RF devices with enhanced performance and methods of forming the same

Information

  • Patent Grant
  • 11328983
  • Patent Number
    11,328,983
  • Date Filed
    Friday, November 8, 2019
    4 years ago
  • Date Issued
    Tuesday, May 10, 2022
    2 years ago
Abstract
The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate resides over the top surface of the device region. Herein, silicon crystal does not exist within the transfer substrate or between the transfer substrate and the active layer. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to a radio frequency (RF) device and a process for making the same, and more particularly to an RF device with enhanced thermal and electrical performance, and a wafer-level fabricating and packaging process to provide the RF device with enhanced performance.


BACKGROUND

The wide utilization of cellular and wireless devices drives the rapid development of radio frequency (RF) technologies. The substrates on which RF devices are fabricated play an important role in achieving high level performance in the RF technologies. Fabrications of the RF devices on conventional silicon substrates may benefit from low cost of silicon materials, a large scale capacity of wafer production, well-established semiconductor design tools, and well-established semiconductor manufacturing techniques. Despite the benefits of using conventional silicon substrates for the RF device fabrications, it is well known in the industry that the conventional silicon substrates may have two undesirable properties for the RF devices: harmonic distortion and low resistivity values. The harmonic distortion is a critical impediment to achieve high level linearity in the RF devices built over silicon substrates.


In addition, high speed and high performance transistors are more densely integrated in RF devices. Consequently, the amount of heat generated by the RF devices will increase significantly due to the large number of transistors integrated in the RF devices, the large amount of power passing through the transistors, and/or the high operation speed of the transistors. Accordingly, it is desirable to package the RF devices in a configuration for better heat dissipation.


Wafer-level fan-out (WLFO) technology and embedded wafer-level ball grid array (eWLB) technology currently attract substantial attention in portable RF applications. WLFO and eWLB technologies are designed to provide high density input/output (I/O) ports without increasing the size of a package. This capability allows for densely packaging the RF devices within a single wafer.


To enhance the operation speed and performance of the RF devices, to accommodate the increased heat generation of the RF devices, to reduce deleterious harmonic distortion of the RF devices, and to utilize advantages of WLFO/eWLB technologies, it is therefore an object of the present disclosure to provide an improved wafer-level fabricating and packaging process for the RF devices with enhanced performance. Further, there is also a need to enhance the performance of the RF devices without increasing the device size.


SUMMARY

The present disclosure relates to a radio frequency (RF) device with enhanced performance, and a process for making the same. The disclosed RF device includes a transfer device die and a multilayer redistribution structure. The transfer device die includes a device region with a front-end-of-line (FEOL) portion and a back-end-of-line (BEOL) portion and a transfer substrate. Herein, the FEOL portion resides over the BEOL portion and includes isolation sections and an active layer which is surrounded by the isolation sections and does not extend vertically beyond the isolation sections. The device region has a planarized top surface. The transfer substrate resides over the top surface of the device region. Silicon crystal, which has no germanium, nitrogen, or oxygen content, does not exist within the transfer substrate or between the transfer substrate and the active layer within the device region. The multilayer redistribution structure, which includes a number of bump structures, is formed underneath the BEOL portion of the transfer device die. The bump structures are on a bottom surface of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.


In one embodiment of the RF device, the transfer substrate has a thermal conductivity greater than 10 W/m·K and an electrical resistivity greater than 1E5 Ohm-cm.


In one embodiment of the RF device, the transfer substrate is formed of one of sapphire, thermally conductive quartz, aluminum nitride, boron nitride, and berylium oxide.


In one embodiment of the RF device, the transfer substrate has a thickness between 10 μm and 1000 μm.


In one embodiment of the RF device, the active layer is formed from a strained silicon epitaxial layer, in which a lattice constant of silicon is greater than 5.461 at a temperature of 300K.


In one embodiment of the RF device, the BEOL portion includes connecting layers, the FEOL portion further includes a contact layer, and the multilayer redistribution structure further includes redistribution interconnections. Herein, the active layer and the isolation sections reside over the contact layer, and the BEOL portion resides underneath the contact layer. The bump structures are electrically coupled to the FEOL portion of the transfer device die via the redistribution interconnections within the multilayer redistribution structure and the connecting layers within the BEOL portion.


In one embodiment of the RF device, the device region further includes a passivation layer over the active layer and surrounded by the isolation sections. Herein, the passivation layer is formed of silicon dioxide. A top surface of each isolation section and a top surface of the passivation layer are coplanar and form the top surface of the device region.


In one embodiment of the RF device, a top surface of each isolation section and a top surface of the active layer are coplanar and form the top surface of the device region.


In one embodiment of the RF device, the transfer device die further includes a barrier layer, which is formed of silicon nitride, coupled between the top surface of the device region and the transfer substrate.


In one embodiment of the RF device, the FEOL portion is configured to provide at least one of a switch field-effect transistor (FET), a diode, a capacitor, a resistor, or an inductor.


According to another embodiment, an alternative RF device includes a transfer device die and a multilayer redistribution structure. The transfer device die includes a device region with a FEOL portion and a BEOL portion and a transfer substrate. Herein, the FEOL portion resides over the BEOL portion and includes isolation sections and an active layer, which is surrounded by the isolation sections and does not extend vertically beyond the isolation sections. The device region has a planarized top surface. The transfer substrate resides over the top surface of the device region. Silicon crystal, which has no germanium, nitrogen, or oxygen content, does not exist within the transfer substrate or between the transfer substrate and the active layer within the device region. The multilayer redistribution structure, which is formed underneath the BEOL portion of the transfer device die, extends horizontally beyond the transfer device die. The multilayer redistribution structure includes a number of bump structures, which are on a bottom surface of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die. The alternative RF device further includes a mold compound residing over the multilayer redistribution structure to encapsulate the transfer device die.


In one embodiment of the alternative RF device, the transfer substrate has a thermal conductivity greater than 10 W/m·K and an electrical resistivity greater than 1E5 Ohm-cm.


In one embodiment of the alternative RF device, the transfer substrate is formed of one of sapphire, thermally conductive quartz, aluminum nitride, boron nitride, and berylium oxide.


In one embodiment of the alternative RF device, the transfer substrate has a thickness between 10 μm and 1000 μm.


In one embodiment of the alternative RF device, the active layer is formed from a strained silicon epitaxial layer, in which a lattice constant of silicon is greater than 5.461 at a temperature of 300K.


In one embodiment of the alternative RF device, the BEOL portion includes connecting layers, the FEOL portion further includes a contact layer, and the multilayer redistribution structure further includes redistribution interconnections. Herein, the active layer and the isolation sections reside over the contact layer, and the BEOL portion resides underneath the contact layer. The bump structures are electrically coupled to the FEOL portion of the transfer device die via the redistribution interconnections within the multilayer redistribution structure and the connecting layers within the BEOL portion.


