasonic baths, mechanical rollers, mechanical brush scrubbers and/or double-sided scrubbers is carried out.
In one embodiment, after the rinse process (175), a washing process (185) including immersion baths, megasonic baths, mechanical rollers, mechanical brush scrubbers and/or double-sided scrubbers is performed.
While the processes of this invention have been described in detail for the purpose of illustration, the inventive processes are not to be construed as limited thereby. It will be readily apparent to those of reasonable skill in the art that various modifications to the foregoing preferred embodiments can be made without departing from the spirit and scope of the invention as defined by the appended claims.
This application is a continuation in part of co-pending U.S. patent application Ser. No. 10/042,486, filed on Oct. 18, 2001 now U.S. Pat. No. 6,537,916, which is a continuation of 09/796,300 filed Feb. 27, 2001 now issued U.S. Pat. No. 6,331,487 B2, which is a continuation of 09/407,628 filed Sep. 28, 1999 now issued U.S. Pat. No. 6,277,753 B1, which claims priority from U.S. Provisional Application No. 60/101,988, filed on Sep. 28, 1998, all of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2439689 | Hyde et al. | Apr 1948 | A |
2617719 | Stewart | Nov 1952 | A |
2993449 | Harland | Jul 1961 | A |
3135211 | Pezzillo | Jun 1964 | A |
3642020 | Payne | Feb 1972 | A |
3890176 | Bolon | Jun 1975 | A |
3900551 | Bardoncelli et al. | Aug 1975 | A |
4219333 | Harris | Aug 1980 | A |
4341592 | Shortes et al. | Jul 1982 | A |
4349415 | DeFilippi et al. | Sep 1982 | A |
4475993 | Blander et al. | Oct 1984 | A |
4749440 | Blackwood et al. | Jun 1988 | A |
4838476 | Rahn | Jun 1989 | A |
4877530 | Moses | Oct 1989 | A |
4879004 | Oesch et al. | Nov 1989 | A |
4923828 | Gluck et al. | May 1990 | A |
4925790 | Blanch et al. | May 1990 | A |
4933404 | Beckman et al. | Jun 1990 | A |
4944837 | Nishikawa et al. | Jul 1990 | A |
5011542 | Weil | Apr 1991 | A |
5013366 | Jackson et al. | May 1991 | A |
5068040 | Jackson | Nov 1991 | A |
5071485 | Matthews et al. | Dec 1991 | A |
5091207 | Tanaka | Feb 1992 | A |
5105556 | Kurokawa et al. | Apr 1992 | A |
5158704 | Fulton et al. | Oct 1992 | A |
5174917 | Monzyk | Dec 1992 | A |
5185058 | Cathey, Jr. | Feb 1993 | A |
5185296 | Morita et al. | Feb 1993 | A |
5196134 | Jackson | Mar 1993 | A |
5201960 | Starov | Apr 1993 | A |
5213619 | Jackson et al. | May 1993 | A |
5215592 | Jackson | Jun 1993 | A |
5225173 | Wai | Jul 1993 | A |
5236602 | Jackson | Aug 1993 | A |
5237824 | Pawliszyn | Aug 1993 | A |
5238671 | Matson et al. | Aug 1993 | A |
5250078 | Saus et al. | Oct 1993 | A |
5261965 | Moslehi | Nov 1993 | A |
5266205 | Fulton et al. | Nov 1993 | A |
5269815 | Schlenker et al. | Dec 1993 | A |
