Rendering tool information as graphic overlays on displayed images of tools

Information

  • Patent Grant
  • 11941734
  • Patent Number
    11,941,734
  • Date Filed
    Friday, March 26, 2021
    3 years ago
  • Date Issued
    Tuesday, March 26, 2024
    a month ago
Abstract
A robotic system may comprise a first robotic arm operatively coupleable to a first tool. The first tool has a first working end. The system may also comprise an image capture device, a display, and a processor. The processor may be configured to cause an image of a work site, which was captured by the image capture device from a perspective of an image reference frame, to be displayed on the display. The image of the work site includes an image of the first working end of the first tool. The processor may also determine a position of the first working end of the first tool in the image of the work site and render a tool information overlay at the position of the first working end of the first tool in the image of the work site. The tool information overlay visually indicates state information for the first tool. The processor may also change the tool information overlay while the first tool is in a first operational state by changing a brightness of the tool information overlay.
Description
FIELD OF THE INVENTION

The present invention generally relates to robotic systems and in particular, to a robotic system, and a method implemented therein, for rendering tool information as graphic overlays on displayed images of tools.


BACKGROUND

In a robotic system, one or more tools may be telerobotically controlled by an operator to perform a procedure on an object at a work site. A camera is provided at the work site to capture images of end effectors of the tools as they interact with the object to perform the procedure, so that the operator may view their movements on a display while telerobotically controlling the tools using associated input devices.


During the procedure, it may be useful to provide the operator with tool information such as whether a tool is energized at the time or which of a plurality of tools is energized at the time or which robotic arm is operatively coupled to a specific tool at the time. The tool information may be provided as text or a graphic in an area on the display which is proximate to its corresponding tool so that the information may be readily associated with the tool. However, such positioning of the tool information may objectionably obstruct images of the tools and/or objects upon which the tools are performing a procedure at the time. Also, when the end effectors of two or more tools are in close proximity to one another, it may not be readily apparent which tool the tool information pertains to at the time. This may be especially problematic if the tool information is stationary and the end effectors are moving.


Alternatively, the tool information may be provided in an area that is not proximate to the tool, such as in a boundary area circumscribing the display viewing area or off to one side of the viewing area to avoid obscuring images of the end effectors and objects upon which the end effectors are performing a procedure at the time. When the tool information is provided outside the gaze area of the operator, however, it may be distracting for the operator to visually find and/or associate the provided tool information with its corresponding tool because the operator's eyes must shift from the area in which the operator is currently gazing to another area on the display. In the case of a stereo display, the situation becomes even more complicated, because the operator's eyes not only have to shift vertically and horizontally around the display to find the tool information, they may also have to look for and focus on tool information at a different depth than the three-dimensional images of the object and tools that the operator is viewing at the time on a stereo vision display.


BRIEF SUMMARY

The embodiments of the invention are summarized by the claims that follow below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a top view of an operating room employing a robotic system utilizing aspects of the present invention.



FIG. 2 illustrates a front view of a movable cart usable in a robotic system utilizing aspects of the present invention.



FIG. 3 illustrates a perspective view of a tool usable in a robotic system utilizing aspects of the present invention.



FIG. 4 illustrates a front view of a console usable in a robotic system utilizing aspects of the present invention.



FIG. 5 illustrates a flow diagram of a method for providing tool information on a display utilizing aspects of the present invention.



FIG. 6 illustrates a simplified view of a display in which tool information is rendered over an image of a tool according to the method of FIG. 5.



FIG. 7 illustrates a simplified view of a display in which tool information is rendered over an image of a tool according to the method of FIG. 5.





DETAILED DESCRIPTION

Although a medical robotic system is described herein, it is to be appreciated that the various aspects of the invention are not to be limited to medical robotic systems. They are applicable to robotic systems in general.



FIG. 1 illustrates a top view of an operating room in which a medical robotic system 1000 is being employed by a Surgeon (“S”) to perform a medical procedure on a Patient (“P”). The medical robotic system in this case is a Minimally Invasive Robotic Surgical (MIRS) system including a Console (“C”) utilized by the Surgeon while performing a minimally invasive diagnostic or surgical procedure on the Patient with assistance from one or more Assistants (“A”) while the Patient is on an Operating table (“O”).


The Console, as further described in reference to FIG. 4, includes a processor 43 which communicates with a movable cart 150 over a bus 110. A plurality of robotic arms 34, 36, 38 are included on the cart 150. A tool 33 is held and manipulated by robotic arm 36, another tool 35 is held and manipulated by robotic arm 34, and an endoscope 37 is held and manipulated by robotic arm 38. In this example, each of the tools 33, 35 and the endoscope 37 is introduced through its own entry aperture in the Patient. As an example, tool 33 is inserted into aperture 166 to enter the Patient.


The Surgeon performs the medical procedure by manipulating the input devices 41, 42 so that the processor 43 causes their respectively associated robotic arms 34, 36 to manipulate their respective removably coupled tools 33, 35 accordingly while the Surgeon views real-time images of a work site in three-dimensions (“3D”) on a stereo vision display 45 of the Console. A stereoscopic endoscope 37 (having left and right cameras for capturing left and right stereo views) captures stereo images of the work site. The processor 43 processes the stereo images so that they may be properly displayed on the stereo vision display 45.


Each of the robotic arms 34, 36, 38 is conventionally formed of links, such as link 162, which are coupled together and manipulated through actuatable joints, such as joint 163. Each of the robotic arms includes a setup arm and a slave manipulator. The setup arm positions its held tool so that a pivot point occurs at its entry aperture into the Patient. The slave manipulator may then manipulate its held tool or endoscope so that it may be pivoted about the pivot point, inserted into and retracted out of the entry aperture, and rotated about its shaft axis. The robotic arms 34, 36, 38 may be carted into the operating room via the cart 150 or alternatively, they may be attached to sliders on a wall or ceiling of the operating room.



FIG. 2 illustrates a front view of the cart 150. In addition to the robotic arms 34, 36, 38, shown in FIG. 1, a fourth robotic arm 32 is shown in FIG. 2. The fourth robotic arm 32 is available so that another tool 31 may be introduced at the work site along with the tools 33, 35 and endoscope 37. Each of the robotic arms 32, 34, 36, 38 may be identified by a number as shown in FIG. 2 and/or a color.



FIG. 3 illustrates an exemplary tool 100 that may be used for either tool 33 or 35. The tool 100 comprises an interface housing 108, a shaft 104, an end effector 102, and a wrist mechanism 106 which includes one or more wrist joints. The interface housing 108 is removably attached to a robotic arm so as to be mechanically coupled to actuators (such as motors) in the slave manipulator of the attached robotic arm. Cables or rods, that are coupled to the actuators of the slave manipulator and extend through the shaft 104 from the interface housing 108 to the one or more wrist joints of the wrist mechanism 106 and to the jaws of the tool's end effector 102, actuate the wrist joints and jaws in a conventional manner. The slave manipulator may also manipulate the tool in pitch and yaw angular rotations about its pivot point at the entry aperture, manipulate the tool in a roll angular rotation about the tool's shaft axis, and insert and retract the tool along a rail on the robotic arm as commanded by the processor 43.



FIG. 4 illustrates, as an example, a front view of the Console usable in the medical robotic system 1000. The Console has left and right input devices 41, 42 which the user may grasp respectively with his/her left and right hands to manipulate associated devices, such as the tools 33, 35, in preferably six degrees-of-freedom (“DOF”). Foot pedals 44 with toe and heel controls are provided on the Console so the user may control movement and/or actuation of devices associated with the foot pedals. A processor 43 is provided in the Console for control and other purposes. The stereo vision display 45 is provided so that the user may view the work site in stereo vision from images captured by the stereoscopic camera of the endoscope 37. Left and right eyepieces, 46 and 47, are provided in the stereo vision display 45 so that the user may view left and right two-dimensional (“2D”) display screens inside the display 45 respectively with the user's left and right eyes.


The processor 43 performs various functions in the medical robotic system. One important function that it performs is to translate and transfer the mechanical motion of input devices 41, 42 through control signals over bus 110 to command actuators of their associated robotic arms to actuate their respective joints so that the Surgeon can effectively manipulate devices, such as the tools 33, 35, and endoscope 37. Another function is to perform various methods described herein. Although described as a processor, it is to be appreciated that the processor 43 may be implemented by any combination of hardware, software and firmware. Also, its functions as described herein may be performed by one unit or divided up among different components, each of which may be implemented in turn by any combination of hardware, software and firmware. Further, although being shown as part of or being physically adjacent to the Console, the processor 43 may also comprise a number of subunits distributed throughout the system.


U.S. Pat. No. 6,659,939 B2 entitled “Cooperative Minimally Invasive Telesurgical System,” which is incorporated herein by reference, provides additional details on a medical robotic system such as described herein.



FIG. 5 illustrates a flow diagram of a method implemented by the processor 43 of the robotic system 1000 for providing tool information on the display 45. In block 5001, the method determines the information that is to be displayed for each tool operatively associated at the time with one of the input devices 41, 42. As an example, tool information may include information of which robotic arm each of the operative tools is operatively coupled to at the time. As another example, the tool information may include information of which tool is electrically active or energized at the time for cauterization or other purposes. The determination in this case may be made using information interactively provided using conventional means by an operator of the system and/or information pre-programmed into the system.


In block 5002, the method determines, for each tool which has tool information to be displayed, the current pose (i.e., position and orientation) of the tool in its tool reference frame. Each tool is operatively coupled to a robotic arm that manipulates the tool according to control commands generated by the processor 43 in response to operator manipulation of its associated input device. The manipulation of the tool is relative to a pivot point, which serves as origin for the tool reference frame. Determination of the current pose for each tool may be performed by using kinematics of the robotic arm and/or other well known techniques. Additional details may be found, for example, in U.S. 2006/0258938 A1 entitled “Methods and System for Performing 3-D Tool Tracking by Fusion of Sensor and/or Camera Derived Data during Minimally Invasive Robotic Surgery,” which is incorporated herein by reference.


In block 5003, for each tool which has tool information to be displayed, the method translates the determined tool pose in the tool reference frame to a tool pose in an image reference frame which is from the perspective of the stereo camera of the endoscope 37. As an example, the tool pose in the tool reference frame may first be translated to a tool pose in a fixed reference frame using a previously determined transform for the tool reference frame to the fixed reference. The tool pose in the fixed reference frame may then be translated to a tool pose in a camera reference frame using a previously determined transform from the fixed reference frame to the camera reference frame. Finally, the tool pose in the camera reference frame may be translated to a tool pose in the image reference frame using previously determined information of the camera pose in the camera reference frame. Additional details for such translations and transforms may be found, for example, in U.S. Pat. No. 6,424,885 entitled “Camera Referenced Control in a Minimally Invasive Surgical Apparatus”, which is incorporated herein by reference.


In block 5004, the method registers the tool information to the tool pose in the image reference frame. The tool information is preferably in the form of a three-dimensional overlay that conforms to the three-dimensional shape of the tool at a designated position on the tool. The tool information is then registered with the tool pose by registering the three-dimensional overlay at the designated position on the tool at the tool pose in the image reference frame. In the case where the tool information is a two-dimensional graphic of the tool information, a reference point of the two-dimensional graphic is registered to a designated point on the tool at the tool pose in the image reference frame.


In block 5005, the method renders the tool information as an overlay to the image of tool at the designated point in the display. In the case where the tool information is a three-dimensional overlay, rendering the overlay is straightforward. In this case, the rendering appears as a decal of the tool information which has been applied to the tool at the designated point. In the case where the tool information is a two-dimensional graphic, the two-dimensional graphic is bent to conform to the shape of the tool at the designated point and rendered so as to appear as if applying a decal of the tool information onto the tool at the designated point.



FIG. 6 illustrates, as an example, a simplified stereo view of the stereo vision display 45 from the perspective of an operator of the system 1000 after employing the method of FIG. 5 to render tool information in the form of icons 334, 335, 354 respectively over images of working ends of the tools 33, 35 on the display 45. A viewing area 602 displays images which have been processed to provide telepresence from images of the work site captured by the stereo camera of the endoscope 37. An optional boundary area 601 circumscribes the viewing area 602. In prior systems, tool information may be provided in the boundary area 601. The boundary area 601, however, is generally outside a current gaze area of the operator since the operator's eyes are focusing on images of end effectors 333, 353 of the tools 33, 35 on the display 45 as the end effectors 333, 353 interact with the object 610 at the work site to perform a procedure on the object 610.


The tool information for each tool, in this example, includes identification numbers of robotic arms which are operatively coupled to the tools 33, 35 at the time. In particular, the icon 334 has a numeral “2” on it to indicate the tool 33 is operatively coupled to the robotic arm 34, which is designated as robotic arm “2” by the numeral “2” being printed on it as shown in FIG. 2. Likewise, the icon 354 has a numeral “3” on it to indicate the tool 35 is operatively coupled to the robotic arm 36, which is designated as robotic arm “3” by the numeral “3” being printed on it as shown in FIG. 2. The icons 334, 354 are placed over images of wrists 332, 352 of their respective tools 33, 35. Alternatively, they may be overlayed over other designated points of the working ends of the tools 33, 35, such as on shafts 331, 351 or end effectors 333, 353.


Alternatively, or additionally, the tool information for each tool may indicate which input device and/or Surgeon is operatively associated at the time with the tool. When only one Surgeon is performing the procedure, then the letter “L” overlaid an image of the tool may indicate the tool is operatively associated with the left input device 41. Conversely, the letter “R” overlaid an image of the tool may indicate the tool is operatively associated with the right input device 42. When two or more Surgeons are performing the procedure, for example in collaboration using multiple consoles, then the initials of the Surgeon who is operatively associated with (i.e., has control of) the tool at the time may be overlaid an image of the tool. Alternatively, each Surgeon may be assigned a unique symbol or color which is overlaid the image of the tool that is being controlled by that Surgeon.


Alternatively, or additionally, the tool information for each tool may indicate state information for the tool, such as whether the tool is energized at the time or whether or not the tool is locked in position at the time. As an example, the mere presence of the icon 335 over the image of the end effector 333 may indicate tool 33 is energized at the time. Alternatively, an icon such as a red dot over the image of the end effector of a tool may indicate the tool is energized at the time. As another example, another icon such as a yellow dot over the image of the end effector of a tool may indicate the tool is locked in position at the time. Information of whether or not a tool is locked in position at the time is particularly useful for tools such as a cardiac stabilizer which is typically locked in position during a beating heart procedure so it cannot be inadvertently moved. The display of a locked or unlocked symbol over an image of the tool would serve as a reminder in this case to the Surgeon to lock the tool in place after positioning it.


Although static (non-moving) tool information is described herein, it is to be appreciated that the tool information may alternatively, or additionally, comprise dynamic or animated tool information when useful to better convey their meanings or draw the Surgeon's attention to them. For example, a pulsating red dot may be useful for quickly conveying to the Surgeon which tool is energized at the time to alert the Surgeon to avoid inadvertently touching its tip to unintended tissue areas. FIG. 7 illustrates a simplified stereo view of the stereo vision display 45 from the perspective of an operator of the system 1000 after employing the method of FIG. 5 to render tool information in the form of a color overlay over an image of the end effector 333 of the tool 33 on the display 45. The color overlay in this example indicates the tool 333 is being energized at the time for cauterization or other purposes. The color overlay may be any pre-designated color and remain over the image of the end effector either only temporarily (e.g., fading out) or during an entire period that the tool is being energized. Although the end effector is colored in this example to indicate that it is being energized, for example, with electrical or radio frequency power, other parts of the tool 33, such as its shaft or wrist, may be rendered with color instead or in addition to the end effector. Also, instead of using a color, a different brightness level over the image of the tool being energized may be used.