In one embodiment of the alternative RF device, the device region further includes a passivation layer over the active layer and surrounded by the isolation sections. Herein, the passivation layer is formed of silicon dioxide. A top surface of each isolation section and a top surface of the passivation layer are coplanar and form the top surface of the device region.


In one embodiment of the alternative RF device, a top surface of each isolation section and a top surface of the active layer are coplanar and form the top surface of the device region.


In one embodiment of the alternative RF device, the transfer device die further includes a barrier layer, which is formed of silicon nitride, coupled between the top surface of the device region and the transfer substrate.


In one embodiment of the alternative RF device, the FEOL portion is configured to provide at least one of a switch FET, a diode, a capacitor, a resistor, or an inductor.


According to an exemplary process, a precursor wafer, which includes a number of intact device regions, a number of individual interfacial layers, and a silicon handle substrate, is firstly provided. Each intact device region includes a BEOL portion and an intact FEOL portion over the BEOL portion. The intact FEOL portion has an active layer and intact isolation sections, which extend vertically beyond the active layer and surround the active layer. Herein, each individual interfacial layer is over one active layer and surrounded by the intact isolation sections of a corresponding intact device region. Each individual interfacial layer is formed of SiGe. The silicon handle substrate is over each intact isolation section and each individual interfacial layer. Next, the silicon handle substrate is removed completely. The intact isolation sections are then thinned down to provide a thinned wafer with a planarized top surface. The thinned wafer includes a number of device regions, and a combination of a top surface of each device regions forms the planarized top surface of the thinned wafer. Each device region includes the BEOL portion and an FEOL portion over the BEOL portion. The FEOL portion has the active layer and the thinned isolation sections, which surround the active layer. A transfer substrate is attached to the top surface of the thinned wafer to provide a transfer device wafer that includes a number of transfer device dies. Herein, silicon crystal, which has no germanium, nitrogen, or oxygen content, does not exist within the transfer substrate or between the active layer of each device region and the transfer substrate. Each transfer device die includes a corresponding device region and a portion of the transfer substrate over the corresponding device region.


In one embodiment of the exemplary process, the transfer substrate has a thermal conductivity greater than 10 W/m·K and an electrical resistivity greater than 1E5 Ohm-cm.


In one embodiment of the exemplary process, the transfer substrate is formed of one of sapphire, thermally conductive quartz, aluminum nitride, boron nitride, and berylium oxide.


In one embodiment of the exemplary process, the transfer substrate has a thickness between 10 μm and 1000 μm.


According to another embodiment, the exemplary process further includes bonding the precursor wafer to a temporary carrier via a bonding layer before the silicon handle substrate is removed, and debonding the temporary carrier and cleaning the bonding layer from the transfer device wafer after the transfer substrate is attached.


According to another embodiment, the exemplary process further includes forming a multilayer redistribution structure underneath the transfer device wafer. Herein, the multilayer redistribution structure includes a number of bump structures on a bottom surface of the multilayer redistribution structure and redistribution interconnections within the multilayer redistribution structure. Each bump structure is electrically coupled to one active layer of a corresponding transfer device die via the redistribution interconnections within the multilayer redistribution structure and connecting layers within the BEOL portion of the corresponding transfer device die.


According to another embodiment, the exemplary process further includes singulating the transfer device wafer into a number of individual transfer device dies. A mold compound is then applied around and over each individual transfer device die to provide a mold device wafer. Herein, the mold compound encapsulates a top surface and side surfaces of each individual transfer device die, while a bottom surface of each individual transfer device die is exposed. A bottom surface of the mold device wafer is a combination of the bottom surface of each individual transfer device die and a bottom surface of the mold compound. Next, a multilayer redistribution structure is formed underneath the mold device wafer. The multilayer redistribution structure includes a number of bump structures on a bottom surface of the multilayer redistribution structure and redistribution interconnections within the multilayer redistribution structure. Each bump structure is electrically coupled to one active layer of a corresponding individual transfer device die via the redistribution interconnections within the multilayer redistribution structure and connecting layers within the BEOL portion of the corresponding individual transfer device die.


According to another embodiment, the exemplary process further includes removing each individual interfacial layer after removing the silicon handle substrate and before thinning down the intact isolation sections. As such, after the thinning down step, the planarized top surface of each device region is formed by a top surface of a corresponding active layer and top surfaces of corresponding thinned isolation sections.


According to another embodiment, the exemplary process further includes removing each individual interfacial layer and applying a passivation layer over a corresponding active layer after removing the silicon handle substrate and before thinning down the intact isolation sections. As such, after the thinning down step, the planarized top surface of each device region is formed by a top surface of a corresponding passivation layer and top surfaces of corresponding thinned isolation sections.


In one embodiment of the exemplary process, the passivation layer is applied by one of a plasma enhanced deposition process, an anodic oxidation process, and an ozone-based oxidation process.


According to another embodiment, the exemplary process further includes applying a barrier layer over the top surface of the thinned wafer before attaching the transfer substrate to the thinned wafer. Herein, the barrier layer is formed of silicon nitride.


In one embodiment of the exemplary process, providing the precursor wafer begins with providing a starting wafer that includes a common silicon epitaxial layer, a common interfacial layer over the common silicon epitaxial layer, and a silicon handle substrate over the common interfacial layer. A complementary metal-oxide-semiconductor (CMOS) process is then performed to provide the precursor wafer. Herein, the intact isolation sections extend through the common silicon epitaxial layer and the common interfacial layer, and extend into the silicon handle substrate, such that the common interfacial layer is separated into the individual interfacial layers, and the common silicon epitaxial layer is separated into a number of individual silicon epitaxial layers. Each active layer is formed from a corresponding individual silicon epitaxial layer.


In one embodiment of the exemplary process, the silicon handle substrate is removed by a mechanical grinding process followed by an etching process.


In one embodiment of the exemplary process, the silicon handle substrate is removed by an etching process with an etchant chemistry, which is at least one of tetramethylammonium hydroxide (TMAH), potassium hydroxide (KOH), sodium hydroxide (NaOH), acetylcholine (ACH), and xenon difluoride (XeF2).


In one embodiment of the exemplary process, the silicon handle substrate is removed by a reactive ion etching system with a chlorine based gas chemistry.


In one embodiment of the exemplary process, the transfer substrate is attached to the top surface of the thinned wafer by one of a group consisting of anodic bonding, plasma bonding, and polymeric adhesive bonding.


Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.



FIG. 1 shows an exemplary radio frequency (RF) device with enhanced performance according to one embodiment of the present disclosure.



FIG. 2 shows an alternative RF device with enhanced thermal and electrical performance according to one embodiment of the present disclosure.



FIGS. 3A-15 show an exemplary wafer-level fabricating and packaging process that illustrates steps to provide the exemplary RF device shown in FIG. 1.



FIGS. 16-21 show an alternative wafer-level fabricating and packaging process that illustrates steps to provide the alternative RF device shown in FIG. 2.





It will be understood that for clear illustrations, FIGS. 1-21 may not be drawn to scale.


DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” or “over” or “under” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


With the looming shortage of conventional radio frequency silicon on insulator (RFSOI) wafers expected in the coming years, alternative technologies are being devised to get around the need for high resistivity using silicon wafers, the trap rich layer formation, and Smart-Cut SOI wafer process. One alternative technology is based on the use of a silicon germanium (SiGe) interfacial layer instead of a buried oxide layer (BOX) between a silicon substrate and a silicon epitaxial layer. However, this technology will still suffer from the deleterious distortion effects due to the silicon substrate, similar to what is observed in an RFSOI technology. The present disclosure, which relates to a radio frequency (RF) device with enhanced performance, and a wafer-level fabricating and packaging process for making the same, utilizes the SiGe interfacial layer without deleterious distortion effects from the silicon substrate.



FIG. 1 shows an exemplary RF device 10 with enhanced performance according to one embodiment of the present disclosure. For the purpose of this illustration, the exemplary RF device 10 includes a transfer device die 12 that has a device region 14 and a transfer substrate 16, and a multilayer redistribution structure 18 formed under the device region 14 of the transfer device die 12.


In detail, the device region 14 includes a front-end-of-line (FEOL) portion 20 and a back-end-of-line (BEOL) portion 22 underneath the FEOL portion 20. In one embodiment, the FEOL portion 20 may be configured to provide a switch field-effect transistor (FET), and includes an active layer 24 and a contact layer 26. The active layer 24 may be formed from a relaxed silicon epitaxial layer or from a strained silicon epitaxial layer, and includes a source 28, a drain 30, and a channel 32 between the source 28 and the drain 30. Herein, a relaxed silicon epitaxial layer refers to a silicon epitaxial layer, in which the lattice constant of silicon is 5.431 at a temperature of 300K. The strained silicon epitaxial layer refers to a silicon epitaxial layer, in which the lattice constant of silicon is greater than the lattice constant in the relaxed silicon epitaxial layer, such as greater than 5.461, or greater than 5.482, or greater than 5.493, or greater than 5.515 at a temperature of 300K. As such, electrons in the strained silicon epitaxial layer may have enhanced mobility compared to the relaxed silicon epitaxial layer. Consequently, a FET formed from the strained silicon epitaxial layer, may have a faster switching speed compared to a FET formed from a relaxed silicon epitaxial layer.


The contact layer 26 is formed underneath the active layer 24 and includes a gate structure 34, a source contact 36, a drain contact 38, and a gate contact 40. The gate structure 34 may be formed of silicon oxide, and extends horizontally underneath the channel 32 (i.e., from underneath the source 28 to underneath the drain 30). The source contact 36 is connected to and under the source 28, the drain contact 38 is connected to and under the drain 30, and the gate contact 40 is connected to and under the gate structure 34. An insulating material 42 may be formed around the source contact 36, the drain contact 38, the gate structure 34, and the gate contact 40 to electrically separate the source 28, the drain 30, and the gate structure 34. In different applications, the FEOL portion 20 may have different FET configurations or provide different device components, such as a diode, a capacitor, a resistor, and/or an inductor.


In addition, the FEOL portion 20 also includes isolation sections 44, which reside over the insulating material 42 of the contact layer 26 and surround the active layer 24. The isolation sections 44 are configured to electrically separate the RF device 10, especially the active layer 24, from other devices formed in a common wafer (not shown). The isolation sections 44 may be formed of silicon dioxide, which may be resistant to etching chemistries such as tetramethylammonium hydroxide (TMAH), xenon difluoride (XeF2), potassium hydroxide (KOH), sodium hydroxide (NaOH), or acetylcholine (ACH), and may be resistant to dry ething system, such as a reactive ion etching (RIE) system with a chlorine based gas chemistry.


In some applications, the device region 14 further includes a passivation layer 48, which may be formed of silicon dioxide, to passivate the active layer 24. The passivation layer 48 is deposited over the top surface of the active layer 24 and surrounded by the isolation sections 44. In one embodiment, a top surface of the passivation layer 48 and top surfaces of the isolation sections 44 are coplanar. The passivation layer 48 is configured to terminate surface bonds of the active layer 24, which may be responsible for unwanted leakage.


In some applications, the device region 14 further includes an interfacial layer and/or a buffer structure (not shown), which are formed of SiGe, over the top surface of the active layer 24 and surrounded by the isolation sections 44 (described in the following paragraphs and not shown herein). If the passivation layer 48, the buffer structure, and the interfacial layer exist, the interfacial layer and the buffer structure are vertically between the active layer 24 and the passivation layer 48. Herein, the top surface of the passivation layer 48 and top surfaces of the isolation sections 44 are coplanar. If the passivation layer 48 is omitted, and the interfacial layer and/or the buffer structure exist, the top surface of the interfacial layer (or the top surface of the buffer structure) and the top surfaces of the isolation sections 44 are coplanar (not shown). If the passivation layer 48, the buffer structure, and the interfacial layer are omitted, the top surface of the active layer 24 and the top surfaces of the isolation sections 44 are coplanar (not shown). Notice that, regardless of the presence of the passivation layer 48, the buffer structure, and/or the interfacial layer, a top surface of the device region 14 (a combination of the top surfaces of the isolation sections 44 and the top surface of the passivation layer 48, a combination of the top surfaces of the isolation sections 44 and the top surface of the interfacial layer, a combination of the top surfaces of the isolation sections 44 and the top surface of the buffer structure, or a combination of the top surfaces of the isolation sections 44 and the top surface of the active layer 24) is always planarized.


The transfer substrate 16 resides over the top surface of the device region 14. Heat generated in the device region 14 may travel upward to a bottom portion of the transfer substrate 16, which is over the active layer 24, and then will pass downward through the device region 14 and toward the multilayer redistribution structure 18, which will dissipate the heat. It is therefore highly desirable for the transfer substrate 16 to have a high thermal conductivity, especially for a portion next to the active layer 24. Herein, the transfer substrate 16 has a high thermal conductivity between 2 W/m·K and 500 W/m·K (higher than 10 W/m·K is desired), and a high electrical resistivity between 1E5 Ohm-cm and 1E14 Ohm-cm. Suitable substrate materials used to form the transfer substrate 16 may include sapphire, thermally conductive quartz and ceramic materials, such as aluminum nitride, boron nitride and the like. The transfer substrate 16 may also be formed of berylium oxide. A thickness of the transfer substrate 16 is based on the required thermal performance of the RF device 10, the device layout, the distance from the multilayer redistribution structure 18, as well as the specifics of the package and assembly. The transfer substrate 16 may have a thickness between 10 μm and 1000 μm.


