REPRESSOR PROTEINS FOR GENE REGULATION AND CRISPR INTERFERENCE

Abstract
The present disclosure relates to CRISPR interference (CRISPRi) systems and uses thereof.
Description
REFERENCE TO SEQUENCE LISTING

The sequence listing submitted on Nov. 10, 2023, as an .XML file entitled “10034-218US1_ST26.xml”,” created on Nov. 8, 2023, and having a file size of 314,914 bytes is hereby incorporated by reference pursuant to 37 C.F.R. § 1.52(e)(5).


FIELD

The present disclosure relates to CRISPR interference systems and uses thereof.


BACKGROUND

Being able to control gene expression is essential for biological studies and controlling the function of human cells when engineering them in gene therapy applications. The current gold standard for decreasing gene expression in human cells is to use a dCas9 nuclease fused to a repressor protein that can target a gene's promoter and shut down its expression. However, current CRISPRi limitations include: (1) incomplete gene knockdown that significantly limits CRISPR phenotype screening, (2) sgRNA sequence-dependent repression activity, and (3) variable performance across human cancer cell lines. Therefore, what is needed are novel CRISPR interference systems. The systems, compositions, and methods disclosed herein address these and other needs.


SUMMARY

The present disclosure provides a CRISPR interference (CRISPRi) system for silencing, reducing, knocking-down, decreasing, and/or eliminating gene expression. The present disclosure also provides an expression vector (including, but not limited to a plasmid, viral vector, a virus, nanoparticle, and/or naked DNA) comprising the CRISPRi system. The present disclosure also provides a cell (including, but not limited to mammalian cells, plant cells, bacterial cells, and/or yeast cell) comprising the CRISPRi system.


In some aspects, disclosed herein is a CRISPR interference (CRISPRi) system comprising a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some aspects, disclosed herein is a CRISPR interference (CRISPRi) system comprising a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises three or more repressor domains comprising any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some aspects, disclosed herein is an engineered cell comprising a CRISPR interference (CRISPRi) system, wherein the CRISPRi system comprises a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some aspect, disclosed herein is an engineered cell comprising a CRISPR interference (CRISPRi) system, wherein the CRISPRi system comprises a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises three or more repressor domains any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some embodiments, the two or more repressor domains comprise SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, or a fragment thereof.


In some embodiments, the three or more repressor domains comprise SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO:96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 114, or a fragment thereof.


In some embodiments, the catalytically inactive nuclease comprises a dCas nuclease selected from a dCas9, dCas12a, and dCas13. In some embodiments, the catalytically inactive nuclease comprises at least 90% sequence identity to SEQ ID NO: 2.


In some embodiments, the repressor fusion peptide is fused to a nuclear localization signal (NLS).


In one aspect, disclosed herein is an expression vector comprising one or more nucleic acids encoding a CRISPR interference (CRISPRi) system, wherein the CRISPRi system comprises a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In one aspect, disclosed herein is an expression vector comprising one or more nucleic acids encoding a CRISPR interference (CRISPRi) system, wherein the CRISPRi system comprises a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises three or more repressor domains comprising any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some embodiments, the one or more nucleic acids encoding the two or more repressor domains comprise SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, or a fragment thereof.


In some embodiments, the one or more nucleic acids encoding the three or more repressor domains comprise SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO:89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, or a fragment thereof.


In some embodiments, the one or more nucleic acid encoding the catalytically inactive nuclease comprises at least 90% sequence identity to SEQ ID NO: 1.


In some embodiments, the one or more nucleic acids encodes the two or more repressor fusion peptides fused to a nuclear localization signal.





BRIEF DESCRIPTION OF FIGURES

The accompanying figures, which are incorporated in and constitute a part of this specification, illustrate several aspects described below.



FIGS. 1A, 1B, 1C, 1D, 1E, and 1F show the libraries of new repressors.



FIGS. 2A, 2B, 2C, 2D, and 2E show the assessment of the CRISPRi systems using guide RNA (gRNA) tiling, real-time PCR (RT-PCR), and gRNA scaffolds.



FIGS. 3A, 3B, 3C, 3D, 3E, and 3F show the assessment of the CRISPRi systems using cell growth rate assays when targeting essential or nonessential genes and the expression of essential genes using RT-PCR.



FIGS. 4A, 4B, 4C, 4D, and 4E show the evaluation of CRISPRi systems and cell-specific performance determinants across mammalian cell lines.



FIGS. 5A, 5B, and 5C show that truncated MeCP2 variants improve CRISPRi system-mediated gene knockdown across mammalian cell lines.



FIGS. 6A and 6B show that gene silencing is achieved by improved bipartite repressor domains using SV40-eGFP reporter assay with dual targeting gRNA-229/301 (T) in HEK293T cells.



FIGS. 7A, 7B, and 7C show the expression level of CRISPRi systems discovered in screening experiments.



FIGS. 8A, 8B, 8C, 8D, 8E, and 8F show the quantification of growth phenotypes resulting from essential gene knockdown.



FIGS. 9A, 9B, 9C, 9D, 9E, 9F, 9G, and 9H show the characterization of CRISPRi systems in different mammalian cell lines.



FIGS. 10A and 10B show the comparison between MAX secondary effector expression levels.



FIG. 11 shows the fusing of NLS domains to dCas9-ZIM3(KRAB) improves gene knockdown in multiple human cell lines. dCas9-repressor fusions with appended C-terminal NLS domains were transiently transfected in each cell line in 24-well plates, and 72 h later assayed using flow cytometry. eGFP expression is normalized by cells receiving non-targeting sgRNAs. Data denotes the mean expression of three individual cell transfections (cell cultures); error bars represent standard deviations.





DETAILED DESCRIPTION

The following description of the disclosure is provided as an enabling teaching of the disclosure in its best, currently known embodiment(s). To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various embodiments of the invention described herein, while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits of the present disclosure can be obtained by selecting some of the features of the present disclosure without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present disclosure are possible and can even be desirable in certain circumstances and are a part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof.


Reference will now be made in detail to the embodiments of the invention, examples of which are illustrated in the drawings and the examples. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.


Terminology

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms. Although the terms “comprising” and “including” have been used herein to describe various embodiments, the terms “consisting essentially of” and “consisting of” can be used in place of “comprising” and “including” to provide for more specific embodiments and are also disclosed. As used in this disclosure and in the appended claims, the singular forms “a”, “an”, “the”, include plural referents unless the context clearly dictates otherwise.


The following definitions are provided for the full understanding of terms used in this specification.


The terms “about” and “approximately” are defined as being “close to” as understood by one of ordinary skill in the art. In one non-limiting embodiment the terms are defined to be within 10%. In another non-limiting embodiment, the terms are defined to be within 5%. In still another non-limiting embodiment, the terms are defined to be within 1%.


As used herein, the terms “may,” “optionally,” and “may optionally” are used interchangeably and are meant to include cases in which the condition occurs as well as cases in which the condition does not occur. Thus, for example, the statement that a formulation “may include an excipient” is meant to include cases in which the formulation includes an excipient as well as cases in which the formulation does not include an excipient.


“Administration” to a subject or “administering” includes any route of introducing or delivering to a subject an agent. Administration can be carried out by any suitable route, including oral, intravenous, intraperitoneal, intranasal, inhalation and the like. Administration includes self-administration and the administration by another.


“Comprising” is intended to mean that the compositions, methods, etc. include the recited elements, but do not exclude others. “Consisting essentially of” when used to define compositions and methods, shall mean including the recited elements, but excluding other elements of any essential significance to the combination. Thus, a composition consisting essentially of the elements as defined herein would not exclude trace contaminants from the isolation and purification method and pharmaceutically acceptable carriers, such as phosphate buffered saline, preservatives, and the like. “Consisting of” shall mean excluding more than trace elements of other ingredients and substantial method steps for administering the compositions provided and/or claimed in this disclosure. Embodiments defined by each of these transition terms are within the scope of this disclosure.


“Complementary” or “substantially complementary” refers to the hybridization or base pairing or the formation of a duplex between nucleotides or nucleic acids, such as, for instance, between the two strands of a double stranded DNA molecule or between an oligonucleotide primer and a primer binding site on a single stranded nucleic acid. Complementary nucleotides are, generally, A and T/U, or C and G. Two single-stranded RNA or DNA molecules are said to be substantially complementary when the nucleotides of one strand, optimally aligned and compared and with appropriate nucleotide insertions or deletions, pair with at least about 80% of the nucleotides of the other strand, usually at least about 90% to 95%, and more preferably from about 98 to 100%. Alternatively, substantial complementarity exists when an RNA or DNA strand will hybridize under selective hybridization conditions to its complement. Typically, selective hybridization will occur when there is at least about 65% complementary over a stretch of at least 14 to 25 nucleotides, at least about 75%, or at least about 90% complementary. See Kanehisa (1984) Nucl. Acids Res. 12:203.


A “control” is an alternative subject or sample used in an experiment for comparison purposes. A control can be “positive” or “negative.”


By the term “effective amount” of a therapeutic agent is meant a nontoxic but sufficient amount of a beneficial agent to provide the desired effect. The amount of beneficial agent that is “effective” will vary from subject to subject, depending on the age and general condition of the subject, the particular beneficial agent or agents, and the like. Thus, it is not always possible to specify an exact “effective amount.” However, an appropriate “effective” amount in any subject case may be determined by one of ordinary skill in the art using routine experimentation. Also, as used herein, and unless specifically stated otherwise, an “effective amount” of a beneficial can also refer to an amount covering both therapeutically effective amounts and prophylactically effective amounts.


“Encoding” refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom, Thus, a gene encodes a protein if transcription and translation of mRNA.


“Expression vector” refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, such as cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.


The “fragments,” whether attached to other sequences or not, can include insertions, deletions, substitutions, or other selected modifications of particular regions or specific amino acids residues, provided the activity of the fragment is not significantly altered or impaired compared to the nonmodified peptide or protein. These modifications can provide for some additional property, such as to remove or add amino acids capable of disulfide bonding, to increase its bio-longevity, to alter its secretory characteristics, etc. In any case, the fragment must possess a bioactive property, such as regulating the transcription of the target gene.


The term “gene” or “gene sequence” refers to the coding sequence or control sequence, or fragments thereof. A gene may include any combination of coding sequence and control sequence, or fragments thereof. Thus, a “gene” as referred to herein may be all or part of a native gene. A polynucleotide sequence as referred to herein may be used interchangeably with the term “gene”, or may include any coding sequence, non-coding sequence or control sequence, fragments thereof, and combinations thereof. The term “gene” or “gene sequence” includes, for example, control sequences upstream of the coding sequence.


An “increase” can refer to any change that results in a greater amount of a symptom, disease, composition, condition, or activity. An increase can be any individual, median, or average increase in a condition, symptom, activity, composition in a statistically significant amount. Thus, the increase can be a 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100%, or more, increase so long as the increase is statistically significant.


A “decrease” can refer to any change that results in a smaller amount of a symptom, disease, composition, condition, or activity. A substance is also understood to decrease the genetic output of a gene when the genetic output of the gene product with the substance is less relative to the output of the gene product without the substance. Also, for example, a decrease can be a change in the symptoms of a disorder such that the symptoms are less than previously observed. A decrease can be any individual, median, or average decrease in a condition, symptom, activity, composition in a statistically significant amount. Thus, the decrease can be a 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100% decrease so long as the decrease is statistically significant.


The term “reduced”, “reduce”, “reduction”, or “decrease” as used herein generally means a decrease by a statistically significant amount. However, for avoidance of doubt, “reduced” means a decrease by at least 10% as compared to a reference level, for example a decrease by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% decrease (i.e. absent level as compared to a reference sample), or any decrease between 10-100% as compared to a reference level.


“Inhibit,” “inhibiting,” and “inhibition” mean to decrease an activity, response, condition, disease, or other biological parameter. This can include but is not limited to the complete ablation of the activity, response, condition, or disease. This may also include, for example, a 10% reduction in the activity, response, condition, or disease as compared to the native or control level. Thus, the reduction can be a 10, 20, 30, 40, 50, 60, 70, 80, 90, 100%, or any amount of reduction in between as compared to native or control levels.


The terms “identical” or percent “identity,” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 60% identity, preferably 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or higher identity over a specified region when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site or the like). Such sequences are then said to be “substantially identical.” This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 10 amino acids or 20 nucleotides in length, or more preferably over a region that is 10-50 amino acids or 20-50 nucleotides in length. As used herein, percent (%) nucleotide sequence identity is defined as the percentage of amino acids in a candidate sequence that are identical to the nucleotides in a reference sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, ALIGN-2 or Megalign (DNASTAR) software. Appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared can be determined by known methods.


For sequence comparisons, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.


One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) Nuc. Acids Res. 25:3389-3402, and Altschul et al. (1990) J. Mol. Biol. 215:403-410, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al. (1990) J. Mol. Biol. 215:403-410). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) or 10, M=5, N=−4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=−4, and a comparison of both strands.


The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01.


The term “nucleic acid” as used herein means a polymer composed of nucleotides, e.g., deoxyribonucleotides (DNA) or ribonucleotides (RNA). The terms “ribonucleic acid” and “RNA” as used herein mean a polymer composed of ribonucleotides. The terms “deoxyribonucleic acid” and “DNA” as used herein mean a polymer composed of deoxyribonucleotides. (Used together with “polynucleotide” and “polypeptide”.)


“Pharmaceutically acceptable” component can refer to a component that is not biologically or otherwise undesirable, i.e., the component may be incorporated into a pharmaceutical formulation of the invention and administered to a subject as described herein without causing significant undesirable biological effects or interacting in a deleterious manner with any of the other components of the formulation in which it is contained. When used in reference to administration to a human, the term generally implies the component has met the required standards of toxicological and manufacturing testing or that it is included on the Inactive Ingredient Guide prepared by the U.S. Food and Drug Administration.


“Pharmaceutically acceptable carrier” (sometimes referred to as a “carrier”) means a carrier or excipient that is useful in preparing a pharmaceutical or therapeutic composition that is generally safe and non-toxic, and includes a carrier that is acceptable for veterinary and/or human pharmaceutical or therapeutic use. The terms “carrier” or “pharmaceutically acceptable carrier” can include, but are not limited to, phosphate buffered saline solution, water, emulsions (such as an oil/water or water/oil emulsion) and/or various types of wetting agents.


As used herein, the term “carrier” encompasses any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, lipid, stabilizer, or other material well known in the art for use in pharmaceutical formulations. The choice of a carrier for use in a composition will depend upon the intended route of administration for the composition. The preparation of pharmaceutically acceptable carriers and formulations containing these materials is described in, e.g., Remington's Pharmaceutical Sciences, 21st Edition, ed. University of the Sciences in Philadelphia, Lippincott, Williams & Wilkins, Philadelphia, P A, 2005. Examples of physiologically acceptable carriers include saline, glycerol, DMSO, buffers such as phosphate buffers, citrate buffer, and buffers with other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™ (ICI, Inc.; Bridgewater, New Jersey), polyethylene glycol (PEG), and PLURONICS™ (BASF; Florham Park, NJ).


As used herein, the term “subject” or “host” can refer to living organisms such as mammals, including, but not limited to humans, livestock, dogs, cats, and other mammals. Administration of the therapeutic agents can be carried out at dosages and for periods of time effective for treatment of a subject. In some embodiments, the subject is a human.


The term “polynucleotide” refers to a single or double stranded polymer composed of nucleotide monomers.


The term “polypeptide” refers to a compound made up of a single chain of D- or L-amino acids or a mixture of D- and L-amino acids joined by peptide bonds.


The terms “peptide,” “protein,” and “polypeptide” are used interchangeably to refer to a natural or synthetic molecule comprising two or more amino acids linked by the carboxyl group of one amino acid to the alpha amino group of another.


“Recombinant” used in reference to a gene refers herein to a sequence of nucleic acids that are not naturally occurring in the genome of the bacterium. The non-naturally occurring sequence may include a recombination, substitution, deletion, or addition of one or more bases with respect to the nucleic acid sequence originally present in the natural genome of the bacterium.


The terms “treat,” “treating,” “treatment,” and grammatical variations thereof as used herein, include partially or completely delaying, alleviating, mitigating or reducing the intensity of one or more attendant symptoms of cancer or condition and/or alleviating, mitigating or impeding one or more symptoms of cancer. Treatments according to the invention may be applied preventively, prophylactically, palliatively or remedially.


A “vector” is a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term “vector” includes an autonomously replicating plasmid or a virus. The term should also be construed to include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for example, polylysine compounds, liposomes, and the like. Examples of viral vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, and the like.


“CRISPR” (Clustered Regularly Interspaced Short Palindromic Repeats) loci refers to certain genetic loci encoding components of DNA cleavage systems, for example, used by bacterial and archaeal cells to destroy foreign DNA (Horvath and Barrangou, 2010, Science 327: 167-170; WO2007025097, published 1 Mar. 2007). A CRISPR locus can consist of a CRISPR array, comprising short direct repeats (CRISPR repeats) separated by short variable DNA sequences (called spacers), which can be flanked by diverse Cas (CRISPR-associated) genes.


As used herein, an “effector” or “effector protein” is a protein that encompasses an activity including recognizing, binding to, and/or cleaving or nicking a polynucleotide target. An effector, or effector protein, may also be an endonuclease. The “effector complex” of a CRISPR system includes Cas proteins involved in crRNA and target recognition and binding. Some of the component Cas proteins may additionally comprise domains involved in target polynucleotide cleavage.


The term “Cas protein” refers to a polypeptide encoded by a Cas (CRISPR-associated) gene. A Cas protein includes proteins encoded by a gene in a Cas locus and includes adaptation molecules as well as interference molecules. An interference molecule of a bacterial adaptive immunity complex includes endonucleases. A Cas endonuclease described herein comprises one or more nuclease domains. Contemplated herein are any Cas molecules that comprise a Rec3 clamp, as described below.


A Cas endonuclease may also include a multifunctional Cas endonuclease. The term “multifunctional Cas endonuclease” and “multifunctional Cas endonuclease polypeptide” are used interchangeably herein and includes reference to a single polypeptide that has Cas endonuclease functionality (comprising at least one protein domain that can act as a Cas endonuclease) and at least one other functionality, such as but not limited to, the functionality to form a complex (comprises at least a second protein domain that can form a complex with other proteins). In one aspect, the multifunctional Cas endonuclease comprises at least one additional protein domain relative (either internally, upstream (5′), downstream (3′), or both internally 5′ and 3′, or any combination thereof) to those domains typical of a Cas endonuclease.


As used herein, the term “guide polynucleotide”, relates to a polynucleotide sequence that can form a complex with a Cas endonuclease, including the Cas endonuclease described herein, and enables the Cas endonuclease to recognize, optionally bind to, and optionally cleave a DNA target site. The guide polynucleotide sequence can be an RNA sequence, a DNA sequence, or a combination thereof (a RNA-DNA combination sequence).


The terms “single guide RNA” and “sgRNA” are used interchangeably herein and relate to a synthetic fusion of two RNA molecules, a crRNA (CRISPR RNA) comprising a variable targeting domain (linked to a tracr mate sequence that hybridizes to a tracrRNA), fused to a tracrRNA (trans-activating CRISPR RNA).


CRISPR Interference Systems

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated system (CRISPR/-Cas9) is a popular tool for genome editing. As used herein, genome editing refers to the strategies and techniques for the targeted, specific modification of the genetic information (genome) of living organisms. Genome engineering is a very active field of research because of the wide range of applications, particularly in the areas of human health. For example, genome engineering can be used to alter (e.g., correct or inhibit) a gene carrying a harmful mutation or to explore the function of a gene. One such area of CRISPR genome editing applies to CRISPR interference (CRISPRi) technologies, which refers to a genetic perturbation technique that allows for sequence-specific repression of gene expression in prokaryotic or eukaryotic cells. CRISPRi technologies have been developed to incorporate a catalytically inactive nuclease and a single-guide RNA to repress sequence-specific genes. Further developments of CRISPRi technologies have incorporated repressor proteins, or domains thereof, to enhance gene repression. However, these developments are still limited by (1) incomplete gene knockdown that significantly limits CRISPR phenotype screening, (2) sgRNA sequence-dependent repression activity, and (3) variable performance across human cell lines. Therefore, what is needed is a CRISPRi system that efficiently decreases, reduces, silences, knocks-down, or knocks-out gene expression in a sequence-specific manner in numerous human cell lines while also not being dependent on sgRNA sequences.


Thus, the present disclosure provides a CRISPR interference (CRISPRi) system for silencing, reducing, knocking-down, decreasing, and/or eliminating gene expression. The present disclosure also provides an expression vector (including, but not limited to a plasmid, viral vector, a virus, nanoparticle, and/or naked DNA) comprising the CRISPRi system. The present disclosure also provides a cell (including, but not limited to mammalian cells, plant cells, bacterial cells, and/or yeast cell) comprising the CRISPRi system.


The present disclosure provides CRISPRi systems comprising more than one repressor fusion peptide fused to a catalytically inactive nuclease, such as for example, a dead Cas nuclease (including but not limited to dCas9, dCas12, and dCas13). In some embodiments, the CRISPRi system comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, or more repressor fusion peptides fused to a catalytically inactive nuclease. In some embodiments, the CRISPRi system comprises a bipartite repressor fusion peptide fused to a catalytically inactive nuclease. In some embodiments, the CRISPRi system comprises a tripartite repressor fusion peptide fused to a catalytically inactive nuclease.


As used herein, a “bipartite repressor fusion peptide” refers to a system, composition, or biological matter comprising two distinct repressor domains fused together by at least one linker. In some embodiments, the two distinct repressor domains are the same. In some embodiments, the two distinct repressor domains are different. In some embodiments, at least one peptide of the bipartite repressor fusion peptides comprises a Kruppel-associated box (KRAB) domain, a NcoR/SMRT interaction domain (NID), or a combination thereof.


As used herein, a “tripartite repressor fusion peptide” refers to a system, composition, or biological matter comprising three distinct repressor domains fused together by at least one linker. In some embodiments, the three distinct repressor domains are the same. In some embodiments, two out of three distinct repressor domains are the same. In some embodiments, the three distinct repressor domains are different. In some embodiments, two of out three distinct repressor domains are different. In some embodiments, at least one peptide of the tripartite repressor fusion peptides comprises a Kruppel-associated box (KRAB) domain, a NcoR/SMRT interaction domain (NID), or a combination thereof.


In some aspects, disclosed herein is a CRISPR interference (CRISPRi) system comprising a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some aspects, disclosed herein is a CRISPR interference (CRISPRi) system comprising a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises three or more repressor domains comprising any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some aspects, disclosed herein is an engineered cell comprising a CRISPR interference (CRISPRi) system, wherein the CRISPRi system comprises a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some aspect, disclosed herein is an engineered cell comprising a CRISPR interference (CRISPRi) system, wherein the CRISPRi system comprises a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises three or more repressor domains any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some embodiments, the engineered cell comprises a mammalian cell, a bacterial cell, a plant cell, a yeast cell, or a cancer cell.


In some embodiments, the two or more repressor domains comprise SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 114, or a fragment thereof. In some embodiments, the two or more repressor domains comprise SEQ ID NO: 114, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, or a fragment thereof.


In some embodiments, the three or more repressor domains comprise SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO:96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, or a fragment thereof. In some embodiments, the three or more repressor domains comprise SEQ ID NO: 64.


In some embodiments, the catalytically inactive nuclease is fused to two repressor fusion peptides comprising KOX1(KRAB)-MeCP2, ZIM3(KRAB)-MeCP2, KOX1(KRAB)-MeCP2(t), ZIM3(KRAB)-MAX, KRBOX1(KRAB)-MAX, KOX1(KRAB)-MAX, ZIM3(KRAB)-IRF2BP1, ZIM3(KRAB)-ZIM3(KRAB), KRBOX1(KRAB)-CTCF, ZIM3(KRAB)-ZNF554, KRBOX1(KRAB)-MeCP2, ZIM3(KRAB)-RYBP, ZIM3(KRAB)-KLF10, KRBOX1(KRAB)-ZIM3(KRAB), or a variation thereof.


In some embodiments, the catalytically inactive nuclease is fused to three repressor fusion peptides comprising ZIM3(KRAB)-MAX-MeCP2(t), KOX1(KRAB)-MeCP2(t)-MeCP2(t), KOX1(KRAB)-MeCP2(t)-KOX1(KRAB), ZIM3(KRAB)-MAX-IRF2BP1, KOX1(KRAB)-MeCP2(t)-ZNF264(KRAB), KRBOX1(KRAB)-MAX-MeCP2(t), ZIM3(KRAB)-MeCP2-RYBP, ZIM3(KRAB)-MAX-ZNF554(KRAB), ZIM3(KRAB)-MAX-KOX1(KRAB), ZIM3(KRAB)-MeCP2-KRBOX1, KRBOX1(KRAB)-MAX-ZIM3(KRAB), ZIM3)KRAB)-MeCP2-MeCP2(t), ZIM3(KRAB)-MAX-ZNF264(KRAB), ZIM3(KRAB)-MeCP2-ZIM3(KRAB), KRBOX1(KRAB)-MAX-MeCP2, KRBOX1(KRAB)-MAX-ZNF554(KRAB), ZIM3(KRAB)-MeCP2-IRF2BP1, ZIM3(KRAB)-MeCP2-IRF2BP1, ZIM3(KRAB)-MAX-CTCF, KOX1(KRAB)-MeCP2(t)-SCMH1, ZIM3(KRAB)-MeCP2-KOX1(KRAB), KOX1(KRAB)-MeCP2(t)-RYBP, KRBOX1(KRAB)-MAX-MGA, KRBOX1(KRAB)-MAX-ZNF264(KRAB), or ZIM3(KRAB)-MAX-ZIM3(KRAB).


In some embodiments, the catalytically inactive nuclease is fused to 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 repressor fusion peptides selected from KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, and ZNF264.


A nuclear localization signal (NLS) is an amino acid sequence that mediates the transport of protein designated to enter into the nucleus. It has been demonstrated that nuclear and non-nuclear proteins are imported into the nucleus when fused to an NLS. Thus, in some embodiments, the repressor fusion peptide (comprising either two or three repressor domains) is fused to a nuclear localization signal (NLS) comprising SEQ ID NO: 159, SEQ ID NO: 163, SEQ ID NO: 167, SEQ ID NO: 171, SEQ ID NO: 175, SEQ ID NO: 179, SEQ ID NO: 183, SEQ ID NO: 185, SEQ ID NO: 187, SEQ ID NO: 191, or a fragment thereof. In some embodiments, the repressor fusion peptide fused to a NLS comprises SEQ ID NO: 159, SEQ ID NO: 171, or a fragment thereof.


The structure for Cas molecules was determined when bound in complex with a gRNA and double-stranded DNA target, in an active (DNA cleavage product state) and inactive (nonproductive state) conformation. This allowed for rational design of enzymes with different properties that facilitate better gene editing. The Cas nucleases disclosed herein have been mutated within the catalytic domains to be inactive, such that the Cas nuclease lacks endonuclease activity, but still the sgRNA and the promoter of a target gene sequence.