Although the various aspects of the present invention have been described with respect to a preferred embodiment, it will be understood that the invention is entitled to full protection within the full scope of the appended claims.

Claims
  • 1. A robotic system comprising: a first robotic arm operatively coupleable to a first tool, the first tool having a first working end;an image capture device;a display; anda processor configured to: cause an image of a work site, which was captured by the image capture device from a perspective of an image reference frame, to be displayed on the display, the image of the work site including an image of the first working end of the first tool;determine a position of the first working end of the first tool in the image of the work site;render a tool information overlay at the position of the first working end of the first tool in the image of the work site, wherein the tool information overlay visually indicates state information for the first tool; andchange the tool information overlay while the first tool is in a first operational state, wherein changing the tool information overlay includes changing a brightness of the tool information overlay.
  • 2. The robotic system of claim 1, wherein the first operational state is a locked state of the first tool.
  • 3. The robotic system of claim 1, wherein the first operational state is an energized state of the first tool.
  • 4. The robotic system of claim 1 wherein changing the brightness of the tool information overlay incudes fading out the tool information overlay while the first tool is in the first operational state.
  • 5. The robotic system of claim 1 wherein the tool information overlay is over an end effector of the first working end of the first tool.
  • 6. The robotic system of claim 1 wherein the tool information overlay is over a portion of the portion of the first working end of the first tool proximal of an end effector.
  • 7. The robotic system of claim 1 wherein changing the tool information overlay includes changing a color of the tool information overlay.
  • 8. The robotic system of claim 1 wherein determining the position of the first working end of the first tool in the image of the work site includes translating the position of the first working end of the first tool in a tool reference frame to the image reference frame.
  • 9. The robotic system of claim 1, wherein the processor is further configured to: change the tool information overlay when the first tool transitions from the first operational state to a second operational state.
  • 10. A computer-implemented method comprising: displaying an image of a work site to be displayed on a display, the image captured by an image capture device from a perspective of an image reference frame, the image of the work site including an image of a first working end of a first tool operatively coupled to a first robotic arm;determining a position of the first working end of the first tool in the image of the work site;rendering a tool information overlay at the position of the first working end of the first tool in the image of the work site, wherein the tool information overlay visually indicates state information for the first tool; andchanging the tool information overlay while the first tool is in a first operational state, wherein changing the tool information overlay includes changing a brightness of the tool information overlay.
  • 11. The computer-implemented method of claim 10, wherein the first operational state is a locked state of the first tool.
  • 12. The computer-implemented method of claim 10, wherein the first operational state is an energized state of the first tool.
  • 13. The computer-implemented method of claim 10, wherein changing the brightness of the tool information overlay incudes fading out the tool information overlay while the first tool is in the first operational state.
  • 14. The computer-implemented method of claim 10, wherein the tool information overlay is over an end effector of the first working end of the first tool.
  • 15. The computer-implemented method of claim 10, wherein the tool information overlay is over a portion of the portion of the first working end of the first tool proximal of an end effector.
  • 16. The computer-implemented method of claim 10, wherein changing the tool information overlay includes changing a color of the tool information overlay.
  • 17. The computer-implemented method of claim 10, wherein determining the position of the first working end of the first tool in the image of the work site includes translating the position of the first working end of the first tool in a tool reference frame to the image reference frame.
  • 18. The computer-implemented method of claim 10, further comprising: changing the tool information overlay when the first tool transitions from the first operational state to a second operational state.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/351,444 (filed Mar. 12, 2019), which is a continuation of U.S. application Ser. No. 15/946,408 (filed Apr. 5, 2018), now U.S. Pat. No. 10,282,881, which is a continuation of U.S. application Ser. No. 13/768,047 (filed Feb. 15, 2013), now U.S. Pat. No. 10,008,017, which is a continuation-in-part of U.S. application Ser. No. 12/415,354 (filed Mar. 31, 2009), now U.S. Pat. No. 9,789,608, all of which are incorporated herein by reference in their entirety.