In some applications, the transfer device die 12 may further include a barrier layer coupled between the top surface of the device region 14 and the transfer substrate 16 (not shown). This barrier layer may be formed of silicon nitride with a thickness between 100 Å and 5000 Å. The barrier layer is configured to provide an excellent barrier to moisture and impurities, which could diffuse into the channel 32 of the active layer 24 and cause reliability concerns in the device. In addition, the barrier layer may be configured to enhance adhesion between the device region 14 and the transfer substrate 16. Notice that, regardless of the presence of the barrier layer, the passivation layer 48, or the interfacial layer, silicon crystal, which has no germanium, nitrogen, or oxygen content, does not exist within the transfer substrate 16 or between the transfer substrate 16 and the top surface of the active layer 24. Each of the barrier layer, the passivation layer 48, and the interfacial layer is formed of silicon composite.


The BEOL portion 22 is underneath the FEOL portion 20 and includes multiple connecting layers 50 formed within dielectric layers 52. Some of the connecting layers 50 (for internal connection) are encapsulated by the dielectric layers 52 (not shown), while some of the connecting layers 50 have a bottom portion not covered by the dielectric layers 52. Certain connecting layers 50 are electrically connected to the FEOL portion 20. For the purpose of this illustration, one of the connecting layers 50 is connected to the source contact 36, and another connecting layer 50 is connected to the drain contact 38.


The multilayer redistribution structure 18, which is formed underneath the BEOL portion 22 of the transfer device die 12, includes a number of redistribution interconnections 54, a dielectric pattern 56, and a number of bump structures 58. Herein, each redistribution interconnection 54 is connected to a corresponding connecting layer 50 within the BEOL portion 22 and extends over a bottom surface of the BEOL portion 22. The connections between the redistribution interconnections 54 and the connecting layers 50 are solder-free. The dielectric pattern 56 is formed around and underneath each redistribution interconnection 54. Some of the redistribution interconnections 54 (connect the transfer device die 12 to other device components formed from the same wafer) may be encapsulated by the dielectric pattern 56 (not shown), while some of the redistribution interconnections 54 have a bottom portion exposed through the dielectric pattern 56. Each bump structure 58 is formed at a bottom surface of the multilayer redistribution structure 18 and electrically coupled to a corresponding redistribution interconnection 54 through the dielectric pattern 56. As such, the redistribution interconnections 54 are configured to connect the bump structures 58 to certain ones of the connecting layers 50 in the BEOL portion 22, which are electrically connected to the FEOL portion 20. Consequently, the bump structures 58 are electrically connected to the FEOL portion 20 via corresponding redistribution interconnections 54 and corresponding connecting layers 50. In addition, the bump structures 58 are separate from each other and protrude from the dielectric pattern 56.


In some applications, there may be extra redistribution interconnections (not shown) electrically coupled to the redistribution interconnections 54 through the dielectric pattern 56, and extra dielectric patterns (not shown) formed underneath the dielectric pattern 56, such that a bottom portion of some extra redistribution interconnections may be exposed. Consequently, each bump structure 58 is coupled to a corresponding extra redistribution interconnection through the extra dielectric pattern (not shown). Regardless of the level numbers of the redistribution interconnections and/or the dielectric pattern, the multilayer redistribution structure 18 may be free of glass fiber or glass-free. Herein, the glass fiber refers to individual glass strands twisted to become a larger grouping. These glass strands may then be woven into a fabric. The redistribution interconnections 54 may be formed of copper or other suitable metals. The dielectric pattern 56 may be formed of benzocyclobutene (BCB), polyimide, or other dielectric materials. The bump structures 58 may be solder balls or copper pillars. The multilayer redistribution structure 18 has a thickness between 2 μm and 300 μm.



FIG. 2 shows an alternative RF device 10A, which further includes a mold compound 60 compared to the RF device 10 shown in FIG. 1. Herein, the multilayer redistribution structure 18 may extend horizontally beyond the transfer device die 12, and the mold compound 60 resides over the multilayer redistribution structure 18 to encapsulate the transfer device die 12. In this embodiment, the redistribution interconnections 54 of the multilayer redistribution structure 18 may extend horizontally beyond the transfer device die 12, and the bump structures 58 of the multilayer redistribution structure 18 may not be confined within a periphery of the transfer device die 12. The mold compound 60 may be an organic epoxy resin system or the like.



FIGS. 3A-15 provide an exemplary wafer-level fabricating and packaging process that illustrates steps to fabricate the exemplary RF device 10 shown in FIG. 1. Although the exemplary steps are illustrated in a series, the exemplary steps are not necessarily order dependent. Some steps may be done in a different order than that presented. Further, processes within the scope of this disclosure may include fewer or more steps than those illustrated in FIGS. 3A-15.


Initially, a starting wafer 62 is provided as illustrated in FIGS. 3A and 3B. The starting wafer 62 includes a common silicon epitaxial layer 64, a common interfacial layer 66 over the common silicon epitaxial layer 64, and a silicon handle substrate 68 over the common interfacial layer 66. Herein, the common silicon epitaxial layer 64 is formed from a device grade silicon material, which has desirable silicon epitaxy characteristics to form electronic devices. The silicon handle substrate 68 may consist of conventional low cost, low resistivity, and high dielectric constant silicon, which may have a lattice constant about 5.431 at a temperature of 300K. The common interfacial layer 66 is formed of SiGe, which separates the common silicon epitaxial layer 64 from the silicon handle substrate 68.


At a fixed temperature, e.g., 300K, a lattice constant of relaxed silicon is 5.431 Å, while a lattice constant of relaxed Si1-xGex depends on the germanium concentration, such as (5.431+0.2x+0.027x2)Å. The lattice constant of relaxed SiGe is larger than the lattice constant of relaxed silicon. If the common interfacial layer 66 is directly grown under the silicon handle substrate 68, the lattice constant in the common interfacial layer 66 will be strained (reduced) by the silicon handle substrate 68. If the common silicon epitaxial layer 64 is directly grown under the common interfacial layer 66, the lattice constant in the common silicon epitaxial layer 64 may remain as the original relaxed form (about the same as the lattice constant in the silicon substrate). Consequently, the common silicon epitaxial layer 64 may not enhance electron mobility.


In one embodiment, a common buffer structure 70 may be formed between the silicon handle substrate 68 and the common interfacial layer 66, as illustrated in FIG. 3A. The common buffer structure 70 allows lattice constant transition from the silicon handle substrate 68 to the common interfacial layer 66. The common buffer structure 70 may include multiple layers and may be formed of SiGe with a vertically graded germanium concentration. The germanium concentration within the common buffer structure 70 may increase from 0% at a top side (next to the silicon handle substrate 68) to X % at a bottom side (next to the common interfacial layer 66). The X % may depend on the germanium concentration within the common interfacial layer 66, such as 15%, or 25%, or 30%, or 40%. The common interfacial layer 66, which herein is grown under the common buffer structure 70, may keep its lattice constant in relaxed form, and may not be strained (reduced) to match the lattice constant of the silicon handle substrate 68. The germanium concentration may be uniform throughout the common interfacial layer 66 and greater than 15%, 25%, 30%, or 40%, such that the lattice constant of relaxed SiGe in the common interfacial layer 66 is greater than 5.461, or greater than 5.482, or greater than 5.493, or greater than 5.515 at a temperature of 300K.