In some embodiments, the catalytically inactive nuclease comprises a dead Cas (dCas) nuclease selected from a dCas9, dCas12a, and dCas13. In some embodiments, the catalytically inactive nuclease comprises at least 50% sequence identity to SEQ ID NO: 2. In some embodiments, the catalytically inactive nuclease comprises at least 60% sequence identity to SEQ ID NO: 2. In some embodiments, the catalytically inactive nuclease comprises at least 70% sequence identity to SEQ ID NO: 2. In some embodiments, the catalytically inactive nuclease comprises at least 80% sequence identity to SEQ ID NO: 2. In some embodiments, the catalytically inactive nuclease comprises at least 90% sequence identity to SEQ ID NO: 2. In some embodiments, the catalytically inactive nuclease comprises at least 95% sequence identity to SEQ ID NO: 2. In some embodiments, the catalytically inactive nuclease comprises at least 99% sequence identity to SEQ ID NO: 2. In some embodiments, the catalytically inactive nuclease comprises SEQ ID NO: 2, or a fragment thereof.


In some embodiments, the sgRNA comprises SEQ ID NO: 133-155, or a fragment thereof, incorporated into a sgRNA scaffold comprising SEQ ID NO: 131 or SEQ ID NO: 132, or a fragment thereof. In some embodiments, the sgRNA targets at a transcriptional start site (TSS) of a gene in a cell. In some embodiments, the sgRNA targets away from a transcriptional start site (TSS) of a gene in a cell.


In some embodiments, the CRISPRi system further comprises a first linker, second linker, and/or a third linker. In some embodiments, the first linker fuses the catalytically inactive nuclease to the first repressor peptide, the second linker fuses the first repressor peptide to the second repressor peptide, and/or the third linker fuses the second repressor peptide to the third repressor peptide. In some embodiments, the first linker, the second linker, and/or third linker are the same. In some embodiments, the first linker and second linker are the same. In some embodiments, the second linker and third linker are the same. In some embodiments, the first linker and third linker are the same. In some embodiments, the first linker, the second linker, and/or third linker are different. In some embodiments, the first linker and second linker are different. In some embodiments, the second linker and third linker are different. In some embodiments, the first linker and third linker are different. In some embodiments, the first linker, the second linker, and/or third linker comprise at least 70% sequence identity of SEQ ID NO: 4, 6, or 8. In some embodiments, the first linker, the second linker, and/or third linker comprise at least 80% sequence identity of SEQ ID NO: 4, 6, or 8. In some embodiments, the first linker, the second linker, and/or third linker comprise at least 90% sequence identity of SEQ ID NO: 4, 6, or 8. In some embodiments, the first linker, the second linker, and/or third linker comprise at least 95% sequence identity of SEQ ID NO: 4, 6, or 8. In some embodiments, the first linker, the second linker, and/or third linker comprise at least 99% sequence identity of SEQ ID NO: 4, 6, or 8. In some embodiments, the first linker, the second linker, and/or third linker comprises SEQ ID NO: 4, 6, or 8.


Expression Vectors

In one aspect, disclosed herein is an expression vector comprising one or more nucleic acids encoding a CRISPR interference (CRISPRi) system, wherein the CRISPRi system comprises a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In one aspect, disclosed herein is an expression vector comprising one or more nucleic acids encoding a CRISPR interference (CRISPRi) system, wherein the CRISPRi system comprises a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises three or more repressor domains comprising any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some embodiments, the expression vector comprises a plasmid or a virus or viral vector. A plasmid, virus, or a viral vector is capable of extrachromosomal replication or, optionally, can integrate into the host genome. As used herein, the term “integrated” used in reference to an expression vector (e.g., a plasmid, virus, or viral vector) means the expression vector, or a portion thereof, is incorporated (physically inserted or ligated) into the chromosomal DNA of a host cell. As used herein, a “plasmid” refers to a small circular DNA molecule derived from bacteria or other microscopic organisms. Plasmids are physically separate from chromosomal DNA and replicate independently once inside the host organism. As used herein, a “viral vector” refers to a virus-like particle containing genetic material which can be introduced into a eukaryotic cell without causing substantial pathogenic effects to the eukaryotic cell. A wide range of viruses or viral vectors can be used for transduction but should be compatible with the cell type the virus or viral vector are transduced into (e.g., low toxicity, capability to enter cells). Non-limiting examples of viruses and viral vectors include adenovirus, lentivirus, retrovirus, adeno-associated viruses, retrovirus, and large payload viral vectors. It has been contemplated that the one or more nucleic acids encoding the CRISPRi system can be inserted into a single expression vector or can be separated into two or more expression vectors. Thus, the CRISPRi system disclosed herein can be designed within any number of expression vectors deemed fit to produce the desired effect of gene repression. In some embodiments, the expression vector encoding a CRISPRi system comprises naked DNA or is comprised in a nanoparticle (e.g., liposomal vesicle, porous silicon nanoparticle, gold-DNA conjugate particle, polyethyleneimine polymer particle, cationic peptides, etc.).


In some embodiments, the one or more nucleic acids encodes the two or more repressor fusion peptides comprising SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, or a fragment thereof


In some embodiments, the one or more nucleic acids encodes the three or more repressor fusion peptide comprising SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO:89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, or a fragment thereof.


In some embodiments, the one or more nucleic acids encoding the catalytically inactive nuclease comprises at least 50% sequence identity of SEQ ID NO: 1. In some embodiments, the one or more nucleic acids encoding the catalytically inactive nuclease comprises at least 60% sequence identity of SEQ ID NO: 1. In some embodiments, the one or more nucleic acids encoding the catalytically inactive nuclease comprises at least 70% sequence identity of SEQ ID NO: 1. In some embodiments, the one or more nucleic acids encoding the catalytically inactive nuclease comprises at least 80% sequence identity of SEQ ID NO: 1. In some embodiments, the one or more nucleic acids encoding the catalytically inactive nuclease comprises at least 90% sequence identity of SEQ ID NO: 1. In some embodiments, the one or more nucleic acids encoding the catalytically inactive nuclease comprises at least 95% sequence identity of SEQ ID NO: 1. In some embodiments, the one or more nucleic acids encoding the catalytically inactive nuclease comprises at least 99% sequence identity of SEQ ID NO: 1. In some embodiments, the one or more nucleic acid encoding the catalytically inactive nuclease comprises SEQ ID NO: 1, or a fragment thereof.


In some embodiments, the expression vector further comprises the first linker, second linker, and/or third linker of any preceding aspect.


In some embodiments, the one or more nucleic acids encode the sgRNA comprising SEQ ID NO: 133-155, or a fragment thereof, incorporated into a sgRNA scaffold comprising SEQ ID NO: 131 or SEQ ID NO: 132, or a fragment thereof.


Methods of Decreasing and/or Silencing Gene Expression


In one aspect, disclosed herein is a method of decreasing gene expression, the method comprising administering to a host a CRISPR interference (CRISPRi) system comprising a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some embodiments, the repressor fusion peptide comprises three or more repressor domains comprising any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some embodiments, the method of decreasing gene expression comprises the two or more repressor domains comprising SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 114, or a fragment thereof. In a preferred embodiment, the method of decreasing gene expression comprises the two or more repressor domains comprising SEQ ID NO: 114, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, or a fragment thereof.


In some embodiments, the method of decreasing gene expression comprises the three or more repressor domains comprising SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO:96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 114, or a fragment thereof. In a preferred embodiment, the method of decreasing gene expression comprises the three or more repressor domains comprising SEQ ID NO: 64.


In some embodiments, the method of decreasing gene expression comprises the catalytically inactive nuclease is fused to two repressor fusion peptides comprising KOX1(KRAB)-MeCP2, ZIM3(KRAB)-MeCP2, KOX1(KRAB)-MeCP2(t), ZIM3(KRAB)-MAX, KRBOX1(KRAB)-MAX, KOX1(KRAB)-MAX, ZIM3(KRAB)-IRF2BP1, ZIM3(KRAB)-ZIM3(KRAB), KRBOX1(KRAB)-CTCF, ZIM3(KRAB)-ZNF554, KRBOX1(KRAB)-MeCP2, ZIM3(KRAB)-RYBP, ZIM3(KRAB)-KLF10, KRBOX1(KRAB)-ZIM3(KRAB), or a variation thereof.


In some embodiments, the method of decreasing gene expression comprises the catalytically inactive nuclease is fused to three repressor fusion peptides comprising ZIM3(KRAB)-MAX-MeCP2(t), KOX1(KRAB)-MeCP2(t)-MeCP2(t), KOX1(KRAB)-MeCP2(t)-KOX1(KRAB), ZIM3(KRAB)-MAX-IRF2BP1, KOX1(KRAB)-MeCP2(t)-ZNF264(KRAB), KRBOX1(KRAB)-MAX-MeCP2(t), ZIM3(KRAB)-MeCP2-RYBP, ZIM3(KRAB)-MAX-ZNF554(KRAB), ZIM3(KRAB)-MAX-KOX1(KRAB), ZIM3(KRAB)-MeCP2-KRBOX1, KRBOX1(KRAB)-MAX-ZIM3(KRAB), ZIM3)KRAB)-MeCP2-MeCP2(t), ZIM3(KRAB)-MAX-ZNF264(KRAB), ZIM3(KRAB)-MeCP2-ZIM3(KRAB), KRBOX1(KRAB)-MAX-MeCP2, KRBOX1(KRAB)-MAX-ZNF554(KRAB), ZIM3(KRAB)-MeCP2-IRF2BP1, ZIM3(KRAB)-MeCP2-IRF2BP1, ZIM3(KRAB)-MAX-CTCF, KOX1(KRAB)-MeCP2(t)-SCMH1, ZIM3(KRAB)-MeCP2-KOX1(KRAB), KOX1(KRAB)-MeCP2(t)-RYBP, KRBOX1(KRAB)-MAX-MGA, KRBOX1(KRAB)-MAX-ZNF264(KRAB), or ZIM3(KRAB)-MAX-ZIM3(KRAB).


In some embodiments, the method of decreasing gene expression comprises the catalytically inactive nuclease is fused to 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 repressor fusion peptides selected from KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, and ZNF264.


In some embodiments, the host comprises a cell, a mammal, or a human. In some embodiments, the cell comprises a mammalian cell, a bacterial cell, a plant cell, a yeast cell, or a cancer cell.


In some embodiments, the method of decreasing gene expression comprises forming a nuclease-sgRNA complex, wherein the catalytically inactive nuclease is fused to two or more, or three or more repressor fusion peptides, the nuclease then binds to the sgRNA, and the nuclease-sgRNA complex targets and binds at a promoter of a target gene sequence. In some embodiments, the nuclease-sgRNA complex binds at a transcriptional start site (TSS) of the target gene. In some embodiments, the nuclease-sgRNA complex binds away from the TSS of the target gene.


In some embodiments, the two or more, or three or more repressor fusion peptides enhance silencing, decreasing, knocking-down, or reducing the gene expression of the target gene. In some embodiments, the method of decreasing gene expression further comprises treating and/or preventing a disease or disorder.


Methods of Treating and/or Preventing Disease


In one aspect, disclosed herein is a method of treating and/or preventing a disease or disorder in a subject, the method comprising administering to a subject a CRISPR interference (CRISPRi) system comprising a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof, and wherein the CRISPRi system silences, decreases, knocks-down, knocks-out, or reduces gene expression of a target gene.


In some embodiments, the repressor fusion peptide comprises three or more repressor domains comprising any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.


In some embodiments, the method of treating and/or preventing a disease or disorder comprises the two or more repressor domains comprising SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 114, or a fragment thereof. In a preferred embodiment, the method of treat and/or preventing a disease or disorder comprises the two or more repressor domains comprising SEQ ID NO: 114, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, or a fragment thereof.


In some embodiments, the method of treating and/or preventing a disease or disorder comprises the three or more repressor domains comprising SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO:96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, or a fragment thereof. In a preferred embodiment, the method of treating and/or preventing a disease or disorder comprises the three or more repressor domains comprising SEQ ID NO: 64, or a fragment.


In some embodiments, the method of treating and/or preventing a disease or disorder comprises the catalytically inactive nuclease is fused to two repressor fusion peptides comprising KOX1(KRAB)-MeCP2, ZIM3(KRAB)-MeCP2, KOX1(KRAB)-MeCP2(t), ZIM3(KRAB)-MAX, KRBOX1(KRAB)-MAX, KOX1(KRAB)-MAX, ZIM3(KRAB)-IRF2BP1, ZIM3(KRAB)-ZIM3(KRAB), KRBOX1(KRAB)-CTCF, ZIM3(KRAB)-ZNF554, KRBOX1(KRAB)-MeCP2, ZIM3(KRAB)-RYBP, ZIM3(KRAB)-KLF10, KRBOX1(KRAB)-ZIM3(KRAB), or a variation thereof.


In some embodiments, the method of treating and/or preventing a disease or disorder comprises the catalytically inactive nuclease is fused to three repressor fusion peptides comprising ZIM3(KRAB)-MAX-MeCP2(t), KOX1(KRAB)-MeCP2(t)-MeCP2(t), KOX1(KRAB)-MeCP2(t)-KOX1(KRAB), ZIM3(KRAB)-MAX-IRF2BP1, KOX1(KRAB)-MeCP2(t)-ZNF264(KRAB), KRBOX1(KRAB)-MAX-MeCP2(t), ZIM3(KRAB)-MeCP2-RYBP, ZIM3(KRAB)-MAX-ZNF554(KRAB), ZIM3(KRAB)-MAX-KOX1(KRAB), ZIM3(KRAB)-MeCP2-KRBOX1, KRBOX1(KRAB)-MAX-ZIM3(KRAB), ZIM3)KRAB)-MeCP2-MeCP2(t), ZIM3(KRAB)-MAX-ZNF264(KRAB), ZIM3(KRAB)-MeCP2-ZIM3(KRAB), KRBOX1(KRAB)-MAX-MeCP2, KRBOX1(KRAB)-MAX-ZNF554(KRAB), ZIM3(KRAB)-MeCP2-IRF2BP1, ZIM3(KRAB)-MeCP2-IRF2BP1, ZIM3(KRAB)-MAX-CTCF, KOX1(KRAB)-MeCP2(t)-SCMH1, ZIM3(KRAB)-MeCP2-KOX1(KRAB), KOX1(KRAB)-MeCP2(t)-RYBP, KRBOX1(KRAB)-MAX-MGA, KRBOX1(KRAB)-MAX-ZNF264(KRAB), or ZIM3(KRAB)-MAX-ZIM3(KRAB).


In some embodiments, the method of treating and/or preventing a disease or disorder comprises the catalytically inactive nuclease is fused to 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 repressor fusion peptides selected from KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, and ZNF264.


In some embodiments, the method of treating and/or preventing a disease or disorder comprises forming a nuclease-sgRNA complex, wherein the catalytically inactive nuclease is fused to two or more, or three or more repressor fusion peptides, the nuclease then binds to the sgRNA, and the nuclease-sgRNA complex targets and binds at a promoter of a target gene sequence. In some embodiments, the nuclease-sgRNA complex binds at a transcriptional start site (TSS) of the target gene. In some embodiments, the nuclease-sgRNA complex binds away from the TSS of the target gene.


In some embodiments, the target gene includes, but is not limited to an overexpressed gene, an oncogene, a mutant gene encoding a protein, and a gene encoding a misfolded protein. In some embodiments, the subject is a human. In some embodiments, the subject has a genetic disorder. In some embodiments, the subject has cancer.


It should be understood the CRISPRi system can be administered as a therapeutic composition deemed fit to generate the desired effect of silencing, decreasing, knocking-down, or reducing gene expression. Thus, the CRISPRi system can be administered in a pharmaceutically acceptable carrier, wherein the CRISPRi system is incorporated in a vector, a cell, or as a naked system. The CRISPRi composition may be administered in such amounts, time, and route deemed necessary in order to achieve the desired result. The exact amount of the CRISPRi composition will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease or disorder the particular CRISPRi composition, its mode of administration, its mode of activity, and the like. The CRISPRi composition is preferably formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the CRISPRi composition will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular subject will depend upon a variety of factors including the disease or disorder being treated and the severity of the symptoms associated with the disease or disorder; the activity of the CRISPRi composition employed; the specific CRISPRi composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific CRISPRi composition employed; the duration of the treatment; drugs used in combination or coincidental with the specific CRISPRi composition employed; and like factors well known in the medical arts.


The CRISPRi composition may be administered by any route. In some embodiments, the CRISPRi composition is administered via a variety of routes, including oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, subcutaneous, intraventricular, transdermal, interdermal, rectal, intravaginal, intraperitoneal, mucosal, nasal, buccal, enteral, sublingual; by intratracheal instillation, bronchial instillation, and/or inhalation; and/or as an oral spray, nasal spray, and/or aerosol. In general, the most appropriate route of administration will depend upon a variety of factors including the nature of the CRISPRi composition (e.g., its stability in the environment of the body of the host/subject), the condition of the subject (e.g., whether the subject is able to tolerate oral administration), etc.


The exact amount of CRISPRi composition required to achieve a therapeutically effective amount will vary from subject to subject, depending on species, age, and general condition of a subject, severity of the side effects, identity of the particular compound(s), mode of administration, and the like. The amount to be administered to, for example, a child or an adolescent can be determined by a medical practitioner or person skilled in the art and can be lower or the same as that administered to an adult.


In one aspect, disclosed herein is CRISPRi system of any preceding aspect can be added to a pharmaceutically acceptable carrier selected from an excipient, a diluent, a salt, a buffer, a stabilizer, a lipid, an emulsion, a nanoparticle, and a cream. One or more active agents (e.g. CRISPRi system) can be administered in the “native” form or, if desired in the form of salts, esters, amides, prodrugs, or a derivative that is pharmacologically suitable. Salts, esters, amides, prodrugs, and other derivatives of the active agents can be prepared using standards procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by March (1992) Advanced Organic Chemistry; Reactions, Mechanisms, and Structure, 4th Ed. N.Y. Wiley-Interscience.


In some embodiments, the CRISPRi composition is administered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or more times. In some embodiments, the CRISPRi composition is administered daily. In some embodiments, the CRISPRi composition is administered every day, every 2 days, every 3 days, every 4 days, every 5 days, every 6 days, every 7 days, or more. In some embodiments, the CRISPRi composition is administered every week, every 2 weeks, every 3 weeks, every 4 weeks, or more. In some embodiments, the CRISPRi composition is administered every month, every 2 months, every 3 months, every 4 months, every 5 months, every 6 months, every 7 months, every 8 months, every 9 months, every 10 months, every 11 months, every 12 months, or more. In some embodiments, the CRISPRi composition is administered every year, every 2 years, every 3 years, every 4 years, every 5 years, or more.


A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.


By way of non-limiting illustration, examples of certain embodiments of the present disclosure are given below.


EXAMPLES

The following examples are set forth below to illustrate the compositions, devices, methods, and results according to the disclosed subject matter. These examples are not intended to be inclusive of all aspects of the subject matter disclosed herein, but rather to illustrate representative methods and results. These examples are not intended to exclude equivalents and variations of the present invention which are apparent to one skilled in the art.


Example 1: Engineering Next-Generation CRISPRi Repressors for Highly Efficient Mammalian Gene Regulation

CRISPR interference (CRISPRi), the repurposing of the RNA-guided endonuclease dCas9 as a programmable transcriptional repressor, is a powerful genetic tool enabling highly specific repression (knockdown) of gene expression. Despite the system's adoption, CRISPRi platforms still suffer from incomplete knockdown and significant performance variability across cell lines and gene targets. The disclosure herein describes the discovery and characterization of exceptionally potent repressor domain fusions that offer best-in-class gene knockdown efficacy across diverse mammalian cell lines. It is also established here that these variants' best-in-class capability to silence target genes, investigate cellular determinants that control performance while demonstrating enhanced function across a panel of diverse cells lines, and demonstrate that novel truncations of the MeCP2 repressor domain results in vastly improved gene knockdown efficiency.


The ability to reduce or silence gene expression is vital for performing robust whole-genome genetic screens, discovering non-coding transcriptional regulatory motifs, and tuning cellular function in mammalian cells. CRISPR interference (CRISPRi) has emerged as a powerful method enabling site-specific transcriptional repression. The CRISPRi system typically employs two components: 1) a fusion protein combining catalytically dead Cas9 (dCas9) with one or more transcriptional repressor domains that recruit regulatory co-factors natively expressed in mammalian cells, and 2) a single guide RNA (sgRNA) that recognizes DNA sequences through base-pair complementarity, leading the dCas9-repressor fusion to DNA loci with high specificity. When directed toward a target gene promoter, the CRISPRi repressor induces local epigenetic remodeling resulting in reduced gene expression. CRISPRi has proved effective for a broad range of applications, including discovering networks regulating cellular metabolism and signaling, perturbing disease markers in neurons, investigating signaling in primary human T cells, and interrogating genetic vulnerabilities in cancer cells.


CRISPRi platforms possess several advantages over nuclease-active CRISPR-Cas9 systems, which rely on targeted double-stranded DNA breaks within coding regions to eliminate functional protein expression. CRISPRi does induce DNA damage or activate endogenous DNA repair (or apoptotic) pathways, both of which can confound large-scale screens, particularly in sensitive hosts such as stem cells or when targeting high copy number genomic loci. Similarly, whereas Cas9-mediated gene knockouts are irreversible and can often generate cell subpopulations with in-frame indels, partial knockouts yielding fully functional proteins, or initiate nonsense-associated alternative splicing, CRISPRi enables more homogenous, and reversible, gene expression control. These properties can allow for titratable gene expression to map phenotypes to precise levels of individual gene knockdown. CRISPRi systems also permit mapping of regulatory elements and interrogation of non-coding RNAs.


Despite these advantages, several technical limitations hinder the utility of CRISPRi platforms, including poor or moderate knockdown efficiency of targeted genes, widespread functional variance across cell lines or lineages, and notable sgRNA stochasticity. Originally, CRISPRi platforms used only the dCas9 protein directed to a gene's transcription start site to sterically block RNA polymerase passage, but today, almost all CRISPRi platforms utilize fusions of dCas9 with the Kruppel-associated box (KRAB) domain from the human protein KOX1 (ZNF10). This domain, the first functionally characterized CRISPRi repressor, is traditionally known as KRAB but here called KOX1(KRAB) to prevent ambiguity. Previous work has shown that CRISPRi knockdown efficiency can be improved by combining KOX1(KRAB) with additional repressor domains, most notably methyl-CpG binding protein 2 (MeCP2). Also, recent reports showed that alternative KRAB domains from other human proteins, notably ZIM3(KRAB), confer improved gene silencing. Despite the relative outperformance of “gold standard repressors” KOX1(KRAB)-MeCP2 and ZIM3(KRAB) compared to KOX1(KRAB), the associated CRISPRi platforms can still suffer from inefficient knockdown and variable performance across cell lines and gene targets.


Herein, these challenges are addressed by assembling and screening combinatorial libraries of repressor domains to identify high-efficacy variants. Several novel CRISPRi systems were created boasting the highest gene knockdown efficiency reported to-date. The superior performance of these dCas9-repressor fusions for characterizing gene-phenotype relationships in cancer cells and silencing gene expression was demonstrated in a broad panel of mammalian cell lines. Finally, functional domains of MeCP2 were explored, and a truncated MeCP2 domain was identified that, when fused to KRAB domains, significantly improves CRISPRi activity compared to the canonical MeCP2 repressor.


Results

Screening and Characterizing Novel, Best-in-Class CRISPRi Repressors. To design improved CRISPRi systems, putative CRISPRi-compatible transcriptional repressor domains were first selected from a recent tiling library, in which several non-KRAB repressor domains from human proteins were described that had comparable or stronger reported activity than MeCP2, the partner of KOX1(KRAB) in the canonical dCas9-KOX1(KRAB)-MeCP2 CRISPRi system. Because these repressor domains were not tested for their ability to mediate transcriptional repression in the context of a CRISPRi system, i.e., when fused to dCas9, 11 high-confidence domains were first selected and tested for their utility for transcriptional repression in a CRISPRi system using a reporter assay in HEK293T cells (FIG. 1A). Three additional transcriptional regulatory proteins (RCOR1, IKZF5, MAX) were also noticed to predict interactions with these putative repressors or previously described domains, so it was contemplated that they also are paired with dCas9 for highly potent CRISPR-mediated gene knockdown.


Each of the 14 candidate repressor domains were fused to the C-terminus of dCas9, recruited each repressor to two distinct sites on an SV40 promoter regulating expression of enhanced green fluorescent protein (eGFP), and measured resultant eGFP expression levels using flow cytometry. All candidate dCas9-repressor fusions exhibited improved gene knockdown compared to dCas9 alone, and several domains (e.g., CTCF or SCMH1) exhibited comparable activity to MeCP2 when fused to dCas9. Interestingly, the 80AA truncated MeCP2 domain (referred to here as MeCP2(t) for clarity) achieved similar levels of gene knockdown compared to the full-length MeCP2 repressor domain (FIG. 1A). In addition, dCas9-KRBOX1(KRAB) achieved significantly improved eGFP knockdown compared to dCas9-KOX1(KRAB), further highlighting the strong transcriptional repressor activity highly conserved across the 350+ KRAB domains encoded in human proteins.


Next, it was evaluated if attaching multiple repressor domains to dCas9 synergistically improves gene knockdown. A library of bipartite repressors was generated by combining three KRAB domains (the newly described KRBOX1(KRAB), the best-in-class ZIM3(KRAB), and the historically utilized KOX1(KRAB)) with both KRAB and non-KRAB domains from initial experiments (FIG. 1B). Many bipartite repressor fusions exhibit improved capability over current gold standards, significantly outperforming dCas9-KOX1(KRAB)-MeCP2 and dCas9-ZIM3(KRAB) (FIG. 1C). Four unique repressor combinations (dCas9-KRBOX1(KRAB)-MAX, dCas9-ZIM3(KRAB)-MAX, dCas9-ZIM3(KRAB)-MeCP2, and dCas9-KOX1(KRAB)-MeCP2(t)) achieved significantly improved knockdown (˜20-30% better) compared to ZIM3(KRAB), the top performing CRISPRi system to date (FIG. 1D and FIG. 6). Performance of these novel fusions was not a function of endogenous expression levels (FIG. 7), and interestingly, no dual-KRAB domain fusions exhibited improved activity over repressors employing one KRAB domain (FIG. 1D), highlighting the importance of being able to recruit secondary co-factors to further gene knockdown.