US Referenced Citations (523)
Number Name Date Kind
3628535 Ostrowsky et al. Dec 1971 A
3818284 Deversterre et al. Jun 1974 A
3890552 Devol et al. Jun 1975 A
3905215 Wright Sep 1975 A
3923166 Fletcher et al. Dec 1975 A
4150326 Engelberger et al. Apr 1979 A
4349837 Hinds Sep 1982 A
4577621 Patel Mar 1986 A
4588348 Beni et al. May 1986 A
4644237 Frushour et al. Feb 1987 A
4672963 Barken Jun 1987 A
4673988 Jansson et al. Jun 1987 A
4722056 Roberts et al. Jan 1988 A
4759074 Iadipaolo et al. Jul 1988 A
4762455 Coughlan et al. Aug 1988 A
4762456 Nelson Aug 1988 A
4791934 Brunnett Dec 1988 A
4815450 Patel Mar 1989 A
4831549 Red et al. May 1989 A
4833383 Skarr et al. May 1989 A
4837703 Kakazu et al. Jun 1989 A
4837734 Ichikawa et al. Jun 1989 A
4839838 LaBiche et al. Jun 1989 A
4853874 Iwamoto et al. Aug 1989 A
4858149 Quarendon Aug 1989 A
4860215 Seraji Aug 1989 A
4863133 Bonnell Sep 1989 A
4891767 Rzasa et al. Jan 1990 A
4942539 McGee et al. Jul 1990 A
4979949 Matsen, III et al. Dec 1990 A
4984157 Cline et al. Jan 1991 A
4989253 Liang et al. Jan 1991 A
5046022 Conway et al. Sep 1991 A
5053976 Nose et al. Oct 1991 A
5079699 Tuy et al. Jan 1992 A
5086401 Glassman et al. Feb 1992 A
5098426 Sklar et al. Mar 1992 A
5099846 Hardy Mar 1992 A
5142930 Allen et al. Sep 1992 A
5170347 Tuy et al. Dec 1992 A
5174276 Crockard Dec 1992 A
5176702 Bales et al. Jan 1993 A
5182641 Diner et al. Jan 1993 A
5184009 Wright et al. Feb 1993 A
5184601 Putman Feb 1993 A
5187796 Wang et al. Feb 1993 A
5217003 Wilk Jun 1993 A
5230338 Allen et al. Jul 1993 A
5230623 Guthrie et al. Jul 1993 A
5235510 Yamada et al. Aug 1993 A
5239246 Kim Aug 1993 A
5251127 Raab Oct 1993 A
5251611 Zehel et al. Oct 1993 A
5257203 Riley et al. Oct 1993 A
5261404 Mick et al. Nov 1993 A
5266875 Slotine et al. Nov 1993 A
5279309 Taylor et al. Jan 1994 A
5299288 Glassman et al. Mar 1994 A
5313306 Kuban et al. May 1994 A
5321353 Furness Jun 1994 A
5337733 Bauerfeind et al. Aug 1994 A
5341950 Sinz Aug 1994 A
5343385 Joskowicz et al. Aug 1994 A
5368015 Wilk Nov 1994 A
5368428 Hussey et al. Nov 1994 A
5382885 Salcudean et al. Jan 1995 A
5397323 Taylor et al. Mar 1995 A
5402801 Taylor Apr 1995 A
5408409 Glassman et al. Apr 1995 A
5417210 Funda et al. May 1995 A
5430643 Seraji Jul 1995 A
5445166 Taylor et al. Aug 1995 A
5454827 Aust et al. Oct 1995 A
5474571 Lang Dec 1995 A
5482029 Sekiguchi et al. Jan 1996 A
5493595 Schoolman Feb 1996 A
5503320 Webster et al. Apr 1996 A
5515478 Wang May 1996 A
5524180 Wang et al. Jun 1996 A
5528955 Hannaford et al. Jun 1996 A
5531742 Barken Jul 1996 A
5551432 Iezzi Sep 1996 A
5553198 Wang et al. Sep 1996 A
5572999 Funda et al. Nov 1996 A
5601549 Miyagi Feb 1997 A
5617858 Taverna et al. Apr 1997 A
5624390 Van Dyne Apr 1997 A
5624398 Smith et al. Apr 1997 A
5631973 Green May 1997 A
5638819 Manwaring et al. Jun 1997 A
5657429 Wang et al. Aug 1997 A
5695500 Taylor et al. Dec 1997 A
5704897 Truppe Jan 1998 A
5715729 Toyama et al. Feb 1998 A
5737500 Seraji et al. Apr 1998 A
5748767 Raab May 1998 A
5749362 Funda et al. May 1998 A
5754741 Wang et al. May 1998 A
5755725 Druais May 1998 A
5759151 Sturges Jun 1998 A
5759153 Webler et al. Jun 1998 A
5762458 Wang et al. Jun 1998 A
5765561 Chen et al. Jun 1998 A
5784542 Ohm et al. Jul 1998 A
5788688 Bauer et al. Aug 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5797849 Vesely et al. Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5807377 Madhani et al. Sep 1998 A
5808665 Green et al. Sep 1998 A
5810008 Dekel et al. Sep 1998 A
5810880 Jensen et al. Sep 1998 A
5814038 Jensen et al. Sep 1998 A
5815640 Wang et al. Sep 1998 A
5817022 Vesely Oct 1998 A
5820545 Arbter et al. Oct 1998 A
5820623 Ng Oct 1998 A
5831408 Jacobus et al. Nov 1998 A
5835693 Lynch et al. Nov 1998 A
5836880 Pratt Nov 1998 A
5841950 Wang et al. Nov 1998 A
5842473 Fenster et al. Dec 1998 A
5842993 Eichelberger et al. Dec 1998 A
5853367 Chalek et al. Dec 1998 A
5855553 Tajima et al. Jan 1999 A
5855583 Wang et al. Jan 1999 A
5859934 Green Jan 1999 A
5876325 Mizuno et al. Mar 1999 A
5877819 Branson Mar 1999 A
5878193 Wang et al. Mar 1999 A
5887121 Funda et al. Mar 1999 A
5907664 Wang et al. May 1999 A
5911036 Wright et al. Jun 1999 A
5931832 Jensen Aug 1999 A
5938678 Zirps et al. Aug 1999 A
5950629 Taylor et al. Sep 1999 A
5964707 Fenster et al. Oct 1999 A
5971976 Wang et al. Oct 1999 A
5980460 Oestensen et al. Nov 1999 A
5980461 Rajan Nov 1999 A
5987591 Jyumonji Nov 1999 A
5993390 Savord et al. Nov 1999 A
5993391 Kamiyama Nov 1999 A
5999662 Burt et al. Dec 1999 A
6019724 Gronningsaeter et al. Feb 2000 A
6036637 Kudo Mar 2000 A
6059718 Taniguchi et al. May 2000 A
6063095 Wang et al. May 2000 A
6072466 Shah et al. Jun 2000 A
6083170 Ben-Haim Jul 2000 A
6084371 Kress et al. Jul 2000 A
6096025 Borders Aug 2000 A
6115053 Perlin Sep 2000 A
6120433 Mizuno et al. Sep 2000 A
6129670 Burdette et al. Oct 2000 A
6184868 Shahoian et al. Feb 2001 B1
6196081 Yau Mar 2001 B1
6201984 Funda et al. Mar 2001 B1
6204620 McGee et al. Mar 2001 B1
6224542 Chang et al. May 2001 B1
6226566 Funda et al. May 2001 B1
6241725 Cosman Jun 2001 B1
6243624 Wu et al. Jun 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
6256529 Holupka et al. Jul 2001 B1
6270453 Sakai Aug 2001 B1
6292712 Bullen Sep 2001 B1
6307285 Delson et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6325808 Bernard et al. Dec 2001 B1
6330837 Charles et al. Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6342889 Callahan Jan 2002 B1
6358749 Orthman Mar 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6398726 Ramans et al. Jun 2002 B1
6402737 Tajima et al. Jun 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
6425865 Salcudean et al. Jul 2002 B1
6434416 Mizoguchi et al. Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6442417 Shahidi et al. Aug 2002 B1
6456901 Xi et al. Sep 2002 B1
6459926 Nowlin et al. Oct 2002 B1
6468265 Evans et al. Oct 2002 B1
6491701 Tierney et al. Dec 2002 B2
6493608 Niemeyer Dec 2002 B1
6522906 Salisbury, Jr. et al. Feb 2003 B1
6522908 Miyashita et al. Feb 2003 B1
6547782 Taylor Apr 2003 B1
6550757 Sesek Apr 2003 B2
6569084 Mizuno et al. May 2003 B1
6574355 Green Jun 2003 B2
6594522 Korenaga Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6599247 Stetten Jul 2003 B1
6602185 Uchikubo Aug 2003 B1
6620173 Gerbi et al. Sep 2003 B2
6642836 Wang et al. Nov 2003 B1
6643563 Hosek et al. Nov 2003 B2
6645196 Nixon et al. Nov 2003 B1
6648816 Irion et al. Nov 2003 B2
6654031 Ito et al. Nov 2003 B1
6656110 Irion et al. Dec 2003 B1
6659939 Moll et al. Dec 2003 B2
6665554 Charles et al. Dec 2003 B1
6671581 Niemeyer et al. Dec 2003 B2
6676669 Charles et al. Jan 2004 B2
6699177 Wang et al. Mar 2004 B1
6702736 Chen et al. Mar 2004 B2
6714839 Salisbury, Jr. et al. Mar 2004 B2
6765569 Neumann et al. Jul 2004 B2
6770081 Cooper et al. Aug 2004 B1
6786896 Madhani et al. Sep 2004 B1
6799065 Niemeyer Sep 2004 B1
6817973 Merril et al. Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6837883 Moll et al. Jan 2005 B2
6847922 Wampler, II Jan 2005 B1
6852107 Wang et al. Feb 2005 B2
6866671 Tierney et al. Mar 2005 B2
6876891 Schuler et al. Apr 2005 B1
6899672 Chin et al. May 2005 B2
6905460 Wang et al. Jun 2005 B2
6926709 Bieger et al. Aug 2005 B2
6960162 Saadat et al. Nov 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
7041053 Miyake May 2006 B2
7107090 Salisbury et al. Sep 2006 B2
7107124 Green Sep 2006 B2
7118582 Wang et al. Oct 2006 B1
7144367 Chen et al. Dec 2006 B2
7155315 Niemeyer et al. Dec 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7181315 Watanabe et al. Feb 2007 B2
7194118 Harris et al. Mar 2007 B1
7211978 Chang et al. May 2007 B2
7297142 Brock Nov 2007 B2
7302288 Schellenberg et al. Nov 2007 B1
7413565 Wang et al. Aug 2008 B2
7491198 Kockro Feb 2009 B2
7493153 Ahmed et al. Feb 2009 B2
7574250 Niemeyer Aug 2009 B2
7725214 Diolaiti May 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7833156 Williams et al. Nov 2010 B2
7865266 Moll et al. Jan 2011 B2
7963913 Devengenzo et al. Jun 2011 B2
7967813 Cooper et al. Jun 2011 B2
7979157 Anvari Jul 2011 B2
7996110 Lipow et al. Aug 2011 B2
7998058 Kura et al. Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8005571 Sutherland et al. Aug 2011 B2
8016749 Clerc et al. Sep 2011 B2
8062288 Cooper et al. Nov 2011 B2
8108072 Zhao et al. Jan 2012 B2
8120301 Goldberg et al. Feb 2012 B2
8130907 Maurer, Jr. et al. Mar 2012 B2
8142447 Cooper et al. Mar 2012 B2
8155479 Hoffman et al. Apr 2012 B2
8170716 Coste-Maniere et al. May 2012 B2
8175861 Huang et al. May 2012 B2
8221304 Shioda et al. Jul 2012 B2
8244443 Oshima et al. Aug 2012 B2
8256319 Cooper et al. Sep 2012 B2
8306656 Schaible et al. Nov 2012 B1
8315720 Mohr et al. Nov 2012 B2
8335590 Costa et al. Dec 2012 B2
8398541 Dimaio et al. Mar 2013 B2
8419717 Diolaiti et al. Apr 2013 B2
8541970 Nowlin et al. Sep 2013 B2
8554368 Fielding et al. Oct 2013 B2
8597280 Cooper et al. Dec 2013 B2
8620473 Diolaiti et al. Dec 2013 B2
8624537 Nowlin et al. Jan 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8801601 Prisco et al. Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8864652 Diolaiti et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8903546 Diolaiti et al. Dec 2014 B2
8918211 Diolaiti et al. Dec 2014 B2
8944070 Guthart et al. Feb 2015 B2
9084623 Gomez et al. Jul 2015 B2
9089256 Tognaccini et al. Jul 2015 B2
9101397 Guthart et al. Aug 2015 B2
9138129 Diolaiti Sep 2015 B2
9232984 Guthart et al. Jan 2016 B2
9259283 Ogawa et al. Feb 2016 B2
9333042 Diolaiti et al. May 2016 B2
9345387 Larkin May 2016 B2
9387048 Donhowe et al. Jul 2016 B2
9469034 Diolaiti et al. Oct 2016 B2
9492927 Diolaiti et al. Nov 2016 B2
9516996 Diolaiti et al. Dec 2016 B2
9565990 Lee et al. Feb 2017 B2
9622826 Diolaiti et al. Apr 2017 B2
9629520 Diolaiti Apr 2017 B2
9717563 Tognaccini et al. Aug 2017 B2
9718190 Larkin et al. Aug 2017 B2
9788909 Larkin et al. Oct 2017 B2
9789608 Itkowitz et al. Oct 2017 B2
9795446 Dimaio et al. Oct 2017 B2
9801690 Larkin et al. Oct 2017 B2
9901408 Larkin Feb 2018 B2
9949798 Weir et al. Apr 2018 B2
9956044 Gomez et al. May 2018 B2
10008017 Itkowitz et al. Jun 2018 B2
10137575 Itkowitz et al. Nov 2018 B2
10188472 Diolaiti et al. Jan 2019 B2
10258425 Mustufa et al. Apr 2019 B2
10271909 Guthart et al. Apr 2019 B2
10271912 Diolaiti et al. Apr 2019 B2
10271915 Diolaiti et al. Apr 2019 B2
10282881 Itkowitz et al. May 2019 B2
10368952 Tognaccini et al. Aug 2019 B2
10433919 Guthart et al. Oct 2019 B2
10507066 DiMaio et al. Dec 2019 B2
10537994 Diolaiti et al. Jan 2020 B2
10695136 Larkin Jun 2020 B2
10730187 Larkin et al. Aug 2020 B2
10737394 Itkowitz et al. Aug 2020 B2
10772689 Gomez et al. Sep 2020 B2
10773388 Larkin et al. Sep 2020 B2
10828774 Diolaiti et al. Nov 2020 B2
10959798 Diolaiti et al. Mar 2021 B2
10984567 Itkowitz et al. Apr 2021 B2
11382702 Tognaccini et al. Jul 2022 B2
11389255 DiMaio et al. Jul 2022 B2
11399908 Diolaiti et al. Aug 2022 B2
11432888 Diolaiti et al. Sep 2022 B2
11596490 Diolaiti et al. Mar 2023 B2
11638622 Mustufa et al. May 2023 B2
11638999 Itkowitz et al. May 2023 B2
20010035871 Bieger et al. Nov 2001 A1
20020044104 Friedrich et al. Apr 2002 A1
20020045888 Ramans et al. Apr 2002 A1
20020089544 Jahn et al. Jul 2002 A1
20020120188 Brock et al. Aug 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20020156345 Eppler et al. Oct 2002 A1
20020193800 Kienzle, III et al. Dec 2002 A1
20030023347 Konno et al. Jan 2003 A1
20030032878 Shahidi Feb 2003 A1
20030055410 Evans et al. Mar 2003 A1
20030060927 Gerbi et al. Mar 2003 A1
20030109780 Coste-Maniere et al. Jun 2003 A1
20030114730 Hale et al. Jun 2003 A1
20030144649 Ghodoussi et al. Jul 2003 A1
20030167103 Tang et al. Sep 2003 A1
20030225479 Waled Dec 2003 A1
20040024311 Quaid et al. Feb 2004 A1
20040034283 Quaid et al. Feb 2004 A1
20040039485 Niemeyer et al. Feb 2004 A1
20040044295 Reinert et al. Mar 2004 A1
20040046711 Triebfuerst Mar 2004 A1
20040046916 Lyu et al. Mar 2004 A1
20040049205 Lee et al. Mar 2004 A1
20040077940 Kienzle et al. Apr 2004 A1
20040106916 Quaid et al. Jun 2004 A1
20040138700 Cooper et al. Jul 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040189675 Pretlove et al. Sep 2004 A1
20040210105 Hale et al. Oct 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040238732 State et al. Dec 2004 A1
20040243147 Lipow Dec 2004 A1
20040249508 Suita et al. Dec 2004 A1
20040254454 Kockro Dec 2004 A1
20040254679 Nagasaka Dec 2004 A1
20050022158 Launay et al. Jan 2005 A1
20050054895 Hoeg et al. Mar 2005 A1
20050059960 Simaan et al. Mar 2005 A1
20050096502 Khalili May 2005 A1
20050096892 Watanabe et al. May 2005 A1
20050107680 Kopf et al. May 2005 A1
20050113640 Saadat et al. May 2005 A1
20050166413 Crampton et al. Aug 2005 A1
20050203380 Sauer et al. Sep 2005 A1
20050228365 Wang et al. Oct 2005 A1
20050251113 Kienzle, III Nov 2005 A1
20050267359 Hussaini et al. Dec 2005 A1
20050273198 Bischoff Dec 2005 A1
20060013523 Childlers et al. Jan 2006 A1
20060058988 Defranoux et al. Mar 2006 A1
20060079108 McCoy Apr 2006 A1
20060142657 Quaid et al. Jun 2006 A1
20060149129 Watts et al. Jul 2006 A1
20060161045 Merril et al. Jul 2006 A1
20060161138 Orban, III et al. Jul 2006 A1
20060178559 Kumar et al. Aug 2006 A1
20060258938 Hoffman et al. Nov 2006 A1
20060261770 Kishi et al. Nov 2006 A1
20060293592 Jensen Dec 2006 A1
20070016174 Millman et al. Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070038080 Salisbury, Jr. et al. Feb 2007 A1
20070060879 Weitzner et al. Mar 2007 A1
20070071310 Kobayashi et al. Mar 2007 A1
20070081714 Wallack et al. Apr 2007 A1
20070106307 Bodduluri et al. May 2007 A1
20070135803 Belson Jun 2007 A1
20070138992 Prisco et al. Jun 2007 A1
20070142825 Prisco et al. Jun 2007 A1
20070142968 Prisco et al. Jun 2007 A1
20070144298 Miller Jun 2007 A1
20070151389 Prisco et al. Jul 2007 A1
20070156019 Larkin et al. Jul 2007 A1
20070156285 Sillman et al. Jul 2007 A1
20070167801 Webler et al. Jul 2007 A1
20070177009 Bayer et al. Aug 2007 A1
20070197896 Moll et al. Aug 2007 A1
20070229015 Yoshida et al. Oct 2007 A1
20070255454 Dariush Nov 2007 A1
20070265491 Krag et al. Nov 2007 A1
20070270650 Eno et al. Nov 2007 A1
20070270685 Kang et al. Nov 2007 A1
20070283970 Mohr et al. Dec 2007 A1
20070287884 Schena Dec 2007 A1
20070287889 Mohr Dec 2007 A1
20070287992 Diolaiti et al. Dec 2007 A1
20070296366 Quaid et al. Dec 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080033240 Hoffman et al. Feb 2008 A1
20080045800 Farr Feb 2008 A2
20080051629 Sugiyama et al. Feb 2008 A1
20080064921 Larkin et al. Mar 2008 A1
20080064927 Larkin et al. Mar 2008 A1