Herein, the common silicon epitaxial layer 64 is grown directly under the relaxed common interfacial layer 66, such that the common silicon epitaxial layer 64 has a lattice constant matching (stretching as) the lattice constant in the relaxed common interfacial layer 66. Consequently, the lattice constant in the strained common silicon epitaxial layer 64 may be greater than 5.461, or greater than 5.482, or greater than 5.493, or greater than 5.515 at a temperature of 300K, and therefore greater than the lattice constant in a relaxed silicon epitaxial layer (e.g., 5.431 at a temperature of 300K). The strained common silicon epitaxial layer 64 may have higher electron mobility than a relaxed silicon epitaxial layer. A thickness of the common silicon epitaxial layer 64 may be between 700 nm and 2000 nm, a thickness of the common interfacial layer 66 may be between 200 Å and 600 Å, a thickness of the common buffer structure 70 may be between 100 nm and 1000 nm, and a thickness of the silicon handle substrate 68 may be between 200 μm and 700 μm.


In another embodiment, the common interfacial layer 66 may be formed directly under the silicon handle substrate 68, and the common buffer structure 70 may be formed between the common interfacial layer 66 and the common silicon epitaxial layer 64, as illustrated in FIG. 3B. Herein, the lattice constant of the common interfacial layer 66 may be strained (reduced) by the silicon handle substrate 68. The common buffer structure 70 may still be formed of SiGe with a vertically graded germanium concentration. The germanium concentration within the common buffer structure 70 may increase from 0% at a top side (next to the common interfacial layer 66) to X % at a bottom side (next to the common silicon epitaxial layer 64). The X % may be 15%, or 25%, or 30%, or 40%. The lattice constant at the bottom side of the common buffer structure 70 is greater than a lattice constant at the top side of the common buffer structure 70. The common silicon epitaxial layer 64, which herein is grown under the common buffer structure 70, has a lattice constant matching (stretching as) the lattice constant at the bottom side of the common buffer structure 70. Consequently, the lattice constant in the strained common silicon epitaxial layer 64 is greater than the lattice constant in a relaxed silicon epitaxial layer (e.g., 5.431 at a temperature of 300K).


In some applications, the common buffer structure 70 is omitted (not shown). The common interfacial layer 66 is grown directly under the silicon handle substrate 68 and the common silicon epitaxial layer 64 is grown directly under the common interfacial layer 66. As such, the lattice constant in the common interfacial layer 66 is strained (reduced) to match the lattice constant in the silicon handle substrate 68, and the lattice constant in the common silicon epitaxial layer 64 remains as the original relaxed form (about the same as the lattice constant in the silicon substrate).


Next, a complementary metal-oxide-semiconductor (CMOS) process is performed on the starting wafer 62 (in FIG. 3A) to provide a precursor wafer 72 with a number of intact device regions 14′, as illustrated in FIG. 4. Each intact device region 14′ includes an intact FEOL portion 20′, which has the active layer 24, the contact layer 26, and intact isolation sections 44′, and the BEOL portion 22 underneath the intact FEOL portion 20′. For the purpose of this illustration, the intact FEOL portion 20′ is configured to provide a switch FET. In different applications, the intact FEOL portion 20′ may have different FET configurations or provide different device components, such as a diode, a capacitor, a resistor, and/or an inductor.


In one embodiment, the intact isolation sections 44′ of each intact device region 14′ extend through the common silicon epitaxial layer 64, the common interfacial layer 66, and the common buffer structure 70, and extend into the silicon handle substrate 68. As such, the common buffer structure 70 is separated into a number of individual buffer structures 70I, the common interfacial layer 66 is separated into a number of individual interfacial layers 66I, and the common silicon epitaxial layer 64 is separated into a number of individual silicon epitaxial layers 64I. Each individual silicon epitaxial layer 64I is used to form a corresponding active layer 24 in one intact device region 14′. The intact isolation sections 44′ may be formed by shallow trench isolation (STI). If the active layer 24 is formed from one individual silicon epitaxial layer 64I with strained (increased) lattice constant, the FET based on the active layer 24 may have a faster switching speed (lower ON-resistance) than a FET formed from a relaxed silicon epitaxial layer with relaxed lattice constant.


The top surface of the active layer 24 is in contact with a corresponding interfacial layer 66I, which is underneath a corresponding buffer structure 70I. The silicon handle substrate 68 resides over each individual buffer structure 70I, and portions of the silicon handle substrate 68 may reside over the intact isolation sections 44′. The BEOL portion 22 of the intact device region 14′, which includes at least the multiple connecting layers 50 and the dielectric layers 52, is formed under the contact layer 26 of the intact FEOL portion 20′. Bottom portions of certain connecting layers 50 are exposed through the dielectric layers 52 at the bottom surface of the BEOL portion 22.


After the precursor wafer 72 is completed, the precursor wafer 72 is then bonded to a temporary carrier 74, as illustrated in FIG. 5. The precursor wafer 72 may be bonded to the temporary carrier 74 via a bonding layer 76, which provides a planarized surface to the temporary carrier 74. The temporary carrier 74 may be a thick silicon wafer from a cost and thermal expansion point of view, but may also be constructed of glass, sapphire, or any other suitable carrier material. The bonding layer 76 may be a span-on polymeric adhesive film, such as the Brewer Science WaferBOND line of temporary adhesive materials.


The silicon handle substrate 68 is then selectively removed to provide an etched wafer 78, as illustrated in FIG. 6. The selective removal stops at each individual buffer structure 70I or at each interfacial layer 66I. The removal of the silicon handle substrate 68 may provide the opening 79 over each active layer 24 and within the intact isolation sections 44′. Removing the silicon handle substrate 68 may be provided by a mechanical grinding process and an etching process, or provided by the etching process itself. As an example, the silicon handle substrate 68 may be ground to a thinner thickness to reduce the following etching time. An etching process is then performed to at least completely remove the remaining silicon handle substrate 68. Since the silicon handle substrate 68, the individual buffer structure 70I, and the individual interfacial layer 66I have different germanium concentrations, they may have different reactions to a same etching technique (for instance: different etching speeds with a same etchant). Consequently, the etching system may be capable of identifying the presence of the individual buffer structures 70I or the individual interfacial layers 66I (presence of germanium), and capable of indicating when to stop the etching process. Typically, the higher the germanium concentration, the better the etching selectivity between the silicon handle substrate 68 and the individual buffer structures 70I (or between the silicon handle substrate 68 and the individual interfacial layers 66I). The etching process may be provided by a wet etching system with an etchant chemistry, which is at least one of TMAH, KOH, NaOH, ACH, and XeF2, or a dry etching system, such as a reactive ion etching system with a chlorine based gas chemistry.