Encouraged by these results, next a library of tripartite repressors was generated to determine if adding a third domain could further enhance performance of the most potent variants. A combinatorial library was designed fusing each of the four top-performing bipartite repressors (dCas9-KRBOX1(KRAB)-MAX, dCas9-ZIM3(KRAB)-MAX, dCas9-ZIM3(KRAB)-MeCP2, and dCas9-KOX1(KRAB)-MeCP2(t)) with both KRAB and non-KRAB domains (FIG. 1E). One novel tripartite fusions (dCas9-ZIM3(KRAB)-MAX-MeCP2(t)) exhibited superior knockdown efficiency compared to all four of the high-efficacy bipartite variants (FIG. 1F). The tripartite repressor fusions suffered from lower expression levels in HEK293T cells than bipartite or single dCas9-repressor combinations, limiting their ability to silence target gene expression (FIG. 7). In addition, individual members of tripartite fusions could have recruited identical co-factors or experienced misfolding or steric blockage of key domains for mediating protein-protein interactions.


Evaluating CRISPRi Efficacy Across Different Genetic Loci and Targeting Modalities. Despite recent advances in rational sgRNA design and activity prediction, a significant challenge in applying CRISPRi systems in mammalian cells is that their performance is significantly impacted by the selected sgRNA. To determine whether engineered variants reduce the stochasticity arising from these criteria, a panel of sgRNAs were constructed targeting a SV40 promoter—eGFP reporter protein construct on template and non-template strands, both upstream and downstream of the transcription start site (TSS), and used it to compare the eGFP protein knockdown mediated by novel repressors and prior domains. Promisingly, dCas9-ZIM3(KRAB)-MAX-MeCP2 showed significantly improved repression compared to dCas9-ZIM3(KRAB) for 8 out of 9 sgRNAs of the panel (FIG. 2A). The potent gene repression was also independent of both target position and DNA strand, indicating that variants' high activity was not merely an artifact of the dual-targeting reporter sgRNA. Furthermore, repressors demonstrated greater improvement in gene repression when utilizing sgRNAs that had poorer functionality for previously described CRISPRi effectors, showing that the optimized dCas9-repressor fusions generated herein partially mitigate individual sgRNA limitations (FIG. 2B).


Building on these initial studies employing a synthetic reporter, it was next sought to confirm that the top-performing dCas9-repressor fusions outperformed current CRISPRi effectors in silencing endogenous genes, as there is also known stochasticity in performance of CRISPRi effectors in a gene by gene manner. The three top-performing novel variants, dCas9-ZIM3(KRAB)-MAX, dCas9-KOX1(KRAB)-MeCP2(t), and dCas9-ZIM3(KRAB)-MAX-MeCP2(t) were co-transfected into HEK293T cells with sgRNAs targeting one of four endogenous genes and then quantified gene knockdown using quantitative PCR with reverse transcription (RT-qPCR) in successfully transduced cells (sgRNA+/dCas9-repressor+). The dCas9-KOX1(KRAB)-MeCP2(t) and dCas9-ZIM3(KRAB)-MAX-MeCP2(t) effectors induced the strongest gene knockdown across all four loci tested (FIG. 2C) and also reduced gene-gene heterogeneity in CRISPRi activity compared to the dCas9-ZIM3(KRAB) gold standard (e.g., between 40 and 75% knockdown for ZIM3(KRAB) versus between 65% and 80% knockdown for ZIM3(KRAB)-MAX-MeCP2(t)). Some residual variation in degree of gene knockdown likely originates from individual sgRNA binding dynamics or local chromatin architecture. Importantly, all analyses were performed in comparison to a dCas9-only control to help differentiate between repressor-mediated expression knockdown or steric-blockade from dCas9-DNA binding.


CRISPRi systems typically employ direct fusion of repressor proteins to dCas9 though, alternative complexation strategies can be employed. To determine if novel repressor protein fusions are still effective to mediate gene knockdown in a scaffold-based effector recruitment system, the top-performing repressors were genetically fused to PP7 capsid protein (PCP) and sgRNAs encoding PP7 aptamers were utilized. This targeting approach was further compared with direct dCas9 fusions. Promisingly, top repressors recruited via PCP-PP7 aptamer binding still outperformed prior best in class effectors, although they were generally less effective than their corresponding dCas9 fusions, particularly for KOX1(KRAB)-MeCP2(t) and ZIM3(KRAB)-MAX-MeCP2(t) (FIG. 2D). Direct fusions and scaffold recruitment performed comparably when dCas9 was targeted to be downstream of the eGFP gene's TSS. This result likely relates to the PCP-PP7 system (which recruits four PCP-repressor domains simultaneously) sterically inhibits RNA polymerase progression more than dCas9 fusions alone.


KOX1-MeCP2(t) Outperforms Existing Tools for Quantifying Gene Essentiality. Next, it was sought to evaluate the efficacy of novel repressor fusions by targeting essential genes, genes required for sustained cell growth and survival, and quantifying phenotype and gene expression changes. A549 cells were generated to constitutively express dCas9-repressor fusions and used competitive growth assays to measure proliferation rates. Each dCas9-repressor-expressing A549 cell line was tranduced with lentiviral cassettes bearing a single sgRNA and simultaneously expressed puromycin resistance and eGFP fluorescent tag to readily identify sgRNA-expressing cells. In separate experiments, three different genes were targeted using three sgRNAs each: (i) mitochondrial co-chaperone DNAJC19 (highly essential), (ii) GTPase and oncogene KRAS (moderately essential), and (iii) small ribosomal subunit protein MRPS11 (marginally essential). Post-transduction, the representation of eGFP-positive cells was monitered, presuming that cells bearing higher-activity repressor domains saw accelerated depletion of sgRNA (eGFP) expressing cells (FIG. 3A). A549 cells expressing dCas9-KOX1(KRAB)-MeCP2(t) experienced the highest levels of depletion across all tested sgRNAs, highlighting its improved repressive capability over current gold-standards dCas9-ZIM3(KRAB) and dCas9-KOX1(KRAB)-MeCP2 (FIGS. 3B, 3C, and 8). To further link phenotypic effects from CRISPRi perturbation to individual gene knockdown efficiencies, RNA expression levels were quantified for all three essential target genes using RT-qPCR. dCas9-KOX1(KRAB)-MeCP2(t) showed the strongest repression for 7 out of 9 targeting sgRNAs, correlating well with proliferation rates measured in A549 cells (FIG. 3D).


Because individual repressor domains fused to dCas9 for CRISPRi-mediated gene silencing are transcription factors recruiting factors co-regulating global transcriptional programs, their overexpression introduces undesired, non-specific effects on cellular function. To determine if novel dCas9-repressor variants impacted cellular proliferation, relative growth rates of cell lines was measured with integrated and constitutively expressed variants using a normalized co-culture assay (FIG. 3E). The dCas9-repressor-expressing A549 cell lines was seeded in a ˜1:1 ratio with A549 cells engineered with eGFP only (A549-eGFP), and then used flow cytometry to measure the representation of eGFP-positive cells over time. An A549-eGFP cells as an internal control was used to normalize the impact of cellular engineering and subsequent selection, and to aid in assessing effects of silencing on dropout rates of effector-expressing cells. Cell lines harboring the majority of repressor variants proliferated at the same rate as A549-eGFP cells, indicating that long-term expression of these fusions induces insignificant toxicity (FIG. 3F). Interestingly, stable integration of dCas9-KOX1(KRAB) (˜1.7% per day) and SID4x-dCas9-KOX1(KRAB) (˜1% per day) exhibited slight increases in growth compared to A549-eGFP control cells. This is contrary to previous work in K562 cells, which reported negligible for dCas9-KOX1(KRAB) and significant proliferation losses (˜6% per day) for SID4x-dCas9-KOX1(KRAB). These results showed that the engineered variants produce insignificant cellular toxicity from long-term overexpression (at least in A549 cells), presenting minimal risk to confound phenotype screens.


Investigating Domain Order Allows Isolation of Promising Repressor. To evaluate the impact of repressor order in dCas9-based fusions, which could cause misfolding or interference of proper effector recruitment, constructs were designed by fusing dCas9 to all possible combinatorial fusions of ZIM3(KRAB), MAX, and MeCP2(t) and assayed their gene silencing activity in HEK293T cells using two distinct sgRNA chaperons (FIG. 4A). Contrary to previous work characterizing multi-component transcriptional activator fusions, negligible changes in CRISPRi activity were observed when altering the order of both bipartite and tripartite fusion (FIG. 4A). Interestingly, the fusion dCas9-ZIM3(KRAB)-MeCP2(t) exhibited significantly improved knockdown compared to dCas9-ZIM3(KRAB), this new variant was continued to be used for additional studies.


Novel Repressor Fusions Demonstrate Robust Activity Across Cell Lines. To further delve into cell-line dependent performance of repressor variants, a side-by-side comparisons of published gold-standard repressors and the novel fusions was conducted in 7 diverse mammalian cell lines: A549 (human lung adenocarcinoma), CHO-K1 (Chinese hamster ovary), HCT116 (human colon carcinoma), HEK293T (human embryonic kidney), HeLa (human cervical carcinoma), Neuro2A (mouse neuroblasts), and NIH-3T3 (mouse embryonic fibroblast). Using reporter co-transfection assays, dCas9-ZIM3(KRAB)-MeCP2(t) exhibited the strongest gene silencing across all cell lines tested (FIGS. 4B and 9A). The two most potent repressors, dCas9-ZIM3(KRAB)-MeCP2(t) and dCas9-KOX1(KRAB)-MeCP2(t), generated herein, outperformed dCas9-ZIM3(KRAB), the current CRISPRi gold standard, by an average of 50% and 31%, respectively, across cell lines (FIG. 4B), demonstrating their robust ability to mediate gene knockdown regardless of cell background.


Co-Factor-Mediated Cell-Specific Performance Determinants. It was observed that the novel repressors variants that contained a MAX domain, which mediated gene knockdown exceptionally well in HEK293T cells, functioned markedly worse in other cell lines (FIGS. 3E and 9A). For instance, extremely potent activity of dCas9-ZIM3(KRAB)-MeCP2(t) was seen across cell lines that was markedly reduced in the dCas9-ZIM3(KRAB)-MAX-MeCP2(t) variant. Analysis of dCas9-repressor expression levels shows that this discrepancy does not result from poor effector expression (FIG. 9B). Therefore, it was contemplated that the MAX domain exhibits context-dependent transcriptional regulatory activity, dependent on its recruited co-factors, which has significant cell-line variability in their expression. There are nine high-confidence co-factors that dimerize with MAX, of which three facilitate transcriptional activation (MYC, MYCL, MYCN) and six initiate repression (MGA, MNT, MXD1, MXI1, MXD3, MXD4) (FIG. 4C). Using transcriptomics datasets, levels of the MAX-binding co-factors were quantified in A549, HCT116, and HeLa cells, three lines in which MAX harboring fusions performed significantly worse than their ‘non-MAX’ counterparts (FIGS. 4D and 10). HeLa cells had particularly high expression of MYC, which is known to be a particularly potent activator, and while A549 and HCT116 cells had lower MYC expression, they also had much lower relative expression of repression-mediating co-factors, when normalized by MYC expression level. Therefore, it is possible that either high MYC expression or a low ratio of repressing to activating cofactors reduce the gene knockdown activity of MAX-containing effectors on a cell-line dependent basis.


Further Truncating MeCP2 Leads to Improved Synergy with KRAB Domains. In comparisons of CRISPRi systems across mammalian cell lines, it was consistently observed that KRAB domain-based repressor fusions with MeCP2(t) significantly outperformed fusions employing the canonical MeCP2 transcriptional repressor domain, hereafter named MeCP2(full) for clarity (FIGS. 4B and 5A). MeCP2 mediates transcriptional silencing by recruiting both nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid receptors (SMRT) through a ˜30AA motif known as the NcoR/SMRT interaction domain (NID). Because both MeCP2(t) and MeCP2(full) domains fully include this motif, it was contemplated as to what mechanistic factors underpin these two domains' discrepant performance.


An AlphaFold 2.056 protein structure predictions of three dCas9-repressor fusion proteins: ZIM3(KRAB), ZIM3(KRAB)-MeCP2(TRD), ZIM3(KRAB)-MeCP2(t) (FIG. 5B), was generated. These predictions revealed that MeCP2(TRD) and MeCP2(t) contain highly disordered C-terminal structure, which is common for transcription factors, but contributes to reduced accessibility of the NID domain. Therefore, a new bipartite fusion partnering ZIM3(KRAB) with only the MeCP2 NID domain (dCas9-ZIM3(KRAB)-MeCP2(NID)) was designed and it was compared with other ZIM3(KRAB)-based CRISPRi effectors using eGFP reporter assays in HEK293T, HeLa, and HCT116 cell lines. The dCas9-ZIM3(KRAB)-MeCP2(NID) significantly outperformed even dCas9-ZIM3(KRAB)-MeCP2(t) in all three cell lines (FIG. 5C). Compared to dCas9-ZIM3(KRAB) or dCas9-ZIM3(KRAB)-MeCP2, dCas9-ZIM3(KRAB)-MeCP2(NID) improved knockdown levels by more than two-fold in HCT116 and Hela cells, allowing for a reduction in gene expression approaching 80%. The ZIM3(KRAB) prior best-in-class variant enabled 50 to 60% knockdown. Therefore, this novel bipartite repressor confers best-in-class repression efficiency, both with smaller size (enabling delivery with package-limited viral vectors) and generalizable performance across cell lines.


DISCUSSION

The superior performance of bipartite and tripartite variants, both reported here and elsewhere for CRISPR-dCas9 transcriptional activators, results from combining distinct, yet complimentary, mechanisms for modifying local epigenetic signatures. However, the understanding of how these individual repressor domains functionally work together to silence gene expression remains ambiguous. KRAB domains, known for their near-ubiquitous strong repressive activity, are almost exclusively implemented in CRISPRi applications in mammalian cells. KRAB domains effectively modulate transcription by interacting with TRIM28/KAP1. Although the screening efforts revealed that KRAB domains' have relatively strong gene knockdown efficiency that can be enhanced through addition of MeCP2 or MAX in HEK293T, no other domains conferred additional benefit when combined with KRAB-domains. These results show that KRAB-induced gene silencing may have few accessible synergistic mechanisms that can augment their function. Still, the present disclosure provides significant improvement to initial best-in-class repressor fusion by performing a relatively simple, sequence/motif guided truncation analysis. Specifically, it was shown that an initial and a secondary truncation of the canonical MeCP2 domain, yield MeCP2(t) and MeCP2(NID), respectively, in combination with the ZIM3(KRAB) domain bestowed excellent gene knockdown across cell lines. The truncations show that the superior potency of dCas9-ZIM3(KRAB)-MeCP2(NID) originates from improved accessibility of the NID motif to MeCP2's NCoR/SMRT cofactors or accessibility for TRIM28/HP1α recruitment by ZIM3(KRAB) by eliminating unnecessary coding regions.


Recent efforts chronicling repressor domains provide valuable resources for discovering entirely new CRISPRi systems with diverse mechanisms of action, modes of temporal control, and activity levels. The present disclosure identifies a small panel of diverse CRISPRi-compatible, non-KRAB domains with comparable repression efficiency to MeCP2. To expand on these findings, it would be instructive to significantly expand the panel of effective dCas9-compatible, non-KRAB dCas9-repressor domains, build a comprehensive understanding of their individual activities and co-factor identities, and construct multi-domain libraries to permit discovery of additional high-activity repressor combinations. Incorporating knowledge of recruited co-factors, cooperative epigenetic modifications, and repressor-repressor affinities enables greater means of rational design, permitting development of CRISPRi effector panels with well-characterized, diverse gene silencing efficiency and kinetics. Such efforts can help overcome any technical limitations associated with an upper limit on performance optimization of KRAB-based CRISPRi systems.


Improved characterization of fused transcriptional effectors is important not only for building enhanced synthetic biology tools, but also understanding the functional role of natural transcription factors with multiple effector domains. Emerging work has begun exploring the context-dependent behavior of several transcription factors by quantifying their affinities for their recruited co-factors. The results comparing bipartite and tripartite variants containing the MAX-domain across cell lines highlights this combinatorial crosstalk and demonstrates the importance of considering cell-cell differences in co-factor expression levels when selecting CRISPRi repressors for a given application. Additional analyses correlating endogenous co-factor (and dCas9-repressor) expression levels across a broad panel of mammalian cells helps clarify mechanistic relationships driving gene knockdown performance and predict optimal CRISPRi repressors for a given cell line.


Together, this work presents several novel CRISPRi repressors with best-in-class gene silencing efficiency. After demonstrating how combinatorial fusion of repressor domains can enhance gene knockdown, it is illustrated how a rational reduction of fusion protein size can further enhance CRISPRi function. In particular, the dCas9-ZIM3(KRAB)-MeCP2(NID) repressor, in which the MeCP2(NID) domain has been reduced in amino acid length by more than seven-fold, displayed the highest level of gene knockdown in every cell line tested. The repressor variants disclosed herein can enhance the efficacy of large-scale genotype-phenotype screens and aid in development of robust cellular engineering tools to build fundamental understanding of multi-modal transcriptional regulation in mammalian cells.


Materials and Methods

Cell Culture. HEK293T, NIH-3T3, Neuro2A, and HeLa cell lines were maintained in DMEM/High Glucose (Cytiva) supplemented with 10% FBS (Fisher Scientific) and 1% Penicillin-Streptomycin (Millipore-Sigma). HCT116 cells (ATCC, CCL-247) were cultured in McCoy's 5A Modified Medium (Gibco) with 10% FBS and 1% Penicillin-Streptomycin. CHO-K1 and A549 (both parental and CRISPRi repressor-expressing) cell lines were maintained in DMEM/F-12 supplemented with 10% FBS and 1% Penicillin-Streptomycin. All cell lines were cultivated in 5% CO2 at 37° C. and verified negative for Mycoplasma contamination on a semi-annual basis (every ˜6 months) using the Universal Mycoplasma Detection Kit (ATCC).


Plasmid Construction for CRISPRi Repressors and sgRNAs. Individual repressor domains for this study were acquired by PCR-amplification from a single-strand cDNA library. In short, total RNA from 107 HEK293T cells was first purified using TRIzol Reagent (Invitrogen) and reverse-transcribed using a SuperScript VILO cDNA Synthesis Kit (Invitrogen). Repressor domains were then PCR-amplified from this first-strand cDNA pool using KOD Hot Start Polymerase (Novagen) using 250 ng of cDNA product per reaction with cycling conditions in-line with the manufacturer's protocol.


CRISPRi dCas9-repressor fusion plasmids for transient expression were constructed by inserting individual repressor domains into a custom Golden Gate compatible base vector (pEF1α-dCas9-mCherry) derived from the plasmid pSMART-sgRNA (Addgene #80427). This custom base vector, constructed via Gibson Assembly from the pSMART backbone digested with BamHI and XbaI (New England Biolabs), contains the EF1α promoter driving expression of human codon-optimized Streptococcus pyogenes dCas9 (with 1 N-terminal and 2 C-terminal SV40NLS elements), a C-terminal GS-rich linker with Esp3I restriction sites allowing insertion of various effector domains, and a P2A-mCherry marker enabling quantification of expression levels via flow cytometry. Golden Gate Assembly was employed for cloning single, bipartite, and tripartite dCas9-repressor fusions for analysis.


Constructs enabling stable integration of CRISPRi repressors were derived from an in-house custom base vector (pLV-dCas9-tagBFP). Briefly, this base vector uses a spleen focus-forming virus (SFFV) promoter with an upstream ubiquitous chromatin-opening element (UCOE) to drive expression of Streptococcus pyogenes dCas9, internal SV40NLS tags, a G/S-rich linker with Esp3I restriction sites to enable insertion of additional repressor domains, and a C-terminal tagBFP fluorescent marker linked via a T2A self-cleaving peptide. This plasmid was built by PCR-amplifying all requisite parts and inserting them with Gibson Assembly into lentiviral backbone pLeGO-C (Addgene #27348) linearized by digestion with XbaI and EcoRI (New England Biolabs). From this base vector, Golden Gate Assembly was used for building all lentiviral dCas9-repressor fusion constructs, and these vectors were transformed via electroporation into NEB Stable E. Coli (New England Biolabs) to prevent plasmid recombination during subsequent cloning steps.


The sgRNAs targeting either eGFP or individual endogenous genes for transient expression were cloned into a vector (pSMART-sgRNA-SV40-eGFP) constructed by adding the SV40-eGFP cassette via Gibson Assembly into the pSMART-sgRNA backbone. Following guide design, individual sgRNA constructs were made by annealing two complimentary oligonucleotides (Eurofins Genomics) containing the full sgRNA sequences and appropriate overhangs, then ligating the oligo product with pSMART-sgRNA-SV40-eGFP backbone pre-digested with Esp3I (New England Biolabs). Constructs for sgRNA integration were cloned using the identical ligation method into a custom lentiviral vector (pLV-sgRNA-EFlx-eGFP-T2A-PuroR) originally made by inserting PCR-amplified EFla, eGFP, and puromycin resistance marker within pXPR_050 (Addgene #96925) linearized by digestion with MluI and XmaI (New England Biolabs).


CRISPRi Reporter Knockdown ReporterAssays. For reporter assays, CRISPRi activity was quantified by co-transfecting two plasmids in HEK293T cells. Briefly, CRISPRi repressors encoded on mCherry-tagged plasmids (1) were mixed with a reporter plasmid (2) containing an sgRNA (GAAAGTCCCCAGGCTCCCCAGC (SEQ ID NO: 134)) recruiting the repressor to two sites on the proximal simian virus 40 (SV40) promoter regulating eGFP. HEK293T cells were initially seeded in either 24-well (150,000 cells/well, single repressor characterization) or 96-well plates (25,000 cells/well, all other experiments), then 24 hours later transfected with TransIT-LT1 (Mirus Bio) aligning with the manufacturer's protocol. Both eGFP and mCherry fluorescent markers were assayed 48 h later by using a Cytoflex S flow cytometer (Beckman Coulter). Analysis was excluded to cells expressing mCherry to control for variable transfection efficiency, and eGFP median intensity within this gated population was quantified for each group as a proxy for CRISPRi activity. Co-transfection experiments in other cell lines were completed using the same plasmids, assay design, and analysis technique. Respective lines were seeded within 24-well plates, and 24 h later transfected using TransIT-X2 Dynamic Delivery System (Mirus Bio) at the following DNA: reagent ratios as recommended by the supplier: A549(1:2), CHO-K1(1:2), HeLa(1:3), HCT116(1:2), Neuro2A(1:3), and NIH3T3(1:3).


Repressor Domain Library Screening. Library screening of bipartite and tripartite repressor fusion constructs was performed through reverse transfection of HEK293T cells. Following pooled Golden Gate assembly, libraries were transformed via standard electroporation into competent DH10β E. coli (New England Biolabs), subsequently plated, and single colonies were individually picked and purified (Qiagen). All isolated plasmids were normalized to 100 ng/μL to improve transfection efficiency uniformity in the screens. Transfections were next completed by adding 400 ng of each plasmid into individual wells of a tissue-culture treated 96-well plate (Falcon) and then adding a mixture of OptiMEM I Serum-Free Medium (18 uL/well) and TransIT-LT1 (1.2 ul/well) into each well as specified by the manufacturer's protocol. After a 20 min incubation at room temperature, HEK293T cells (50,000/well) were pipetted unto the assembled transfection complexes in each well. 48 h post-transfection, eGFP knockdown efficiency for each well was analyzed using the Cytoflex S flow cytometer. Preliminary screens utilized one biological replicate (one independent transfection), and before follow-up studies all hits were analyzed by Sanger sequencing to verify repressor identity and sequence fidelity.


Lentivirus Production. For large scale batches (dCas9-expressing constructs), lentivirus was produced in two 10-cm dishes by co-transfecting HEK293T cells with pMD2.G (Addgene #12259), psPAX2 (Addgene #12260), and transfer vector at a ratio of 1:4:5 (by mass). Transfections were performed using TransIT-LT1 (Mirus) adhering to the manufacturer's suggested protocol. 48 h after transfection, cell supernatants were collected, centrifuged at 1000×g for 5 min, filtered through 0.45 m syringe filters, precipitated with PEG-it™ viral precipitation solution (System Biosciences), and resuspended in ice-cold PBS before long-term storage at −80° C. For small scale batches (sgRNA cassettes), lentivirus was instead produced in 6-well plates using the same procedure and reagents, with quantities scaled down by cell surface area.


Transductions and Stable Cell Line Generation. A549 cell lines stably expressing various CRISPRi repressor domains or control fluorescent proteins were generated by first seeding parental A549 cells (60,000 cells/well) into 12-well plates, then transducing the cells at low MOI (˜0.2) in media containing 8 μg/mL polybrene (Millipore-Sigma). 24 h post-transduction, cells were thoroughly washed with PBS, then expanded for 3 days in T25 flasks. After recovery, CRISPRi repressor-expressing cells (marked by a BFP fluorescent marker) were sorted using BD FACS Melody into 96 well plates and expanded. All A549 repressor-expressing cell lines were validated through PCR-based analysis of each line's genomic DNA (gDNA) to confirm successful repressor integration. Briefly, gDNA was isolated from each cell line using a GeneJET Genomic DNA Purification Kit (Thermo Scientific), then viral transgenes were PCR amplified using KOD Hot Start Polymerase (Novagen) and subsequently analyzed by Sanger Sequencing to confirm repressor identity.


Cell Proliferation Assays. Internally controlled cellular growth assays were employed to evaluate the impact of stably expressing CRISPRi dCas9-repressor fusions in A549 cells. In short, this technique quantifies cell growth differences between cell populations of interest (expressing CRISPRi effectors linked to tagBFP via T2A driven by an SFFV promoter) and a reference cell population generated from the same parental line (expressing eGFP driven by an SFFV promoter). After producing all requisite A549 cells lines, cells from each repressor-expressing line were mixed with reference eGFP-expressing cells at a 1:1 ratio within 96 well plates. Immediately following mixing and periodically for 13 days, all cell line co-cultures were analyzed using the Cytoflex S to compute the ratio of eGFP+ cells to tagBFP+ cells to quantify growth effects over time.


A similar method was used to measure the effects of individual essential gene-targeting sgRNAs on cellular growth in A549 cells. Here, cell proliferation differences were quantified by stably integrating sgRNA constructs tagged with fluorescent markers (eGFP and puromycin resistance linked by a T2A, driven by an EF1α promoter) and evaluating the ratio of eGFP+ to eGFPcells over time. Strong and intermediate-efficiency sgRNA sequences were selected based on their relative efficacy from published whole-genome CRISPRi screens. Repressor-expressing A549 cell lines were first transduced with each sgRNA cassette (3 transductions per group) in 96-well plates with a lentiviral dose required to successfully integrate sgRNAs in ˜50% of host cells. 48 h after transduction, and every 2-3 days thereafter, all plates were sub-cultivated into new 96-well plates, and remaining cells analyzed by flow cytometry on the Cytoflex S to measure the representation of eGFP+ cells within each well.