20080064931 Schena et al. Mar 2008 A1
20080065097 Duval et al. Mar 2008 A1
20080065098 Larkin et al. Mar 2008 A1
20080065099 Cooper et al. Mar 2008 A1
20080065100 Larkin Mar 2008 A1
20080065101 Larkin Mar 2008 A1
20080065102 Cooper Mar 2008 A1
20080065104 Larkin et al. Mar 2008 A1
20080065105 Larkin et al. Mar 2008 A1
20080065106 Larkin Mar 2008 A1
20080065107 Larkin et al. Mar 2008 A1
20080065110 Duval et al. Mar 2008 A1
20080071288 Larkin et al. Mar 2008 A1
20080071289 Cooper et al. Mar 2008 A1
20080071290 Larkin et al. Mar 2008 A1
20080071291 Duval et al. Mar 2008 A1
20080081992 Kagermeier Apr 2008 A1
20080118115 Williamson et al. May 2008 A1
20080119824 Weitzner et al. May 2008 A1
20080140087 Barbagli Jun 2008 A1
20080151041 Shafer et al. Jun 2008 A1
20080161830 Sutherland et al. Jul 2008 A1
20080188986 Hoppe Aug 2008 A1
20080243142 Gildenberg Oct 2008 A1
20080247506 Maschke Oct 2008 A1
20080269862 Elmouelhi et al. Oct 2008 A1
20080287963 Rogers et al. Nov 2008 A1
20090005640 Fehre et al. Jan 2009 A1
20090012531 Quaid et al. Jan 2009 A1
20090024142 Ruiz Morales Jan 2009 A1
20090088634 Zhao et al. Apr 2009 A1
20090105750 Price et al. Apr 2009 A1
20090192523 Larkin et al. Jul 2009 A1
20090228145 Hodgson et al. Sep 2009 A1
20090248036 Hoffman et al. Oct 2009 A1
20090259105 Miyano et al. Oct 2009 A1
20090326322 Diolaiti Dec 2009 A1
20090326552 Diolaiti Dec 2009 A1
20090326711 Chang et al. Dec 2009 A1
20100004505 Umemoto et al. Jan 2010 A1
20100036198 Tacchino et al. Feb 2010 A1
20100106356 Trepagnier et al. Apr 2010 A1
20100169815 Zhao et al. Jul 2010 A1
20100198232 Diolaiti Aug 2010 A1
20100228264 Robinson et al. Sep 2010 A1
20100249657 Nycz et al. Sep 2010 A1
20100298839 Castro Nov 2010 A1
20100317965 Itkowitz et al. Dec 2010 A1
20100328363 Nakanishi Dec 2010 A1
20100331855 Zhao et al. Dec 2010 A1
20100331856 Carlson et al. Dec 2010 A1
20100332033 Diolaiti et al. Dec 2010 A1
20110071675 Wells et al. Mar 2011 A1
20110196199 Donhowe et al. Aug 2011 A1
20110258568 Pandurangan et al. Oct 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110313573 Schreiber et al. Dec 2011 A1
20120132450 Timm et al. May 2012 A1
20120154564 Hoffman et al. Jun 2012 A1
20130178868 Roh Jul 2013 A1
20130245375 DiMaio et al. Sep 2013 A1
20130289767 Lim et al. Oct 2013 A1
20130289768 Yeung et al. Oct 2013 A1
20140052150 Taylor et al. Feb 2014 A1
20150032126 Nowlin et al. Jan 2015 A1
20150051733 Nowlin et al. Feb 2015 A1
20170210012 Larkin et al. Jul 2017 A1
20180297206 Larkin et al. Oct 2018 A1
20190090967 Guthart et al. Mar 2019 A1
20190110847 Diolaiti et al. Apr 2019 A1
20190201134 Diolaiti et al. Jul 2019 A1
20190201152 Diolaiti et al. Jul 2019 A1
20190209262 Mustufa et al. Jul 2019 A1
20190213770 Itkowitz et al. Jul 2019 A1
20190298463 Tognaccini et al. Oct 2019 A1
20200085520 DiMaio et al. Mar 2020 A1
20200331147 Larkin et al. Oct 2020 A1
20200368915 Itkowitz et al. Nov 2020 A1
20210059780 Sutherland et al. Mar 2021 A1
20210153964 Diolaiti et al. May 2021 A1
20210290326 Diolaiti et al. Sep 2021 A1
20220296317 Dimaio et al. Sep 2022 A1
20220354600 Tognaccini et al. Nov 2022 A1
20220361969 Diolaiti et al. Nov 2022 A1
20230225803 Mustufa et al. Jul 2023 A1
Foreign Referenced Citations (99)
Number Date Country
2682992 Nov 2008 CA
1846181 Oct 2006 CN
1879574 Dec 2006 CN
101160104 Apr 2008 CN
101184429 May 2008 CN
101530347 Sep 2009 CN
101594816 Dec 2009 CN
101610712 Dec 2009 CN
514584 Nov 1992 EP
0646358 Apr 1995 EP
812662 Dec 1997 EP
1125557 Aug 2001 EP
0732082 Sep 2002 EP
1310844 May 2003 EP
1424173 Jun 2004 EP
1269389 Sep 2005 EP
1131004 Oct 2009 EP
H01280449 Nov 1989 JP
H01310875 Dec 1989 JP
H04231034 Aug 1992 JP
H07184923 Jul 1995 JP
H07265321 Oct 1995 JP
H0889506 Apr 1996 JP
H08107875 Apr 1996 JP
H08132372 May 1996 JP
H08154321 Jun 1996 JP
H08215211 Aug 1996 JP
H08224241 Sep 1996 JP
H08275958 Oct 1996 JP
H08299363 Nov 1996 JP
H09141580 Jun 1997 JP
H10146341 Jun 1998 JP
H11309 Jan 1999 JP
2000500679 Jan 2000 JP
2000300579 Oct 2000 JP
2001000448 Jan 2001 JP
2001061850 Mar 2001 JP
2001104333 Apr 2001 JP
2001202531 Jul 2001 JP
2001287183 Oct 2001 JP
2002103258 Apr 2002 JP
2002287613 Oct 2002 JP
2003053684 Feb 2003 JP
2003300444 Oct 2003 JP
2003339725 Dec 2003 JP
2004105638 Apr 2004 JP
3539645 Jul 2004 JP
2004223128 Aug 2004 JP
3587830 Nov 2004 JP
2005110878 Apr 2005 JP
2005135278 May 2005 JP
2005303327 Oct 2005 JP
2005334650 Dec 2005 JP
2007029232 Feb 2007 JP
2007090481 Apr 2007 JP
2007508913 Apr 2007 JP
2007531553 Nov 2007 JP
2008173724 Jul 2008 JP
2009006410 Jan 2009 JP
2009012106 Jan 2009 JP
2009039814 Feb 2009 JP
2009525097 Jul 2009 JP
4354042 Oct 2009 JP
2009537229 Oct 2009 JP
4883563 Feb 2012 JP
WO-9501757 Jan 1995 WO
WO-9507055 Mar 1995 WO
WO-9729690 Aug 1997 WO
WO-9743942 Nov 1997 WO
WO-9743943 Nov 1997 WO
WO-9823216 Jun 1998 WO
WO-0030548 Jun 2000 WO
WO-03061482 Jul 2003 WO
WO-2004014244 Feb 2004 WO
WO-2004114037 Dec 2004 WO
WO-2005037120 Apr 2005 WO
WO-2005039391 May 2005 WO
WO-2005043319 May 2005 WO
WO-2006079108 Jul 2006 WO
WO-2006091494 Aug 2006 WO
WO-2006124390 Nov 2006 WO
WO-2007005555 Jan 2007 WO
WO-2007012185 Feb 2007 WO
WO-2007030173 Mar 2007 WO
WO-2007047782 Apr 2007 WO
WO-2007088206 Aug 2007 WO
WO-2007088208 Aug 2007 WO
WO-2007136768 Nov 2007 WO
WO-2007146987 Dec 2007 WO
WO-2008002830 Jan 2008 WO
WO-2008065581 Jun 2008 WO
WO-2008094766 Aug 2008 WO
WO-2008103383 Aug 2008 WO
WO-2009034477 Mar 2009 WO
WO-2009037576 Mar 2009 WO
WO-2009044287 Apr 2009 WO
WO-2009158164 Dec 2009 WO
WO-2010039394 Apr 2010 WO
WO-2010040685 Apr 2010 WO
Non-Patent Literature Citations (374)
Entry
Leven et al. (“Da Vinci Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability,” Oct. 2005) (Year: 2005).
Lievin et al. (“Stereoscopic Augmented Reality System for Computer Assisted Surgery”, CARS 2001, Jun. 27-30, 2001) (Year: 2001).
Azuma (“A Survey of Augmented Reality”, 1997). (Year: 1997).
Office Action dated Nov. 29, 2019 for U.S. Appl. No. 15/638,172, filed Jun. 29, 2017, 11 pages.
Office Action dated Oct. 24, 2019 for Korean Application No. 1020197022941 filed May 11, 2011, 14 pages.
3D Slicer, http://slicer.org/welcome.html, downloaded Oct. 25, 2006, p. 1; and Introduction, http:/slicer.org/intro/index.html, downloaded Oct. 25, 2006, pp. 1-4.
Abolmaesumi, Purang et al., “A User Interface for Robot-Assisted Diagnostic Ultrasound,” IEEE Robotics and Automation Conference, 2001, pp. 1549-1554, vol. 2, IEEE.
Abolmaesumi, Purang et al., “Image Guided Control of a Robot for Medical Ultrasound,” IEEE Transactions on Robotics and Automation, 2002, pp. 11-23, vol. 18—Issue 1, IEEE.
Adams, Ludwig et al., “Computer-Assisted Surgery,” IEEE Computer Graphics & Applications, May 1990, pp. 43-52, vol. 10—Issue 3, IEEE Computer Society Press.
Ahlering, Thomas. E. et al., “Robotic radical prostatectomy: a technique to reduce pT2 positive margins,” Urology, 2004, pp. 1224-1228, vol. 64 Issue 6, Elsevier Inc.
Alexander, Arthur D. III, “Impacts of Telemation on Modern Society,” Symposium on Theory and Practice of Robots and Manipulators, Centre for Mechanical Sciences 1st CISM IFToMM Symposium, Sep. 5-8, 1974, pp. 121-136, vol. 2, Springer-Verlag.
Arai, Tatsuo et al., “Bilateral control for manipulators with different configurations,” IECON Inn Conference on Industrial Electronics Control and Instrumentation, Oct. 22-26, 1984, pp. 40-45, vol. 1.
Arun, K.S. et al., “Least-Squares Fitting of Two 3-D Point Sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 9, No. 5, pp. 698-700, Sep. 1987.
Askew R.S., et al., “Ground Control Testbed for Space Station Freedom Robot Manipulators,” IEEE Virtual Reality Annual International Symposium, 1993, pp. 69-75.
Azuma et al., “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications, Dec. 2001, 14 pages.
Azuma, Ronald T., “A Survey of Augmented Reality,” Teleoperators and Virtual Environments, 1997, pp. 355-385, vol. 6—No. 4.
Bajura, Michael et al., “Merging Virtual Objects with the Real World: Seeing Ultrasound Imagery within the Patient,” Computer Graphics, Jul. 26, 1992, pp. 203-210, vol. 26, Issue 2, ACM Press.
Banovac, Filip et al., “Liver Tumor Biopsy in a Respiring Phantom with the Assistance of a Novel Electromagnetic Navigation Device,” 2002, pp. 200-207, Springer-Verlag.
Bartels, Richard H. et al., “An Introduction to Splines for use in Computer Graphics and Geometric Modeling,” 1987, 6 Pages total , Morgan kaufmann publishers, Inc.
Bartels, Richard H. et al., “Solution of the Matrix Equation AX+XB=C,” Communications of the ACM, 1972, pp. 820-826, vol. 15—Issue 9, ACM Press.
Baumann, Roger, “Haptic Interface for Virtual Reality Based Laparoscopic Surgery Training Environment,” These No. 1734 Ecole Pholytechnique Federale de Lausanne, 1997, 104 Total Pages.
Bejczy, Antal K. et al., “Controlling Remote Manipulators through Kinesthetic Coupling,” Computers in Mechanical Engineering, 1983, pp. 48-60, vol. 1—Issue 1.
Ben Gayed, M. et al., “An Advanced Control Micromanipulator for Surgical Applications,” Systems Science, 1987, pp. 123-134, vol. 13.
Berkelman, Peter J. et al., “A Compact Compliant Laparoscopic Endoscope Manipulator,” IEEE International Conference on Robotics and Automation, 2002, pp. 1870-1875, vol. 2, IEEE.
Berkelman, Peter J. et al., “A miniature Instrument Tip Force Sensor for Robot/Human Cooperative Micro surgical Manipulation with Enhanced Force Feedback,” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer-Verlag, 2000, pp. 897-906, vol. 1935.
Berkelman, Peter J. et al., “A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation,” IEEE Transactions on Robotics and Automation, 2000, pp. 917-922, vol. 19—Issue 5, IEEE.
Berkelman, Peter J. et al., “Performance Evaluation of a Cooperative Manipulation Microsurgical Assistant Robot Applied to Stapedotomy,” Medical Image Computing and Computer—Assisted Interventions, Lecture Notes in Computer Science, 2001, pp. 1426-1429, vol. 2208.
Besl, Paul J. et al., “A Method for Registration of 3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 14, Issue 2, pp. 239-256, Feb. 1992.
Bettini , A. et al., “Vision Assisted Control for Manipulation Using Virtual Fixtures: Experiments at Macro and Micro Scales,” IEEE Conference on Robots and Automation (ICRA '02), May 11-15, 2002, pp. 3354-3361, vol. 4, IEEE.
Bettini , A. et al., “Vision Assisted Control for Manipulation Using Virtual Fixtures,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 29-Nov. 3, 2001, pp. 1171-1176, vol. 2.
Bettini, Alessandro et al., “Vision Assisted Control for Manipulation Using Virtual Fixtures,” IEEE Transactions on Robotics, 2004, pp. 953-966, vol. 20—Issue 6, IEEE.
Birkett, Desmond H., “Three-Dimensional Video Imaging Systems,” Chapter 1 in Primer of Robotic & Telerobotic Surgery, Eds. Garth H. Ballantyne et al., Pub. by Lippincott Williams & Wilkins, Philadelphia, 2004, pp. 7-11.
Boctor, Emad et al., “A Novel Closed Form Solution for Ultrasound Calibration,” IEEE International Symposium on Biomedical Imaging (ISBI), Arlington, VA, vol. 1, pp. 527-530, Apr. 15-18, 2004.
Boctor, Emad, M. et al., “A dual-armed robotic system for intraoperative ultrasound guided hepatic ablative therapy: a prospective study,” Proc of IEEE 2004 International Conference on Robotics & Automation, 2004, pp. 2517-2522, vol. 3, IEEE.
Boctor, Emad, M. et al., “A Rapid calibration method for registration and 3D tracking of ultrasound images using spatial localizer,” Ultrasonic Imaging and Signal Processing, 2003, pp. 521-532, vol. 5035, SPIE.
Boctor, Emad, M. et al., “CISUS: An integrated 3D ultrasound system for IGT using a modular tracking API,” Proceedings of the SPIE, 2004, pp. 247-256, vol. 5367, SPIE.
Boctor, Emad, M. et al., “Development of a Robotically-Assisted 3-D Ultrasound System for Radiofrequency Ablation of Liver Tumors,” 6th World Congress of the Hepato-Pancreato-Biliary Association, Abstract No. 167, 2004, pp. 46, vol. 6—Supplement 1, Taylor & Francis Health Science.
Boctor, Emad, M. et al., “PC Based system for calibration, Reconstruction Processing and Visualization of 3D Ultrasound Data Based on a Magnetic-Field Position and Orientation Sensing System,” Proceedings of the International Conference on Computational Science—Part II, Lecture Notes in Computer Science , 2001, pp. 13-22, vol. 2074, Springer.
Boctor, Emad, M. et al., “Robot-assisted 3D strain imaging for monitoring thermal ablation of liver,” Annual congress of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES),Emerging Technology Lunch Poster TP004, 2005, pp. 240-241.
Boctor, Emad, M. et al., “Robotic Strain Imaging for Monitoring Thermal Ablation of Liver,” Medical Image Computing and Computer-Assisted Intervention MICCAI, 2004, pp. 81-88, vol. 2, Springer-Verlag.
Boctor, Emad, M. et al., “Robotically assisted intraoperative ultrasound with application to ablative therapy of liver cancer,” Medical Imaging:Visualization, Image Guided Procedures, and Display, 2003, pp. 281-291, vol. 5029, SPIE.
Boctor, Emad, M. et al., “Tracked 3D ultrasound in radio-frequency liver ablation,” in Medical Imaging 2003:Ultrasonic Imaging and Signal Processing, 2003, pp. 174-182, vol. 5035, SPIE.
Borovoi, A.V., “Stability of a manipulator with force feedback,” Izv. AN SSSR Mekhanika Tverdogo Teal, 1990, pp. 37-45, vol. 25—Issue 1, Allerton Press, Inc.
Boudet,Sylvie et al., “An Integrated Robotics and Medical Control Device to Quantify Atheromatous Plaques: Experiments on the Arteries of a Patient,” Proc of IEE/RSH International Conference on Intelligent Robots and Systems, 1997, pp. 1533-1538, vol. 3.
Brown, Myron M. et al., “Advances in Computational Stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2003, pp. 993-1008, vol. 25 Issue, IEEE.
Burdea, Grigore et al., “Dextrous Telerobotics with Force Feedback—an overview. Part 2: Control and Implementation,” Robotica, 1991, pp. 291-298, vol. 9.
Burschka, Darius et al., “Scale-Invariant Registration of Monocular Endoscopic Images to CT-Scans for Sinus Surgery,” Med Image Anal, 2004, pp. 413-421, vol. 2, Springer-Verlag.
Burschka, Darius et al., “Scale-Invariant Registration of Monocular Stereo Images to 3D Surface Models,” IEEE Int. Conf. on Robots and Systems, 2004, pp. 2581-2586, vol. 3, IEEE.
Burschka, Darius et al., “Navigating Inner Space: 3-D Assistance for Minimally Invasive Surgery,” Robotics and Autonomous Systems, 2005, pp. 5-26, vol. 52—Issue 1, Elsevier.
Burschka, Darius et al., “Principle and Practice of Real-Time Visual Tracking for Navigation and Mapping,” IEEE Workshop on Robotic Sensing: Robotics in the Automotive Industry, 2004, pp. 1-8, IEEE.