5269850 | Jackson | Dec 1993 | A |
5274129 | Natale et al. | Dec 1993 | A |
5285352 | Pastore et al. | Feb 1994 | A |
5288333 | Tanaka et al. | Feb 1994 | A |
5290361 | Hayashida et al. | Mar 1994 | A |
5294261 | McDermott et al. | Mar 1994 | A |
5298032 | Schlenker et al. | Mar 1994 | A |
5304515 | Morita et al. | Apr 1994 | A |
5306350 | Hoy et al. | Apr 1994 | A |
5312882 | DeSimone et al. | May 1994 | A |
5314574 | Takahashi | May 1994 | A |
5316591 | Chao et al. | May 1994 | A |
5320742 | Fletcher et al. | Jun 1994 | A |
5328722 | Ghanayem et al. | Jul 1994 | A |
5334332 | Lee | Aug 1994 | A |
5334493 | Fujita et al. | Aug 1994 | A |
5352327 | Witowski | Oct 1994 | A |
5356538 | Wai et al. | Oct 1994 | A |
5364497 | Chau et al. | Nov 1994 | A |
5370740 | Chao et al. | Dec 1994 | A |
5370741 | Bergman | Dec 1994 | A |
5370742 | Mitchell et al. | Dec 1994 | A |
5397220 | Akihisa et al. | Mar 1995 | A |
5401322 | Marshall | Mar 1995 | A |
5403621 | Jackson et al. | Apr 1995 | A |
5403665 | Alley et al. | Apr 1995 | A |
5417768 | Smith, Jr. et al. | May 1995 | A |
5456759 | Stanford, Jr. et al. | Oct 1995 | A |
5470393 | Fukazawa | Nov 1995 | A |
5474812 | Truckenmuller et al. | Dec 1995 | A |
5482564 | Douglas et al. | Jan 1996 | A |
5486212 | Mitchell et al. | Jan 1996 | A |
5494526 | Paranjpe | Feb 1996 | A |
5500081 | Bergman | Mar 1996 | A |
5501761 | Evans et al. | Mar 1996 | A |
5514220 | Wetmore et al. | May 1996 | A |
5522938 | O'Brien | Jun 1996 | A |
5547774 | Gimzewski et al. | Aug 1996 | A |
5550211 | DeCrosta et al. | Aug 1996 | A |
5580846 | Hayashida et al. | Dec 1996 | A |
5589082 | Lin et al. | Dec 1996 | A |
5589105 | DeSimone et al. | Dec 1996 | A |
5629918 | Ho et al. | May 1997 | A |
5632847 | Ohno et al. | May 1997 | A |
5635463 | Muraoka | Jun 1997 | A |
5637151 | Schulz | Jun 1997 | A |
5641887 | Beckman et al. | Jun 1997 | A |
5656097 | Olesen et al. | Aug 1997 | A |
5665527 | Allen et al. | Sep 1997 | A |
5676705 | Jureller et al. | Oct 1997 | A |
5679169 | Gonzales et al. | Oct 1997 | A |
5679171 | Saga et al. | Oct 1997 | A |
5683473 | Jureller et al. | Nov 1997 | A |
5683977 | Jureller et al. | Nov 1997 | A |
5688879 | DeSimone | Nov 1997 | A |
5700379 | Biebl | Dec 1997 | A |
5714299 | Combes et al. | Feb 1998 | A |
5725987 | Combes et al. | Mar 1998 | A |
5726211 | Hedrick et al. | Mar 1998 | A |
5730874 | Wai et al. | Mar 1998 | A |
5736425 | Smith et al. | Apr 1998 | A |
5739223 | DeSimone | Apr 1998 | A |
5766367 | Smith et al. | Jun 1998 | A |
5783082 | DeSimone et al. | Jul 1998 | A |
5797719 | James et al. | Aug 1998 | A |
5798438 | Sawan et al. | Aug 1998 | A |
5804607 | Hedrick et al. | Sep 1998 | A |
5807607 | Smith et al. | Sep 1998 | A |
5847443 | Cho et al. | Dec 1998 | A |
