Projectors are devices employed to project image data for viewing by relatively large numbers of viewers, and may be used as computing device peripherals, as well as displays for home theaters and other applications. To obtain optimal projection of the image data, projectors include projector lamp assemblies that are capable of outputting bright light. One way to improve the usefulness and projection quality of projectors is to increase the light output by their projector lamp assemblies, so that the projectors can be utilized even in environments in which there is ambient light.
Increasing projector lamp assembly light output can be achieved at least by using more powerful and/or brighter lamps within the assemblies, or by better utilizing the light output by existing lamps within the assemblies. In the latter approach, for instance, at least some of the light output by lamps within projector lamp assemblies may not be properly directed outwards from the projectors to project image data. Rather, the light may be transmitted, absorbed, and/or reflected within the projectors in a way that the light is not used to project image data.
Some embodiments of the invention are concerned with improving the metal reflector 102. The reflectivity of the reflector 102 is improved so that as much of the light generated within the projector lamp assembly 100 is used for image data projection. Furthermore, the reflector 102 is fabricated so that it substantially reflects just visible light energy of the light generated within the projector lamp assembly 100. That is, other types of light energy, such as infrared energy and ultraviolet energy, are absorbed by the reflector 102. This is desirable, because infrared energy reflected to other components of a projector can undesirably heat those components, and ultraviolet energy reflected to other components of the projector can cause the components to malfunction.
The metal reflector 102 is metal in that it includes a metal substrate 202. The metal substrate 202 may be copper, aluminum, or another type of metal. The metal substrate 202 may be polished, such as by using a diamond-turning polishing, to ensure that the substrate 202 has the highest reflectivity (i.e., the smoothest surface) possible to reflect the most light as is possible. During atmospheric exposure, such as during or after the polishing process, an undesired oxide layer may grow on the metal substrate 202. This undesired oxide layer is removed, such as by plasma etching, prior to the deposition of any further layers on the metal substrate 202, because the undesired oxide layer can reduce the performance of the multiple-layer dielectric coating that is subsequently deposited on to the surface of the reflector 102. This performance decrease is caused by the difference in the index of the undesired layer versus the index of the metal layer for which the dielectric coating is designed. Furthermore, the undesired oxide layer, which may have a thickness between 2 and 25 nanometers (nm), can result in poor adhesion between a multiple-layer dielectric coating and the substrate 202, because this oxide layer is soft and rough.
A titanium (Ti) adhesion layer 204 is deposited on the metal substrate 202. The titanium adhesion layer 204 promotes adhesion of a subsequently deposited multiple-layer optical dielectric 210 to the metal substrate 202. Were the multiple-layer optical dielectric 210 deposited directly on the metal substrate 202, high thermal stress between the substrate 202 and the dielectric 210 can result in poor adhesion of the dielectric 210 on the substrate 202, such that cracking and peeling of the dielectric 210 can occur.
In one embodiment, a silicon oxide (SiO2) layer 206 and another titanium layer 208 are deposited on the metal substrate 202—specifically on the titanium adhesion layer 204—prior to deposition of the multiple-layer optical dielectric 210. The silicon oxide layer 206 is at least substantially transparent to visible light, and is present so that two discrete titanium layers, the titanium adhesion layer 204 and the other titanium layer 208, can be present on the metal substrate 202. The titanium layers 204 and 208 are tuned to absorb as much infrared energy as possible, by experimental determination of the thicknesses of both layers 204 and 208 that result in maximum infrared energy absorption.
That is, light generated within the projector light assembly 100 is transmitted through the multiple-layer optical dielectric 210, reflected by the metal substrate 202, and transmitted back through the optical dielectric 210. Tuning the titanium layers 204 and 208 to absorb as much infrared energy as possible reduces the amount of infrared energy of the light that is reflected by the substrate 202 and transmitted back through the optical dielectric 210. This is advantageous, ensuring that undue heating of other projector components does not occur. The titanium layers 204 and 208 can absorb as much as 80%, or more, of the infrared energy in one embodiment.
The multiple-layer optical dielectric 210 includes one or more dual silicon oxide-titanium oxide (TiO2) layers 216A, 216B, . . . , 216N, collectively referred to as the dual silicon oxide-titanium oxide layers 216. The dual layers 216 include silicon oxide layers 212A, 212B, . . . , 212N, collectively referred to as the silicon oxide layers 212, and titanium oxide layers 214A, 214B, . . . , 214N, collectively referred to as the titanium oxide layers 214. The silicon oxide layers 212 and the titanium oxide layers 214 are interleaved in relation to one another as is shown in
The multiple-layer optical dielectric 210 is deposited on the metal substrate 202, specifically on the other titanium layer 208, also so that at least substantially just visible light energy of light generated within the projector assembly 100 is reflected by the metal substrate 202. The silicon oxide layers 212 are substantially transparent to visible light. The titanium oxide layers 214, by comparison, substantially absorb ultraviolet energy (and may also absorb some infrared energy). The silicon oxide layers 212 are present so that a number of discrete titanium oxide layers 214 can be present. The titanium oxide layers 214 are tuned to absorb as much ultraviolet energy as possible, by experimental determination of the thicknesses and the number of the layers 214 that result in maximum ultraviolet energy absorption.