Bzostek, Andrew, “Computer-Integrated needle therapy systems: Implementation and Analysis,” Computer Science, 2005, 379 pages.
Bzostek, Andrew et al., “A Testbed System for Robotically Assisted Percutaneous Pattern Therapy,” Medical Image Computing and Computer-Assisted Surgery, Lecture Notes In Computer Science, 1999, pp. 1098-1107, vol. 1679, Springer.
Bzostek, Andrew et al., “An automated system for precise percutaneous access of the renal collecting system,” Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery, Lecture Notes In Computer Science, 1997, pp. 299-308, vol. 1205, Springer-Verlag.
Bzostek, Andrew, “Image Guided Percutaneous Pattern Placement in Soft Tissue,” The Johns Hopkins University Dept. of Computer Science: Baltimore, 1997, pp. 2007-01-22.
Cadeddu, Jeffrey A. et al., “A Robotic System for Percutaneous Renal Access,” The Journal of Urology, 1997, pp. 1589-1593, vol. 158—Issue 4.
Cadeddu, Jeffrey et al., “A robotic system for percutaneous renal access incorporating a remote center of motion design,” Journal of Endourolog, 1998, S237, vol. 12.
Cannon, Jeremy W. et al., “Real-time three-dimensional ultrasound for guiding surgical tasks,” Computer Aided Surgery, 2003, pp. 82-90, vol. 8—No. 2, John Wiley & Sons.
Cao, Caroline L., et al., “Task and motion analysis in endoscopic surgery,” Submitted for Fifth Annual Symposium on Haptic Interfaces for Virtual Environment and Teloperator Systems for the Winter Meeting of ASME, 1996, pp. 1-32.
Carr, J., “Surface reconstruction in 3D medical imaging,” PhD Thesis, Part 1, University of Canterbury, Christchurch, New Zealand, 1996, 112 Pages.
Carr, J., “Surface reconstruction in 3D medical imaging,” PhD Thesis, Part 2, University of Canterbury, Christchurch, New Zealand, 1996, 112 Pages.
Cash, David M. et al., “Incorporation of a laser range scanner into an image-guided surgical system,” The International Society for Optical Engineering (SPIE), Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display; San Diego, CA, Ed. Robert L. Galloway, 2003, pp. 269-280, vol. 5029.
Chang, Jun Keun et al., “Intravascular micro active catheter for minimal invasive surgery,” 1st Annual International Conference on Microtechnologies in Medicine and Biology, 2000, pp. 243-246.
Chen, Homer H. “A Screw Motion Approach to Uniqueness Analysis of Head-Eye Geometry.” Computer Vision and Pattern Recognition, 1991, pp. 145-151, IEEE.
Chinzei, Kiyoyuki et al., “MR Compatible Surgical Assist Robot: System Integration and Preliminary Feasibility Study,” in Proceedings of Third International Conference On Medical Imaging and Computer Assisted Surgery (MICCAI), 2000, pp. 921-930, vol. 1935, Springer-Verlag.
Choti, Michael A. et al., “Trends in Long Term Survival Following Liver Resection for Hepatic Colorectal Metastases,” Ana Surg, 2002, pp. 759-766, vol. 235—No. 6, Lippincott Williams & Wilkins.
Choti, Michael A., “Surgical Management of Hepatocellular Carcinoma: Resection and Ablation,” Journal of Vascular and Interventional Radiology, 2002, pp. S197-S203, vol. 13—No. 9.
Christensen, B. et al., “Model based sensor directed remediation of underground storage tanks,” International Conf. on Robotics and Automation, Sacramento, CA, Apr. 1991, pp. 1377-1383, vol. 2. IEEE.
Christoforou, E.G. et al., “Robotic Arm for Magnetic Resonance Imaging Guided Interventions,” 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Feb. 20-22, 2006, pp. 911-916.
Chung, Mathew et al., “Laparascopic Radiofrequency Ablation of Unresectable Hepatic Malignancies,” Surg Endosc, 2001, pp. 1020-1026, vol. 15—No. 9, Springer-Verlag.
Cleary, Kevin et al., “State of the Art in Surgical Robotics:Clinical Applications and Technology Challenges,” Computer Aided Surgery, 2001 [retrieved on Feb. 24, 2002], pp. 1-26.
Cleary, Kevin et al., “State of the art surgical robotics clinical applications and technology challenges,” Computer Aided Surgery, 2001, pp. 312-328, vol. 6; Part 6, John Wiley & Sons.
Cleary,K. et al., “Robotically-assisted spine nerve blocks,” Radiology, 2001, 1 page, vol. 221—No. 618.
Colgate J.E., “Power and Impedance Scaling in Bilateral Manipulation,” IEEE International Conference on Robotics and Automation, Sacramento, California, Apr. 1991, vol. 3, pp. 2292-2297.
Comments on Pre-Appeal Examination Report, dated Mar. 28, 2018 for Japanese Application No. JP2015242062 filed Oct. 14, 2015, 5 pages.
D'Angelica M., “Staging Laparoscopy for Potentially Respectable Noncolorectal,” Ann Surg Oncol, 2002, pp. 204-209, vol. 9—No. 2, Lippincott Williams & Wilkins.
Daniilidis, Konstantinos, Hand-Eye Calibration Using Dual Quaternions, Int. J. of Robotics Research, 1999, pp. 286-298, vol. 18 (3), Sage Publications, Inc.
Davies, Brain L. et al., “A Robotic system for tkr surgery,” Proceedings of 3rd Annual North American Program on Computer Assisted Orthopaedic Surgery (CAOS USA), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,published in Computer Aided Surgery, Jun. 17-19, 1999, p. 339, vol. 4—Iss. 6.
Davies, S.C., et al., “Ultrasound Quantitaion of Respiratory Organ Motion in the Upper Abdomen,” British Journal of Radiology, Nov. 1994, vol. 67 (803), pp. 1096-1102.
De Cunha, D. et al., The MIDSTEP System for Ultrasound guided Remote Telesurgery, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998, pp. 1266-1269, vol. 3—No. 29, IEEE.
Debus, Thomas et al., “Multichannel Vibrotactile Display for Sensory Substitution During Teleoperation,” Proc. SPIE Telemanipulator and Telepresence Technologies VIII, 2001, pp. 42-49, vol. 4570, SPIE.
Degoulange, E. et al., “HIPPOCRATE: an intrinsically safe robot for medical applications,” IEEE/RSH International Conference on Intelligent Biomedicine, 1998, pp. 959-964, vol. 2, IEEE.
Delgorge, Cecile et al., “A Tele-Operated Mobile Ultrasound Scanner Using a Light-Weight Robo,” IEEE Transactions on Information Technology in Biomedicine, 2005, pp. 50-58, vol. 9 No. 1, IEEE.
Dewan, Maneesh et al., “Vision-Based Assistance for Ophthalmic Micro-Surgery,” Proceedings of Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2004, pp. 49-57, vol. 3217, Springer-Verlag.
Dodds, Zachary et al., “A hierarchical architecture for vision-based robotic manipulation tasks,” in Proceedings of the International Conference on Vision Systems, 1999, pp. 312-330, vol. 542, Springer-Verlag.
Doggett, Stephen W., “Image Registered Real Time Intra-Operative Treatment Planning: Permanent Seed Brachytherapy,” 2000, pp. 4.
Dolan, J.M. et al., “A Robot in an Operating Room: A Bull in a China Shop?,” IEEE Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, Nov. 1987, vol. 2, pp. 1096-1097.
Elder, Matthew C. et al., “Specifying user interfaces for safety critical medical systems,” Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, Nov. 1995, pp. 148-155.
Eldridge, B. et al., “A Remote Center of Motion Robotic Arm for Computer Assisted Surgery,” Robotica, 1996, pp. 103-109, vol. 14 Issue 1.
Ellsmere, James et al., “A navigation system for augmenting laparoscopic ultrasound,” Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2003, pp. 184-191, Springer.
Extended European Search Report for Application No. 17175195.1, dated Oct. 2, 2017, 13 pages.
Fattal, Lischinsk, “Variational Classification for Visualization of 3D Ultrasound Data,” Proceedings of the conference on Visualization, 2001, pp. 403-410, IEEE Computer Society.
Fenster, Aaron, et al., “3-D Ultrasound Imaging:A Review,” IEEE Engineering and Medicine and Biology Magazine, Nov.-Dec. 1996, pp. 41-51, vol. 15—Issue 6, IEEE.
Fenster, Aaron, et al., “Three-dimensional ultrasound imaging of the prostate,” SPIE International Symposium on Medical Imaging,San Diego, California,Published in SPIE: Medical Physics, Feb. 20-26, 1999, pp. 2-11, vol. 3859, SPIE.
Fichtinger, Gabor et al., “Robotically Assisted Percutaneous Local Therapy and Biopsy,” 10th International Conference of Advance Robotics, 2001, pp. 133-151, IEEE.
Fichtinger, Gabor et al., “Transrectal prostate biopsy inside closed MRI scanner with remote actuation under real-time image guidance,” Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 2002, pp. 91-98, vol. 2488, Springer Verlag.
Fichtinger, Gabor et al., “Surgical CAD/CAM and its application for robotically assisted percutaneous procedures,” 30th Applied Imagery Pattern Recognition Workshop (AIPR), 2001, pp. 3-8, IEEE.
Fichtinger, Gabor et al., “System For Robotically Assisted Prostate Biopsy And Therapy With intraOperative CT Guidance,” Journal of Academic Radiology, 2002, pp. 60-74, vol. 9 No 1, Elsevier.
Fisher, Scott S., “Virtual interface environment,” IEEE/A1AA 7th Digital Avionics Systems Conference Ft. Worth Texas, 1986, pp. 346-350, IEEE.
Frantz D.D et al., “Accuracy assessment protocols for electromagnetic tracking systems,” Physics in Medicine and Biology, 2003, pp. 2241-2251, Issue 48.
Fu, K.S. et al., “Robotics: control, sensing, vision, and intelligence,” 1987, pp. 12-76 and 201-265, Ch. 2 & 5, McGraw-Hill Book Company.
Fuchs, Henry et al., “Augmented Reality Visualization for Laparoscopic Surgery,” Medical Image Computing and Computer-Assisted Intervention, 1998, pp. 934-943, vol. 1496, Springer-Verlag.
Fukuda, Toshio et al., “A new method of master-slave type of teleoperation for a micro-manipulator system,” IEEE Microrobots and Teleoperations Workshop, 1987, 5 pages, IEEE.
Funda J., et al., “An experimental user interface for an interactive surgical robot,” In 1st International Symposium on Medical Robotics and Computer Assisted Surgery (MRCAS 94), 1994, pp. 196-203.
Funda J., et al., “Constrained Cartesian Motion Control for Teleoperated Surgical Robots,” IEEE Transactions on Robotics and Automation, IEEE, Jun. 1996, vol. 12 (3), pp. 453-465.
Funda, Janez et al., “Comparison of two manipulator designs for laparoscopic surgery,” SPIE International Symposium on Optical Tools for Manufacturing and Advanced Automation, 1994, pp. 172-183, vol. 2351, Telemanipulator and Telepresence Technologies.
Funda, Janez et al., “Control and evaluation of a 7-axis surgical robot for laparoscopy,” IEEE Int. Conf. on Robotics and Automation, 1995, pp. 1477-1484, vol. 2, IEEE.
Funda, Janez et al., “Image-Guided Command and Control of a Surgical Robot,” Proc. Medicine Meets Virtual Reality II, 1994, pp. 52-57.
Funda, Janez et al., “Optimal Motion Control for Teleoperated Surgical Robots,” Intl. Symp. on Optical Tools for Manuf. & Adv Autom,Telemanipulator Technology and Space Telerobotics, 1993, pp. 211-222, vol. 2057, SPIE.
Furuta, Katsuhisa et al., “Master slave manipulator based on virtual internal model following control concept,” IEEE Intl. Conference on Robotics and Automation, 1987, pp. 567-572, vol. 1, IEEE.
Ganssle J.G.,,A Guide to Debouncing,The Ganssle Group,Jun. 2008,26 pages.
Garrett, William F. et al., “Real-Time Incremental Visualization of Dynamic Ultrasound Volumes Using Parallel BSP Trees,” IEEE Proceedings Visualization, 1996, pp. 235-240, 490, IEEE.
Gee, Andrew et al., “Processing and visualizing three-dimensional ultrasound data,” Journal of Radiology, 2004, pp. 186-193, vol. 77.
Gelb, A., et al., Table of Contents for“Applied Optimal Estimation,” The Analytic Science Corporation, MIT Press, Cambridge, Massachusetts, 1974, 4 pages.
Gennari, G. et al., “Probabilistic data association methods in visual tracking of groups,” IEEE Conference on Computer Vision and Pattern Recognition, 2004, pp. I-790-1-797, vol. 1—issue. 27, IEEE.
Gigot, Jean-Francois et al., “Laparoscopic Liver Resection for Malignant Liver Tumors Prclimary Results of a Multicenter European Study,” Ann Surg, 2002, pp. 90-97, vol. 236—issue 1.
Gonzales, Adriana Vilchis et al., “A System for Robotic Tele-echography,” Medical Image Computing and Computer-Assisted Intervention, 2001, pp. 326-334, vol. 2208, Springer.
Green, Philip, S. et al., “Mobile telepresence surgery,” 2nd Annual Intl Symposium on Med. Robotics and Computer Assisted Surgery, Maryland Nov. 1995, pp. 97-103.
Grimson, W. Eric et al., “Automated Registration for Enhanced Reality Visualization in Surgery,” 1st International Symposium on Medical Robotic and Computer Assisted Surgery (MRCAS), Pittsburgh, 1994, pp. 82-89.
Grimson, W.E.L., et al., “An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization,” IEEE Transactions on Medical Imaging, vol. 15, No. 2, Apr. 1996, pp. 129-140.
Hager G., et al., “The X Vision System: A Portable Substrate for Real Time Vision Applications,” Computer Vision and Image Understanding, 1998, vol. 69 (1),pp. 23-37.
Hager, Gregory D., “A Modular System for Robust Positioning Using Feedback from Stereo Vision,” IEEE Transactions on Robotics and Automation, Aug. 1997, vol. 13 (4), pp. 582-595.
Hager, Gregory D. et al., “Efficient Region Tracking With Parametric Models of Geometry and Illumination,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, pp. 1025-1039, vol. 20—issue. 10, IEEE.
Hager Gregory D. et al., “Multiple Kernel Tracking with SSD,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004), 2004, pp. I-790-I-797, vol. 1—issue 27, IEEE.
Hannaford, Blake et al., “Experimental and simulation studies of hard contact in force reflecting teleoperation,” IEEE International Conference on Robotics and Automation Proceedings, 1988, pp. 584-589, vol. 1, IEEE.
Hannaford, Blake et al., “Performance Evaluation of a Six-Axis Generalized Force-Reflecting Teleoperator,” IEEE Transactions on Systems, Man, and Cybernetics, 1991, pp. 620-633, vol. 21—No. 3, IEEE.
Harris, S.J. et al., “A robotic procedure for transurethral resection of the prostate,” Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, 1995, pp. 264-271.
Harris, S.J. et al., “Experiences with Robotic Systems for Knee Surgery,” First Joint Conference of CVRMed and MRCAS. Mar. 19-22, 1997, Grenoble, France; Springer, 1997, pp. 757-766.
Herline A.J., et al., “Image-Guided Surgery: Preliminary Feasibility Studies of Frameless Stereotactic Liver Surgery,” Archives of Surgery, 1999, vol. 134 (6), pp. 644-650.
Herline, Alan J. et al., “Surface Registration for Use in Interactive,” Image-Guided Liver Surgery, Computer Aided Surgery, 2000, pp. 11-17, vol. 5—No. 2.
Herman, Barry C., et al., “Telerobotic surgery creates opportunity for augmented reality surgery,” Abstract No. T1F2, Telemedicine Journal and E-Health, vol. 11, Issue 2, p. 203, Apr. 2005.
Herman, Barry C., “On the Role of Three Dimensional Visualization for Surgical Applications in Interactive Human Machine Systems,” Masters of Science Thesis in Computer Science, The Johns Hopkins University, Baltimore, 2005, 216 pages.
