This application is based on and claims the benefit of priority from the prior Japanese Patent Application No. 2007-171939, filed on Jun. 29, 2007, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
This invention relates to a resistance change memory device, in which memory cells of a resistance-change type are used, and an integrated circuit device with a resistance change memory chip.
2. Description of the Related Art
A resistance change memory device has been proposed to store a resistance value as data, which is reversibly rewritten by applying voltage, current or heat, and it is noticed for succeeding to the conventional flash memory. This resistance change memory is suitable for miniaturizing the cell size, and for constituting a cross-point cell array. In addition, it is easy to stack cell arrays.
As a heat process adapted for resetting a data state of the resistance change memory device, it is usually used Joule's heat generated by applying a certain voltage or current to a memory cell. If it takes a long time to perform this heat process, it prevents the resistance change memory from being progressed in high speed performance and low power consumption.
It has been proposed a phase change memory made of a chalcogenide layer, which is a kind of resistance change memory and has a heater attached to the chalcogenide layer (for example, refer to JP 2005-71500A). Further, there has also been proposed a magnetic memory device, in which heater layers are disposed at every memory cell for partially heating them and accelerating the data state change of memory cells (for example, refer to JP 2005-136419A).
It has also been proposed such a technology that a heater is installed on an integrated circuit device for adjusting the environmental temperature (for example, refer to JP 4-206861A).
According to an aspect of the present invention, there is provided a resistance change memory device including:
a memory chip having memory cells of a resistance change type; and
a heater so attached to the memory chip as to apply a temperature bias to the memory chip.
According to another aspect of the present invention, there is provided an integrated circuit device including:
a substrate;
a memory chip mounted on the substrate, the memory chip having memory cells of a resistance change type;
a circuit chip mounted on the substrate, the maximum power consumption of which is larger than that of the memory chip; and
a thermal conductive plate disposed to extend over the circuit chip and the memory chip.
Illustrative embodiments of this invention will be explained with reference to the accompanying drawings below.
Variable resistance element VR has a stacked structure of electrode/transition metal oxide/electrode. In accordance with voltage, current or heat application condition, the resistance value of the metal oxide layer is changed, so that the element VR stores one of different resistance states as data in a non-volatile manner. This kind of variable resistance element VR is formed to be operable as a bipolar type of or a unipolar type of element. The cell array arrangement shown in
Assuming that the memory cell MC is kept in a high resistance value state as a stable state (i.e., reset state), it stores, for example, binary data defined by the high resistance state and a low resistance state (i.e., set state).
The stack structure of the memory cell MC is shown in
Explaining in detail, the first metal oxide layer 31 is Mn-oxide containing Mg; and the second metal oxide layer 32 is Ti-oxide including a cavity site. “L” shown in the compound expression designates the cavity site.
The left side in
The reset process is defined as a heat process. Applying voltage to the device, a large current flows because it is in the low resistance state, and Joule's heat is generated. As a result of this heat energy, Mg ion trapped in the cavity site in the second metal oxide layer 32 will be released to the first metal oxide layer 31, so that the high resistance state is restored.
On the other hand, applying a heat energy that is able to get over the barrier potential P2 required to hold the low resistance state, the state will be restored to be in the high resistance state defined as a thermally stabilized state (referred to as a reset operation).
Note here that it is able to use the state transition between a crystalline state and an amorphous state of the cell material as the variable resistance element VR (i.e., phase change in the narrow sense).
In this case, the recording layer 51 sandwiched between electrodes 52 and 53 is formed of a chalcogenide layer. Heating and then gradually cooling it to crystallize itself, the recording layer 51 is set to be in a low resistance state (i.e., conductor). This is referred to as a rest operation. By contrast, cooling fast after heating the device in the set state, the chalcogenide layer 51 is reset to be in an amorphous and high resistance state (i.e., insulator).
In the above-described resistance change memory device in accordance with this embodiment, the memory chip has a heater prepared for applying a temperature bias for accelerating the heat process of the state change of the memory device (i.e., variable resistance element). The detail will be explained below.
With this configuration, a certain temperature bias may be applied to the memory cells in the memory chip 61, so that the heat process is accelerated. As a result, it becomes possible to access the resistance change memory at a high speed, and the power consumption will be reduced.
In another example shown in
Explaining in detail more, thermal conductive plate 83 is disposed to extend over the circuit chip 82 and memory chip 81. In a more desirable example, the thermal conductive plate 83 has first and second conductive chips 83a and 83b disposed on the circuit chip 82 and memory chip 81, respectively, and thermal resistive chip 84 disposed between these thermal conductive chips 83a and 83b for adjusting the thermal conductivity between the circuit chip 82 and memory chip 81.
The thermal conductive plate 83 also serves as a radiator for the circuit chip 82 with large power consumption. Therefore, the circuit chip 82 serving as a heat source, the bias temperature of the memory chip 81 may be made to be optimal. Further, it becomes possible to access the resistance change memory at a high speed, and the power consumption will be reduced.
In general, a transistor circuit in an integrated circuit becomes slow in operation speed in accordance with temperature rising. Arranging the heater 94 to be limited to the cell array area, the memory cell operation will be made to be fast without reducing the operation speed of the peripheral circuit 93.
This invention is not limited to the above-described embodiments. It will be understood by those skilled in the art that various changes in form and detail may be made without departing from the spirit, scope, and teaching of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2007-171939 | Jun 2007 | JP | national |