RT-qPCR Gene Expression Analysis. Cell populations expressing both CRISPRi repressors and sgRNAs were selected with different methods to minimize variances in transfection/transduction efficiency prior to RNA extraction. For endogenous gene targeting in HEK293T cells, 500,000 cells/well were seeded into 6-well plates, and the following day co-transfected with a 1:2 (by mass) mixture of plasmids encoding sgRNAs (and eGFP) and dCas9-repressor fusions (marked with P2A-mCherry markers). All sgRNAs were selected to recognize −100 to +200 bp proximal to each target gene's TSS. 48 h post-transfection, 50,000 eGFP+/mCherry+ double-positive cells were sorted using BD FACS Melody, seeded into 48-well plates, and recovered for 24 h prior to RNA collection. For A549 cell lines stably expressing CRISPRi repressors, cells were seeded at 20,000 cells/well into 48-well plates in biological triplicates, and 24 h later transduced at low MOI (˜0.5) using the same sgRNA-expressing lentivirus (marked by eGFP and puromycin resistance connected by a T2A self-cleaving peptide) used in the cell proliferation assays. Transduced cells were recovered in fresh culture media at 24 h post-transduction, and the next day were re-seeded with 3 μg/ml puromycin and grown for 4d to select for sgRNA-expressing cells leading up to RNA extraction.


Total RNA was extracted and stored using TRIzol Reagent (Invitrogen) and subsequently purified using RNeasy Micro Kits (Qiagen). To quantify mRNA abundances, reactions containing 50 ng total RNA were set up with Universal One-Step RT-qPCR Kit (New England Biolabs) in 96-well plates. All plates were analyzed on a StepOnePlus Real-Time PCR System (Applied Biosystems) with the following cycling conditions: 55° C. for 10 min, 95° C. for 1 min, 40 cycles of 95° C. for 10 s then 60° C. for 60 s (+plate read), then a final 60° C.-95° C. melt curve. RNA relative abundances, normalized to the housekeeping gene IPO867, were then computed using the 2-ΔΔCtmethod. Primers were designed to span exon-exon junctions of each gene target.


Software. FlowJo (version 9) was used to process and analyze data acquired from all flow cytometry experiments.


Statistics and Reproducibility. For studies evaluating CRISPRi-mediated knockdown of either reporter or endogenous genes, at least three independent biological replicates (separate transfections) per condition were used. All replicate counts, and statistical tests to identify significance are indicated in each figure caption within the manuscript.


Example 2: dCas-Repressor Fusions with Nuclear Localization Signals (NLS)

To investigate the impact of nuclear localization on dCas9-repressor performance, various NLS elements were fused to the C-terminus of dCas9-ZIM3(KRAB) and the knockdown efficiency of each construct was tested using a SV40-eGFP reporter assay in HEK293T, HCT116, and HeLa cell lines (FIG. 11). It was determined that all NLS additions significantly enhanced gene knockdown, resulting in an average improvement of ˜50%, regardless of cell type. These results indicate current gold standard repressors can be improved through additional means besides utilizing different, or truncated, effector domains, and that nuclear localization are a significant variable influencing CRISPRi efficacy in mammalian systems.


It will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the scope or spirit of the invention. Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the methods disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.









SEQUENCES


1.


dCas9 DNA


SEQ ID NO: 1


ATGGACAAGAAGTATTCTATCGGACTGGCCATCGGGACTAATAGC





GTCGGGTGGGCCGTGATCACTGACGAGTACAAGGTGCCCTCTAAG





AAGTTCAAGGTGCTCGGGAACACCGACCGGCATTCCATCAAGAAA





AATCTGATCGGAGCTCTCCTCTTTGATTCAGGGGAGACCGCTGAA





GCAACCCGCCTCAAGCGGACTGCTAGACGGCGGTACACCAGGAGG





AAGAACCGGATTTGTTACCTTCAAGAGATATTCTCCAACGAAATG





GCAAAGGTCGACGACAGCTTCTTCCATAGGCTGGAAGAATCATTC





CTCGTGGAAGAGGATAAGAAGCATGAACGGCATCCCATCTTCGGT





AATATCGTCGACGAGGTGGCCTATCACGAGAAATACCCAACCATC





TACCATCTTCGCAAAAAGCTGGTGGACTCAACCGACAAGGCAGAC





CTCCGGCTTATCTACCTGGCCCTGGCCCACATGATCAAGTTCAGA





GGCCACTTCCTGATCGAGGGCGACCTCAATCCTGACAATAGCGAT





GTGGATAAACTGTTCATCCAGCTGGTGCAGACTTACAACCAGCTC





TTTGAAGAGAACCCCATCAATGCAAGCGGAGTCGATGCCAAGGCC





ATTCTGTCAGCCCGGCTGTCAAAGAGCCGCAGACTTGAGAATCTT





ATCGCTCAGCTGCCGGGTGAAAAGAAAAATGGACTGTTCGGGAAC





CTGATTGCTCTTTCACTTGGGCTGACTCCCAATTTCAAGTCTAAT





TTCGACCTGGCAGAGGATGCCAAGCTGCAACTGTCCAAGGACACC





TATGATGACGATCTCGACAACCTCCTGGCCCAGATCGGTGACCAA





TACGCCGACCTTTTCCTTGCTGCTAAGAATCTTTCTGACGCCATC





CTGCTGTCTGACATTCTCCGCGTGAACACTGAAATCACCAAGGCC





CCTCTTTCAGCTTCAATGATTAAGCGGTATGATGAGCACCACCAG





GACCTGACCCTGCTTAAGGCACTCGTCCGGCAGCAGCTTCCGGAG





AAGTACAAGGAAATCTTCTTTGACCAGTCAAAGAATGGATACGCC





GGCTACATCGACGGAGGTGCCTCCCAAGAGGAATTTTATAAGTTT





ATCAAACCTATCCTTGAGAAGATGGACGGCACCGAAGAGCTCCTC





GTGAAACTGAATCGGGAGGATCTGCTGCGGAAGCAGCGCACTTTC





GACAATGGGAGCATTCCCCACCAGATCCATCTTGGGGAGCTTCAC





GCCATCCTTCGGCGCCAAGAGGACTTCTACCCCTTTCTTAAGGAC





AACAGGGAGAAGATTGAGAAAATTCTCACTTTCCGCATCCCCTAC





TACGTGGGACCCCTCGCCAGAGGAAATAGCCGGTTTGCTTGGATG





ACCAGAAAGTCAGAAGAAACTATCACTCCCTGGAACTTCGAAGAG





GTGGTGGACAAGGGAGCCAGCGCTCAGTCATTCATCGAACGGATG





ACTAACTTCGATAAGAACCTCCCCAATGAGAAGGTCCTGCCGAAA





CATTCCCTGCTCTACGAGTACTTTACCGTGTACAACGAGCTGACC





AAGGTGAAATATGTCACCGAAGGGATGAGGAAGCCCGCATTCCTG





TCAGGCGAACAAAAGAAGGCAATTGTGGACCTTCTGTTCAAGACC





AATAGAAAGGTGACCGTGAAGCAGCTGAAGGAGGACTATTTCAAG





AAAATTGAATGCTTCGACTCTGTGGAGATTAGCGGGGTCGAAGAT





CGGTTCAACGCAAGCCTGGGTACCTACCATGATCTGCTTAAGATC





ATCAAGGACAAGGATTTTCTGGACAATGAGGAGAACGAGGACATC





CTTGAGGACATTGTCCTGACTCTCACTCTGTTCGAGGACCGGGAA





ATGATCGAGGAGAGGCTTAAGACCTACGCCCATCTGTTCGACGAT





AAAGTGATGAAGCAACTTAAACGGAGAAGATATACCGGATGGGGA





CGCCTTAGCCGCAAACTCATCAACGGAATCCGGGACAAACAGAGC





GGAAAGACCATTCTTGATTTCCTTAAGAGCGACGGATTCGCTAAT





CGCAACTTCATGCAACTTATCCATGATGATTCCCTGACCTTTAAG





GAGGACATCCAGAAGGCCCAAGTGTCTGGACAAGGTGACTCACTG





CACGAGCATATCGCAAATCTGGCTGGTTCACCCGCTATTAAGAAG





GGTATTCTCCAGACCGTGAAAGTCGTGGACGAGCTGGTCAAGGTG





ATGGGTCGCCATAAACCAGAGAACATTGTCATCGAGATGGCCAGG





GAAAACCAGACTACCCAGAAGGGACAGAAGAACAGCAGGGAGCGG





ATGAAAAGAATTGAGGAAGGGATTAAGGAGCTCGGGTCACAGATC





CTTAAAGAGCACCCGGTGGAAAACACCCAGCTTCAGAATGAGAAG





CTCTATCTGTACTACCTTCAAAATGGACGCGATATGTATGTGGAC





CAAGAGCTTGATATCAACAGGCTCTCAGACTACGACGTGGACGCC





ATCGTCCCTCAGAGCTTCCTCAAAGACGACTCAATTGACAATAAG





GTGCTGACTCGCTCAGACAAGAACCGGGGAAAGTCAGATAACGTG





CCCTCAGAGGAAGTCGTGAAAAAGATGAAGAACTATTGGCGCCAG





CTTCTGAACGCAAAGCTGATCACTCAGCGGAAGTTCGACAATCTC





ACTAAGGCTGAGAGGGGCGGACTGAGCGAACTGGACAAAGCAGGA





TTCATTAAACGGCAACTTGTGGAGACTCGGCAGATTACTAAACAT





GTCGCCCAAATCCTTGACTCACGCATGAATACCAAGTACGACGAA





AACGACAAACTTATCCGCGAGGTGAAGGTGATTACCCTGAAGTCC





AAGCTGGTCAGCGATTTCAGAAAGGACTTTCAATTCTACAAAGTG





CGGGAGATCAATAACTATCATCATGCTCATGACGCATATCTGAAT





GCCGTGGTGGGAACCGCCCTGATCAAGAAGTACCCAAAGCTGGAA





AGCGAGTTCGTGTACGGAGACTACAAGGTCTACGACGTGCGCAAG





ATGATTGCCAAATCTGAGCAGGAGATCGGAAAGGCCACCGCAAAG





TACTTCTTCTACAGCAACATCATGAATTTCTTCAAGACCGAAATC





ACCCTTGCAAACGGTGAGATCCGGAAGAGGCCGCTCATCGAGACT





AATGGGGAGACTGGCGAAATCGTGTGGGACAAGGGCAGAGATTTC





GCTACCGTGCGCAAAGTGCTTTCTATGCCTCAAGTGAACATCGTG





AAGAAAACCGAGGTGCAAACCGGAGGCTTTTCTAAGGAATCAATC





CTCCCCAAGCGCAACTCCGACAAGCTCATTGCAAGGAAGAAGGAT





TGGGACCCTAAGAAGTACGGCGGATTCGATTCACCAACTGTGGCT





TATTCTGTCCTGGTCGTGGCTAAGGTGGAAAAAGGAAAGTCTAAG





AAGCTCAAGAGCGTGAAGGAACTGCTGGGTATCACCATTATGGAG





CGCAGCTCCTTCGAGAAGAACCCAATTGACTTTCTCGAAGCCAAA





GGTTACAAGGAAGTCAAGAAGGACCTTATCATCAAGCTCCCAAAG





TATAGCCTGTTCGAACTGGAGAATGGGCGGAAGCGGATGCTCGCC





TCCGCTGGCGAACTTCAGAAGGGTAATGAGCTGGCTCTCCCCTCC





AAGTACGTGAATTTCCTCTACCTTGCAAGCCATTACGAGAAGCTG





AAGGGGAGCCCCGAGGACAACGAGCAAAAGCAACTGTTTGTGGAG





CAGCATAAGCATTATCTGGACGAGATCATTGAGCAGATTTCCGAG





TTTTCTAAACGCGTCATTCTCGCTGATGCCAACCTCGATAAAGTC





CTTAGCGCATACAATAAGCACAGAGACAAACCAATTCGGGAGCAG





GCTGAGAATATCATCCACCTGTTCACCCTCACCAATCTTGGTGCC





CCTGCCGCATTCAAGTACTTCGACACCACCATCGACCGGAAACGC





TATACCTCCACCAAAGAAGTGCTGGACGCCACCCTCATCCACCAG





AGCATCACCGGACTTTACGAAACTCGGATTGACCTCTCACAGCTC





GGAGGTGAT





2.


dCas9 protein


SEQ ID NO: 2


MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKK





NLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEM





AKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTI





YHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSD





VDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENL





IAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDT





YDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKA





PLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYA





GYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF





DNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERM





TNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL





SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVED





RFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRE





MIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS





GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSL





HEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAR





ENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEK





LYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNK





VLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL





TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDE





NDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLN





AVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAK





YFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDF





ATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD





WDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIME





RSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLA





SAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVE





QHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQ





AENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD





3.


Linker between dCas9 and repressor domain DNA


SEQ ID NO: 3


GGCTCCGGAAGTGGGTCTAGAGGTGGAGCC





4.


Linker between dCas9 and repressor domain peptide


SEQ ID NO: 4


GSGSGSRGGA





5.


Linker between two or more repressor


domains DNA (in bipartite and


tripartite fusions)


SEQ ID NO: 5


GGCTCTGGCAGCGCTTCTGCTGGA





6.


Linker between two or more repressor


domains peptide (in bipartite and


tripartite fusions)


SEQ ID NO: 6


GSGSASAG





7.


Linker between two or more repressor


domains DNA (in tripartite fusions)


SEQ ID NO: 7


GGCAGCGCTTCTGCTGGA





8.


Linker between two or more repressor


domains peptide (in tripartite


fusions)


SEQ ID NO: 8


GSASAG





9.


KRBOX1 DNA


SEQ ID NO: 9


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





10.


KRBOX1 peptide


SEQ ID NO: 10


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





11.


TRIM28 DNA


SEQ ID NO: 11


CACTGCGGCGTGTGCAGAGAGCGCCTGCGACCCGAGAGGGAGCCC





CGCCTGCTGCCCTGTTTGCACTCGGCCTGTAGTGCCTGCTTAGGG





CCCGCGGCCCCCGCCGCCGCCAACAGCTCGGGGGACGGCGGGGCG





GCGGGCGACGGCACCGTGGTGGACTGTCCCGTGTGCAAGCAACAG





TGCTTCTCCAAAGACATCGTGGAGAATTATTTCATGCGTGATAGT





GGCAGCAAGGCTGCCACCGACGCCCAGGATGCGAACCAGTGCTGC





ACTAGCTGTGAGGATAATGCCCCAGCCACCAGCTACTGTGTGGAG





TGCTCGGAGCCTCTGTGTGAGACCTGTGTAGAGGCGCACCAGCGG





GTGAAGTACACCAAGGACCATACTGTGCGCTCTACTGGGCCAGCC





AAGTCTCGGGATGGTGAACGTACTGTCTATTGCAACGTACACAAG





CATGAACCCCTTGTGCTGTTTTGTGAGAGCTGTGATACTCTCACC





TGCCGAGACTGCCAGCTCAATGCCCACAAGGACCACCAGTACCAG





TTCTTAGAGGATGCAGTGAGGAACCAGCGCAAGCTCCTGGCCTCA





CTGGTGAAGCGCCTTGGGGACAAACATGCAACATTGCAGAAGAGC





ACCAAGGAGGTTCGCAGCTCAATCCGCCAGGTGTCTGACGTACAG





AAGCGTGTGCAAGTGGATGTCAAGATGGCCATCCTGCAGATCATG





AAGGAGCTGAATAAGCGGGGCCGTGTGCTGGTCAATGATGCCCAG





AAGGTGACTGAGGGGCAGCAGGAGCGCCTGGAGCGGCAGCACTGG





ACCATGACCAAGATCCAGAAGCACCAGGAGCACATTCTGCGCTTT





GCCTCTTGGGCTCTGGAGAGTGACAACAACACAGCCCTTTTGCTT





TCTAAGAAGTTGATCTACTTCCAGCTGCACCGGGCCCTCAAGATG





12.


TRIM28 peptide


SEQ ID NO: 12


HCGVCRERLRPEREPRLLPCLHSACSACLGPAAPAAANSSGDGGA





AGDGTVVDCPVCKQQCFSKDIVENYFMRDSGSKAATDAQDANQCC





TSCEDNAPATSYCVECSEPLCETCVEAHQRVKYTKDHTVRSTGPA





KSRDGERTVYCNVHKHEPLVLFCESCDTLTCRDCQLNAHKDHQYQ





FLEDAVRNQRKLLASLVKRLGDKHATLQKSTKEVRSSIRQVSDVQ





KRVQVDVKMAILQIMKELNKRGRVLVNDAQKVTEGQQERLERQHW





TMTKIQKHQEHILRFASWALESDNNTALLLSKKLIYFQLHRALKM





13.


RYBP DNA


SEQ ID NO: 13


GATCCTCCTAGTGAAGCAAACAGCATACAGTCTGCAAATGCTACA





ACAAAGACCAGCGAAACAAATCACACCTCAAGGCCCCGGCTGAAA





AACGTGGACAGGAGCACTGCACAGCAGTTGGCAGTAACTGTGGGC





AACGTCACCGTCATTATCACAGACTTTAAGGAAAAGACTCGCTCC





TCATCGACATCCTCATCCACAGTGACCTCCAGTGCAGGGTCAGAA





CAGCAGAACCAGAGCAGCTCGGGGTCAGAGAGCACAGACAAGGGC





TCCTCCCGTTCCTCCACGCCAAAGGGCGACATG





14.


RYBP peptide


SEQ ID NO: 14


DPPSEANSIQSANATTKTSETNHTSRPRLKNVDRSTAQQLAVTVG





NVTVIITDFKEKTRSSSTSSSTVTSSAGSEQQNQSSSGSESTDKG





SSRSSTPKGDM





15.


CBX1 DNA


SEQ ID NO: 15


GATTCTGAAGATAAGGGAGAGGAGAGCAAACCAAAGAAGAAGAAA





GAAGAGTCAGAAAAGCCACGAGGCTTTGCTCGAGGTTTGGAGCCG





GAGCGGATTATTGGAGCTACAGACTCCAGTGGAGAGCTCATGTTC





CTGATGAAATGGAAAAACTCTGATGAGGCTGACCTGGTCCCTGCC





AAGGAAGCCAATGTCAAGTGCCCACAGGTTGTCATATCCTTCTAT





GAGGAAAGGCTGACGTGGCATTCCTACCCCTCGGAGGATGATGAC





AAAAAAGATGACAAGAAC





16.


CBX1 peptide


SEQ ID NO: 16


DSEDKGEESKPKKKKEESEKPRGFARGLEPERIIGATDSSGELMF





LMKWKNSDEADLVPAKEANVKCPQVVISFYEERLTWHSYPSEDDD





KKDDKN





17.


MeCP2(t) DNA


SEQ ID NO: 17


ACCACATCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAG





CGAAAAGCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGC





CGAAAGCCGGGGAGTGTGGTGGCAGCCGCTGCCGCCGAGGCCAAA





AAGAAAGCCGTGAAGGAGTCTTCTATCCGATCTGTGCAGGAGACC





GTACTCCCCATCAAGAAGCGCAAGACCCGGGAGACCGTCAGCATC





GAGGTCAAGGAAGTG





18.


MeCP2(t) peptide


SEQ ID NO: 18


TTSTQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSVVAAAAAEAK





KKAVKESSIRSVQETVLPIKKRKTRETVSIEVKEV





19.


SCMH1 DNA


SEQ ID NO: 19


TCCCCAGGGTCGGACCGATACCTGGAGAGCCGCGATGCCTCTCGA





CTGAGTGGCCGGGACCCCTCCTCATGGACAGTCGAGGATGTGATG





CAGTTTGTCCGGGAAGCTGATCCTCAGCTTGGACCCCACGCTGAC





CTGTTTCGCAAACACGAGATCGATGGCAAGGCCCTGCTGCTGCTG





CGCAGTGACATGATGATGAAGTACATGGGCCTGAAGCTGGGGCCT





GCACTCAAGCTCTCCTACCACATTGACCGGCTGAAGCAGGGCAAG





TTC





20.


SCMH1 peptide


SEQ ID NO: 20


SPGSDRYLESRDASRLSGRDPSSWTVEDVMQFVREADPQLGPHAD





LFRKHEIDGKALLLLRSDMMMKYMGLKLGPALKLSYHIDRLKQGK





F





21.


CTCF DNA


SEQ ID NO: 21


GTTGTAAATATGGAGGAACAGCCCATAAACATAGGAGAACTTCAG





CTTGTTCAAGTACCTGTTCCTGTGACTGTACCTGTTGCTACCACT





TCAGTAGAAGAACTTCAGGGGGCTTATGAAAATGAAGTGTCTAAA





GAGGGCCTTGCGGAAAGTGAACCCATGATATGCCACACCCTACCT





TTGCCTGAAGGGTTTCAGGTGGTTAAAGTGGGGGCCAATGGAGAG





GTGGAGACACTAGAACAAGGGGAACTTCCACCCCAGGAAGATCCT





AGTTGGCAAAAAGACCCAGACTATCAGCCACCAGCCAAAAAAACA





AAGAAAACCAAAAAGAGC





22.


CTCF peptide


SEQ ID NO: 22


VVNMEEQPINIGELQLVQVPVPVTVPVATTSVEELQGAYENEVSK





EGLAESEPMICHTLPLPEGFQVVKVGANGEVETLEQGELPPQEDP





SWQKDPDYQPPAKKTKKTKKS





23.


REST DNA


SEQ ID NO: 23


GGCATCCACAGCCATGAAGGAAGTGACCTAAGTGACAACATGTCA





GAGGGTAGTGATGATTCTGGATTGCATGGGGCTCGGCCAGTTCCA





CAAGAATCTAGCAGAAAAAATGCAAAGGAAGCCTTGGCAGTCAAA





GCGGCTAAGGGAGATTTTGTTTGTATCTTCTGTGATCGTTCTTTC





AGAAAGGGAAAAGATTACAGCAAACACCTCAATCGCCATTTGGTT





AATGTGTACTATCTTGAA





24.


REST peptide


SEQ ID NO: 24


GIHSHEGSDLSDNMSEGSDDSGLHGARPVPQESSRKNAKEALAVK





AAKGDFVCIFCDRSFRKGKDYSKHLNRHLVNVYYLE





25.


MGA DNA


SEQ ID NO: 25


CAGCCGTCCTGTACTCACATCTCTGCAGATGAAAAAGCAGCTGAA





AGGAGTCGAAAGGCTCCACCAATTCCTCTAAAACTGAAGCCTGAT





TACTGGAGTGACAAACTACAGAAAGAAGCAGAAGCGTTTGCTTAT





TATCGCCGGACACACACTGCCAATGAGCGGCGGCGGCGTGGTGAA





ATGAGGGATCTCTTTGAGAAATTAAAGATCACATTGGGATTACTT





CATTCTTCCAAGGTTTCCAAAAGTCTCATTCTTACTCGAGCCTTC





AGTGAAATTCAGGGACTAACAGATCAGGCAGACAAATTGATAGGA





CAGAAAAATCTCCTGACTCGAAAACGGAATATTCTGATACGGAAA





GTA





26.


MGA peptide


SEQ ID NO: 26


QPSCTHISADEKAAERSRKAPPIPLKLKPDYWSDKLQKEAEAFAY





YRRTHTANERRRRGEMRDLFEKLKITLGLLHSSKVSKSLILTRAF





SEIQGLTDQADKLIGQKNLLTRKRNILIRKV





27.


KLF10 DNA


SEQ ID NO: 27


ATGGCACCAGCGCCATCTACTGTACACTTCAAGTCACTCTCAGAT





ACTGCCAAACCTCACATTGCCGCACCTTTCAAAGAGGAAGAAAAG





AGCCCAGTATCTGCCCCCAAACTCCCCAAAGCTCAGGCAACAAGT





GTGATTCGTCATACAGCTGATGCCCAGCTATGTAACCACCAGACC





TGCCCAATGAAAGCAGCCAGCATCCTCAACTATCAGAACAATTCT





TTTA





28.


KLF10 peptide


SEQ ID NO: 28


MAPAPSTVHFKSLSDTAKPHIAAPFKEEEKSPVSAPKLPKAQATS





VIRHTADAQLCNHQTCPMKAASILNYQNNSFRRRTHLNVEAARKNI





GAAGAAGAACCCACCTAAATGTTGAGGCTGCAAGAAAGAACATA





29.


IRF2BP1 DNA


SEQ ID NO: 29


GCGTCTGTGCAGGCGTCCCGCCGCCAGTGGTGCTACCTGTGCGAC





CTGCCCAAGATGCCGTGGGCCATGGTGTGGGACTTCAGCGAGGCC





GTGTGTCGCGGCTGCGTGAACTTCGAGGGCGCGGACCGCATCGAA





CTGCTCATCGATGCCGCCCGCCAGCTCAAGCGCAGCCACGTGCTC





CCCGAGGGCCGCTCGCCCGGGCCCCCGGCCCTTAAGCACCCGGCC





ACCAAGGACCTGGCG





30.


IRF2BP1 peptide


SEQ ID NO: 30


ASVQASRRQWCYLCDLPKMPWAMVWDFSEAVCRGCVNFEGADRIE





LLIDAARQLKRSHVLPEGRSPGPPALKHPATKDLA





31.


MAX DNA


SEQ ID NO: 31


AGCGATAACGATGACATCGAGGTGGAGAGCGACGAAGAGCAACCG





AGGTTTCAATCTGCGGCTGACAAACGGGCTCATCATAATGCACTG





GAACGAAAACGTAGGGACCACATCAAAGACAGCTTTCACAGTTTG





CGGGACTCAGTCCCATCACTCCAAGGAGAGAAGGCATCCCGGGCC





CAAATCCTAGACAAAGCCACAGAATATATCCAGTATATGCGAAGG





AAAAACCACACACACCAGCAAGATATTGACGACCTCAAGCGGCAG





AATGCTCTTCTGGAGCAGCAAGTCCGTGCACTGGAGAAGGCGAGG





TCAAGTGCCCAACTGCAGACCAACTACCCCTCCTCAGACAACAGC





CTCTACACCAACGCCAAGGGCAGCACCATCTCTGCCTTCGATGGG





GGCTCGGACTCCAGCTCGGAGTCTGAGCCTGAAGAGCCCCAAAGC





AGGAAGAAGCTCCGGATGGAGGCCAGC





32.


MAX peptide


SEQ ID NO: 32


SDNDDIEVESDEEQPRFQSAADKRAHHNALERKRRDHIKDSFHSL





RDSVPSLQGEKASRAQILDKATEYIQYMRRKNHTHQQDIDDLKRQ





NALLEQQVRALEKARSSAQLQTNYPSSDNSLYTNAKGSTISAFDG





GSDSSSESEPEEPQSRKKLRMEAS





33.