Herper Matthew, “Watch a $1.5 Million Surgical Robot Play a Board Game,” Forbes. Apr. 12, 2011. 2 pages, Online [Available: http://www.forbes.com/sites/matthewherper/2011/04/12/watch-a-1-5-million-surgical-robot-play-a-board-game/#587224f011f5] Accessed Jun. 7, 2016.
Hespanha J.P., et al., “What Tasks Can Be Performed with an Uncalibrated Stereo Vision System,” International Journal of Computer Vision, Nov. 1999, vol. 35 (1), 33 pages.
Hill J.W., et al., “Telepresence surgery demonstration system,” IEEE International Conference on Robotics and Automation, 1994, vol. 3, pp. 2302-2307.
Ho, S. C.et al., “Robot Assisted Knee Surgery,” IEEE Engineering in Medicine and Biology Magazine, 1995, pp. 292-300, vol. 14—Iss. 3, IEEE.
Hong, Jae-Sung et al., “A Motion Adaptable Needle Placement Instrument Based on Tumor Specific Ultrasonic Image Segmentation,” Fifth International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI '02, Tokyo, Japan, Jul. 2002, pp. 122-129.
Horn, Berthold K.P., “Closed-form solution of absolute orientation using unit quaternions,” Journal of the Optical Society of America A, vol. 4, No. 4, pp. 629-642, Apr. 1987.
Hunter, Ian W. et al., “A teleoperated microsurgical robot and associated virtual environment for eye surgery,” Presence: Teleoperators and Virtual Environments, 1993, pp. 265-280, vol. 2—No. 4, MIT Press.
Hunter, Ian W. et al., “Ophthalmic microsurgical robot and associated virtual environment,” Comput. Biol. Med, 1995, vol. 25, Issue 2, pp. 173-182, Pergamon.
Hurteau et al., “Laparoscopic surgery assisted by a robotic cameraman: Concept and Experimental results,” IEEE International Conference on Robotics and Automation, May 8-13, 1994, pp. 2286-2289, vol. 3, IEEE.
Hutchinson, Seth et al., “A Tutorial Visual Servo Control,” IEEE Transactions on Robotics and Automation, 1996, pp. 651-670, vol. 12 issue.5, IEEE.
IEEE Systems and Software Engineering—Recommended Practice for Architectural Description of Software—Intensive Systems, IEEE Std 1471-2000, 34 pages, First Edition, Jul. 15, 2007.
Inoue, Masao; “Six-Axis bilateral control of an articulated slave manipulator using a Cartesian master manipulator,” Advanced robotics, 1990, pp. 139-150, vol. 4—Issue 2, Robotic society of Japan.
International Search Report and Written Opinion for Application No. PCT/US2012/064379, dated Mar. 29, 2013, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2012/064400, dated Mar. 27, 2013, 10 pages.
Intuitive Surgical, Inc., “Intuitive Surgical daVinci API v5.0 Reference Manual,” generated Jul. 17, 2006, 149 pages.
Jackson, Bernie G. et al., “Force Feedback and Medical Simulation,” Interactive Technology and the New Paradigm for Healthcare, Morgan et al. (Eds ), 1995, pp. 147-151, vol. 24, IOS Press and Ohms.
Jain, Ameet Kumar et al., “Understanding Bone Responses in B-mode Ultrasound Images and Automatic Bone Surface Extraction using a BayesianProbabilistic Framework,” SPIE Medical Imaging, 2004, pp. 131-142, vol. 5373.
Johns Hopkins University and Intuitive Surgical, Inc., “System Requirements for the Surgical Assistant Workstation,” Rev. 2, Jan. 29, 2007, 17 pages.
Jones D.B. et al., Chapter 25, “Next-Generation 3D Videosystems may Improve Laparoscopic Task Performance,” Interactive Technology and the New Paradigm for Healthcare, 1995, pp. 152-160.
Joskowicz L., et al., “Computers in Imaging and Guided Surgery,” Computing in Science and Engineering, 2001, vol. 3 (5), pp. 65-72.
Jurie, Frederic et al., “Hyperplane Approximation for Template Matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI), 2002, pp. 996-1000, vol. 24—Issue 7, IEEE.
Kane, Robert A., “Intraoperative Ultrasonography, History, Current State of the Art, and Future Directions,” J Ultrasound Med, 2004, pp. 1407-1420, vol. 23.
Kaplan, Irving, “Minimizing Rectal and Urinary Complications in Prostate Brachytherapy,” Journal of Endourology, 2000, pp. 381-383.
Kapoor A., et al., “Simple Biomanipulation Tasks with “Steady Hand” Cooperative Manipulator,” Lecture Notes in Computer Science, 2003, vol. 2878, pp. 141-148.
Kapoor, Ankur and Russell H. Taylor, “A constrained optimization approach to virtual fixtures for multi-handed tasks,” 2008 International Conference on Robotics and Automation (ICRA 2008), May 19-23, 2008, Pasadena, California, pp. 3401-3406.
Kapoor, Ankur et al., “Constrained Control for Surgical Assistant Robots,” 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, Florida, May 15-19, 2006, pp. 231-236.
Kapoor, Ankur et al., “Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DOF Robot,” Proceedings, 12th International Conference on Advanced Robotics, 2005, pp. 452-459.
Kapoor, Ankur, Motion Constrained Control of Robots for Dexterous Surgical Tasks, Ph.D. Dissertation, The Johns Hopkins University, Department of Computer Science, Baltimore, Maryland, Sep. 2007, 351 pages.
Kato H., et al., “The Effects of Spatial Cues in Augmented Reality Video Conferencing,” Hiroshima City University, Aug. 2001, 4 pages.
Kato H., et al. “Virtual Object Manipulation on a Table-Top AR Environment,” Hiroshima City University, 2000, 9 pages.
Kavoussi L.R., “Laparoscopic Donor Neptarectomy,” Kidney International, 2000, vol. 57, pp. 2175-2186.
Kazanzides P., et al., “Force Sensing and Control for a Surgical Robot,” Int. Conference on Robotics and Automation, May 1992, vol. 1, pp. 612-617.
Kazanzides, Peter et al., “A cooperatively-controlled image guided robot system for skull base surgery,” Medicine Meets Virtual Reality 16 (MMVR 16) Conference, Jan. 30-Feb. 1, 2008, Long Beach, California, J.D. Westwood et al., eds., IOS Press, 2008, pp. 198-203.
Kazerooni, H. , “Human Extenders,” ASME J. Dynamic Systems, Measurements and Control, 1993, pp. 281-290, vol. 115 No. 2(B).
Kazerooni, H., “Design and analysis of the statically balanced direct-drive robot manipulator,” Robotics and Computer-Integrated Manufacturing, 1989, pp. 287-293, vol. 6, Issue 4.
Kazerooni, H. et al., “The Dynamics and Control of a Haptic Interface Device,” IEEE Transactions on Robotics and Automation, 1994, pp. 453-464, vol. 10—Issue 4, IEEE.
Kazerooni, H., “Human/Robot Interaction via the Transfer of Power and Information Signals Part I: Dynamics and Control Analysis,” IEEE International Conference on Robotics and Automation, 1989, pp. 1632-1640, IEEE.
Kilmer, R. D. et al., “Watchdog safety computer design and implementation,” RI/SME Robots 8 Conference, Jun. 1984, pp. 101-117.
Kim, Won S. et al., “Active compliance and damping in telemanipulator control,” Jet Propulsion Laboratory New technology Report, 1991, pp. 1-14a, vol. 15—Issue 4, JPL & NASA Case No. NP0-1796917466, Item 40.
Kitagawa, Masaya et al., “Effect of Sensory Substitution on Suture Manipulation Forces for Surgical Teleoperation,” 12th Annual Medicine Meets Virtual Reality Conference, 2005, 8 pages.
Koizumi, Naoshi et al., “Development of Three-Dimensional Endoscopic Ultrasound System with Optical Tracking,” Medical Image Computing and Computer-Assisted Intervention—MICCAI '02, Tokyo, 2002, pp. 60-65, vol. 2488, Springer-Verlag.
Koizumi, Norihiro et al., “Continuous Path Controller of Slave Manipulator in Remote Ultrasound Diagnostic System,” Int. Conference on Robotics and Automation (ICRA 2002), 2002, pp. 3368-3373, vol. 4, IEEE.
Komada, Satoshi et al., “Bilateral robot hand based on estimated force feedback,” IEEE Proceedings IECON 87 Cambridge MA, Nov. 3-6, 1987, pp. 602-607, vol. 2, IEEE.
Kon, Ryan et al., “An open-source ultrasound calibration toolkit,” Medical Imaging Ultrasonic Imaging and Signal Processing, 2005, pp. 516-523, vol. 5750, SPIE.
Korein James U. et al., “A Configurable System for Automation Programming and Control,” IEEE Conf. on Robotics and Automation. San Francisco, 1986, pp. 1871-1877, vol. 3, IEEE.
Kosugi, Yukio et al., “An articulated neurosurgical navigation system using MRI and CT Images,” IEEE Transactions on Biomedical Engineering, 1988, pp. 147-152, vol. 35—Issue 2, IEEE.
Kragic D. et al., “Human-Machine Collaborative Systems for Microsurgical Applications,” International Symposium on Robotics Research, 2005, pp. 731-741, vol. 24—Issue 9, Sage Publications.
Kruchten, Philippe B., “The 4+1 View Model of Architecture,” IEEE Software, vol. 12, Issue 6, pp. 42-50, Nov. 1995.
Krupa, A. et al., “Automatic 3-D Positioning of Surgical Instruments during Laparoscopic Surgery Using Automatic Visual Feedback,” Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention—Part , Lecture Notes In Computer Science, 2002, pp. 9-16, vol. 2488, Springer Verlag.
Kumar R., “An Augmented Steady Hand System for Precise Micromanipulation,” PhD thesis in Computer Science, The Johns Hopkins University, Baltimore, Apr. 2001, 118 pages.
Kumar, R., et al., “An Augmentation System for Fine Manipulation,” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes In Computer Science, 2000, vol. 1935, pp. 957-965.
Kumar, Rajesh et al., “Application of Task-Level Augmentation for Cooperative Fine Manipulation Tasks in Surgery,” Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes In Computer Science, 2001, pp. 1417-1418, vol. 2208, Springer Verlang.
Kumar, Rajesh et al., “Experiments with a Steady Hand Robot in Constrained Compliant Motion and Path Following”, 1999, pp. 92-97, IEEE.
Kumar, Rajesh et al., “Preliminary Experiments in Cooperative Human/Robot Force Control for Robot Assisted Microsurgical Manipulation,” Conference on Robotics and Automation, 2000, pp. 610-617, vol. 1, IEEE.
Kumar, Rajesh et al., “Preliminary experiments in robot/human microinjection,” IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 3186-3191, vol. 3, IEEE.
Kwoh, Yik, San et al., “A Robot With Improved Absolute Positioning Accuracy for CT Guided Stereotactic Brain Surgery,” IEEE Transactions on Biomedical Engineering, Feb. 1988, pp. 153-160, vol. 35—Issue 2, IEEE.
Lacroute, P., “The VolPack Volume Rendering Library,” 1995, information downloaded from https://graphics.stanford.edu/software/volpack/, 4 pages.
Lacroute, Philippe G., “Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation PhD Thesis,” Computer Science, Stanford, California, 1995, 236 Pages.
Lang, Samuel J., Xvision 2—A Framework for Dynamic Vision. Masters Thesis, Computer Science, Johns Hopkins University, Baltimore, 2001, pp. 1-49.
Lange, Thomas et al., Augmenting Intraoperative 3D Ultrasound with Preoperative Models for Navigation in Liver Surgery, Medical Image Computing and Computer-Assisted Interventions, 2004, pp. 534-541, vol. 3217, Springer Verlag.
Lau, William W. et al., “Stereo-Based Endoscopic Tracking of Cardiac Surface Deformation,” Proceedings of Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, 2004, pp. 494-501, vol. 2, Springer Verlag.
Lavonius, Maija I. et al., “Staging of Gastric Cancer: A Study with Spiral Computed Tomography,Ultrasonography, Laparoscopy, and Laparoscopic Ultrasonography,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002, pp. 77-81, vol. 12—No. 2, Lippincott Williams & Wilkins, Inc.
Lawson, Charles L. et al., “Linear least squares with linear inequality constraints Solving Least Squares Problems,” 1974, pp. 158-173, Prentice Hall Inc.
Lazarevic, Zoran, “Feasibility of a Stewart Platform with Fixed Actuators as a Platform for CABG Surgery Device,” 1997, 45 pages, Master's Thesis Columbia University Department of Bioengineering.
Lee Jr, F.T., et al., “CT-monitored Percutaneous Cryoablation in a Pig Liver Model: Pilot Study,” Radiology, 1999, vol. 211 (3), pp. 687-692.
Leven, Joshua, “A Telerobotic Surgical System With Integrated Robot-Assisted Laparoscopic Ultrasound Capability,” Thesis for Master of Science in Engineering in Computer Science, The Johns Hopkins University, Baltimore, Maryland, May 2005, 63 pages.
Leven, Joshua et al. “DaVinci Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability,” Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, J. Duncan et al. Eds., Palm Spring, Springer Verlag, 2005, vol. 3749, pp. 811-818.
Levoy, Marc, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and Applications, 1988, pp. 29-37, vol. 8—Iss. 3, IEEE.
Li, M., “Intelligent Robotic Surgical Assistance for Sinus Surgery,” Ph.D. Dissertation, Johns Hopkins University, Baltimore, Aug. 2005, 246 pages.
Li, Ming and Russell H. Taylor, “Spatial Motion Constraints in Medical Robots Using Virtual Fixtures Generated by Anatomy,” IEEE International Conference on Robotics and Automation, New Orleans, Apr. 2004, pp. 1270-1275.
Li, Ming and Russell H. Taylor, “Performance of surgical robots with automatically generated spatial virtual fixtures,” IEEE International Conference on Robotics and Automation, Barcelona, Spain, Apr. 2005, pp. 217-222.
Li, Ming et al, “A Constrained Optimization Approach to Virtual Fixtures,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, Alberta, Canada, Aug. 2-6, 2005, pp. 1408-1413.
Li, Ming et al., “Optimal Robot Control for 3D Virtual Fixture inConstrained ENT Surgery,” Proceedings of the Sixth International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI, Lecture Notes in Computer Science, 2003, pp. 165-172, vol. I, Springer Verlag.
Li, Ming et al., “Recognition of Operator Motions for Real-Time Assistance using Virtual Fixtures,” IEEE, Haptics 2003, 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Mar. 22-23, 2003, pp. 125-131, IEEE.
Lievin et al., “Stereoscopic Augmented Reality System for Computer Assisted Surgery,” CARS 2001, Jun. 27-30, 2001, 5 pages.
Loser, Michael H. et al., “A New Robotic System for Visually Controlled Percutaneous Interventions under CT Fluoroscopy,” Medical Image Computing and Computer-Assisted Interventions, Lecture Notes in Computer Science, 2000, pp. 887-896, vol. 1935, Springer Verlag.
Loser, Michael H. et al., “Visual servoing for automatic and uncalibrated percutaneous procedures,” SPIE Medical Imaging, 2000, pp. 270-281, vol. 3976, SPIE.
Lunwei Z., et al., “FBG Sensor Devices for Spatial Shape Detection of Intelligent Colonoscope,” IEEE International Conference on Robotics and Automation, Apr. 2004, New Orleans, Louisiana, pp. 835-840.
Madhani A.J., “Design of Teleoperated Surgical Instruments for Minimally Invasive Surgery,” Feb. 1998, 251 pages.
Maehara, S. et al., “Laparoscopy-Assisted Hepatectomy Using the Endoclose,” Surgical Endoscopy, 2002, vol. 16 (9), pp. 1363-1364.
Maier, Georg, E. et al., “A Dynamically Configurable General Purpose Automation Controller,” Proceedings of IFAC/IFIP Symp. on Software for Computer Control, 1986, pp. 47-52, Pergamon Press.