During the removal process, the intact isolation sections 44′ are not removed and protect sides of each active layer 24. The bonding layer 76 and the temporary carrier 74 protect the bottom surface of each BEOL portion 22. Herein, a top surface of each intact isolation section 44′ and the top surface of each individual buffer structure 70I (or each individual interfacial layer 66I) are exposed after the removal step. Due to the narrow gap nature of the SiGe material, it is possible that the individual buffer structures 70I and/or the individual interfacial layers 66I may be conductive (for some type of devices). The individual buffer structures 70I and/or the individual interfacial layers 66I may cause appreciable leakage between the source 28 and the drain 30 of the active layer 24. Therefore, in some applications, such as FET switch applications, it is desirable to also remove the individual buffer structures 70I and the individual interfacial layers 66I, as illustrated in FIG. 7. Each active layer 24 is exposed at a bottom of a corresponding opening 79. The individual buffer structures 70I and the individual interfacial layers 66I may be removed by the same etching process used to remove the silicon handle substrate 68, or may be removed by another etching process, such as a chlorine-base dry etching system. Herein, if each individual interfacial layer 66I is thin enough, it may not cause any appreciable leakage between the source 28 and the drain 30 of the FEOL portion 20. In that case, the individual interfacial layers 66I may be left (not shown). Similarly, if both the individual interfacial layer 66I and the individual buffer structure 70I are thin enough, they may not cause any appreciable leakage between the source 28 and the drain 30 of the FEOL portion 20. Such that, the individual interfacial layers 66I and the individual buffer structures 70I may be left (not shown).


In some applications, after the removal of the silicon handle substrate 68, the individual buffer structures 70I, and the individual interfacial layers 66I, each active layer 24 may be passivated to achieve proper low levels of current leakage in the device. The passivation layer 48 may be formed over each active layer 24 and within the opening 79 of each intact FEOL portion 20′, as illustrated in FIG. 8. The passivation layer 48 may be formed of silicon dioxide by a plasma enhanced deposition process, an anodic oxidation process, an ozone-based oxidation process, and a number of other proper techniques. The passivation layer 48 is configured to terminate the surface bonds at the top surface of the active layer 24, which may be responsible for unwanted leakage.


Next, the intact isolation sections 44′ are thinned down as the isolation sections 44 to provide a thinned wafer 80 with a planarized top surface, as illustrated in FIG. 9. The thinned wafer 80 includes a number of the device regions 14, and a combination of a top surface of each device region 14 forms the planarized top surface of the thinned wafer 80. Herein, if the passivation layer 48 is applied, the top surface of each passivation layer 48 and the top surface of each isolation section 44 are coplanar. If the passivation layer 48 is omitted, and the individual interfacial layer 66I (and/or the individual buffer structure 70I exist), the top surface of each isolation section 44 and the top surface of each individual interfacial layer 66I (or the top surface of each individual buffer structure 70I) are coplanar (not shown). If the passivation layer 48, the individual buffer structures 70I, and the individual interfacial layer 66I are omitted, the top surface of each active layer 24 and the top surface of each isolation section 44 are coplanar (not shown). Regardless of the presence of the passivation layer 48, the individual buffer structures 70I, and/or the individual interfacial layer 66I, the top surface of each device region 14 is always planarized. The planarization step may be accomplished by a chemical-mechanical polishing (CMP) process with a suitable slurry and polishing wheel, or the like.


The transfer substrate 16 is then bonded to the top surface of the thinned wafer 80 to provide a transfer device wafer 82, as illustrated in FIG. 10. Since the top surface of the thinned wafer 80 is planarized, the transfer device wafer 82 is devoid of any voids or defects at bonding areas. The transfer device wafer 82 includes a number of the transfer device dies 12, each of which at least includes the device region 14 and a portion of the transfer substrate 16. The transfer substrate 16 has a high thermal conductivity between 2 W/m·K and 500 W/m·K, and a high electrical resistivity between 1E5 Ohm-cm and 1E14 Ohm-cm. The transfer substrate 16 may be formed of sapphire, thermally conductive quartz, ceramic materials (such as aluminum nitride, boron nitride and the like), or berylium oxide. The transfer substrate 16 may have a thickness between 10 μm and 1000 μm. A number of suitable low temperature bonding processes may be employed in this step, such as anodic bonding, plasma bonding, polymeric adhesive bonding and the like. During the bonding process of the transfer substrate 16, the temporary carrier 74 provides mechanical strength and rigidity to the thinned wafer 80.


In some applications, there may be a barrier layer formed over the top surface of the thinned wafer 80 before bonding the transfer substrate 16 (not shown). This barrier layer may be formed of silicon nitride with a thickness between 100 Å and 5000 Å. The barrier layer is configured to provide an excellent barrier to moisture and impurities, which could diffuse into the channel 32 of each active layer 24. In addition, the barrier layer may be configured to enhance adhesion between the thinned wafer 80 and the transfer substrate 16. Notice that, regardless of the presence of the barrier layer, the passivation layer 48, or the individual interfacial layer 66I, silicon crystal, which has no germanium, nitrogen, or oxygen content, does not exist within the transfer substrate 16 or between the transfer substrate 16 and the top surface of each active layer 24. Each of the barrier layer, the passivation layer 48, and the individual interfacial layer 66I is formed of silicon composite.


The temporary carrier 74 is then debonded from the transfer device wafer 82, and the bonding layer 76 is cleaned from the transfer device wafer 82, as illustrated in FIG. 11. A number of debonding processes and cleaning processes may be applied depending on the nature of the temporary carrier 74 and the bonding layer 76 chosen in the earlier steps. For instance, the temporary carrier 74 may be mechanically debonded using a lateral blade process with the stack heated to a proper temperature. Other suitable processes involve radiation of UV light through the temporary carrier 74 if it is formed of a transparent material, or chemical debonding using a proper solvent. The bonding layer 76 may be eliminated by wet or dry etching processes, such as proprietary solvents and plasma washing. After the debonding and cleaning process, the bottom portions of certain ones of the connecting layers 50, which may function as input/output (I/O) ports of each transfer device die 12, are exposed through the dielectric layers 52 at the bottom surface of each BEOL portion 22. As such, each transfer device die 12 in the transfer device wafer 82 may be electrically verified to be working properly at this point.


With reference to FIGS. 12 through 14, the multilayer redistribution structure 18 is formed underneath the transfer device wafer 82 according to one embodiment of the present disclosure. Although the redistribution steps are illustrated in a series, the redistribution steps are not necessarily order dependent. Some steps may be done in a different order than that presented. Further, redistribution steps within the scope of this disclosure may include fewer or more steps than those illustrated in FIGS. 12-14.


A number of the redistribution interconnections 54 are firstly formed underneath each BEOL portion 22, as illustrated in FIG. 12. Each redistribution interconnection 54 is electrically coupled to the exposed bottom portion of the corresponding connecting layer 50 within the BEOL portion 22, and may extend over the bottom surface of the BEOL portion 22. The connections between the redistribution interconnections 54 and the connecting layers 50 are solder-free. The dielectric pattern 56 is then formed underneath each BEOL portion 22 to partially encapsulate each redistribution interconnection 54, as illustrated in FIG. 13. As such, the bottom portion of each redistribution interconnection 54 is exposed through the dielectric pattern 56. In different applications, there may be extra redistribution interconnections (not shown) electrically coupled to the redistribution interconnection 54 through the dielectric pattern 56, and extra dielectric patterns (not shown) formed underneath the dielectric pattern 56, such that a bottom portion of each extra redistribution interconnection is exposed.