IKZF5 DNA


SEQ ID NO: 33


AGCACTCCCAGCATAGGAAACAGCCAGCCAAGCACCCCAGCCCCA





GCCCTGCCGGTCCAGGACCCTCAGCTTCTGCACCACTGCCAGCAC





TGTGATATGTACTTTGCAGACAACATCCTTTACACTATTCATATG





GGATGTCATGGGTATGAAAATCCTTTTCAGTGTAATATATGTGGA





TGCAAATGTAAAAACAAGTATGATTTTGCCTGTCATTTTGCAAGA





GGGCAACATAACCAACAT





34.


IKZF5 peptide


SEQ ID NO: 34


STPSIGNSQPSTPAPALPVQDPQLLHHCQHCDMYFADNILYTIHM





GCHGYENPFQCNICGCKCKNKYDFACHFARGQHNQH





35.


RCOR1 DNA


SEQ ID NO: 35


CCCAATGGCAACAGCAGCAGCAACTCCTGGGAGGAAGGCAGCTCG





GGCTCGTCCAGCGACGAGGAGCACGGTGGCGGTGGCATGAGGGTC





GGACCCCAGTACCAGGCGGTGGTGCCCGACTTCGACCCCGCCAAA





CTGGCAAGACGCAGTCAAGAACGGGACAATCTTGGCATGTTGGTC





TGGTCACCCAATCAAAATCTGTCAGAAGCAAAGTTGGATGAATAC





ATTGCCATTGCCAAAGAAAAGCATGGGTACAACATGGAACAGGCT





CTTGGGATGCTCTTCTGGCATAAACATAATATCGAAAAGTCATTG





GCTGATTTGCCCAACTTTACCCCTTTCCCAGATGAGTGGACTGTG





GAAGATAAAGTCTTATTTGAGCAAGCCTTTAGTTTTCATGGGAAA





ACTTTTCATAGAATCCAACAAATGCTTCCAGATAAATCTATAGCA





AGTCTGGTGAAATTTTACTATTCTTGGAAGAAGACGAGGACTAAA





ACTAGTGTGATGGATCGCCATGCCCGGAAACAAAAACGGGAGCGG





GAGGAGAGCGAGGATGAACTGGAAGAGGCAAATGGAAACAATCCC





ATTGACATTGAGGTTGATCAAAACAAGGAAAGCAAAAAGGAGGTT





CCCCCTACTGAGACAGTTCCTCAGGTCAAAAAAGAAAAACATAGC





ACACAAGCTAAAAATAGAGCAAAAAGGAAACCTCCAAAAGGAATG





TTTCTTTCTCAAGAAGATGTGGAGGCTGTTTCTGCCAATGCCACT





GCTGCTACCACGGTGCTGAGACAACTAGACATGGAATTGGTTTCA





GTCAAACGACAGATCCAGAATATTAAACAGACAAACAGTGCTCTC





AAAGAAAAACTTGATGGTGGAATAGAACCATATCGACTTCCAGAG





GTCATTCAGAAATGTAAT





36.


RCOR1 peptide


SEQ ID NO: 36


PNGNSSSNSWEEGSSGSSSDEEHGGGGMRVGPQYQAVVPDFDPAK





LARRSQERDNLGMLVWSPNQNLSEAKLDEYIAIAKEKHGYNMEQA





LGMLFWHKHNIEKSLADLPNFTPFPDEWTVEDKVLFEQAFSFHGK





TFHRIQQMLPDKSIASLVKFYYSWKKTRTKTSVMDRHARKQKRER





EESEDELEEANGNNPIDIEVDQNKESKKEVPPTETVPQVKKEKHS





TQAKNRAKRKPPKGMFLSQEDVEAVSANATAATTVLRQLDMELVS





VKRQIQNIKQTNSALKEKLDGGIEPYRLPEVIQKCN





37.


ZIM3(KRAB)-MeCP2 DNA


SEQ ID NO: 37


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCG





AACAGAGAAACTTGTACAG





GGATGTGATGCTGGAGAATTACAGCAACCTTGTCTCTGTGGGACA





AGGGGAAACCACCAAACCCGATGTGATCTTGAGGTTGGAACAAGG





AAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTGGGAAGTGGCCG





TGCAGAAAAAAATGGGGACATTGGAGGGCAGATTTGGAAGCCAAA





GGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCTTCTGCTGGAGA





AGCCTCAGTGCAGGTGAAAAGGGTGCTGGAAAAATCCCCCGGCAA





ACTCCTCGTGAAGATGCCCTTCCAGGCTTCCCCTGGCGGAAAAGG





TGAAGGGGGTGGCGCAACCACATCTGCCCAGGTCATGGTCATCAA





GCGACCTGGAAGGAAAAGAAAGGCCGAGGCTGACCCTCAGGCCAT





TCCAAAGAAACGGGGACGCAAGCCAGGGTCCGTGGTCGCAGCTGC





AGCAGCTGAGGCTAAGAAAAAGGCAGTGAAGGAAAGCTCCATCCG





CAGTGTGCAGGAGACTGTCCTGCCCATCAAGAAGAGGAAGACTAG





GGAGACCGTGTCCATCGAGGTCAAAGAAGTGGTCAAGCCCCTGCT





CGTGTCCACCCTGGGCGAAAAATCTGGAAAGGGGCTCAAAACATG





CAAGTCACCTGGACGGAAAAGCAAGGAGTCTAGTCCAAAGGGGCG





CTCAAGCTCCGCTTCTAGTCCCCCTAAAAAGGAACACCATCACCA





TCACCATCACGCCGAGTCTCCTAAGGCTCCTATGCCACTGCTCCC





ACCACCTCCACCACCTGAGCCACAGTCAAGCGAAGACCCCATCAG





CCCACCCGAGCCTCAGGATCTGTCCTCTAGTATTTGCAAAGAGGA





AAAGATGCCCAGAGCAGGCAGCCTGGAGAGTGATGGCTGTCCAAA





AGAACCCGCCAAGACCCAGCCTATGGTGGCAGCCGCTGCAACTAC





CACCACAACCACAACTACCACAGTGGCCGAAAAATACAAGCATCG





CGGCGAGGGCGAACGAAAGGACATTGTGTCAAGCTCCATGCCCAG





ACCTAACCGGGAGGAACCAGTCGATAGTAGGACACCCGTGACTGA





GAGAGTCTCA





38.


ZIM3(KRAB)-MeCP2 peptide


SEQ ID NO: 38


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGEASVQVKRVLEKSPGKLLVKMPFQASP





GGKGEGGGATTSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSV





VAAAAAEAKKKAVKESSIRSVQETVLPIKKRKTRETVSIEVKEVV





KPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKE





HHHHHHHAESPKAPMPLLPPPPPPEPQSSEDPISPPEPQDLSSSI





CKEEKMPRAGSLESDGCPKEPAKTQPMVAAAATTTTTTTTTVAEK





YKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVS





39.


KOX1(KRAB)-MeCP2(t) DNA


SEQ ID NO: 39


CGGACACTGGTGACCTTCAAGGATGTGTTTGTGGACTTCACCAGG





GAGGAGTGGAAGCTGCTGGACACTGCTCAGCAGATCCTGTACAGA





AATGTGATGCTGGAGAACTATAAGAACCTGGTTTCCTTGGGTTAT





CAGCTTACTAAGCCAGATGTGATCCTCCGGTTGGAGAAGGGAGAA





GAGCCCTGGCTGGTGGGCTCTGGCAGCGCTTCTGCTGGAACCACA





TCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAGCGAAAA





GCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGCCGAAAG





CCGGGGAGTGTGGTGGCAGCCGCTGCCGCCGAGGCCAAAAAGAAA





GCCGTGAAGGAGTCTTCTATCCGATCTGTGCAGGAGACCGTACTC





CCCATCAAGAAGCGCAAGACCCGGGAGACCGTCAGCATCGAGGTC





AAGGAAGTG





40.


KOX1(KRAB)-MeCP2(t) peptide


SEQ ID NO: 40


RTLVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGY





QLTKPDVILRLEKGEEPWLVGSGSASAGTTSTQVMVIKRPGRKRK





AEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETVL





PIKKRKTRETVSIEVKEV





41.


ZIM3(KRAB)-MAX DNA


SEQ ID NO: 41


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAGCGATAACGATGACATCGAGGTGGAGAGCGACGAA





GAGCAACCGAGGTTTCAATCTGCGGCTGACAAACGGGCTCATCAT





AATGCACTGGAACGAAAACGTAGGGACCACATCAAAGACAGCTTT





CACAGTTTGCGGGACTCAGTCCCATCACTCCAAGGAGAGAAGGCA





TCCCGGGCCCAAATCCTAGACAAAGCCACAGAATATATCCAGTAT





ATGCGAAGGAAAAACCACACACACCAGCAAGATATTGACGACCTC





AAGCGGCAGAATGCTCTTCTGGAGCAGCAAGTCCGTGCACTGGAG





AAGGCGAGGTCAAGTGCCCAACTGCAGACCAACTACCCCTCCTCA





GACAACAGCCTCTACACCAACGCCAAGGGCAGCACCATCTCTGCC





TTCGATGGGGGCTCGGACTCCAGCTCGGAGTCTGAGCCTGAAGAG





CCCCAAAGCAGGAAGAAGCTCCGGATGGAGGCCAGC





42.


ZIM3(KRAB)-MAX peptide


SEQ ID NO: 42


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHH





NALERKRRDHIKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQY





MRRKNHTHQQDIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSS





DNSLYTNAKGSTISAFDGGSDSSSESEPEEPQSRKKLRMEAS





43.


KRBOX1(KRAB)-MAX DNA


SEQ ID NO: 43


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





GGCTCTGGCAGCGCTTCTGCTGGAAGCGATAACGATGACATCGAG





GTGGAGAGCGACGAAGAGCAACCGAGGTTTCAATCTGCGGCTGAC





AAACGGGCTCATCATAATGCACTGGAACGAAAACGTAGGGACCAC





ATCAAAGACAGCTTTCACAGTTTGCGGGACTCAGTCCCATCACTC





CAAGGAGAGAAGGCATCCCGGGCCCAAATCCTAGACAAAGCCACA





GAATATATCCAGTATATGCGAAGGAAAAACCACACACACCAGCAA





GATATTGACGACCTCAAGCGGCAGAATGCTCTTCTGGAGCAGCAA





GTCCGTGCACTGGAGAAGGCGAGGTCAAGTGCCCAACTGCAGACC





AACTACCCCTCCTCAGACAACAGCCTCTACACCAACGCCAAGGGC





AGCACCATCTCTGCCTTCGATGGGGGCTCGGACTCCAGCTCGGAG





TCTGAGCCTGAAGAGCCCCAAAGCAGGAAGAAGCTCCGGATGGAG





GCCAGC





44.


KRBOX1(KRAB)-MAX peptide


SEQ ID NO: 44


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





GSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHHNALERKRRDH





IKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQYMRRKNHTHQQ





DIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSSDNSLYTNAKG





STISAFDGGSDSSSESEPEEPQSRKKLRMEAS





45.


KOX1(KRAB)-MAX DNA


SEQ ID NO: 45


CGGACACTGGTGACCTTCAAGGATGTGTTTGTGGACTTCACCAGG





GAGGAGTGGAAGCTGCTGGACACTGCTCAGCAGATCCTGTACAGA





AATGTGATGCTGGAGAACTATAAGAACCTGGTTTCCTTGGGTTAT





CAGCTTACTAAGCCAGATGTGATCCTCCGGTTGGAGAAGGGAGAA





GAGCCCTGGCTGGTGGGCTCTGGCAGCGCTTCTGCTGGAAGCGAT





AACGATGACATCGAGGTGGAGAGCGACGAAGAGCAACCGAGGTTT





CAATCTGCGGCTGACAAACGGGCTCATCATAATGCACTGGAACGA





AAACGTAGGGACCACATCAAAGACAGCTTTCACAGTTTGCGGGAC





TCAGTCCCATCACTCCAAGGAGAGAAGGCATCCCGGGCCCAAATC





CTAGACAAAGCCACAGAATATATCCAGTATATGCGAAGGAAAAAC





CACACACACCAGCAAGATATTGACGACCTCAAGCGGCAGAATGCT





CTTCTGGAGCAGCAAGTCCGTGCACTGGAGAAGGCGAGGTCAAGT





GCCCAACTGCAGACCAACTACCCCTCCTCAGACAACAGCCTCTAC





ACCAACGCCAAGGGCAGCACCATCTCTGCCTTCGATGGGGGCTCG





GACTCCAGCTCGGAGTCTGAGCCTGAAGAGCCCCAAAGCAGGAAG





AAGCTCCGGATGGAGGCCAGC





46.


KOX(KRAB)-MAX peptide


SEQ ID NO: 46


RTLVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGY





QLTKPDVILRLEKGEEPWLVGSGSASAGSDNDDIEVESDEEQPRF





QSAADKRAHHNALERKRRDHIKDSFHSLRDSVPSLQGEKASRAQI





LDKATEYIQYMRRKNHTHQQDIDDLKRQNALLEQQVRALEKARSS





AQLQTNYPSSDNSLYTNAKGSTISAFDGGSDSSSESEPEEPQSRK





KLRMEAS





47.


ZIM3(KRAB)-IRF2BP1 DNA


SEQ ID NO: 47


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAGCGTCTGTGCAGGCGTCCCGCCGCCAGTGGTGCTAC





CTGTGCGACCTGCCCAAGATGCCGTGGGCCATGGTGTGGGACTTC





AGCGAGGCCGTGTGTCGCGGCTGCGTGAACTTCGAGGGCGCGGAC





CGCATCGAACTGCTCATCGATGCCGCCCGCCAGCTCAAGCGCAGC





CACGTGCTCCCCGAGGGCCGCTCGCCCGGGCCCCCGGCCCTTAAG





CACCCGGCCACCAAGGACCTGGCG





48.


ZIM3(KRAB)-IRF2BP1 peptide


SEQ ID NO: 48


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGASVQASRRQWCYLCDLPKMPWAMVWDF





SEAVCRGCVNFEGADRIELLIDAARQLKRSHVLPEGRSPGPPALK





HPATKDLA





49.


ZIM3(KRAB)-ZIM3(KRAB) DNA


SEQ ID NO: 49


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGAT





GTCACTGTGAACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCC





GAACAGAGAAACTTGTACAGGGATGTGATGCTGGAGAATTACAGC





AACCTTGTCTCTGTGGGACAAGGGGAAACCACCAAACCCGATGTG





ATCTTGAGGTTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAG





GAAGTGCTGGGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGA





GGGCAGATTTGGAAGCCAAAGGATGTGAAAGAGAGTCTC





50.


ZIM3(KRAB)-ZIM3(KRAB) peptide


SEQ ID NO: 50


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGMNNSQGRVTFEDVTVNFTQGEWQRLNP





EQRNLYRDVMLENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEE





EVLGSGRAEKNGDIGGQIWKPKDVKESL





51.


KRBOX1(KRAB)-CTCF DNA


SEQ ID NO: 51


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





GGCTCTGGCAGCGCTTCTGCTGGAGTTGTAAATATGGAGGAACAG





CCCATAAACATAGGAGAACTTCAGCTTGTTCAAGTACCTGTTCCT





GTGACTGTACCTGTTGCTACCACTTCAGTAGAAGAACTTCAGGGG





GCTTATGAAAATGAAGTGTCTAAAGAGGGCCTTGCGGAAAGTGAA





CCCATGATATGCCACACCCTACCTTTGCCTGAAGGGTTTCAGGTG





GTTAAAGTGGGGGCCAATGGAGAGGTGGAGACACTAGAACAAGGG





GAACTTCCACCCCAGGAAGATCCTAGTTGGCAAAAAGACCCAGAC





TATCAGCCACCAGCCAAAAAAACAAAGAAAACCAAAAAGAGC





52.


KRBOX1(KRAB)-CTCF peptide


SEQ ID NO: 52


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





GSGSASAGVVNMEEQPINIGELQLVQVPVPVTVPVATTSVEELQG





AYENEVSKEGLAESEPMICHTLPLPEGFQVVKVGANGEVETLEQG





ELPPQEDPSWQKDPDYQPPAKKTKKTKKS





53.


ZIM3(KRAB)-ZNF554(KRAB) DNA


SEQ ID NO: 53


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGATTTTCCCAAGAGGAGAGAATGGCTGCTGGGTACCTG





CCCCGCTGGTCCCAGGAATTAGTAACCTTTGAGGACGTGTCCATG





GACTTCTCCCAGGAGGAGTGGGAGTTGCTGGAGCCTGCTCAGAAG





AACCTGTACAGAGAGGTGATGCTGGAGAACTACAGGAACGTGGTC





TCCCTGGAAGCCTTGAAGAACCAATGTACTGATGTGGGGATTAAA





GAGGGTCCACTTTCCCCAGCACAAACCTCACAAGTCACTAGTCTT





TCCTCATGGACGGGGTATTTACTTTTTCAACCAGTGGCTTCTTCC





CACTTGGAGCAAAGAGAAGCCCTGTGGATAGAGGAAAAAGGAACT





CCTCAAGCCTCCTGTTCAGATTGGATGACTGTACTAAGAAACCAA





GACTCAACTTACAAGAAGGTGGCTTTGCAGGAG





54.


ZIM3(KRAB)-ZNF554(KRAB) peptide


SEQ ID NO: 54


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGFSQEERMAAGYLPRWSQELVTFEDVSM





DFSQEEWELLEPAQKNLYREVMLENYRNVVSLEALKNQCTDVGIK





EGPLSPAQTSQVTSLSSWTGYLLFQPVASSHLEQREALWIEEKGT





PQASCSDWMTVLRNQDSTYKKVALQE





55.


KRBOX1(KRAB)-MeCP2 DNA


SEQ ID NO: 55


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





GGCTCTGGCAGCGCTTCTGCTGGAGAAGCCTCAGTGCAGGTGAAA





AGGGTGCTGGAAAAATCCCCCGGCAAACTCCTCGTGAAGATGCCC





TTCCAGGCTTCCCCTGGCGGAAAAGGTGAAGGGGGTGGCGCAACC





ACATCTGCCCAGGTCATGGTCATCAAGCGACCTGGAAGGAAAAGA





AAGGCCGAGGCTGACCCTCAGGCCATTCCAAAGAAACGGGGACGC





AAGCCAGGGTCCGTGGTCGCAGCTGCAGCAGCTGAGGCTAAGAAA





AAGGCAGTGAAGGAAAGCTCCATCCGCAGTGTGCAGGAGACTGTC





CTGCCCATCAAGAAGAGGAAGACTAGGGAGACCGTGTCCATCGAG





GTCAAAGAAGTGGTCAAGCCCCTGCTCGTGTCCACCCTGGGCGAA





AAATCTGGAAAGGGGCTCAAAACATGCAAGTCACCTGGACGGAAA





AGCAAGGAGTCTAGTCCAAAGGGGCGCTCAAGCTCCGCTTCTAGT





CCCCCTAAAAAGGAACACCATCACCATCACCATCACGCCGAGTCT





CCTAAGGCTCCTATGCCACTGCTCCCACCACCTCCACCACCTGAG





CCACAGTCAAGCGAAGACCCCATCAGCCCACCCGAGCCTCAGGAT





CTGTCCTCTAGTATTTGCAAAGAGGAAAAGATGCCCAGAGCAGGC





AGCCTGGAGAGTGATGGCTGTCCAAAAGAACCCGCCAAGACCCAG





CCTATGGTGGCAGCCGCTGCAACTACCACCACAACCACAACTACC





ACAGTGGCCGAAAAATACAAGCATCGCGGCGAGGGCGAACGAAAG





GACATTGTGTCAAGCTCCATGCCCAGACCTAACCGGGAGGAACCA





GTCGATAGTAGGACACCCGTGACTGAGAGAGTCTCA





56.


KRBOX1(KRAB)-MeCP2 peptide


SEQ ID NO: 56


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





GSGSASAGEASVQVKRVLEKSPGKLLVKMPFQASPGGKGEGGGAT





TSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSVVAAAAAEAKK





KAVKESSIRSVQETVLPIKKRKTRETVSIEVKEVVKPLLVSTLGE





KSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKEHHHHHHHAES





PKAPMPLLPPPPPPEPQSSEDPISPPEPQDLSSSICKEEKMPRAG





SLESDGCPKEPAKTQPMVAAAATTTTTTTTTVAEKYKHRGEGERK





DIVSSSMPRPNREEPVDSRTPVTERVS





57.


ZIM3(KRAB)-RYBP DNA


SEQ ID NO: 57


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAGATCCTCCTAGTGAAGCAAACAGCATACAGTCTGCA





AATGCTACAACAAAGACCAGCGAAACAAATCACACCTCAAGGCCC





CGGCTGAAAAACGTGGACAGGAGCACTGCACAGCAGTTGGCAGTA





ACTGTGGGCAACGTCACCGTCATTATCACAGACTTTAAGGAAAAG





ACTCGCTCCTCATCGACATCCTCATCCACAGTGACCTCCAGTGCA





GGGTCAGAACAGCAGAACCAGAGCAGCTCGGGGTCAGAGAGCACA





GACAAGGGCTCCTCCCGTTCCTCCACGCCAAAGGGCGACATG





58.


ZIM3(KRAB)-RYBP peptide


SEQ ID NO: 58


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGDPPSEANSIQSANATTKTSETNHTSRP





RLKNVDRSTAQQLAVTVGNVTVIITDFKEKTRSSSTSSSTVTSSA





GSEQQNQSSSGSESTDKGSSRSSTPKGDM





59.


ZIM3(KRAB)-KLF10 DNA


SEQ ID NO: 59


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAATGGCACCAGCGCCATCTACTGTACACTTCAAGTCA





CTCTCAGATACTGCCAAACCTCACATTGCCGCACCTTTCAAAGAG





GAAGAAAAGAGCCCAGTATCTGCCCCCAAACTCCCCAAAGCTCAG





GCAACAAGTGTGATTCGTCATACAGCTGATGCCCAGCTATGTAAC





CACCAGACCTGCCCAATGAAAGCAGCCAGCATCCTCAACTATCAG





AACAATTCTTTTAGAAGAAGAACCCACCTAAATGTTGAGGCTGCA





AGAAAGAACATA





60.


ZIM3(KRAB)-KLF10 peptide


SEQ ID NO: 60


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGMAPAPSTVHFKSLSDTAKPHIAAPFKE





EEKSPVSAPKLPKAQATSVIRHTADAQLCNHQTCPMKAASILNYQ





NNSFRRRTHLNVEAARKNI





61.


KRBOX1(KRAB)-ZIM3(KRAB) DNA


SEQ ID NO: 61


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





GGCTCTGGCAGCGCTTCTGCTGGAATGAACAATTCCCAGGGAAGA





GTGACCTTCGAGGATGTCACTGTGAACTTCACCCAGGGGGAGTGG





CAGCGGCTGAATCCCGAACAGAGAAACTTGTACAGGGATGTGATG





CTGGAGAATTACAGCAACCTTGTCTCTGTGGGACAAGGGGAAACC





ACCAAACCCGATGTGATCTTGAGGTTGGAACAAGGAAAGGAGCCG





TGGTTGGAGGAAGAGGAAGTGCTGGGAAGTGGCCGTGCAGAAAAA





AATGGGGACATTGGAGGGCAGATTTGGAAGCCAAAGGATGTGAAA





GAGAGTCTC





62.


KRBOX1(KRAB)-ZIM3(KRAB) peptide


SEQ ID NO: 62


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





GSGSASAGMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVM





LENYSNLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEK





NGDIGGQIWKPKDVKESL





63.


ZIM3(KRAB)-MAX-MeCP2(t) DNA


SEQ ID NO: 63


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAGCGATAACGATGACATCGAGGTGGAGAGCGACGAA





GAGCAACCGAGGTTTCAATCTGCGGCTGACAAACGGGCTCATCAT





AATGCACTGGAACGAAAACGTAGGGACCACATCAAAGACAGCTTT





CACAGTTTGCGGGACTCAGTCCCATCACTCCAAGGAGAGAAGGCA





TCCCGGGCCCAAATCCTAGACAAAGCCACAGAATATATCCAGTAT





ATGCGAAGGAAAAACCACACACACCAGCAAGATATTGACGACCTC





AAGCGGCAGAATGCTCTTCTGGAGCAGCAAGTCCGTGCACTGGAG





AAGGCGAGGTCAAGTGCCCAACTGCAGACCAACTACCCCTCCTCA





GACAACAGCCTCTACACCAACGCCAAGGGCAGCACCATCTCTGCC





TTCGATGGGGGCTCGGACTCCAGCTCGGAGTCTGAGCCTGAAGAG





CCCCAAAGCAGGAAGAAGCTCCGGATGGAGGCCAGCGGCAGCGCT





TCTGCTGGAACCACATCCACCCAGGTCATGGTGATCAAACGCCCC





GGCAGGAAGCGAAAAGCTGAGGCCGACCCTCAGGCCATTCCCAAG





AAACGGGGCCGAAAGCCGGGGAGTGTGGTGGCAGCCGCTGCCGCC





GAGGCCAAAAAGAAAGCCGTGAAGGAGTCTTCTATCCGATCTGTG





CAGGAGACCGTACTCCCCATCAAGAAGCGCAAGACCCGGGAGACC





GTCAGCATCGAGGTCAAGGAAGTG





64.


ZIM3(KRAB)-MAX-MeCP2(t) peptide


SEQ ID NO: 64


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHH





NALERKRRDHIKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQY





MRRKNHTHQQDIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSS





DNSLYTNAKGSTISAFDGGSDSSSESEPEEPQSRKKLRMEASGSA





SAGTTSTQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSVVAAAAA





EAKKKAVKESSIRSVQETVLPIKKRKTRETVSIEVKEV





65.


KOX(KRAB)-MeCP2(t)-MeCP2(t) DNA


SEQ ID NO: 65


CGGACACTGGTGACCTTCAAGGATGTGTTTGTGGACTTCACCAGG





GAGGAGTGGAAGCTGCTGGACACTGCTCAGCAGATCCTGTACAGA





AATGTGATGCTGGAGAACTATAAGAACCTGGTTTCCTTGGGTTAT





CAGCTTACTAAGCCAGATGTGATCCTCCGGTTGGAGAAGGGAGAA





GAGCCCTGGCTGGTGGGCTCTGGCAGCGCTTCTGCTGGAACCACA





TCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAGCGAAAA





GCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGCCGAAAG





CCGGGGAGTGTGGTGGCAGCCGCTGCCGCCGAGGCCAAAAAGAAA





GCCGTGAAGGAGTCTTCTATCCGATCTGTGCAGGAGACCGTACTC





CCCATCAAGAAGCGCAAGACCCGGGAGACCGTCAGCATCGAGGTC





AAGGAAGTGGGCAGCGCTTCTGCTGGAACCACATCCACCCAGGTC





ATGGTGATCAAACGCCCCGGCAGGAAGCGAAAAGCTGAGGCCGAC





CCTCAGGCCATTCCCAAGAAACGGGGCCGAAAGCCGGGGAGTGTG





GTGGCAGCCGCTGCCGCCGAGGCCAAAAAGAAAGCCGTGAAGGAG





TCTTCTATCCGATCTGTGCAGGAGACCGTACTCCCCATCAAGAAG





CGCAAGACCCGGGAGACCGTCAGCATCGAGGTCAAGGAAGTG





66.