Mala, T. et al., “A Comparative Study of the Short-Term Outcome Following Open and Laparoscopic Liver Resection of Colorectal Metastases,” Surg Endosc, 2002, pp. 1059-1063, vol. 16(7), Springer Verlag.
Marayong, Panadda et al., “Spatial Motion Constraints: Theory and Demonstrations for Robot Guidance Using Virtual Fixtures,” IEEE International Conference on Robotics and Automation Robotics and Automation, 2003, pp. 1954-1959, vol. 2, No. 14-19, IEEE.
Marescaux, Jadques and Francesco Rubino, “Virtual Operative Fields for Surgical Simulation,” Chapter 4 in Primer of Robotic & Telerobotic Surgery, Eds. Garth H. Ballantyne et al., Pub. by Lippincott Williams & Wilkins, Philadelphia, 2004, pp. 26-31.
Masamune K., et al., “Development of a MRI Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,” Journal of Image Guided Surgery, 1995, vol. 1, pp. 242-248.
Masamune K., et al., “System for Robotically Assisted Percutaneous Procedures With Computed Tomography Guidance,” Journal of Computer-Assisted Surgery, 2001, vol. 6 (6), pp. 370-383.
Masamune, Ken et al., “Development of a MRI Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,” Image Guid Surg, 1995, pp. 165-172.
Masamune Ken et al., “Development of CT-PAKY frame system—CT image guided needle puncturing manipulator and a single slice registration for urological surgery,” Proc. 8th annual meeting of Japanese Society for Computer Aided Surgery (JSCAS), 1999, pp. 89-90.
Masamune, Ken H. et al., “A Newly Developed Stereotactic Robot with Detachable Drive for Neurosurgery,” 1st International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI,Cambridge, Massachusetts; Springer, Oct. 11-13, 1998, pp. 215-222, vol. 1496.
Massie, Thomas H. et al., “The PHANTOM Haptic Interface: A Device for Probing Virtual Objects,” Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 1994, 7 pages.
Mayer, Hermann et al., “Skill Transfer and Learning by Demonstration in a Realistic Scenario of Laparoscopic Surgery,” International Conference on Humanoids, 2003, 17 pages, IEEE.
Mayer, Hermann et al., “The Endo [PA]R System for Minimally Invasive Robotic Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, pp. 3637-3642, vol. 4, IEEE.
Megali, Giusepp et al., “A Computer-Assisted Robotic Ultrasound-Guided Biopsy System for Video-Assisted Surgery,” Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes In Computer Science, 2001, pp. 343-350, vol. 2208, Springer-Verlag.
Menack, M. et al., “Staging of pancreatic and ampullary cancers for resectability using laparoscopy with laparoscopic ultrasound,” Surg Endosc, 2001, pp. 1129-1134, vol. 15—No. 10, Springer-Verlag.
Menon, Mani, “Vattikuti Institute prostatectomy, a technique of robotic radical prostatectomy for management of localized carcinoma of the prostate: experience of over 1100 cases,” Urol Clin N Am, 2004, pp. 701-717, vol. 31.
Merola, Stephen et al., “Comparison of Laparoscopic Colectomy With and Without the Aid of a Robotic Camera Holder,” Surg Laparosc Endosc Percutan Tech, 2002, pp. 45-61, vol. 12—No. 1, Lippincott Williams & Wilkins, Inc.
Michael B. Cohn's Home Page, http://www.bsac.eecs.berkeley.edu/users/michaelc/, downloaded Nov. 1, 1996, p. 1; UC Berkeley/Endorobotics Corporation Surgical Robotics Project Job Openings, http:/www.bsac.eecs.berkeley.edu/users/michaelc/jobs.html, downloaded Nov. 1, 1996, p. 1; and Medical Robotics, http://robotics.eecs.berkeley.edu/˜mcenk/medical/, downloaded Nov. 1, 1996, pp. 1-8.
Migga, Michael I. et al., “Intraoperative Registration of the Liver for Image-Guided Surgery System,” The International Society for Optical Engineering (SPIE), Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display; San Diego, CA, Ed. Robert L. Galloway, 2003, pp. 350-359, vol. 5029.
Mitsuishi M., et al., “A tele-micro-surgery system with co-located view and operation points and a rotational-force-feedback-free master manipulator,” 2nd Annual Intl. Symposium on Medical robotics and Computer Assisted Surgery Baltimore Maryland, Nov. 4-7, 1995, pp. 111-118.
Mitsuishi, Mamoru et al., “Remote Ultrasound Diagnostic System,” Conf. on Robotics and Automation, 2001, pp. 1567-1574, vol. 2, IEEE.
Mourgues, Fabien et al., “Flexible Calibrations of Actuated Stereoscopic Endoscope for Overlay in Robot Assisted Surgery,” Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention—Part I, Lecture Notes In Computer Science, 2002, pp. 25-34, vol. 2488, Springer-Verlag.
Muratore, Diane M. et al., “Beam Calibration Without a Phantom for Creating a 3D Free-hand Ultrasound System,” Ultrasound in Medicine and Biology, 2001, pp. 1557-1566, vol. 27—No. 11, Elsevier.
Nakakura, Eric K et al., “Hepatocellular Carcinoma: Current Management Recommendations,” Advances on Oncology, 2000, pp. 12-18, vol. 16—No. 2.
Neisius B. et al., “Robotic manipulator for endoscopic handling of surgical effectors and cameras,” 1st Intl. Symposium on Medical Robotics and Computer Assisted Surgery, 1994, pp. 169-175, vol. 2.
Nelson, Thomas R. et al., “Interactive Acquisition, Analysis, and Visualization of Sonographic Volume Data,” International Journal of Imaging Systems and Technology, 1997, pp. 26-37, vol. 8, John Wiley & Sons, Inc.
Nelson, Thomas, R. et al., “Three-dimensional ultrasound imaging,” Ultrasound in Medicine & Biology, 1998, pp. 1243-1270, vol. 24—No. 9, Elsevier.
Ng, W.S. et al., “Robotic Surgery, A First-Hand Experience in Transurethral Resection of the Prostate,” IEEE Engineering in Medicine and Biology, Mar. 1993, pp. 120-125, vol. 12—Issue 1, IEEE.
Novotny Paul M. et al., “Tool Localization in 3D Ultrasound Images,” Medical Image Computing and Computer-Assisted Intervention, 2003, pp. 969-970, vol. 2879, Springer.
Office Action dated May 1, 2012 for Japanese Application No. 20090518470 filed Jun. 22, 2007, 7 pages.
Office Action dated Jul. 11, 2017 for Japanese Application No. 2015242063 filed Dec. 11, 2015, 10 pages.
Office Action dated Jun. 12, 2015 for Japanese Application No. 20130186992 filed Sep. 10, 2013, 8 pages.
Office Action dated Feb. 13, 2018 for Japanese Application No. 2015242063 filed Dec. 11, 2015, 8 pages.
Office Action dated Jan. 26, 2015 for Japanese Application No. 20130186992 filed Sep. 10, 2013, 9 pages.
Ohbuchi R., et al., “Incremental Volume Reconstruction and Rendering for 3D Ultrasound Imaging,” The International Society of Optical Engineering, 1992, vol. 1808, pp. 312-323.
Park, Shinsuk et al., “Virtual Fixtures for Robotic Cardiac Surgery,” Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2001, pp. 1419-1420, vol. 2208, Springer-Verlag.
Patriciu A., et al., “Motion-based Robotic Instrument Targeting under C-Arm Fluoroscopy,” Medical Image Computing and Computer-Assisted Interventions, 2000, vol. 1935, pp. 988-998.
Paul, Howard A. et al., “Development of a Surgical Robot for Cementless Total Hip Arthroplasty,” Clinical Orthopaedics, Dec. 1992, pp. 57-66, vol. 285.
Payandeh S., et al., “On Application of Virtual Fixtures as an Aid for Telemanipulation and Training,” Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (Haptics), Mar. 2002, pp. 18-23.
PCT/US07/71850 International Search Report and Written Opinion of the International Searching Authority, dated Feb. 13, 2008, 9 pages.
PCT/US09/46234 International Search Report and Written Opinion of the International Searching Authority, dated Sep. 9, 2009, 13 pages.
PCT/US09/56078 International Search Report and Written Opinion of the International Searching Authority, dated Jan. 20, 2010, 12 pages.
PCT/US10/28886 International Search Report and Written Opinion of the International Searching Authority, dated Jul. 6, 2010, 11 pages.
PCT/US10/28897 International Search Report and Written Opinion of the International Searching Authority, dated Jul. 19, 2010, 16 pages.
PCT/US10/38246 International Search Report and Written Opinion of the International Searching Authority, dated Sep. 14, 2010, 17 pages.
PCT/US2011/036109 International Search Report and Written Opinion of the International Searching Authority, dated Oct. 19, 2011, 16 pages.
PCT/US2011/036109 Invitation to Pay Additional Fees and Partial International Search Report, dated Aug. 18, 2011, 5 pages.
Podnos Y.D., et al., “Laparoscopic Ultrasound with Radiofrequency Ablation in Cirrhotic Patients with Hepatocellular Carcinoma: Technique and Technical Considerations,” American Surgeon, Dec. 2001, vol. 67 (12), pp. 1181-1184.
Pose—definition from Merriam Webster Dictionary, 4 pages, [online], [retrieved on Apr. 3, 2015]. Retrieved from the Internet: URL: http://www.merriam-webster.com/dictonary/pose.
Posture—definition from Merriam Webster Dictionary, 4 pages, [online], [retrieved on Apr. 3, 2015]. Retrieved from the Internet: URL: http://www.merriam-webster.com/dictonary/posture.
Poulose B.K., et al., “Human vs Robotic Organ Retraction During Laparoscopic Nissen Fundoplication,” Surgical Endoscopy, 1999, vol. 13, pp. 461-465.
Prager Richard et al., “Practical segmentation of 3D ultrasound,” In Proceedings of Medical Image Understanding and Analysis, 1999, pp. 161-164.
Prager Richard et al., “Rapid Calibration for 3D Freehand Ultrasound,” Ultrasound in Medicine and Biology, 1998, pp. 855-869, vol. 24—No. 6, Elsevier.
Prasad, Srinivas K. et al., “A minimally invasive approach to pelvic osteolysis,” 2002, in Proc. Computer-Assisted Orthopaedic Surgery (CAOS), pp. 349-350.
Prasad Srinivas K. et al., “A Modular 2-DOF Force-Sensing Instrument for Laparoscopic Surgery,” Proceedings of the Sixth International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI,Lecture Notes in Computer Science, 2003, pp. 279-286, vol. I, Springer.
Pre-Appeal Examination Report, dated Sep. 3, 2014 for Japanese Application No. JP20120503535 filed Mar. 26, 2010, 7 pages.
Pre-Appeal Examination Report, dated Mar. 28, 2018 for Japanese Application No. JP2015242062 filed Oct. 14, 2015, 2 pages.
Preising B., et al., “A Literature Review: Robots in Medicine,” IEEE Engineering in Medicine and Biology, Jun. 1991, vol. 10(2), pp. 13-22.
Ramey, N. A., “Stereo-Based Direct Surface Tracking with Deformable Parametric Models,” Thesis submitted to The Johns Hopkins University, Maryland, Apr. 2003, 104 pages.
Ramey, Nicholas A. et al., “Evaluation of Registration Techniques in a robotic approach to pelvic osteolysis,” International Proceedings of Computer Assisted Orthopaedic Surgery (CAOS), 2004, pp. 26-27.
Rasmussen, Christopher et al., “Probabilistic data association methods for tracking complex visual objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, pp. 560-576, vol. 23, Issue 6, IEEE.
Ratner, Lloyd E. et al., “Laparoscopic live donor nephrectomy removes disincentives to live donation,” Transplantation, 1997, pp. 3402-3403, vol. 29—Issue 8, Elsevier.
Ratner, Lloyd E. et al., “Laparoscopic live donor nephrectomy,” Transplantation, 1995, pp. 1047-1049.
Rau, Beate, M. eta al., “Is There Additional Information From Laparoscopic Ultrasound in Tumor Staging”, Digestive Surgery, 2002, pp. 479-483, vol. 19—No. 6.
Rockall, Timothy A., “The da Vinci Telerobotic Surgical System,” Chapter 8 in Primer of Robotic & Telerobotic Surgery, Eds. Garth H. Ballantyne et al., Pub. by Lippincott Williams & Wilkins, Philadelphia, 2004, pp. 57-60.
Rohling, Robert et al., “Three-dimensional spatial compounding of ultrasound images,” Medical Image Analysis, 1996, pp. 177-193, vol. 1—No. 3, Oxford University Press.
Rohling, Robert N. et al., “Radial basis function interpolation for 3-d ultrasound,” CUED/F-INFENG/TR 327, Cambridge University, Jul. 1998, 28 Pages.
Rosen J., et al., “The BlueDRAGON—A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, 2002, pp. 1876-1881.
Rosenberg, Louis B., “Human interface hardware for virtual laparoscopic surgery,” Proceedings of the Interactive Technology and the New Paradigm for Healthcare, 1995, pp. 322-325, Amsterdam: IOS Press.
Rosenberg, Louis B., “Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation,” IEEE Virtual Reality International Symposium, 1993, pp. 76-82, IEEE.
Rothbaum Daniel L. et al., “Robot-assisted stapedotomy: micropick fenestration of the stapes footplate,” Otolaryngology—Head and NeckSurgery, 2002, pp. 417-426, vol. 127.
Rothbaum Daniel L. et al., “Task Performance in stapedotomy: Comparison between surgeons of different experience levels,” Otolaryngology—Head and Neck Surgery, 2003, pp. 71-77, vol. 128—No. 1.
Roy, Jaydeep, “Advances in the design, analysis and control of force controlled robots,” Master's Thesis, Mechanical Engineering, Johns Hopkins University, Baltimore, 2001, 210 Pages.
Sakas, Georgios et al., “Extracting surfaces from fuzzy 3D-Ultrasound data,” Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 1995, pp. 465-474.
Salcudean, Septimiu E. et al., “A Robot System for Medical Ultrasound,” 9th International Symposium of Robotics Research (ISRR'99), 1999, pp. 195-202.
Santambrogio, R. et al., “Ultrasound-Guided Interventional Procedures of the Liver During Laparoscopy: Technical Considerations,” Surg Endosc, 2002, pp. 349-354, Springer-Verlag.
Sastry S., “MilliRobotics in Minimally Invasive Telesurgery,” Retrieved from Internet [URL: http://robotics.eecs.berkeley.edu] 1995, 3 pages.
Sastry, Shankar et al., “Millirobotics for remote minamally invasive surgery,” Proceedings of the Intl. Workshop on Some Critical Issues in Robotics, Singapore, Oct. 2-3, 1995, pp. 81-98.
Sastry, Shankar, http://robotics.eecs.berkeley.edu, Nov. 1, 1995, Total 8 pages.
Schenker, Paul S. et al., “Development of a Telemanipulator for Dexterity Enhanced Microsurgery,” 2nd Annual International Symposium on Medical Robotics and Computer Assisted Surgery, Nov. 4-7, Baltimore, Maryland, 1995, pp. 81-88.
Schorr, O., et al., “Distributed Modular Computer-Integrated Surgical Robotic Systems: Architecture for Intelligent Object Distribution,” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes In Computer Science, 2000, vol. 1935, pp. 979-987.
Schreiner, Steve et al., “A system for percutaneous delivery of treatment with a fluoroscopically-guided robot,” Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery, Lecture Notes in Computer Science, 1997, pp. 747-756, Springer-Verlag.
Schweikard, Achim et al., “Motion Planning in Stereotaxic Radiosurgery,” IEEE Transactions on Robotics and Automation, 1993, pp. 909-916, vol. 1, IEEE.
Scott D.J., et al., “Accuracy and Effectiveness of Laparoscopic vs Open Hepatic Radiofrequency Ablation,” Surgical Endoscopy, Feb. 2001, vol. 15 (2),pp. 135-140.