5866005 | DeSimone et al. | Feb 1999 | A |
5868856 | Douglas et al. | Feb 1999 | A |
5868862 | Douglas et al. | Feb 1999 | A |
5872061 | Lee et al. | Feb 1999 | A |
5872257 | Beckman et al. | Feb 1999 | A |
5873948 | Kim | Feb 1999 | A |
5881577 | Sauer et al. | Mar 1999 | A |
5888050 | Fitzgerald et al. | Mar 1999 | A |
5893756 | Berman et al. | Apr 1999 | A |
5896870 | Huynh et al. | Apr 1999 | A |
5900354 | Batchelder | May 1999 | A |
5904737 | Preston et al. | May 1999 | A |
5908510 | McCullough et al. | Jun 1999 | A |
5928389 | Jevtic | Jul 1999 | A |
5932100 | Yager et al. | Aug 1999 | A |
5944996 | DeSimone et al. | Aug 1999 | A |
5955140 | Smith et al. | Sep 1999 | A |
5965025 | Wai et al. | Oct 1999 | A |
5976264 | McCullough et al. | Nov 1999 | A |
5980648 | Adler | Nov 1999 | A |
5992680 | Smith | Nov 1999 | A |
5994696 | Tai et al. | Nov 1999 | A |
6005226 | Aschner et al. | Dec 1999 | A |
6017820 | Ting et al. | Jan 2000 | A |
6021791 | Dryer et al. | Feb 2000 | A |
6024801 | Wallace et al. | Feb 2000 | A |
6037277 | Masakara et al. | Mar 2000 | A |
6063714 | Smith et al. | May 2000 | A |
6067728 | Farmer et al. | May 2000 | A |
6099619 | Lansbarkis et al. | Aug 2000 | A |
6100198 | Grieger et al. | Aug 2000 | A |
6110232 | Chen et al. | Aug 2000 | A |
6114044 | Houston et al. | Sep 2000 | A |
6128830 | Bettcher et al. | Oct 2000 | A |
6140252 | Cho et al. | Oct 2000 | A |
6149828 | Vaartstra | Nov 2000 | A |
6171645 | Smith et al. | Jan 2001 | B1 |
6200943 | Romack et al. | Mar 2001 | B1 |
6216364 | Tanaka et al. | Apr 2001 | B1 |
6224774 | DeSimone et al. | May 2001 | B1 |
6228563 | Starov et al. | May 2001 | B1 |
6228826 | DeYoung et al. | May 2001 | B1 |
6232238 | Chang et al. | May 2001 | B1 |
6232417 | Rhodes et al. | May 2001 | B1 |
6239038 | Wen | May 2001 | B1 |
6242165 | Vaartstra | Jun 2001 | B1 |
6251250 | Keigler | Jun 2001 | B1 |
6255732 | Yokoyama et al. | Jul 2001 | B1 |
6262510 | Lungu | Jul 2001 | B1 |
6270531 | DeYoung et al. | Aug 2001 | B1 |
6270948 | Sato et al. | Aug 2001 | B1 |
6277753 | Mullee et al. | Aug 2001 | B1 |
6284558 | Sakamoto | Sep 2001 | B1 |
6286231 | Bergman et al. | Sep 2001 | B1 |
6306564 | Mullee | Oct 2001 | B1 |
6319858 | Lee et al. | Nov 2001 | B1 |
6331487 | Koch | Dec 2001 | B1 |
6333268 | Starov et al. | Dec 2001 | B1 |
6344243 | McClain et al. | Feb 2002 | B1 |
6358673 | Namatsu | Mar 2002 | B1 |
6361696 | Spiegelman et al. | Mar 2002 | B1 |
6367491 | Marshall et al. | Apr 2002 | B1 |
6380105 | Smith et al. | Apr 2002 | B1 |
6425956 | Cotte et al. | Jul 2002 | B1 |
6436824 | Chooi et al. | Aug 2002 | B1 |
6454945 | Weigl et al. | Sep 2002 | B1 |
6458494 | Song et al. | Oct 2002 | B1 |
6461967 | Wu et al. | Oct 2002 | B1 |
6465403 | Skee | Oct 2002 | B1 |
6485895 | Choi et al. | Nov 2002 | B1 |