KOX(KRAB)-MeCP2(t)-MeCP2(t) peptide


SEQ ID NO: 66


RTLVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGY





QLTKPDVILRLEKGEEPWLVGSGSASAGTTSTQVMVIKRPGRKRK





AEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETVL





PIKKRKTRETVSIEVKEVGSASAGTTSTQVMVIKRPGRKRKAEAD





PQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETVLPIKK





RKTRETVSIEVKEV





67.


KOX1(KRAB)-MeCP2(t)-KOX1(KRAB) DNA


SEQ ID NO: 67


CGGACACTGGTGACCTTCAAGGATGTGTTTGTGGACTTCACCAGG





GAGGAGTGGAAGCTGCTGGACACTGCTCAGCAGATCCTGTACAGA





AATGTGATGCTGGAGAACTATAAGAACCTGGTTTCCTTGGGTTAT





CAGCTTACTAAGCCAGATGTGATCCTCCGGTTGGAGAAGGGAGAA





GAGCCCTGGCTGGTGGGCTCTGGCAGCGCTTCTGCTGGAACCACA





TCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAGCGAAAA





GCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGCCGAAAG





CCGGGGAGTGTGGTGGCAGCCGCTGCCGCCGAGGCCAAAAAGAAA





GCCGTGAAGGAGTCTTCTATCCGATCTGTGCAGGAGACCGTACTC





CCCATCAAGAAGCGCAAGACCCGGGAGACCGTCAGCATCGAGGTC





AAGGAAGTGGGCAGCGCTTCTGCTGGACGGACACTGGTGACCTTC





AAGGATGTGTTTGTGGACTTCACCAGGGAGGAGTGGAAGCTGCTG





GACACTGCTCAGCAGATCCTGTACAGAAATGTGATGCTGGAGAAC





TATAAGAACCTGGTTTCCTTGGGTTATCAGCTTACTAAGCCAGAT





GTGATCCTCCGGTTGGAGAAGGGAGAAGAGCCCTGGCTGGTG





68.


KOX1(KRAB)-MeCP2(t)-KOX1(KRAB) peptide


SEQ ID NO: 68


RTLVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGY





QLTKPDVILRLEKGEEPWLVGSGSASAGTTSTQVMVIKRPGRKRK





AEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETVL





PIKKRKTRETVSIEVKEVGSASAGRTLVTFKDVFVDFTREEWKLL





DTAQQILYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPWLV





69.


ZIM3(KRAB)-MAX-IRF2BP1 DNA


SEQ ID NO: 69


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAGCGATAACGATGACATCGAGGTGGAGAGCGACGAA





GAGCAACCGAGGTTTCAATCTGCGGCTGACAAACGGGCTCATCAT





AATGCACTGGAACGAAAACGTAGGGACCACATCAAAGACAGCTTT





CACAGTTTGCGGGACTCAGTCCCATCACTCCAAGGAGAGAAGGCA





TCCCGGGCCCAAATCCTAGACAAAGCCACAGAATATATCCAGTAT





ATGCGAAGGAAAAACCACACACACCAGCAAGATATTGACGACCTC





AAGCGGCAGAATGCTCTTCTGGAGCAGCAAGTCCGTGCACTGGAG





AAGGCGAGGTCAAGTGCCCAACTGCAGACCAACTACCCCTCCTCA





GACAACAGCCTCTACACCAACGCCAAGGGCAGCACCATCTCTGCC





TTCGATGGGGGCTCGGACTCCAGCTCGGAGTCTGAGCCTGAAGAG





CCCCAAAGCAGGAAGAAGCTCCGGATGGAGGCCAGCGGCAGCGCT





TCTGCTGGAGCGTCTGTGCAGGCGTCCCGCCGCCAGTGGTGCTAC





CTGTGCGACCTGCCCAAGATGCCGTGGGCCATGGTGTGGGACTTC





AGCGAGGCCGTGTGTCGCGGCTGCGTGAACTTCGAGGGCGCGGAC





CGCATCGAACTGCTCATCGATGCCGCCCGCCAGCTCAAGCGCAGC





CACGTGCTCCCCGAGGGCCGCTCGCCCGGGCCCCCGGCCCTTAAG





CACCCGGCCACCAAGGACCTGGCG





70.


ZIM3(KRAB)-MAX-IRF2BP1 peptide


SEQ ID NO: 70


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHH





NALERKRRDHIKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQY





MRRKNHTHQQDIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSS





DNSLYTNAKGSTISAFDGGSDSSSESEPEEPQSRKKLRMEASGSA





SAGASVQASRRQWCYLCDLPKMPWAMVWDFSEAVCRGCVNFEGAD





RIELLIDAARQLKRSHVLPEGRSPGPPALKHPATKDLA





71.


KOX1(KRAB)-MeCP2(t)-ZNF264(KRAB) DNA


SEQ ID NO: 71


CGGACACTGGTGACCTTCAAGGATGTGTTTGTGGACTTCACCAGG





GAGGAGTGGAAGCTGCTGGACACTGCTCAGCAGATCCTGTACAGA





AATGTGATGCTGGAGAACTATAAGAACCTGGTTTCCTTGGGTTAT





CAGCTTACTAAGCCAGATGTGATCCTCCGGTTGGAGAAGGGAGAA





GAGCCCTGGCTGGTGGGCTCTGGCAGCGCTTCTGCTGGAACCACA





TCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAGCGAAAA





GCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGCCGAAAG





CCGGGGAGTGTGGTGGCAGCCGCTGCCGCCGAGGCCAAAAAGAAA





GCCGTGAAGGAGTCTTCTATCCGATCTGTGCAGGAGACCGTACTC





CCCATCAAGAAGCGCAAGACCCGGGAGACCGTCAGCATCGAGGTC





AAGGAAGTGGGCAGCGCTTCTGCTGGAGCGGCAGCGGTGCTGACG





GACCGGGCCCAGGTGTCTGTGACCTTTGATGATGTGGCTGTGACT





TTCACCAAGGAGGAGTGGGGGCAGCTGGACCTAGCTCAGCGGACC





CTGTACCAGGAGGTGATGCTGGAAAACTGTGGGCTCCTGGTGTCT





CTGGGGTGTCCTGTTCCCAAAGCTGAGCTGATCTGCCACCTAGAG





CATGGGCAGGAGCCATGGACCAGGAAGGAAGACCTCTCCCAAGAC





ACCTGTCCAGGCGACAAAGGAAAACCTAAGACCACAGAACCTACC





ACTTGTGAGCCAGCCTTGTCAGAG





72.


KOX1(KRAB)-MeCP2(t)-ZNF264(KRAB) peptide


SEQ ID NO: 72


RTLVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGY





QLTKPDVILRLEKGEEPWLVGSGSASAGTTSTQVMVIKRPGRKRK





AEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETVL





PIKKRKTRETVSIEVKEVGSASAGAAAVLTDRAQVSVTFDDVAVT





FTKEEWGQLDLAQRTLYQEVMLENCGLLVSLGCPVPKAELICHLE





HGQEPWTRKEDLSQDTCPGDKGKPKTTEPTTCEPALSE





73.


KRBOX1(KRAB)-MAX-MeCP2(t) DNA


SEQ ID NO: 73


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





GGCTCTGGCAGCGCTTCTGCTGGAAGCGATAACGATGACATCGAG





GTGGAGAGCGACGAAGAGCAACCGAGGTTTCAATCTGCGGCTGAC





AAACGGGCTCATCATAATGCACTGGAACGAAAACGTAGGGACCAC





ATCAAAGACAGCTTTCACAGTTTGCGGGACTCAGTCCCATCACTC





CAAGGAGAGAAGGCATCCCGGGCCCAAATCCTAGACAAAGCCACA





GAATATATCCAGTATATGCGAAGGAAAAACCACACACACCAGCAA





GATATTGACGACCTCAAGCGGCAGAATGCTCTTCTGGAGCAGCAA





GTCCGTGCACTGGAGAAGGCGAGGTCAAGTGCCCAACTGCAGACC





AACTACCCCTCCTCAGACAACAGCCTCTACACCAACGCCAAGGGC





AGCACCATCTCTGCCTTCGATGGGGGCTCGGACTCCAGCTCGGAG





TCTGAGCCTGAAGAGCCCCAAAGCAGGAAGAAGCTCCGGATGGAG





GCCAGCGGCAGCGCTTCTGCTGGAACCACATCCACCCAGGTCATG





GTGATCAAACGCCCCGGCAGGAAGCGAAAAGCTGAGGCCGACCCT





CAGGCCATTCCCAAGAAACGGGGCCGAAAGCCGGGGAGTGTGGTG





GCAGCCGCTGCCGCCGAGGCCAAAAAGAAAGCCGTGAAGGAGTCT





TCTATCCGATCTGTGCAGGAGACCGTACTCCCCATCAAGAAGCGC





AAGACCCGGGAGACCGTCAGCATCGAGGTCAAGGAAGTG





74.


KRBOX1(KRAB)-MAX-MeCP2(t) peptide


SEQ ID NO: 74


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





GSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHHNALERKRRDH





IKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQYMRRKNHTHQQ





DIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSSDNSLYTNAKG





STISAFDGGSDSSSESEPEEPQSRKKLRMEASGSASAGTTSTQVM





VIKRPGRKRKAEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKES





SIRSVQETVLPIKKRKTRETVSIEVKEV





75.


ZIM3(KRAB)-MeCP2-RYBP DNA


SEQ ID NO: 75


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAGAAGCCTCAGTGCAGGTGAAAAGGGTGCTGGAAAAA





TCCCCCGGCAAACTCCTCGTGAAGATGCCCTTCCAGGCTTCCCCT





GGCGGAAAAGGTGAAGGGGGTGGCGCAACCACATCTGCCCAGGTC





ATGGTCATCAAGCGACCTGGAAGGAAAAGAAAGGCCGAGGCTGAC





CCTCAGGCCATTCCAAAGAAACGGGGACGCAAGCCAGGGTCCGTG





GTCGCAGCTGCAGCAGCTGAGGCTAAGAAAAAGGCAGTGAAGGAA





AGCTCCATCCGCAGTGTGCAGGAGACTGTCCTGCCCATCAAGAAG





AGGAAGACTAGGGAGACCGTGTCCATCGAGGTCAAAGAAGTGGTC





AAGCCCCTGCTCGTGTCCACCCTGGGCGAAAAATCTGGAAAGGGG





CTCAAAACATGCAAGTCACCTGGACGGAAAAGCAAGGAGTCTAGT





CCAAAGGGGCGCTCAAGCTCCGCTTCTAGTCCCCCTAAAAAGGAA





CACCATCACCATCACCATCACGCCGAGTCTCCTAAGGCTCCTATG





CCACTGCTCCCACCACCTCCACCACCTGAGCCACAGTCAAGCGAA





GACCCCATCAGCCCACCCGAGCCTCAGGATCTGTCCTCTAGTATT





TGCAAAGAGGAAAAGATGCCCAGAGCAGGCAGCCTGGAGAGTGAT





GGCTGTCCAAAAGAACCCGCCAAGACCCAGCCTATGGTGGCAGCC





GCTGCAACTACCACCACAACCACAACTACCACAGTGGCCGAAAAA





TACAAGCATCGCGGCGAGGGCGAACGAAAGGACATTGTGTCAAGC





TCCATGCCCAGACCTAACCGGGAGGAACCAGTCGATAGTAGGACA





CCCGTGACTGAGAGAGTCTCAGGCAGCGCTTCTGCTGGAGATCCT





CCTAGTGAAGCAAACAGCATACAGTCTGCAAATGCTACAACAAAG





ACCAGCGAAACAAATCACACCTCAAGGCCCCGGCTGAAAAACGTG





GACAGGAGCACTGCACAGCAGTTGGCAGTAACTGTGGGCAACGTC





ACCGTCATTATCACAGACTTTAAGGAAAAGACTCGCTCCTCATCG





ACATCCTCATCCACAGTGACCTCCAGTGCAGGGTCAGAACAGCAG





AACCAGAGCAGCTCGGGGTCAGAGAGCACAGACAAGGGCTCCTCC





CGTTCCTCCACGCCAAAGGGCGACATG





76.


ZIM3(KRAB)-MeCP2-RYBP peptide


SEQ ID NO: 76


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGEASVQVKRVLEKSPGKLLVKMPFQASP





GGKGEGGGATTSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSV





VAAAAAEAKKKAVKESSIRSVQETVLPIKKRKTRETVSIEVKEVV





KPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKE





HHHHHHHAESPKAPMPLLPPPPPPEPQSSEDPISPPEPQDLSSSI





CKEEKMPRAGSLESDGCPKEPAKTQPMVAAAATTTTTTTTTVAEK





YKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVSGSASAGDP





PSEANSIQSANATTKTSETNHTSRPRLKNVDRSTAQQLAVTVGNV





TVIITDFKEKTRSSSTSSSTVTSSAGSEQQNQSSSGSESTDKGSS





RSSTPKGDM





77.


ZIM3(KRAB)-MAX-ZNF554(KRAB) DNA


SEQ ID NO: 77


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAGCGATAACGATGACATCGAGGTGGAGAGCGACGAA





GAGCAACCGAGGTTTCAATCTGCGGCTGACAAACGGGCTCATCAT





AATGCACTGGAACGAAAACGTAGGGACCACATCAAAGACAGCTTT





CACAGTTTGCGGGACTCAGTCCCATCACTCCAAGGAGAGAAGGCA





TCCCGGGCCCAAATCCTAGACAAAGCCACAGAATATATCCAGTAT





ATGCGAAGGAAAAACCACACACACCAGCAAGATATTGACGACCTC





AAGCGGCAGAATGCTCTTCTGGAGCAGCAAGTCCGTGCACTGGAG





AAGGCGAGGTCAAGTGCCCAACTGCAGACCAACTACCCCTCCTCA





GACAACAGCCTCTACACCAACGCCAAGGGCAGCACCATCTCTGCC





TTCGATGGGGGCTCGGACTCCAGCTCGGAGTCTGAGCCTGAAGAG





CCCCAAAGCAGGAAGAAGCTCCGGATGGAGGCCAGCGGCAGCGCT





TCTGCTGGATTTTCCCAAGAGGAGAGAATGGCTGCTGGGTACCTG





CCCCGCTGGTCCCAGGAATTAGTAACCTTTGAGGACGTGTCCATG





GACTTCTCCCAGGAGGAGTGGGAGTTGCTGGAGCCTGCTCAGAAG





AACCTGTACAGAGAGGTGATGCTGGAGAACTACAGGAACGTGGTC





TCCCTGGAAGCCTTGAAGAACCAATGTACTGATGTGGGGATTAAA





GAGGGTCCACTTTCCCCAGCACAAACCTCACAAGTCACTAGTCTT





TCCTCATGGACGGGGTATTTACTTTTTCAACCAGTGGCTTCTTCC





CACTTGGAGCAAAGAGAAGCCCTGTGGATAGAGGAAAAAGGAACT





CCTCAAGCCTCCTGTTCAGATTGGATGACTGTACTAAGAAACCAA





GACTCAACTTACAAGAAGGTGGCTTTGCAGGAG





78.


ZIM3(KRAB)-MAX-ZNF554(KRAB) peptide


SEQ ID NO: 78


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHH





NALERKRRDHIKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQY





MRRKNHTHQQDIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSS





DNSLYTNAKGSTISAFDGGSDSSSESEPEEPQSRKKLRMEASGSA





SAGFSQEERMAAGYLPRWSQELVTFEDVSMDFSQEEWELLEPAQK





NLYREVMLENYRNVVSLEALKNQCTDVGIKEGPLSPAQTSQVTSL





SSWTGYLLFQPVASSHLEQREALWIEEKGTPQASCSDWMTVLRNQ





DSTYKKVALQE





79.


ZIM3(KRAB)-MAX-KOX1(KRAB) DNA


SEQ ID NO: 79


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAGCGATAACGATGACATCGAGGTGGAGAGCGACGAA





GAGCAACCGAGGTTTCAATCTGCGGCTGACAAACGGGCTCATCAT





AATGCACTGGAACGAAAACGTAGGGACCACATCAAAGACAGCTTT





CACAGTTTGCGGGACTCAGTCCCATCACTCCAAGGAGAGAAGGCA





TCCCGGGCCCAAATCCTAGACAAAGCCACAGAATATATCCAGTAT





ATGCGAAGGAAAAACCACACACACCAGCAAGATATTGACGACCTC





AAGCGGCAGAATGCTCTTCTGGAGCAGCAAGTCCGTGCACTGGAG





AAGGCGAGGTCAAGTGCCCAACTGCAGACCAACTACCCCTCCTCA





GACAACAGCCTCTACACCAACGCCAAGGGCAGCACCATCTCTGCC





TTCGATGGGGGCTCGGACTCCAGCTCGGAGTCTGAGCCTGAAGAG





CCCCAAAGCAGGAAGAAGCTCCGGATGGAGGCCAGCGGCAGCGCT





TCTGCTGGACGGACACTGGTGACCTTCAAGGATGTGTTTGTGGAC





TTCACCAGGGAGGAGTGGAAGCTGCTGGACACTGCTCAGCAGATC





CTGTACAGAAATGTGATGCTGGAGAACTATAAGAACCTGGTTTCC





TTGGGTTATCAGCTTACTAAGCCAGATGTGATCCTCCGGTTGGAG





AAGGGAGAAGAGCCCTGGCTGGTG





80.


ZIM3(KRAB)-MAX-KOX1(KRAB) peptide


SEQ ID NO: 80


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHH





NALERKRRDHIKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQY





MRRKNHTHQQDIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSS





DNSLYTNAKGSTISAFDGGSDSSSESEPEEPQSRKKLRMEASGSA





SAGRTLVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVS





LGYQLTKPDVILRLEKGEEPWLV





81.


ZIM3(KRAB)-MeCP2-KRBOX1(KRAB) DNA


SEQ ID NO: 81


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAGAAGCCTCAGTGCAGGTGAAAAGGGTGCTGGAAAAA





TCCCCCGGCAAACTCCTCGTGAAGATGCCCTTCCAGGCTTCCCCT





GGCGGAAAAGGTGAAGGGGGTGGCGCAACCACATCTGCCCAGGTC





ATGGTCATCAAGCGACCTGGAAGGAAAAGAAAGGCCGAGGCTGAC





CCTCAGGCCATTCCAAAGAAACGGGGACGCAAGCCAGGGTCCGTG





GTCGCAGCTGCAGCAGCTGAGGCTAAGAAAAAGGCAGTGAAGGAA





AGCTCCATCCGCAGTGTGCAGGAGACTGTCCTGCCCATCAAGAAG





AGGAAGACTAGGGAGACCGTGTCCATCGAGGTCAAAGAAGTGGTC





AAGCCCCTGCTCGTGTCCACCCTGGGCGAAAAATCTGGAAAGGGG





CTCAAAACATGCAAGTCACCTGGACGGAAAAGCAAGGAGTCTAGT





CCAAAGGGGCGCTCAAGCTCCGCTTCTAGTCCCCCTAAAAAGGAA





CACCATCACCATCACCATCACGCCGAGTCTCCTAAGGCTCCTATG





CCACTGCTCCCACCACCTCCACCACCTGAGCCACAGTCAAGCGAA





GACCCCATCAGCCCACCCGAGCCTCAGGATCTGTCCTCTAGTATT





TGCAAAGAGGAAAAGATGCCCAGAGCAGGCAGCCTGGAGAGTGAT





GGCTGTCCAAAAGAACCCGCCAAGACCCAGCCTATGGTGGCAGCC





GCTGCAACTACCACCACAACCACAACTACCACAGTGGCCGAAAAA





TACAAGCATCGCGGCGAGGGCGAACGAAAGGACATTGTGTCAAGC





TCCATGCCCAGACCTAACCGGGAGGAACCAGTCGATAGTAGGACA





CCCGTGACTGAGAGAGTCTCAGGCAGCGCTTCTGCTGGAATGACA





GCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCTTTTGAG





GACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATCATGGTG





CCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAGAACTAT





GAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCAGCTTTG





GTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACCCAGCCA





CAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





82.


ZIM3(KRAB)-MeCP2-KRBOX1(KRAB) peptide


SEQ ID NO: 82


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGEASVQVKRVLEKSPGKLLVKMPFQASP





GGKGEGGGATTSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSV





VAAAAAEAKKKAVKESSIRSVQETVLPIKKRKTRETVSIEVKEVV





KPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKE





HHHHHHHAESPKAPMPLLPPPPPPEPQSSEDPISPPEPQDLSSSI





CKEEKMPRAGSLESDGCPKEPAKTQPMVAAAATTTTTTTTTVAEK





YKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVSGSASAGMT





AVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLENY





EAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





83.


KRBOX1(KRAB)-MAX-ZIM3(KRAB) DNA


SEQ ID NO: 83


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





GGCTCTGGCAGCGCTTCTGCTGGAAGCGATAACGATGACATCGAG





GTGGAGAGCGACGAAGAGCAACCGAGGTTTCAATCTGCGGCTGAC





AAACGGGCTCATCATAATGCACTGGAACGAAAACGTAGGGACCAC





ATCAAAGACAGCTTTCACAGTTTGCGGGACTCAGTCCCATCACTC





CAAGGAGAGAAGGCATCCCGGGCCCAAATCCTAGACAAAGCCACA





GAATATATCCAGTATATGCGAAGGAAAAACCACACACACCAGCAA





GATATTGACGACCTCAAGCGGCAGAATGCTCTTCTGGAGCAGCAA





GTCCGTGCACTGGAGAAGGCGAGGTCAAGTGCCCAACTGCAGACC





AACTACCCCTCCTCAGACAACAGCCTCTACACCAACGCCAAGGGC





AGCACCATCTCTGCCTTCGATGGGGGCTCGGACTCCAGCTCGGAG





TCTGAGCCTGAAGAGCCCCAAAGCAGGAAGAAGCTCCGGATGGAG





GCCAGCGGCAGCGCTTCTGCTGGAATGAACAATTCCCAGGGAAGA





GTGACCTTCGAGGATGTCACTGTGAACTTCACCCAGGGGGAGTGG





CAGCGGCTGAATCCCGAACAGAGAAACTTGTACAGGGATGTGATG





CTGGAGAATTACAGCAACCTTGTCTCTGTGGGACAAGGGGAAACC





ACCAAACCCGATGTGATCTTGAGGTTGGAACAAGGAAAGGAGCCG





TGGTTGGAGGAAGAGGAAGTGCTGGGAAGTGGCCGTGCAGAAAAA





AATGGGGACATTGGAGGGCAGATTTGGAAGCCAAAGGATGTGAAA





GAGAGTCTC





84.


KRBOX1(KRAB)-MAX-ZIM3(KRAB) peptide


SEQ ID NO: 84


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





GSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHHNALERKRRDH





IKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQYMRRKNHTHQQ





DIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSSDNSLYTNAKG





STISAFDGGSDSSSESEPEEPQSRKKLRMEASGSASAGMNNSQGR





VTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSVGQGET





TKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWKPKDVK





ESL





85.


ZIM3(KRAB)-MeCP2-MeCP2(t) DNA


SEQ ID NO: 85


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAGAAGCCTCAGTGCAGGTGAAAAGGGTGCTGGAAAAA





TCCCCCGGCAAACTCCTCGTGAAGATGCCCTTCCAGGCTTCCCCT





GGCGGAAAAGGTGAAGGGGGTGGCGCAACCACATCTGCCCAGGTC





ATGGTCATCAAGCGACCTGGAAGGAAAAGAAAGGCCGAGGCTGAC





CCTCAGGCCATTCCAAAGAAACGGGGACGCAAGCCAGGGTCCGTG





GTCGCAGCTGCAGCAGCTGAGGCTAAGAAAAAGGCAGTGAAGGAA





AGCTCCATCCGCAGTGTGCAGGAGACTGTCCTGCCCATCAAGAAG





AGGAAGACTAGGGAGACCGTGTCCATCGAGGTCAAAGAAGTGGTC





AAGCCCCTGCTCGTGTCCACCCTGGGCGAAAAATCTGGAAAGGGG





CTCAAAACATGCAAGTCACCTGGACGGAAAAGCAAGGAGTCTAGT





CCAAAGGGGCGCTCAAGCTCCGCTTCTAGTCCCCCTAAAAAGGAA





CACCATCACCATCACCATCACGCCGAGTCTCCTAAGGCTCCTATG





CCACTGCTCCCACCACCTCCACCACCTGAGCCACAGTCAAGCGAA





GACCCCATCAGCCCACCCGAGCCTCAGGATCTGTCCTCTAGTATT





TGCAAAGAGGAAAAGATGCCCAGAGCAGGCAGCCTGGAGAGTGAT





GGCTGTCCAAAAGAACCCGCCAAGACCCAGCCTATGGTGGCAGCC





GCTGCAACTACCACCACAACCACAACTACCACAGTGGCCGAAAAA





TACAAGCATCGCGGCGAGGGCGAACGAAAGGACATTGTGTCAAGC





TCCATGCCCAGACCTAACCGGGAGGAACCAGTCGATAGTAGGACA





CCCGTGACTGAGAGAGTCTCAGGCAGCGCTTCTGCTGGAACCACA





TCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAGCGAAAA





GCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGCCGAAAG





CCGGGGAGTGTGGTGGCAGCCGCTGCCGCCGAGGCCAAAAAGAAA





GCCGTGAAGGAGTCTTCTATCCGATCTGTGCAGGAGACCGTACTC





CCCATCAAGAAGCGCAAGACCCGGGAGACCGTCAGCATCGAGGTC





AAGGAAGTG





86.


ZIM3(KRAB)-MeCP2-MeCP2(t) peptide


SEQ ID NO: 86


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGEASVQVKRVLEKSPGKLLVKMPFQASP





GGKGEGGGATTSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSV





VAAAAAEAKKKAVKESSIRSVQETVLPIKKRKTRETVSIEVKEVV





KPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKE





HHHHHHHAESPKAPMPLLPPPPPPEPQSSEDPISPPEPQDLSSSI





CKEEKMPRAGSLESDGCPKEPAKTQPMVAAAATTTTTTTTTVAEK





YKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVSGSASAGTT





STQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSVVAAAAAEAKKK





AVKESSIRSVQETVLPIKKRKTRETVSIEVKEV





87.