Simaan, Nabil et al., “A Dexterous System for Laryngeal Surgery: Multi-Backbone Bending Snake-like Slaves for Teleoperated Dextrous Surgical Tool Manipulation,” IEEE International Conference on Robotics and Automation, 2004, pp. 351-357, IEEE.
Simaan, Nabil et al., “High Dexterity Snake-Like Robotic Slaves for Minimally Invasive Telesurgery of the Upper Airway,” MICCAI 2004—the 7th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2004, pp. 17-24.
Solomon S.B., et al., “Robotically Driven Interventions: A Method of Using CT Fluoroscopy without Radiation Exposure to the Physician,” Radiology, 2002, vol. 225, pp. 277-282.
Solus-3D Ultrasound Project in Obstetrics and Gynaecology, University of Cambridge, http://mi.eng.cam.ac.uk/research/projects/Solus/, downloaded Jul. 5, 2007, 4 pages.
Sommer, Graham et al., “Liver tumors: utility of characterization at dual frequency US,” Radiology, 1999, pp. 629-636, vol. 211—No. 3.
Steele, Micah R. et al., “Shared control between human and machine: using a haptic steering wheel to aid in land vehicle guidance,” Human Factors and Ergonomics Society 45th Annual Meeting , Minneapolis, Minnesota, 2001, pp. 1671-1675.
Steen, Erik et al., “Volume Rendering of 3D Medical Ultrasound Data Using Direct Feature Mapping,” IEEE Transactions on Medical Imaging, 1994, pp. 517-525, vol. 13—Iss. 3, IEEE.
Stefansic, James D. et al., “Registration of Physical Space to Laparoscopic Image Space for Use in Minimally Invasive Hepatic Surgery,” IEEE Transactions on Medical Imaging, 2000, pp. 1012-1023, vol. 19—No. 10, IEEE.
Stetten, George D et al., “Overlaying Ultrasound Images on Direct Vision,” Journal of Ultrasound in Medicine, 2001, pp. 235-240, vol. 20—No. 3.
Stewart, Charles V. et al., “The Dual-Bootstrap Iterative Closest Point Algorithm With Application to Retinal Image Registration,” IEEE Transactions on Medical Imaging, Nov. 2003, pp. 1379-1394, vol. 22—No. 11, IEEE.
Stoainovici D., et al., “Robotic Telemanipulation for Percutaneous Renal Access,” in 16th World Congress On Endourology, New York City, Sep. 3-6, 1998, Poster Session 17-5, p. S201.
Stoianovici, Dan, “A Modular Surgical Robotic System for Image Guided Percutaneous Procedures,” Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 404-410, vol. 1496, Springer-Verlag, 1998.
Stoianovici, Dan et al., “Robotic For Precise Percutaneous Needle Insertion,” In Thirteenth Annual Meeting of the Society for Urology and Engineering. San Diego, May 1998, pp. 4.
Stoll, Jeff, “Ultrasound-based servoing of manipulators for telesurgery,” Telemanipulator and Telepresence Technologies VIII Conference, 2001, pp. 78-85, SPIE.
Sublett, John W. et al. “Design and implementation of a digital teleultrasound system for real-time remote diagnosis,” 8th IEEE Symposium on Computer-Based Medical Systems, IEEE Computer Society Press, Jun. 9-10, 1995, pp. 292-298.
Suramo, I. et al., “Cranio-caudal movements of the liver, pancreas and kidneys in respiration,” Acta Radiologica: Diagnosis, 1984, pp. 129-131, vol. 25, Radiological Societies.
Susil, Robert, C. et al., “A Single Image Registration Method for CT Guided Interventions,” 2nd International Symposium on Medical Image Computing and Computer-Assisted Interventions (MICCAI' 99), Lecture Notes in Computer Science, 1999, pp. 798-808, vol. 1679, Springer-Verlag.
Szeliski, Richard, “Motion Estimation with Quadtree Splines,” IEEE 5th International Conference on Computer Vision, 1995, pp. 757-763, vol. 18—Issue. 12, IEEE Computer Society Washington, DC, USA.
Taubes, Gary et al., “Surgery in Cyberspace,” Discover magazine, Dec. 1994, vol. 15, issue 12, pp. 85-92.
Tavakoli, M., et al., A Force Reflective Master-Slave System for Minimally Invasive Surgery, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 3077-3082, vol. 4, IEEE.
Taylor R., et al., “A Telerobotic System for Augmentation of Endoscopic Surgery,” in IEEE Conference on Engineering in Medicine and Biology, 1992, vol. 14, pp. 1054-1056.
Taylor R.H., et al., “A Computational Architecture for Programmable Automation Research,” Intelligent Robots and Computer Vision, 1986, vol. 726, pp. 438-440.
Taylor, R.H., et al., “A General Purpose Control Architecture for Programmable Automation Research,” Proceedings of the Third International Symposium on Robotics, 1986, pp. 165-173, MIT Press.
Taylor R.H. et al., “Medical Robotics and Computer-Integrated Surgery,” Chapter 52 in Springer Handbook of Robotics, Springer, 2008, pp. 1199-1222.
Taylor R.H., et al., Table of Contents, “Computer-Integrated Surgery,” Technology and Clinical Applications, The MIT Press, Cambridge, MA, 1996, 8 pages.
Taylor, R.H., “Medical Robotics and Computer-Integrated Surgery,” Handbook of Industrial Robotics, Second Edition, 1999, pp. 1213-1227, Chapter 65, John Wiley & Sons.
Taylor, Russell H., “A Perspective on Medical Robotics,” Proceedings of the IEEE, vol. 94, No. 9, Sep. 2006, pp. 1652-1664.
Taylor, Russell H. “An Image-directed Robotic System for Precise Orthopaedic Surgery,” IEEE Transactions on Robotics mid Automation, 1994, pp. 261-275, vol. 10—No. 3, IEEE.
Taylor, Russell H. and Christopher Hasser, “Development of a Surgical Assistant Workstation for Teleoperated Surgical Robots,” NSF Proposal No. 0646678, Aug. 2006, 16 pages.
Taylor, Russell H. and Dan Stoianovici, “Medical Robotic Systems in Computer-Integrated Surgery,” Problems in General Surgery, by Lippincott Williams & Wilkins, Inc., Philadelphia, Pennsylvania. vol. 20, No. 2, pp. 1-9, 2003.
Taylor, Russell H. and Peter Kazanzides, “Medical Robotics and Computer-Integrated Interventional Medicine,” Chapter 18: Biomedical Information Technology, David Dagan Feng, Ed., Academic Press (Elsevier), 2008, pp. 393-416.
Taylor, Russell, H et al., “A Steady-Hand Robotic System for Microsurgical Augmentation,” International Journal of Robotics Research, 1999, pp. 1201-1210, vol. 18—No. 12, Springer-Verlag.
Taylor, Russell H. et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Engineering in Medicine and Biology, May/Jun. 1995, pp. 279-288, vol. 14, Issue 3, IEEE.
Taylor, Russell, H et al., “AML A Manufacturing Language,” The International Journal of Robotics Research, 1982, pp. 19-41, vol. 1—No. 3, Sage Publications.
Taylor, Russell H. et al., “An Image-directed Robotic System for Hip Replacement Surgery,” J. Robotics Society of Japan, 1990, pp. 615-620, vol. 8—issue 5.
Taylor, Russell, H. et al., “An Integrated Robot Systems Architecture,” Proceedings of the IEEE, 1983, pp. 842-856, vol. 71—Issue 7, IEEE.
Taylor, Russell H., et al., “An overview of computer-integrated surgery at the IBM Thomas J. Watson Research Center,” IBM J Research and Development, 1996, pp. 163-183, vol. 40, Issue 2, IBM Corp.
Taylor, Russell H., et al., “Chapter 46: A Telerobotic Assistant for Laparoscopic Surgery,” in Computer-Integrated Surgery, R. H. Taylor, et al., Editors, 1996, MIT Press. pp. 581-592.
Taylor, Russell H. et al., “Computer-Integrated Revision Total Hip Replacement Surgery: Concept and Preliminary Results,” 1999, Medical image analysis, pp. 301-319, vol. 3—Issue 3, Oxford University Press.
Taylor, Russell H. et al., “Medical Robotics in Computer-Integrated Surgery,” IEEE Transactions on Robotics md Automation, 2003, pp. 765-781, vol. 19—No. 5, IEEE.
Taylor, Russell, H. et al., “Redundant Consistency Checking in a Precise Surgical Robot,” in 12'th Annual Conference on Engineering in Medicine and Biology, 1990, pp. 1933-1935, vol. 12—No. 5, IEEE.
Taylor, Russell H. et al., “Research Report: A Telerobotic Assistant for Laparoscopic Surgery,” Accepted to IEEE EIMBS Magazine, Special Issue on “Robotics in Surgery,” Dec. 1994, 24 pages.
Taylor, Russell, H et al., “The Architecture of an Integrated Robot System,” First Int. Conf. on Advanced Robotics (ICAR)., 1983, pp. 389-398.
Taylor, Russell H. “Medical Robots,” in Computer and Robotic Assisted Knee and Hip Surgery, 2004, pp. 54-59, Oxford Press.
Taylor, Russell H., “Robotics in Orthopedic Surgery,” In Computer Assisted Orthopaedic Surgery (CAOS), L.P. Nolte and R. Ganz, Editors. 1999, Hogrefe and Huber, 1999, pp. 35-41.
Taylor, Russell H. “The Planning and Execution of Straight Line Manipulator Trajectories,” IBM Journal of Research and Development, 1979, pp. 424-436, vol. 23—Issue 4.
Taylor, Russell H., “Ultrasound Assistant for a Laparoscopic Surgical Robot,” NIH STTR Phase II Proposal R42-RR019159, revised May 2001, 54 pages.
Taylor, Russell H., Videotape: “Computer Assisted Surgery at IBM T. J. Watson Research Center,” 22 minutes 10 seconds, 1994 and 1995.
Teistler, Michael et al., “Virtual Tomography: A New Approach to Efficient Human-Computer Interaction for Medical Imaging,” Proc. of SPIE,, The International Society for Optical Engineering (SPIE), Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display; San Diego, CA, Ed. Robert L. Galloway, 2003, pp. 512-519, vol. 5029.
Tewari, Ashutosh et al., “Technique of da Vinci Robot-Assisted Anatomic Radical Prostatectomy,” Urology, 2002, pp. 569-572, vol. 60—No. 4, Elsevier.
Thring, M.W., “Robots and Telechirs: Manipulators with Memory; Remote Manipulators; Machine Limbs for the Handicapped,” Ellis Horwood Limited, England, 1983, 79 pages, including Table of Contents, Preface, Chap. 5 (pp. 108-131), Chap. 7 (pp. 194-195, 235), Chap. 8 (pp. 236-278), Chap. 9 (p. 279).
Toon, John, “Virtual Reality for Eye Surgery,” Georgia Tech Research News, 1993, 4 Pages.
Toyama, Kentaro et al., “Incremental Focus of Attention for Robust Vision-based Tracking,” International Journal of Computer Vision, 1999, pp. 45-63, vol. 35—No. 1, Kluwer Academic Publishers.
Trevelyan, James P. et al., “Motion Control for a Sheep Shearing Robot,” IEEE Robotics Research Conference, the 1st International Symposium, Carroll, NH, USA., 1983, pp. 175-190, in Robotics Research, MIT Press.
Trivedi, Mohan M. et al., “Developing telerobotic systems using virtual reality concepts,” 1993 IEEE/RSJ International Conference on Intelligent Robots and systems, 1993, pp. 352-359, vol. 1, IEEE.
Troccaz, Jocelyne et al., “The use of localizers, robots, and synergistic devices in CAS,” Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery, Lecture Notes in Computer Science, 1997, pp. 727-736, vol. 1205, Springer-Verlag.
Umeyama, Shinji, “Least-Squares Estimation of Transformation Parameters between Two Point Patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 13, No. 4, pp. 376-380, Apr. 1991.
U.S. Appl. No. 11/583,963 Non-Final Office Action dated Jul. 9, 2009, 40 pages.
Vertut, Jean and Phillipe Coiffet, Robot Technology: Teleoperation and Robotics Evolution and Development, English translation, Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages.
Vibet, C., “Properties of Master-Slave Robots,” Motor-con, MOTORCON'87, Hannover, Apr. 1987, pp. 309-316.
Vilchis, Adriana et al., “A New Robot Architecture for Tele-Echography,” IEEE Trans. Robotics & Automation, pp. 922-926, 2003, vol. 19—No. 5, IEEE.
Viswanathan, Anand et al., “Immediate Ultrasound Calibration with Three Poses and Minimal Image Processing,” MICCAI, 2004, pp. 446-454, vol. 2, Springer-Verlag.
Webster R.J. et al., “Nonholonomic Modeling of Needle Steering,” The International Journal of Robotics Research, 2006, vol. 25 (5-6), pp. 509-525.
Webster Robert J. et al., “Design Considerations for Robotic Needle Steering,” Intemational Conference on Robotics and Automation, 2005, pp. 3588-3594, IEEE.
Wei, Guo-Quing et al., “Real-Time Visual Servoing for Laparoscopic Surgery,” IEEE Engineering in Medicine and Biology Magazine, Jan./Feb. 1997, pp. 40-45, vol. 16—Issue 1, IEEE.
Wei, Zhouping et al “Robot-assisted 3D-TRUS guided prostate brachytherapy: system integration and validation,” Medical Physics, 2004, pp. 539-548, vol. 31—No. 3.
Wengert, C., “Camera Calibration Toolbox for Matlab,” http://www.vision.caltech.edu/bouguetj/calib_doc/, downloaded Oct. 24, 2006, 9 pages.
Wilhelm, Dirk et al., “Electromagnetically Navigated Laparoscopic Ultrasound,” Surg. Technol. Int, 2003, pp. 50-54, vol. 11.
Wood Thomas F. et al., “Radiofrequency ablation of 231 Unresectable hepatic tumors:indications, limitations, and complications,” Ann. Surg. Oncol, 2000, pp. 593-600, vol. 7, Lippincott Williams & Wilkins.
Wu, Xiaohui et al., “A Framework for Calibration of Electromagnetic Surgical Navigation Systems,” IEEE RSJ International Conference on Intelligent Robot Systems (IROS), 2003, pp. 547-552, vol. 1, IEEE.
Xu, Sheng et al., “3D Motion Tracking of Pulmonary Lesions Using CT Fluoroscopy Images for Robotically Assisted Lung Biopsy,” Proc. SPIE. 5367, Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display, 394. (May 5, 2004), pp. 394-402.
Yamagata H., et al., “Development of a New Display Method for Compound 3D Ultrasound Images: Fusion 3D Images From B-mode and 3D Doppler Images,” 1999, vol. 70, pp. 43-46.
Yao, Jianhua et al., “A C-arm fluoroscopy-guided progressive cut refinement strategy using a surgical robot,” Computer Aided Surgery, 2000, pp. 373-390, vol. 5—No. 6, Wiley-Liss, Inc.
Yao, Jianhua, et al., “A Progressive Cut Refinement Scheme for Revision Total Hip Replacement Surgery Using C-arm Fluoroscopy,” Proceedings of the 2nd International Conference on Medical Image and Computer-Assisted Intervention (MICCAI'99), Springer-Verlag, 1999, pp. 1010-1019, vol. 1679.
Yao, Jianhua et al., “Deformable registration between a statistical born density atlas and X-ray images,” Second International Conference on Computer Assisted Orthopaedic Surgery, 2002, pp. 168-169.
Zacherl, Johannes et al., “Current value of intraoperative sonography during surgery for hepatic neoplasms,” World J Surg, 2002, pp. 550-554, vol. 26—No. 5.
Zhang, Xiaoli and Shahram Payandeh, “Application of Visual Tracking for Robotic-Assisted Laparoscopic Surgery,” Journal of Robotic Systems, vol. 19, No. 7, pp. 315-328, 2002.
Zhang, Z., “A Flexible New Technique for Camera Calibration,” Technical report MSR-TR-98-71, Microsoft Research, Microsoft Corporation, Redmond, WA, Dec. 1998, pp. 1-21.
Choti, Michael A., “Hepatic Radiofrequency Ablation,” Cancer Journal, 2000, pp. S291-S292, vol. 6—issue 4, Jones and Bartlett.
Extended European Search Report for Application No. EP21158299.4 mailed on May 21, 2021, 09 p. ( P05117-WO3-EP-DIV4).
Related Publications (1)
Number Date Country
20210256749 A1 Aug 2021 US
Continuations (3)
Number Date Country
Parent 16351444 Mar 2019 US
Child 17213924 US
Parent 15946408 Apr 2018 US
Child 16351444 US
Parent 13768047 Feb 2013 US
Child 15946408 US
Continuation in Parts (1)
Number Date Country
Parent 12415354 Mar 2009 US
Child 13768047 US