That is, light generated within the projector light assembly 100 is transmitted through the multiple-layer optical dielectric 210, and the visible light thereof is reflected by the dielectric 210 before it reaches the titanium layer 208. The dielectric 210 is tuned to absorb as much ultraviolet energy as possible, by experimentally determining the thickness thereof that achieves this. (Likewise, the infrared energy transmitted through the dielectric 210 is absorbed by the titanium layers 204 and 208, where these layers have been tuned appropriately by experimental determining the thicknesses thereof that achieves this.) This is advantageous, ensuring that ultraviolet energy-sensitive projector components are not exposed to undue ultraviolet energy that may result in their malfunctioning. In one embodiment, there are 22 dual layers 216, each including a silicon oxide layer and a titanium oxide layer. As such, in this embodiment there are 47 total layers deposited on the metal substrate 202, including the dual layers 216 of the multiple-layer dielectric 210 and the layers 204, 206, and 208.
The following table depicts the actual number and thickness of the layers deposited on the metal substrate in one embodiment of the invention. The first column denotes the layer number, where the lowest layer number of 1 denotes the top-most layer 214N in
Variations to the reflector 102 depicted in
The metal substrate 202 is polished (304). Polishing the metal substrate 202 increases its reflectivity, and may be achieved by diamond turning, or another type of polishing process. During the polishing process, or otherwise, the metal substrate 202 is likely subjected to atmospheric exposure. The inherent oxygen within the atmosphere can result in growth of an undesired oxide layer to form on the metal substrate 202, which can reduce the reflectivity of the substrate 202, and can result in subsequent adhesion problems, as has been described.
Referring back to
First, however, plasma is introduced into the vacuum chamber of the coating apparatus to plasma etch the undesired oxide layer from the metal substrate 202 (308). Once the undesired oxide layer has been satisfactorily etched away by the plasma, the plasma is removed from the vacuum chamber. Thereafter, the metal substrate 202 remains within the coating apparatus at least until one or more desired layers have been deposited on the substrate 202. Otherwise, removing the metal substrate 202 from the vacuum chamber of the coating apparatus can result in again subjecting the substrate 202 to atmospheric exposure, and cause re-growth of the undesired oxide layer.
Therefore, one advantage of at least some embodiments of the invention is that removal of the undesired oxide layer from the metal substrate 202 occurs within the same coating apparatus that is also used to deposit desired layers onto the substrate 202. No special handling precautions have to be made after the undesired oxide layer has been removed from metal substrate 202, because the substrate 202 remains within the vacuum chamber of the coating apparatus until one or more desired layers have been deposited on the substrate 202. That is, if one tool were used for removal of the undesired oxide layer from the metal substrate 202, and another tool for deposition of the desired layers onto the substrate 202, special handling precautions would be required to ensure that the substrate 202 is not subjected to atmospheric exposure so that the undesired oxide layer does not re-grow.
In
Referring back to
Referring back to
Referring back to
Referring back to
Titanium and oxygen are then introduced into the coating apparatus to deposit one of the titanium oxide layers 214 onto the metal substrate 202 (320). Deposition may be achieved by sputtering, evaporative deposition, CVD, or by another process, depending on the actual coating apparatus employed. Once the desired thickness of the titanium oxide layer in question has been deposited, the remaining titanium and oxygen are removed from the coating apparatus.
Once the desired multiple-layer dielectric has been deposited on the metal substrate 202, the metal substrate 202 is removed from the coating apparatus (322). The method 300 that has been described is advantageous at least because it is a relatively simplified coating process. That is, just two “targets” besides oxygen are ever introduced into the coating apparatus to fabricate all the needed layers on the metal substrate 202. The titanium employed to fabricate the titanium oxide layers 214 is also used to fabricate the adhesion layer 204, as opposed to using a different type of material to fabricate the adhesion layer 204, which would result in additional cost and complexity, and may prevent some types of coating apparatuses, specifically “two target” coating apparatuses, from being employed. Therefore, in at least some embodiments of the invention, just titanium, silicon, and oxygen, in varying combinations, are ever introduced into the coating apparatus to deposit all needed layers on the metal substrate 202.