ZIM3(KRAB)-MAX-ZNF264(KRAB) DNA


SEQ ID NO: 87


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAGCGATAACGATGACATCGAGGTGGAGAGCGACGAA





GAGCAACCGAGGTTTCAATCTGCGGCTGACAAACGGGCTCATCAT





AATGCACTGGAACGAAAACGTAGGGACCACATCAAAGACAGCTTT





CACAGTTTGCGGGACTCAGTCCCATCACTCCAAGGAGAGAAGGCA





TCCCGGGCCCAAATCCTAGACAAAGCCACAGAATATATCCAGTAT





ATGCGAAGGAAAAACCACACACACCAGCAAGATATTGACGACCTC





AAGCGGCAGAATGCTCTTCTGGAGCAGCAAGTCCGTGCACTGGAG





AAGGCGAGGTCAAGTGCCCAACTGCAGACCAACTACCCCTCCTCA





GACAACAGCCTCTACACCAACGCCAAGGGCAGCACCATCTCTGCC





TTCGATGGGGGCTCGGACTCCAGCTCGGAGTCTGAGCCTGAAGAG





CCCCAAAGCAGGAAGAAGCTCCGGATGGAGGCCAGCGGCAGCGCT





TCTGCTGGAGCGGCAGCGGTGCTGACGGACCGGGCCCAGGTGTCT





GTGACCTTTGATGATGTGGCTGTGACTTTCACCAAGGAGGAGTGG





GGGCAGCTGGACCTAGCTCAGCGGACCCTGTACCAGGAGGTGATG





CTGGAAAACTGTGGGCTCCTGGTGTCTCTGGGGTGTCCTGTTCCC





AAAGCTGAGCTGATCTGCCACCTAGAGCATGGGCAGGAGCCATGG





ACCAGGAAGGAAGACCTCTCCCAAGACACCTGTCCAGGCGACAAA





GGAAAACCTAAGACCACAGAACCTACCACTTGTGAGCCAGCCTTG





TCAGAG





88.


ZIM3(KRAB)-MAX-ZNF264(KRAB) peptide


SEQ ID NO: 88


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHH





NALERKRRDHIKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQY





MRRKNHTHQQDIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSS





DNSLYTNAKGSTISAFDGGSDSSSESEPEEPQSRKKLRMEASGSA





SAGAAAVLTDRAQVSVTFDDVAVTFTKEEWGQLDLAQRTLYQEVM





LENCGLLVSLGCPVPKAELICHLEHGQEPWTRKEDLSQDTCPGDK





GKPKTTEPTTCEPALSE





89.


ZIM3(KRAB)-MeCP2-ZIM3(KRAB) DNA


SEQ ID NO: 89


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAGAAGCCTCAGTGCAGGTGAAAAGGGTGCTGGAAAAA





TCCCCCGGCAAACTCCTCGTGAAGATGCCCTTCCAGGCTTCCCCT





GGCGGAAAAGGTGAAGGGGGTGGCGCAACCACATCTGCCCAGGTC





ATGGTCATCAAGCGACCTGGAAGGAAAAGAAAGGCCGAGGCTGAC





CCTCAGGCCATTCCAAAGAAACGGGGACGCAAGCCAGGGTCCGTG





GTCGCAGCTGCAGCAGCTGAGGCTAAGAAAAAGGCAGTGAAGGAA





AGCTCCATCCGCAGTGTGCAGGAGACTGTCCTGCCCATCAAGAAG





AGGAAGACTAGGGAGACCGTGTCCATCGAGGTCAAAGAAGTGGTC





AAGCCCCTGCTCGTGTCCACCCTGGGCGAAAAATCTGGAAAGGGG





CTCAAAACATGCAAGTCACCTGGACGGAAAAGCAAGGAGTCTAGT





CCAAAGGGGCGCTCAAGCTCCGCTTCTAGTCCCCCTAAAAAGGAA





CACCATCACCATCACCATCACGCCGAGTCTCCTAAGGCTCCTATG





CCACTGCTCCCACCACCTCCACCACCTGAGCCACAGTCAAGCGAA





GACCCCATCAGCCCACCCGAGCCTCAGGATCTGTCCTCTAGTATT





TGCAAAGAGGAAAAGATGCCCAGAGCAGGCAGCCTGGAGAGTGAT





GGCTGTCCAAAAGAACCCGCCAAGACCCAGCCTATGGTGGCAGCC





GCTGCAACTACCACCACAACCACAACTACCACAGTGGCCGAAAAA





TACAAGCATCGCGGCGAGGGCGAACGAAAGGACATTGTGTCAAGC





TCCATGCCCAGACCTAACCGGGAGGAACCAGTCGATAGTAGGACA





CCCGTGACTGAGAGAGTCTCAGGCAGCGCTTCTGCTGGAATGAAC





AATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTGAACTTC





ACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGAAACTTG





TACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTCTCTGTG





GGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGGTTGGAA





CAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTGGGAAGT





GGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATTTGGAAG





CCAAAGGATGTGAAAGAGAGTCTC





90.


ZIM3(KRAB)-MeCP2-ZIM3(KRAB) peptide


SEQ ID NO: 90


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGEASVQVKRVLEKSPGKLLVKMPFQASP





GGKGEGGGATTSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSV





VAAAAAEAKKKAVKESSIRSVQETVLPIKKRKTRETVSIEVKEVV





KPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKE





HHHHHHHAESPKAPMPLLPPPPPPEPQSSEDPISPPEPQDLSSSI





CKEEKMPRAGSLESDGCPKEPAKTQPMVAAAATTTTTTTTTVAEK





YKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVSGSASAGMN





NSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLVSV





GQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQIWK





PKDVKESL





91.


KRBOX1(KRAB)-MAX-MeCP2 DNA


SEQ ID NO: 91


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





GGCTCTGGCAGCGCTTCTGCTGGAAGCGATAACGATGACATCGAG





GTGGAGAGCGACGAAGAGCAACCGAGGTTTCAATCTGCGGCTGAC





AAACGGGCTCATCATAATGCACTGGAACGAAAACGTAGGGACCAC





ATCAAAGACAGCTTTCACAGTTTGCGGGACTCAGTCCCATCACTC





CAAGGAGAGAAGGCATCCCGGGCCCAAATCCTAGACAAAGCCACA





GAATATATCCAGTATATGCGAAGGAAAAACCACACACACCAGCAA





GATATTGACGACCTCAAGCGGCAGAATGCTCTTCTGGAGCAGCAA





GTCCGTGCACTGGAGAAGGCGAGGTCAAGTGCCCAACTGCAGACC





AACTACCCCTCCTCAGACAACAGCCTCTACACCAACGCCAAGGGC





AGCACCATCTCTGCCTTCGATGGGGGCTCGGACTCCAGCTCGGAG





TCTGAGCCTGAAGAGCCCCAAAGCAGGAAGAAGCTCCGGATGGAG





GCCAGCGGCAGCGCTTCTGCTGGAGAAGCCTCAGTGCAGGTGAAA





AGGGTGCTGGAAAAATCCCCCGGCAAACTCCTCGTGAAGATGCCC





TTCCAGGCTTCCCCTGGCGGAAAAGGTGAAGGGGGTGGCGCAACC





ACATCTGCCCAGGTCATGGTCATCAAGCGACCTGGAAGGAAAAGA





AAGGCCGAGGCTGACCCTCAGGCCATTCCAAAGAAACGGGGACGC





AAGCCAGGGTCCGTGGTCGCAGCTGCAGCAGCTGAGGCTAAGAAA





AAGGCAGTGAAGGAAAGCTCCATCCGCAGTGTGCAGGAGACTGTC





CTGCCCATCAAGAAGAGGAAGACTAGGGAGACCGTGTCCATCGAG





GTCAAAGAAGTGGTCAAGCCCCTGCTCGTGTCCACCCTGGGCGAA





AAATCTGGAAAGGGGCTCAAAACATGCAAGTCACCTGGACGGAAA





AGCAAGGAGTCTAGTCCAAAGGGGCGCTCAAGCTCCGCTTCTAGT





CCCCCTAAAAAGGAACACCATCACCATCACCATCACGCCGAGTCT





CCTAAGGCTCCTATGCCACTGCTCCCACCACCTCCACCACCTGAG





CCACAGTCAAGCGAAGACCCCATCAGCCCACCCGAGCCTCAGGAT





CTGTCCTCTAGTATTTGCAAAGAGGAAAAGATGCCCAGAGCAGGC





AGCCTGGAGAGTGATGGCTGTCCAAAAGAACCCGCCAAGACCCAG





CCTATGGTGGCAGCCGCTGCAACTACCACCACAACCACAACTACC





ACAGTGGCCGAAAAATACAAGCATCGCGGCGAGGGCGAACGAAAG





GACATTGTGTCAAGCTCCATGCCCAGACCTAACCGGGAGGAACCA





GTCGATAGTAGGACACCCGTGACTGAGAGAGTCTCA





92.


KRBOX1(KRAB)-MAX-MeCP2 peptide


SEQ ID NO: 92


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





GSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHHNALERKRRDH





IKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQYMRRKNHTHQQ





DIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSSDNSLYTNAKG





STISAFDGGSDSSSESEPEEPQSRKKLRMEASGSASAGEASVQVK





RVLEKSPGKLLVKMPFQASPGGKGEGGGATTSAQVMVIKRPGRKR





KAEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETV





LPIKKRKTRETVSIEVKEVVKPLLVSTLGEKSGKGLKTCKSPGRK





SKESSPKGRSSSASSPPKKEHHHHHHHAESPKAPMPLLPPPPPPE





PQSSEDPISPPEPQDLSSSICKEEKMPRAGSLESDGCPKEPAKTQ





PMVAAAATTTTTTTTTVAEKYKHRGEGERKDIVSSSMPRPNREEP





VDSRTPVTERVS





93.


KRBOX1(KRAB)-MAX-ZNF554(KRAB) DNA


SEQ ID NO: 93


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





GGCTCTGGCAGCGCTTCTGCTGGAAGCGATAACGATGACATCGAG





GTGGAGAGCGACGAAGAGCAACCGAGGTTTCAATCTGCGGCTGAC





AAACGGGCTCATCATAATGCACTGGAACGAAAACGTAGGGACCAC





ATCAAAGACAGCTTTCACAGTTTGCGGGACTCAGTCCCATCACTC





CAAGGAGAGAAGGCATCCCGGGCCCAAATCCTAGACAAAGCCACA





GAATATATCCAGTATATGCGAAGGAAAAACCACACACACCAGCAA





GATATTGACGACCTCAAGCGGCAGAATGCTCTTCTGGAGCAGCAA





GTCCGTGCACTGGAGAAGGCGAGGTCAAGTGCCCAACTGCAGACC





AACTACCCCTCCTCAGACAACAGCCTCTACACCAACGCCAAGGGC





AGCACCATCTCTGCCTTCGATGGGGGCTCGGACTCCAGCTCGGAG





TCTGAGCCTGAAGAGCCCCAAAGCAGGAAGAAGCTCCGGATGGAG





GCCAGCGGCAGCGCTTCTGCTGGATTTTCCCAAGAGGAGAGAATG





GCTGCTGGGTACCTGCCCCGCTGGTCCCAGGAATTAGTAACCTTT





GAGGACGTGTCCATGGACTTCTCCCAGGAGGAGTGGGAGTTGCTG





GAGCCTGCTCAGAAGAACCTGTACAGAGAGGTGATGCTGGAGAAC





TACAGGAACGTGGTCTCCCTGGAAGCCTTGAAGAACCAATGTACT





GATGTGGGGATTAAAGAGGGTCCACTTTCCCCAGCACAAACCTCA





CAAGTCACTAGTCTTTCCTCATGGACGGGGTATTTACTTTTTCAA





CCAGTGGCTTCTTCCCACTTGGAGCAAAGAGAAGCCCTGTGGATA





GAGGAAAAAGGAACTCCTCAAGCCTCCTGTTCAGATTGGATGACT





GTACTAAGAAACCAAGACTCAACTTACAAGAAGGTGGCTTTGCAG





GAG





94.


KRBOX1(KRAB)-MAX-ZNF554(KRAB) peptide


SEQ ID NO: 94


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





GSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHHNALERKRRDH





IKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQYMRRKNHTHQQ





DIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSSDNSLYTNAKG





STISAFDGGSDSSSESEPEEPQSRKKLRMEASGSASAGFSQEERM





AAGYLPRWSQELVTFEDVSMDESQEEWELLEPAQKNLYREVMLEN





YRNVVSLEALKNQCTDVGIKEGPLSPAQTSQVTSLSSWTGYLLFQ





PVASSHLEQREALWIEEKGTPQASCSDWMTVLRNQDSTYKKVALQ





E





95.


ZIM(KRAB)-MeCP2-IRFBP1 DNA


SEQ ID NO: 95


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAGAAGCCTCAGTGCAGGTGAAAAGGGTGCTGGAAAAA





TCCCCCGGCAAACTCCTCGTGAAGATGCCCTTCCAGGCTTCCCCT





GGCGGAAAAGGTGAAGGGGGTGGCGCAACCACATCTGCCCAGGTC





ATGGTCATCAAGCGACCTGGAAGGAAAAGAAAGGCCGAGGCTGAC





CCTCAGGCCATTCCAAAGAAACGGGGACGCAAGCCAGGGTCCGTG





GTCGCAGCTGCAGCAGCTGAGGCTAAGAAAAAGGCAGTGAAGGAA





AGCTCCATCCGCAGTGTGCAGGAGACTGTCCTGCCCATCAAGAAG





AGGAAGACTAGGGAGACCGTGTCCATCGAGGTCAAAGAAGTGGTC





AAGCCCCTGCTCGTGTCCACCCTGGGCGAAAAATCTGGAAAGGGG





CTCAAAACATGCAAGTCACCTGGACGGAAAAGCAAGGAGTCTAGT





CCAAAGGGGCGCTCAAGCTCCGCTTCTAGTCCCCCTAAAAAGGAA





CACCATCACCATCACCATCACGCCGAGTCTCCTAAGGCTCCTATG





CCACTGCTCCCACCACCTCCACCACCTGAGCCACAGTCAAGCGAA





GACCCCATCAGCCCACCCGAGCCTCAGGATCTGTCCTCTAGTATT





TGCAAAGAGGAAAAGATGCCCAGAGCAGGCAGCCTGGAGAGTGAT





GGCTGTCCAAAAGAACCCGCCAAGACCCAGCCTATGGTGGCAGCC





GCTGCAACTACCACCACAACCACAACTACCACAGTGGCCGAAAAA





TACAAGCATCGCGGCGAGGGCGAACGAAAGGACATTGTGTCAAGC





TCCATGCCCAGACCTAACCGGGAGGAACCAGTCGATAGTAGGACA





CCCGTGACTGAGAGAGTCTCAGGCAGCGCTTCTGCTGGAGCGTCT





GTGCAGGCGTCCCGCCGCCAGTGGTGCTACCTGTGCGACCTGCCC





AAGATGCCGTGGGCCATGGTGTGGGACTTCAGCGAGGCCGTGTGT





CGCGGCTGCGTGAACTTCGAGGGCGCGGACCGCATCGAACTGCTC





ATCGATGCCGCCCGCCAGCTCAAGCGCAGCCACGTGCTCCCCGAG





GGCCGCTCGCCCGGGCCCCCGGCCCTTAAGCACCCGGCCACCAAG





GACCTGGCG





96.


ZIM(KRAB)-MeCP2-IRFBP1 peptide


SEQ ID NO: 96


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGEASVQVKRVLEKSPGKLLVKMPFQASP





GGKGEGGGATTSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSV





VAAAAAEAKKKAVKESSIRSVQETVLPIKKRKTRETVSIEVKEVV





KPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKE





HHHHHHHAESPKAPMPLLPPPPPPEPQSSEDPISPPEPQDLSSSI





CKEEKMPRAGSLESDGCPKEPAKTQPMVAAAATTTTTTTTTVAEK





YKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVSGSASAGAS





VQASRRQWCYLCDLPKMPWAMVWDFSEAVCRGCVNFEGADRIELL





IDAARQLKRSHVLPEGRSPGPPALKHPATKDLA





97.


ZIM3(KRAB)-MAX-CTCF DNA


SEQ ID NO: 97


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAGCGATAACGATGACATCGAGGTGGAGAGCGACGAA





GAGCAACCGAGGTTTCAATCTGCGGCTGACAAACGGGCTCATCAT





AATGCACTGGAACGAAAACGTAGGGACCACATCAAAGACAGCTTT





CACAGTTTGCGGGACTCAGTCCCATCACTCCAAGGAGAGAAGGCA





TCCCGGGCCCAAATCCTAGACAAAGCCACAGAATATATCCAGTAT





ATGCGAAGGAAAAACCACACACACCAGCAAGATATTGACGACCTC





AAGCGGCAGAATGCTCTTCTGGAGCAGCAAGTCCGTGCACTGGAG





AAGGCGAGGTCAAGTGCCCAACTGCAGACCAACTACCCCTCCTCA





GACAACAGCCTCTACACCAACGCCAAGGGCAGCACCATCTCTGCC





TTCGATGGGGGCTCGGACTCCAGCTCGGAGTCTGAGCCTGAAGAG





CCCCAAAGCAGGAAGAAGCTCCGGATGGAGGCCAGCGGCAGCGCT





TCTGCTGGAGTTGTAAATATGGAGGAACAGCCCATAAACATAGGA





GAACTTCAGCTTGTTCAAGTACCTGTTCCTGTGACTGTACCTGTT





GCTACCACTTCAGTAGAAGAACTTCAGGGGGCTTATGAAAATGAA





GTGTCTAAAGAGGGCCTTGCGGAAAGTGAACCCATGATATGCCAC





ACCCTACCTTTGCCTGAAGGGTTTCAGGTGGTTAAAGTGGGGGCC





AATGGAGAGGTGGAGACACTAGAACAAGGGGAACTTCCACCCCAG





GAAGATCCTAGTTGGCAAAAAGACCCAGACTATCAGCCACCAGCC





AAAAAAACAAAGAAAACCAAAAAGAGC





98.


ZIM3(KRAB)-MAX-CTCF peptide


SEQ ID NO: 98


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHH





NALERKRRDHIKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQY





MRRKNHTHQQDIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSS





DNSLYTNAKGSTISAFDGGSDSSSESEPEEPQSRKKLRMEASGSA





SAGVVNMEEQPINIGELQLVQVPVPVTVPVATTSVEELQGAYENE





VSKEGLAESEPMICHTLPLPEGFQVVKVGANGEVETLEQGELPPQ





EDPSWQKDPDYQPPAKKTKKTKKS





99.


KOX1(KRAB)-MeCP2(t)-SCMH1 DNA


SEQ ID NO: 99


CGGACACTGGTGACCTTCAAGGATGTGTTTGTGGACTTCACCAGG





GAGGAGTGGAAGCTGCTGGACACTGCTCAGCAGATCCTGTACAGA





AATGTGATGCTGGAGAACTATAAGAACCTGGTTTCCTTGGGTTAT





CAGCTTACTAAGCCAGATGTGATCCTCCGGTTGGAGAAGGGAGAA





GAGCCCTGGCTGGTGGGCTCTGGCAGCGCTTCTGCTGGAACCACA





TCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAGCGAAAA





GCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGCCGAAAG





CCGGGGAGTGTGGTGGCAGCCGCTGCCGCCGAGGCCAAAAAGAAA





GCCGTGAAGGAGTCTTCTATCCGATCTGTGCAGGAGACCGTACTC





CCCATCAAGAAGCGCAAGACCCGGGAGACCGTCAGCATCGAGGTC





AAGGAAGTGGGCAGCGCTTCTGCTGGATCCCCAGGGTCGGACCGA





TACCTGGAGAGCCGCGATGCCTCTCGACTGAGTGGCCGGGACCCC





TCCTCATGGACAGTCGAGGATGTGATGCAGTTTGTCCGGGAAGCT





GATCCTCAGCTTGGACCCCACGCTGACCTGTTTCGCAAACACGAG





ATCGATGGCAAGGCCCTGCTGCTGCTGCGCAGTGACATGATGATG





AAGTACATGGGCCTGAAGCTGGGGCCTGCACTCAAGCTCTCCTAC





CACATTGACCGGCTGAAGCAGGGCAAGTTC





100.


KOX1(KRAB)-MeCP2(t)-SCMH1 peptide


SEQ ID NO: 100


RTLVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGY





QLTKPDVILRLEKGEEPWLVGSGSASAGTTSTQVMVIKRPGRKRK





AEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETVL





PIKKRKTRETVSIEVKEVGSASAGSPGSDRYLESRDASRLSGRDP





SSWTVEDVMQFVREADPQLGPHADLFRKHEIDGKALLLLRSDMMM





KYMGLKLGPALKLSYHIDRLKQGKF





101.


ZIM3(KRAB)-MeCP2-KOX(KRAB) DNA


SEQ ID NO: 101


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAGAAGCCTCAGTGCAGGTGAAAAGGGTGCTGGAAAAA





TCCCCCGGCAAACTCCTCGTGAAGATGCCCTTCCAGGCTTCCCCT





GGCGGAAAAGGTGAAGGGGGTGGCGCAACCACATCTGCCCAGGTC





ATGGTCATCAAGCGACCTGGAAGGAAAAGAAAGGCCGAGGCTGAC





CCTCAGGCCATTCCAAAGAAACGGGGACGCAAGCCAGGGTCCGTG





GTCGCAGCTGCAGCAGCTGAGGCTAAGAAAAAGGCAGTGAAGGAA





AGCTCCATCCGCAGTGTGCAGGAGACTGTCCTGCCCATCAAGAAG





AGGAAGACTAGGGAGACCGTGTCCATCGAGGTCAAAGAAGTGGTC





AAGCCCCTGCTCGTGTCCACCCTGGGCGAAAAATCTGGAAAGGGG





CTCAAAACATGCAAGTCACCTGGACGGAAAAGCAAGGAGTCTAGT





CCAAAGGGGCGCTCAAGCTCCGCTTCTAGTCCCCCTAAAAAGGAA





CACCATCACCATCACCATCACGCCGAGTCTCCTAAGGCTCCTATG





CCACTGCTCCCACCACCTCCACCACCTGAGCCACAGTCAAGCGAA





GACCCCATCAGCCCACCCGAGCCTCAGGATCTGTCCTCTAGTATT





TGCAAAGAGGAAAAGATGCCCAGAGCAGGCAGCCTGGAGAGTGAT





GGCTGTCCAAAAGAACCCGCCAAGACCCAGCCTATGGTGGCAGCC





GCTGCAACTACCACCACAACCACAACTACCACAGTGGCCGAAAAA





TACAAGCATCGCGGCGAGGGCGAACGAAAGGACATTGTGTCAAGC





TCCATGCCCAGACCTAACCGGGAGGAACCAGTCGATAGTAGGACA





CCCGTGACTGAGAGAGTCTCAGGCAGCGCTTCTGCTGGACGGACA





CTGGTGACCTTCAAGGATGTGTTTGTGGACTTCACCAGGGAGGAG





TGGAAGCTGCTGGACACTGCTCAGCAGATCCTGTACAGAAATGTG





ATGCTGGAGAACTATAAGAACCTGGTTTCCTTGGGTTATCAGCTT





ACTAAGCCAGATGTGATCCTCCGGTTGGAGAAGGGAGAAGAGCCC





TGGCTGGTG





102.


ZIM3(KRAB)-MeCP2-KOX(KRAB) peptide


SEQ ID NO: 102


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGEASVQVKRVLEKSPGKLLVKMPFQASP





GGKGEGGGATTSAQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSV





VAAAAAEAKKKAVKESSIRSVQETVLPIKKRKTRETVSIEVKEVV





KPLLVSTLGEKSGKGLKTCKSPGRKSKESSPKGRSSSASSPPKKE





HHHHHHHAESPKAPMPLLPPPPPPEPQSSEDPISPPEPQDLSSSI





CKEEKMPRAGSLESDGCPKEPAKTQPMVAAAATTTTTTTTTVAEK





YKHRGEGERKDIVSSSMPRPNREEPVDSRTPVTERVSGSASAGRT





LVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGYQL





TKPDVILRLEKGEEPWLV





103.


KOX1(KRAB)-MeCP2(t)-RYBP DNA


SEQ ID NO: 103


CGGACACTGGTGACCTTCAAGGATGTGTTTGTGGACTTCACCAGG





GAGGAGTGGAAGCTGCTGGACACTGCTCAGCAGATCCTGTACAGA





AATGTGATGCTGGAGAACTATAAGAACCTGGTTTCCTTGGGTTAT





CAGCTTACTAAGCCAGATGTGATCCTCCGGTTGGAGAAGGGAGAA





GAGCCCTGGCTGGTGGGCTCTGGCAGCGCTTCTGCTGGAACCACA





TCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAGCGAAAA





GCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGCCGAAAG





CCGGGGAGTGTGGTGGCAGCCGCTGCCGCCGAGGCCAAAAAGAAA





GCCGTGAAGGAGTCTTCTATCCGATCTGTGCAGGAGACCGTACTC





CCCATCAAGAAGCGCAAGACCCGGGAGACCGTCAGCATCGAGGTC





AAGGAAGTGGGCAGCGCTTCTGCTGGAGATCCTCCTAGTGAAGCA





AACAGCATACAGTCTGCAAATGCTACAACAAAGACCAGCGAAACA





AATCACACCTCAAGGCCCCGGCTGAAAAACGTGGACAGGAGCACT





GCACAGCAGTTGGCAGTAACTGTGGGCAACGTCACCGTCATTATC





ACAGACTTTAAGGAAAAGACTCGCTCCTCATCGACATCCTCATCC





ACAGTGACCTCCAGTGCAGGGTCAGAACAGCAGAACCAGAGCAGC





TCGGGGTCAGAGAGCACAGACAAGGGCTCCTCCCGTTCCTCCACG





CCAAAGGGCGACATG





104.


KOX1(KRAB)-MeCP2(t)-RYBP peptide


SEQ ID NO: 104


RTLVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGY





QLTKPDVILRLEKGEEPWLVGSGSASAGTTSTQVMVIKRPGRKRK





AEADPQAIPKKRGRKPGSVVAAAAAEAKKKAVKESSIRSVQETVL





PIKKRKTRETVSIEVKEVGSASAGDPPSEANSIQSANATTKTSET





NHTSRPRLKNVDRSTAQQLAVTVGNVTVIITDFKEKTRSSSTSSS





TVTSSAGSEQQNQSSSGSESTDKGSSRSSTPKGDM





105.