6486078 | Rangarajan et al. | Nov 2002 | B1 |
6492090 | Nishi et al. | Dec 2002 | B1 |
6500605 | Mullee et al. | Dec 2002 | B1 |
6509141 | Mullee | Jan 2003 | B1 |
6537916 | Mullee et al. | Mar 2003 | B1 |
6558475 | Jur et al. | May 2003 | B1 |
6562146 | DeYoung et al. | May 2003 | B1 |
6596093 | DeYoung et al. | Jul 2003 | B1 |
6635565 | Wu et al. | Oct 2003 | B1 |
6641678 | DeYoung et al. | Nov 2003 | B1 |
6764552 | Joyce et al. | Jul 2004 | B1 |
6890853 | Biberger et al. | May 2005 | B1 |
20010019857 | Yokoyama et al. | Sep 2001 | A1 |
20010024247 | Nakata | Sep 2001 | A1 |
20010041455 | Yun et al. | Nov 2001 | A1 |
20010041458 | Ikakura et al. | Nov 2001 | A1 |
20020001929 | Biberger et al. | Jan 2002 | A1 |
20020055323 | McClain et al. | May 2002 | A1 |
20020074289 | Sateria et al. | Jun 2002 | A1 |
20020081533 | Simons et al. | Jun 2002 | A1 |
20020088477 | Cotte et al. | Jul 2002 | A1 |
20020098680 | Goldstein et al. | Jul 2002 | A1 |
20020106867 | Yang et al. | Aug 2002 | A1 |
20020112740 | DeYoung et al. | Aug 2002 | A1 |
20020112746 | DeYoung et al. | Aug 2002 | A1 |
20020115022 | Messick et al. | Aug 2002 | A1 |
20020117391 | Beam | Aug 2002 | A1 |
20020123229 | Ono et al. | Sep 2002 | A1 |
20020127844 | Grill et al. | Sep 2002 | A1 |
20020132192 | Namatsu | Sep 2002 | A1 |
20020141925 | Wong et al. | Oct 2002 | A1 |
20020142595 | Chiou | Oct 2002 | A1 |
20020150522 | Heim et al. | Oct 2002 | A1 |
20020164873 | Masuda et al. | Nov 2002 | A1 |
20030003762 | Cotte et al. | Jan 2003 | A1 |
20030008238 | Goldfarb et al. | Jan 2003 | A1 |
20030008518 | Chang et al. | Jan 2003 | A1 |
20030013311 | Chang et al. | Jan 2003 | A1 |
20030036023 | Moreau et al. | Feb 2003 | A1 |
20030047533 | Reid et al. | Mar 2003 | A1 |
20030051741 | DeSimone et al. | Mar 2003 | A1 |
20030106573 | Masuda et al. | Jun 2003 | A1 |
20030125225 | Xu et al. | Jul 2003 | A1 |
20030198895 | Toma et al. | Oct 2003 | A1 |
20030205510 | Jackson | Nov 2003 | A1 |
20030217764 | Masuda et al. | Nov 2003 | A1 |
20040011386 | Seghal | Jan 2004 | A1 |
20040020518 | DeYoung et al. | Feb 2004 | A1 |
20040087457 | Korzenski et al. | May 2004 | A1 |
20040103922 | Inoue et al. | Jun 2004 | A1 |
20040112409 | Schilling | Jun 2004 | A1 |
20040134515 | Castrucci | Jul 2004 | A1 |
20040177867 | Schilling | Sep 2004 | A1 |
20040259357 | Saga | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 0133613 | May 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040142564 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60101988 | Sep 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09796300 | Feb 2001 | US |
Child | 10042486 | US | |
Parent | 09407628 | Sep 1999 | US |
Child | 09796300 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10042486 | Oct 2001 | US |
Child | 10396612 | US |