KRBOX1(KRAB)-MAX-MGA DNA


SEQ ID NO: 105


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





GGCTCTGGCAGCGCTTCTGCTGGAAGCGATAACGATGACATCGAG





GTGGAGAGCGACGAAGAGCAACCGAGGTTTCAATCTGCGGCTGAC





AAACGGGCTCATCATAATGCACTGGAACGAAAACGTAGGGACCAC





ATCAAAGACAGCTTTCACAGTTTGCGGGACTCAGTCCCATCACTC





CAAGGAGAGAAGGCATCCCGGGCCCAAATCCTAGACAAAGCCACA





GAATATATCCAGTATATGCGAAGGAAAAACCACACACACCAGCAA





GATATTGACGACCTCAAGCGGCAGAATGCTCTTCTGGAGCAGCAA





GTCCGTGCACTGGAGAAGGCGAGGTCAAGTGCCCAACTGCAGACC





AACTACCCCTCCTCAGACAACAGCCTCTACACCAACGCCAAGGGC





AGCACCATCTCTGCCTTCGATGGGGGCTCGGACTCCAGCTCGGAG





TCTGAGCCTGAAGAGCCCCAAAGCAGGAAGAAGCTCCGGATGGAG





GCCAGCGGCAGCGCTTCTGCTGGACAGCCGTCCTGTACTCACATC





TCTGCAGATGAAAAAGCAGCTGAAAGGAGTCGAAAGGCTCCACCA





ATTCCTCTAAAACTGAAGCCTGATTACTGGAGTGACAAACTACAG





AAAGAAGCAGAAGCGTTTGCTTATTATCGCCGGACACACACTGCC





AATGAGCGGCGGCGGCGTGGTGAAATGAGGGATCTCTTTGAGAAA





TTAAAGATCACATTGGGATTACTTCATTCTTCCAAGGTTTCCAAA





AGTCTCATTCTTACTCGAGCCTTCAGTGAAATTCAGGGACTAACA





GATCAGGCAGACAAATTGATAGGACAGAAAAATCTCCTGACTCGA





AAACGGAATATTCTGATACGGAAAGTA





106.


KRBOX1(KRAB)-MAX-MGA peptide


SEQ ID NO: 106


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





GSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHHNALERKRRDH





IKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQYMRRKNHTHQQ





DIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSSDNSLYTNAKG





STISAFDGGSDSSSESEPEEPQSRKKLRMEASGSASAGQPSCTHI





SADEKAAERSRKAPPIPLKLKPDYWSDKLQKEAEAFAYYRRTHTA





NERRRRGEMRDLFEKLKITLGLLHSSKVSKSLILTRAFSEIQGLT





DQADKLIGQKNLLTRKRNILIRKV





107.


KRBOX1(KRAB)-MAX-ZNF264(KRAB) DNA


SEQ ID NO: 107


ATGACAGCTGTGTCCTTAACAACCAGGCCCCAGGAATCAGTGGCT





TTTGAGGACGTGGCTGTGTACTTCACTACGAAGGAATGGGCCATC





ATGGTGCCTGCCGAGAGGGCCTTGTACAGGGATGTGATGCTGGAG





AACTATGAGGCTGTGGCCTTTGTAGTGCCACCCACTTCCAAACCA





GCTTTGGTCTCTCATCTGGAGCAAGGGAAAGAGTCCTGTTTCACC





CAGCCACAGGGAGTCCTAAGCAGGAATGACTGGAGAGCAGGCTGG





GGCTCTGGCAGCGCTTCTGCTGGAAGCGATAACGATGACATCGAG





GTGGAGAGCGACGAAGAGCAACCGAGGTTTCAATCTGCGGCTGAC





AAACGGGCTCATCATAATGCACTGGAACGAAAACGTAGGGACCAC





ATCAAAGACAGCTTTCACAGTTTGCGGGACTCAGTCCCATCACTC





CAAGGAGAGAAGGCATCCCGGGCCCAAATCCTAGACAAAGCCACA





GAATATATCCAGTATATGCGAAGGAAAAACCACACACACCAGCAA





GATATTGACGACCTCAAGCGGCAGAATGCTCTTCTGGAGCAGCAA





GTCCGTGCACTGGAGAAGGCGAGGTCAAGTGCCCAACTGCAGACC





AACTACCCCTCCTCAGACAACAGCCTCTACACCAACGCCAAGGGC





AGCACCATCTCTGCCTTCGATGGGGGCTCGGACTCCAGCTCGGAG





TCTGAGCCTGAAGAGCCCCAAAGCAGGAAGAAGCTCCGGATGGAG





GCCAGCGGCAGCGCTTCTGCTGGAGCGGCAGCGGTGCTGACGGAC





CGGGCCCAGGTGTCTGTGACCTTTGATGATGTGGCTGTGACTTTC





ACCAAGGAGGAGTGGGGGCAGCTGGACCTAGCTCAGCGGACCCTG





TACCAGGAGGTGATGCTGGAAAACTGTGGGCTCCTGGTGTCTCTG





GGGTGTCCTGTTCCCAAAGCTGAGCTGATCTGCCACCTAGAGCAT





GGGCAGGAGCCATGGACCAGGAAGGAAGACCTCTCCCAAGACACC





TGTCCAGGCGACAAAGGAAAACCTAAGACCACAGAACCTACCACT





TGTGAGCCAGCCTTGTCAGAG





108.


KRBOX1(KRAB)-MAX-ZNF264(KRAB) peptide


SEQ ID NO: 108


MTAVSLTTRPQESVAFEDVAVYFTTKEWAIMVPAERALYRDVMLE





NYEAVAFVVPPTSKPALVSHLEQGKESCFTQPQGVLSRNDWRAGW





GSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHHNALERKRRDH





IKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQYMRRKNHTHQQ





DIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSSDNSLYTNAKG





STISAFDGGSDSSSESEPEEPQSRKKLRMEASGSASAGAAAVLTD





RAQVSVTFDDVAVTFTKEEWGQLDLAQRTLYQEVMLENCGLLVSL





GCPVPKAELICHLEHGQEPWTRKEDLSQDTCPGDKGKPKTTEPTT





CEPALSE





109.


ZIM3(KRAB)-MAX-ZIM3(KRAB) DNA


SEQ ID NO: 109


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAGCGATAACGATGACATCGAGGTGGAGAGCGACGAA





GAGCAACCGAGGTTTCAATCTGCGGCTGACAAACGGGCTCATCAT





AATGCACTGGAACGAAAACGTAGGGACCACATCAAAGACAGCTTT





CACAGTTTGCGGGACTCAGTCCCATCACTCCAAGGAGAGAAGGCA





TCCCGGGCCCAAATCCTAGACAAAGCCACAGAATATATCCAGTAT





ATGCGAAGGAAAAACCACACACACCAGCAAGATATTGACGACCTC





AAGCGGCAGAATGCTCTTCTGGAGCAGCAAGTCCGTGCACTGGAG





AAGGCGAGGTCAAGTGCCCAACTGCAGACCAACTACCCCTCCTCA





GACAACAGCCTCTACACCAACGCCAAGGGCAGCACCATCTCTGCC





TTCGATGGGGGCTCGGACTCCAGCTCGGAGTCTGAGCCTGAAGAG





CCCCAAAGCAGGAAGAAGCTCCGGATGGAGGCCAGCGGCAGCGCT





TCTGCTGGAATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGAT





GTCACTGTGAACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCC





GAACAGAGAAACTTGTACAGGGATGTGATGCTGGAGAATTACAGC





AACCTTGTCTCTGTGGGACAAGGGGAAACCACCAAACCCGATGTG





ATCTTGAGGTTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAG





GAAGTGCTGGGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGA





GGGCAGATTTGGAAGCCAAAGGATGTGAAAGAGAGTCTC





110.


ZIM3(KRAB)-MAX-ZIM3(KRAB) peptide


SEQ ID NO: 110


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGSDNDDIEVESDEEQPRFQSAADKRAHH





NALERKRRDHIKDSFHSLRDSVPSLQGEKASRAQILDKATEYIQY





MRRKNHTHQQDIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSS





DNSLYTNAKGSTISAFDGGSDSSSESEPEEPQSRKKLRMEASGSA





SAGMNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYS





NLVSVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIG





GQIWKPKDVKESL





111.


MeCP2(NID) DNA


SEQ ID NO: 111


GCCAAAAAGAAAGCCGTGAAGGAGTCTTCTATCCGATCTGTGCAG





GAGACCGTACTCCCCATCAAGAAGCGCAAGACCCGGGAGACCGTC





AGCATCGAGGTCAAGGAAGTG





112.


MeCP2(NID) peptide


SEQ ID NO: 112


AKKKAVKESSIRSVQETVLPIKKRKTRETVSIEVKEV





113.


ZIM3(KRAB)-MeCP2(NID) DNA


SEQ ID NO: 113


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAGCCAAAAAGAAAGCCGTGAAGGAGTCTTCTATCCGA





TCTGTGCAGGAGACCGTACTCCCCATCAAGAAGCGCAAGACCCGG





GAGACCGTCAGCATCGAGGTCAAGGAAGTG





114.


ZIM3(KRAB)-MeCP2(NID) peptide


SEQ ID NO: 114


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGAKKKAVKESSIRSVQETVLPIKKRKTR





ETVSIEVKEV





115.


IPO8 Forward Primer


SEQ ID NO: 115


GGCATACAGTTTAACCTGCCAC





116.


IPO8 Reverse Primer


SEQ ID NO: 116


CAGGAGAGGCATCATGTCTGTAA





117.


CANX Forward Primer


SEQ ID NO: 117


GATCCAGACGCAGAGAAACC





118.


CANX Reverse Primer


SEQ ID NO: 118


CATCCAGGAGCTGACTCACA





119.


SYVN1 Forward Primer


SEQ ID NO: 119


ACCAGCATCCCTAGCTCAGA





120.


SYVN1 Reverse Primer


SEQ ID NO: 120


TCCTCAGGCATCTCCTCTGT





121.


BLM Forward Primer


SEQ ID NO: 121


CAGACTCCGAAGGAAGTTGTATG





122.


BLM Reverse Primer


SEQ ID NO: 122


TTTGGGGTGGTGTAACAAATGAT





123.


SEL1L Forward Primer


SEQ ID NO: 123


GAGGGGGAAAGTGTCACAGA





124.


SELIL Reverse Primer


SEQ ID NO: 124


GGTCAAAGCTGGTTTCCGTA





125.


DNAJC19 Forward Primer


SEQ ID NO: 125


AGTGGTAGCAGTTGGACTGAC





126.


DNAJC19 Reverse Primer


SEQ ID NO: 126


GGCAGATTTTGGTAGGCTTTGAA





127.


KRAS Forward Primer


SEQ ID NO: 127


ACAGAGAGTGGAGGATGCTTT





128.


KRAS Reverse Primer


SEQ ID NO: 128


TTTCACACAGCCAGGAGTCTT





129.


MRPS11 Forward Primer


SEQ ID NO: 129


CATCCGAGTTGTGGTGAAAGG





130.


MRPS11 Reverse Primer


SEQ ID NO: 130


GATTGGGGTGTTGTCTGTGATT





131.


sgRNA scaffold


SEQ ID NO: 131


GTTTCAGAGCTACAGCAGAAATGCTGTAGCAAGTTGAAATAAGGC





TAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT





T





SEQ ID NO: 132


sgRNA scaffold with pp7 stem loop132.


GTTTAAGAGCTATGCTGCGAATACGAGGGAGCAGACGATATGGCG





TCGCTCCTCTCCACGAGAGCATATGGGCTCCGTGGTCTCGTACAC





CATCAGGGTACGTATCAGACACCATCAGGGTCTGCTCGTATTCGC





AGCATAGCAAGTTTAAATAAGGCTAGTCCGTTATCAACTTGAAAA





AGTGGCACCGAGTCGGTGC





133.


Non-targeting spacer sequence


SEQ ID NO: 133


GAAATGTGAGATCAGAGTAAT





134.


SV40-eGFP Reporter −229/301(T) spacer sequence


SEQ ID NO: 134


GAAAGTCCCCAGGCTCCCCAGC


135.


SV40−eGFP Reporter −43(NT) spacer sequence


SEQ ID NO: 135


CTACTTCTGGAATAGCTCAG


136.


SV40−eGFP Reporter −68(NT) spacer sequence


SEQ ID NO: 136


CTATTCCAGAAGTAGTGAGG


137.


SV40−eGFP Reporter −134(NT) spacer sequence


SEQ ID NO: 137


GCCATGGGGCGGAGAATGGG


138.


SV40−eGFP Reporter −258(T) spacer sequence


SEQ ID NO: 138


ATCTCAATTAGTCAGCAACC


139.


SV40−eGFP Reporter −349(NT) spacer sequence


SEQ ID NO: 139


CTAACTGACACACTCTAGAG


140.


SV40−eGFP Reporter −313(T) spacer sequence


SEQ ID NO: 140


TTAGGGTGTGGAAAGTCCCC


141.


SV40−eGFP Reporter +153(T) spacer sequence


SEQ ID NO: 141


CTGAAGTTCATCTGCACCAC


142.


SV40−eGFP Reporter +31(T) spacer sequence


SEQ ID NO: 142


GGGCGAGGAGCTGTTCACCG





143.


CANX spacer sequence


SEQ ID NO: 143


TCGGGCCTGTGAGGACCTCG





144.


SYVN spacer sequence


SEQ ID NO: 144


ACACCTCACTTCCGGCGGCG





145.


BLM spacer sequence


SEQ ID NO: 145


AGGAAACGGAAGAACCCGAG





146.


SELIL spacer sequence


SEQ ID NO: 146


ATACTGACCCGAGGACGCCG





147.


DNAJC19 sgRNA A spacer sequence


SEQ ID NO: 147


GGGATGAGCCGTGCTCCCGG





148.


DNAJC19 sgRNA B spacer sequence


SEQ ID NO: 148


GGGCGCCTGTGCTTGAGGTT





149.


DNAJC19 sgRNA C spacer sequence


SEQ ID NO: 149


GGTGCTGTGAAGATGTGTTA





150.


KRAS sgRNA A spacer sequence


SEQ ID NO: 150


GCGGCGAAGGTGGCGGCGGCT





151.


KRAS sgRNA B spacer sequence


SEQ ID NO: 151


GGCAGTGGCGGCGGCGAAGG





152.


KRAS sgRNA C spacer sequence


SEQ ID NO: 152


GCTCCCAGTCCGAAATGGCG





153.


MRPS11 sgRNA A spacer sequence


SEQ ID NO: 153


GCTGCAGACGGAAACTGACT





154.


MRPS11 sgRNA B spacer sequence


SEQ ID NO: 154


GGGGTCAATTCAAGTCATGC





155.


MRPS11 sgRNA C spacer sequence


SEQ ID NO: 155


GTGGCTCAAGGGACACGAGT





156.


MeCP2(NLS1X) DNA


SEQ ID NO: 156


ACCACATCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAG





CGAAAAGCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGC





CGAAAGCCGGGGAGTGTG





157.


MeCP2(NLS1X) peptide


SEQ ID NO: 157


TTSTQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSV





158.


ZIM3(KRAB)-MeCP2(NLS1X) DNA


SEQ ID NO: 158


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAACCACATCCACCCAGGTCATGGTGATCAAACGCCCC





GGCAGGAAGCGAAAAGCTGAGGCCGACCCTCAGGCCATTCCCAAG





AAACGGGGCCGAAAGCCGGGGAGTGTG





159.


ZIM3(KRAB)-MeCP2(NLS1X) peptide


SEQ ID NO: 159


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGTTSTQVMVIKRPGRKRKAEADPQAIPK





KRGRKPGSV





160.


MeCP2(NLS2X) DNA


SEQ ID NO: 160


ACCACATCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAG





CGAAAAGCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGC





CGAAAGCCGGGGAGTGTGGGATCTGGGAAATCTGGGTCAGGAACC





ACATCCACCCAGGTCATGGTGATCAAACGCCCCGGCAGGAAGCGA





AAAGCTGAGGCCGACCCTCAGGCCATTCCCAAGAAACGGGGCCGA





AAGCCGGGGAGTGTG





161.


MeCP2(NLS2X) peptide


SEQ ID NO: 161


TTSTQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSVGSGKSGSGT





TSTQVMVIKRPGRKRKAEADPQAIPKKRGRKPGSV





162.


ZIM3(KRAB)-MeCP2(NLS2X) DNA


SEQ ID NO: 162


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAACCACATCCACCCAGGTCATGGTGATCAAACGCCCC





GGCAGGAAGCGAAAAGCTGAGGCCGACCCTCAGGCCATTCCCAAG





AAACGGGGCCGAAAGCCGGGGAGTGTGGGATCTGGGAAATCTGGG





TCAGGAACCACATCCACCCAGGTCATGGTGATCAAACGCCCCGGC





AGGAAGCGAAAAGCTGAGGCCGACCCTCAGGCCATTCCCAAGAAA





CGGGGCCGAAAGCCGGGGAGTGTG





163.


ZIM3(KRAB)-MeCP2(NLS2X) peptide


SEQ ID NO: 163


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGTTSTQVMVIKRPGRKRKAEADPQAIPK





KRGRKPGSVGSGKSGSGTTSTQVMVIKRPGRKRKAEADPQAIPKK





RGRKPGSV





164.


SV40NLS DNA


SEQ ID NO: 164


CCGAAAAAGAAGCGTAAGGTT





165.


SEQ ID NO: 165


SV40NLS peptidePKKKRKV





166.


ZIM3(KRAB)-SV40NLS DNA


SEQ ID NO: 166


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGACCGAAAAAGAAGCGTAAGGTT





167.


ZIM3(KRAB)-SV40NLS peptide


SEQ ID NO: 167


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGPKKKRKV





168.


BPSV40NLS DNA


SEQ ID NO: 168


AAACGGACAGCCGACGGAAGCGAGTTCGAGTCACCAAAGAAGAAG





CGGAAAGTC





169.


BPSV40NLS peptide


SEQ ID NO: 169


KRTADGSEFESPKKKRKV





170.


ZIM3(KRAB)-BPSV40NLS DNA


SEQ ID NO: 170


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAAACGGACAGCCGACGGAAGCGAGTTCGAGTCACCA





AAGAAGAAGCGGAAAGTC





171.


ZIM3(KRAB)-BPSV40NLS peptide


SEQ ID NO: 171


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGKRTADGSEFESPKKKRKV





172.


vBPSV40NLS DNA


SEQ ID NO: 172


AAAAGAACCGCCGACGGCAGCGAGAAGCGCACCGCCGACAGCCAG





CACAGCACCCCCCCCAAGACCAAGCGCAAGGTG





173.


vBPSV40NLS peptide


SEQ ID NO: 173


KRTADGSEKRTADSQHSTPPKTKRKV





174.


ZIM3(KRAB)- vBPSV40NLS DNA


SEQ ID NO: 174


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAAAAGAACCGCCGACGGCAGCGAGAAGCGCACCGCC





GACAGCCAGCACAGCACCCCCCCCAAGACCAAGCGCAAGGTG





175.


ZIM3(KRAB)- vBPSV40NLS peptide


SEQ ID NO: 175


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGKRTADGSEKRTADSQHSTPPKTKRKV





176.


cMYCNLS DNA


SEQ ID NO: 176


CCCGCCGCCAAGCGCGTGAAGCTGGAC





177.


cMYCNLS peptide


SEQ ID NO: 177


PAAKRVKLD





178.


ZIM3(KRAB)-cMYCNLS DNA


SEQ ID NO: 178


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGACCCGCCGCCAAGCGCGTGAAGCTGGAC





179.


ZIM3(KRAB)- cMYCNLS peptide


SEQ ID NO: 179


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGPAAKRVKLD





180.


NucNLS DNA


SEQ ID NO: 180


AAACGCCCTGCCGCAACGAAGAAGGCTGGACAGGCGAAAAAGAAG





AAG





181.


NucNLS peptide


SEQ ID NO: 181


KRPAATKKAGQAKKKK





182.


ZIM3(KRAB)-NucNLS DNA


SEQ ID NO: 182


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAAACGCCCTGCCGCAACGAAGAAGGCTGGACAGGCG





AAAAAGAAGAAG





183.


ZIM3(KRAB)-NucNLS peptide


SEQ ID NO: 183


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGKRPAATKKAGQAKKKK





184.


vBPSV40-SV40NLS DNA


SEQ ID NO: 184


AAAAGAACCGCCGACGGCAGCGAGAAGCGCACCGCCGACAGCCAG





CACAGCACCCCCCCCAAGACCAAGCGCAAGGTGGGATCTGGGAAA





TCTGGGTCAGGACCGAAAAAGAAGCGTAAGGTT





185.


vBPSV40-SV40NLS peptide


SEQ ID NO: 185


KRTADGSEKRTADSQHSTPPKTKRKVGSGKSGSGPKKKRKV





186.


ZIM3(KRAB)-vBPSV40-SV40NLS DNA


SEQ ID NO: 186


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAAAAGAACCGCCGACGGCAGCGAGAAGCGCACCGCC





GACAGCCAGCACAGCACCCCCCCCAAGACCAAGCGCAAGGTGGGA





TCTGGGAAATCTGGGTCAGGACCGAAAAAGAAGCGTAAGGTT





187.


ZIM3(KRAB)-vBPSV40-SV40NLS peptide


SEQ ID NO: 187


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGKRTADGSEKRTADSQHSTPPKTKRKVG





SGKSGSGPKKKRKV





188.


vBPSV40NLS(2X) DNA


SEQ ID NO: 188


AAAAGAACCGCCGACGGCAGCGAGAAGCGCACCGCCGACAGCCAG





CACAGCACCCCCCCCAAGACCAAGCGCAAGGTGGGATCTGGGAAA





TCTGGGTCAGGAAAAAGAACCGCCGACGGCAGCGAGAAGCGCACC





GCCGACAGCCAGCACAGCACCCCCCCCAAGACCAAGCGCAAGGTG





189.


vBPSV40NLS(2X) peptide


SEQ ID NO: 189


KRTADGSEKRTADSQHSTPPKTKRKVGSGKSGSGKRTADGSEKRT





ADSQHSTPPKTKRKV





190.


ZIM3(KRAB)-vBPSV40NLS(2X) DNA


SEQ ID NO: 190


ATGAACAATTCCCAGGGAAGAGTGACCTTCGAGGATGTCACTGTG





AACTTCACCCAGGGGGAGTGGCAGCGGCTGAATCCCGAACAGAGA





AACTTGTACAGGGATGTGATGCTGGAGAATTACAGCAACCTTGTC





TCTGTGGGACAAGGGGAAACCACCAAACCCGATGTGATCTTGAGG





TTGGAACAAGGAAAGGAGCCGTGGTTGGAGGAAGAGGAAGTGCTG





GGAAGTGGCCGTGCAGAAAAAAATGGGGACATTGGAGGGCAGATT





TGGAAGCCAAAGGATGTGAAAGAGAGTCTCGGCTCTGGCAGCGCT





TCTGCTGGAAAAAGAACCGCCGACGGCAGCGAGAAGCGCACCGCC





GACAGCCAGCACAGCACCCCCCCCAAGACCAAGCGCAAGGTGGGA





TCTGGGAAATCTGGGTCAGGAAAAAGAACCGCCGACGGCAGCGAG





AAGCGCACCGCCGACAGCCAGCACAGCACCCCCCCCAAGACCAAG





CGCAAGGTG





191.


ZIM3(KRAB)-vBPSV40NLS(2X) peptide


SEQ ID NO: 191


MNNSQGRVTFEDVTVNFTQGEWQRLNPEQRNLYRDVMLENYSNLV





SVGQGETTKPDVILRLEQGKEPWLEEEEVLGSGRAEKNGDIGGQI





WKPKDVKESLGSGSASAGKRTADGSEKRTADSQHSTPPKTKRKVG





SGKSGSGKRTADGSEKRTADSQHSTPPKTKRKV





Claims
  • 1. A CRISPR interference (CRISPRi) system comprising a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.
  • 2. The CRISPRi system of claim 1, wherein the repressor fusion peptide comprises three or more repressor domains comprising any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.
  • 3. The CRISPRi system of claim 1, wherein the two or more repressor domains comprise SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, or a fragment thereof.
  • 4. The CRISPRi system of claim 1, wherein the three or more repressor domains comprise SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO:96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 114, or a fragment thereof.
  • 5. The CRISPRi system of claim 1, wherein the catalytically inactive nuclease comprises a dCas nuclease selected from a dCas9, dCas12a, and dCas13.
  • 6. The CRISPRi system of claim 1, wherein the catalytically inactive nuclease comprises at least 90% sequence identity to SEQ ID NO: 2.
  • 7. The CRISPRi system of claim 1, wherein the repressor fusion peptide is fused to a nuclear localization signal.
  • 8. An expression vector comprising one or more nucleic acids encoding a CRISPR interference (CRISPRi) system, wherein the CRISPRi system comprises a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.
  • 9. The expression vector of claim 8, wherein the repressor fusion peptide comprises three or more repressor domains comprising any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.
  • 10. The expression vector of claim 8, wherein the one or more nucleic acids encodes the two or more repressor domains comprising SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, or a fragment thereof.
  • 11. The expression vector of claim 8, wherein the one or more nucleic acids encodes the three or more repressor domains comprising SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO:89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, or a fragment thereof.
  • 12. The expression vector of claim 8, wherein the one or more nucleic acid encoding the catalytically inactive nuclease comprises at least 90% sequence identity to SEQ ID NO: 1.
  • 13. The expression vector of claim 8, wherein the one or more nucleic acids encodes the two or more repressor fusion peptides fused to a nuclear localization signal.
  • 14. An engineered cell comprising a CRISPR interference (CRISPRi) system, wherein the CRISPRi system comprises a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.
  • 15. The cell of claim 14, wherein the repressor fusion peptide comprises three or more repressor domains comprising any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.
  • 16. The cell of claim 14, wherein the two or more repressor domains comprise SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, or a fragment thereof.
  • 17. The cell of claim 14, wherein the three or more repressor domains comprise SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO:96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 114, or a fragment thereof.
  • 18. The cell of claim 14, wherein the catalytically inactive nuclease comprises at least 90% sequence identity to SEQ ID NO: 2.
  • 19. The cell of claim 14, wherein the repressor fusion peptide is fused to a nuclear localization signal.
  • 20. A method of decreasing gene expression, the method comprising administering a CRISPR interference (CRISPRi) system comprising a single guide RNA (sgRNA) and a catalytically inactive nuclease operably fused to a repressor fusion peptide, wherein the repressor fusion peptide comprises two or more repressor domains comprising KOX1, KRBOX1, ZIM3, or a fragment thereof, fused to MAX, MeCP2, MeCP2(t), TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.
  • 21. The method of claim 20, wherein the repressor fusion peptide comprises three or more repressor domains comprising any combination of KOX1, KRBOX1, ZIM3, MAX, MeCP2t, MeCP2, or a fragment thereof, fused to TRIM28, RYBP, CBX1, SCMH1, CTCF, REST, MGA, KLF10, IRF2BP1, IKZF5, RCOR1, ZNF554, ZNF264, or a fragment thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This PCT application claims priority to, and the benefit of, U.S. Provisional Patent Application No. 63/424,588, filed Nov. 11, 2022, which is incorporated by reference herein in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with Government Support under Grant No. 1DP2CA280622-01 awarded by the National Institutes of Health. The Government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
63424588 Nov 2022 US