Next, a number of the bump structures 58 are formed to complete the multilayer redistribution structure 18 and provide a wafer-level fan-out (WLFO) package 84, as illustrated in FIG. 14. Each bump structure 58 is formed at the bottom of the multilayer redistribution structure 18 and electrically coupled to an exposed bottom portion of the corresponding redistribution interconnection 54 through the dielectric pattern 56. Consequently, the redistribution interconnections 54 are configured to connect the bump structures 58 to certain ones of the connecting layer 50 in the BEOL portion 22, which are electrically connected to the FEOL portion 20. As such, the bump structures 58 are electrically connected to the FEOL portion 20 via corresponding redistribution interconnections 54 and corresponding connecting layers 50. In addition, the bump structures 58 are separate from each other and protrude vertically from the dielectric pattern 56.


The multilayer redistribution structure 18 may be free of glass fiber or glass-free. Herein, the glass fiber refers to individual glass strands twisted to become a larger grouping. These glass strands may then be woven into a fabric. The redistribution interconnections 54 may be formed of copper or other suitable metals, the dielectric pattern 56 may be formed of BCB, polyimide, or other dielectric materials, and the bump structures 58 may be solder balls or copper pillars. The multilayer redistribution structure 18 has a thickness between 2 μm and 300 μm. FIG. 15 shows a final step to singulate the WLFO package 84 into individual RF devices 10. The singulating step may be provided by a probing and dicing process at certain isolation sections 44.


In another embodiment, FIGS. 16-21 provide an alternative process that illustrates steps to fabricate the alternative RF device 10A shown in FIG. 2. Although the exemplary steps are illustrated in a series, the exemplary steps are not necessarily order dependent. Some steps may be done in a different order than that presented. Further, processes within the scope of this disclosure may include fewer or more steps than those illustrated in FIGS. 16-21.


After the debonding and cleaning process to provide the clean transfer device wafer 82 as shown in FIG. 11, a singulating step is performed to singulate the transfer device wafer 82 into individual transfer device dies 12, as illustrated in FIG. 16. This singulating step may be provided by a probing and dicing process at certain isolation sections 44. Herein, each transfer device die 12 may have a same height and at least includes the device region 14 with the FEOL portion 20 and the BEOL portion 22 and the transfer substrate 16.


Next, the mold compound 60 is applied around and over the transfer device dies 12 to provide a mold device wafer 86, as illustrated in FIG. 17. The mold compound 60 encapsulates a top surface and side surfaces of each transfer device die 12, while a bottom surface of each transfer device die 12, which is the bottom surface of the BEOL portion 22, is exposed. A bottom surface of the mold device wafer 86 is a combination of the bottom surface of each transfer device die 12 and a bottom surface of the mold compound 60. Herein, the bottom portions of certain ones of the connecting layers 50 remain exposed at the bottom surface of each transfer device die 12. The mold compound 60 may be applied by various procedures, such as sheet molding, overmolding, compression molding, transfer molding, dam fill encapsulation, or screen print encapsulation. Unlike the transfer substrate 16, the mold compound 60 does not have thermal conductivity or electrical resistivity requirements. The mold compound 60 may be an organic epoxy resin system or the like. A curing process (not shown) is then used to harden the mold compound 60. The curing temperature is between 100° C. and 320° C. depending on which material is used as the mold compound 60. A grinding process (not shown) may be performed to provide a planarized top surface of the mold compound 60.


With reference to FIGS. 18 through 20, the multilayer redistribution structure 18 is formed according to one embodiment of the present disclosure. Although the redistribution steps are illustrated in a series, the redistribution steps are not necessarily order dependent. Some steps may be done in a different order than that presented. Further, redistribution steps within the scope of this disclosure may include fewer or more steps than those illustrated in FIGS. 18-20.


A number of the redistribution interconnections 54 are firstly formed underneath the mold device wafer 86, as illustrated in FIG. 18. Each redistribution interconnection 54 is electrically coupled to the corresponding connecting layer 50 within the BEOL portion 22, and may extend horizontally beyond the corresponding transfer device die 12 and underneath the mold compound 60. The connections between the redistribution interconnections 54 and the connecting layers 50 are solder-free. The dielectric pattern 56 is then formed underneath the mold device wafer 86 to partially encapsulate each redistribution interconnection 54, as illustrated in FIG. 19. As such, the bottom portion of each redistribution interconnection 54 is exposed through the dielectric pattern 56. In different applications, there may be extra redistribution interconnections (not shown) electrically coupled to the redistribution interconnection 54 through the dielectric pattern 56, and extra dielectric patterns (not shown) formed underneath the dielectric pattern 56, such that a bottom portion of each extra redistribution interconnection is exposed.


Next, a number of the bump structures 58 are formed to complete the multilayer redistribution structure 18 and provide an alternative WLFO package 84A, as illustrated in FIG. 20. Each bump structure 58 is formed at the bottom of the multilayer redistribution structure 18 and electrically coupled to an exposed bottom portion of the corresponding redistribution interconnection 54 through the dielectric pattern 56. Consequently, the redistribution interconnections 54 are configured to connect the bump structures 58 to certain ones of the connecting layers 50 in the BEOL portion 22, which are electrically connected to the FEOL portion 20. As such, the bump structures 58 are electrically connected to the FEOL portion 20 via corresponding redistribution interconnections 54 and corresponding connecting layers 50. Herein, the bump structures 58 may not be confined within a periphery of a corresponding transfer device die 12. In addition, the bump structures 58 are separate from each other and protrude vertically from the dielectric pattern 56.



FIG. 21 shows a final step to singulate the alternative WLFO package 84A into individual alternative RF devices 10A. The singulating step may be provided by a probing and dicing process at portions of the mold compound 60, which are horizontally between adjacent transfer device dies 12.


Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. An apparatus comprising: a transfer device die comprising a device region and a transfer substrate, wherein: the device region includes a passivation layer, a front-end-of-line (FEOL) portion, and a back-end-of-line (BEOL) portion underneath the FEOL portion, wherein the FEOL portion comprises isolation sections and an active layer, which is surrounded by the isolation sections and does not extend vertically beyond the isolation sections;the passivation layer is formed of silicon dioxide, over the active layer, and surrounded by the isolation sections;a top surface of each isolation section and a top surface of the passivation layer are coplanar, and form a top surface of the device region, which is planarized; andthe transfer substrate resides over the top surface of the device region, wherein silicon crystal, which has no germanium, nitrogen, or oxygen content, does not exist within the transfer substrate or between the transfer substrate and the active layer within the device region; anda multilayer redistribution structure formed underneath the BEOL portion of the transfer device die, wherein the multilayer redistribution structure comprises a plurality of bump structures, which are on a bottom surface of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
  • 2. The apparatus of claim 1 wherein: the BEOL portion comprises connecting layers;the FEOL portion further comprises a contact layer, wherein the active layer and the isolation sections reside over the contact layer, and the BEOL portion resides underneath the contact layer; andthe multilayer redistribution structure further comprises redistribution interconnections, wherein the plurality of bump structures are electrically coupled to the FEOL portion of the transfer device die via the redistribution interconnections within the multilayer redistribution structure and the connecting layers within the BEOL portion.
  • 3. The apparatus of claim 1 wherein the transfer device die further comprises a barrier layer, which is formed of silicon nitride, coupled between the top surface of the device region and the transfer substrate.
  • 4. The apparatus of claim 1 wherein the active layer is formed from a strained silicon epitaxial layer, in which a lattice constant of silicon is greater than 5.461 at a temperature of 300K.
  • 5. The apparatus of claim 1 wherein the FEOL portion is configured to provide at least one of a switch field-effect transistor (FET), a diode, a capacitor, a resistor, or an inductor.
  • 6. The apparatus of claim 1 wherein a top surface of each isolation section and a top surface of the active layer are coplanar and form the top surface of the device region.
  • 7. The apparatus of claim 1 wherein the transfer substrate has a thermal conductivity greater than 10 W/m·K and an electrical resistivity greater than 1E5 Ohm-cm.
  • 8. The apparatus of claim 7 wherein the transfer substrate is formed of one of a group consisting of sapphire, thermally conductive quartz, aluminum nitride, boron nitride, and berylium oxide.
  • 9. The apparatus of claim 7 wherein the transfer substrate has a thickness between 10 μm and 1000 μm.
  • 10. An apparatus comprising: a transfer device die comprising a device region and a transfer substrate, wherein: the device region includes a passivation layer, a front-end-of-line (FEOL) portion, and a back-end-of-line (BEOL) portion underneath the FEOL portion, wherein the FEOL portion comprises isolation sections and an active layer, which is surrounded by the isolation sections and does not extend vertically beyond the isolation sections;the passivation layer is formed of silicon dioxide, over the active layer, and surrounded by the isolation sections;a top surface of each isolation section and a top surface of the passivation layer are coplanar, and form a top surface of the device region, which is planarized; andthe transfer substrate resides over the top surface of the device region, wherein silicon crystal, which has no germanium, nitrogen, or oxygen content, does not exist within the transfer substrate or between the transfer substrate and the active layer within the device region;a multilayer redistribution structure formed underneath the BEOL portion of the transfer device die, wherein: the multilayer redistribution structure extends horizontally beyond the transfer device die; andthe multilayer redistribution structure comprises a plurality of bump structures, which are on a bottom surface of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die; anda mold compound residing over the multilayer redistribution structure to encapsulate the transfer device die.
  • 11. The apparatus of claim 10 wherein: the BEOL portion comprises connecting layers;the FEOL portion further comprises a contact layer, wherein the active layer and the isolation sections reside over the contact layer, and the BEOL portion resides underneath the contact layer; andthe multilayer redistribution structure further comprises redistribution interconnections, wherein the plurality of bump structures is electrically coupled to the FEOL portion of the transfer device die via the redistribution interconnections within the multilayer redistribution structure and the connecting layers within the BEOL portion.
  • 12. The apparatus of claim 10 wherein the transfer device die further comprises a barrier layer, which is formed of silicon nitride, coupled between the top surface of the device region and the transfer substrate.
  • 13. The apparatus of claim 10 wherein the active layer is formed from a strained silicon epitaxial layer, in which a lattice constant of silicon is greater than 5.461 at a temperature of 300K.
  • 14. The apparatus of claim 10 wherein the FEOL portion is configured to provide at least one of a switch field-effect transistor (FET), a diode, a capacitor, a resistor, or an inductor.
  • 15. The apparatus of claim 10 wherein a top surface of each isolation section and a top surface of the active layer are coplanar, and form the top surface of the device region.
  • 16. The apparatus of claim 10 wherein the transfer substrate has a thermal conductivity greater than 10 W/m·K and an electrical resistivity greater than 1E5 Ohm-cm.
  • 17. The apparatus of claim 16 wherein the transfer substrate is formed of one of a group consisting of sapphire, thermally conductive quartz, aluminum nitride, boron nitride, and berylium oxide.
  • 18. The apparatus of claim 16 wherein the transfer substrate has a thickness between 10 μm and 1000 μm.
RELATED APPLICATIONS

This application claims the benefit of provisional patent application Ser. No. 62/866,926, filed Jun. 26, 2019, and provisional patent application Ser. No. 62/795,804, filed Jan. 23, 2019, the disclosures of which are hereby incorporated herein by reference in their entireties. The present application is related to concurrently filed U.S. patent application Ser. No. 16/678,551, filed on Nov. 8, 2019, entitled “RF DEVICES WITH ENHANCED PERFORMANCE AND METHODS OF FORMING THE SAME,” U.S. patent application Ser. No. 16/678,573, filed on Nov. 8. 2019, entitled “RF DEVICES WITH ENHANCED PERFORMANCE AND METHODS OF FORMING THE SAME,” U.S. patent application Ser. No. 16/678,586, filed on Nov. 8, 2019, entitled “RF DEVICES WITH ENHANCED PERFORMANCE AND METHODS OF FORMING THE SAME,” and U.S. patent application Ser. No. 16/678,619, filed on Nov. 8, 2019, entitled “RF DEVICES WITH ENHANCED PERFORMANCE AND METHODS OF FORMING THE SAME,” the disclosures of which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (299)
Number Name Date Kind
4093562 Kishimoto Jun 1978 A
4366202 Borovsky Dec 1982 A
5013681 Godbey et al. May 1991 A
5061663 Bolt et al. Oct 1991 A
5069626 Patterson et al. Dec 1991 A
5294295 Gabriel Mar 1994 A
5362972 Yazawa et al. Nov 1994 A
5391257 Sullivan et al. Feb 1995 A
5459368 Onishi et al. Oct 1995 A
5646432 Iwaki et al. Jul 1997 A
5648013 Uchida et al. Jul 1997 A
5699027 Tsuji et al. Dec 1997 A
5709960 Mays et al. Jan 1998 A
5729075 Strain Mar 1998 A
5831369 Fürbacher et al. Nov 1998 A
5920142 Onishi et al. Jul 1999 A
6072557 Kishimoto Jun 2000 A
6084284 Adamic, Jr. Jul 2000 A
6154366 Ma et al. Nov 2000 A
6154372 Kalivas et al. Nov 2000 A
6235554 Akram et al. May 2001 B1
6236061 Walpita May 2001 B1
6268654 Glenn et al. Jul 2001 B1
6271469 Ma et al. Aug 2001 B1
6377112 Rozsypal Apr 2002 B1
6423570 Ma et al. Jul 2002 B1
6426559 Bryan et al. Jul 2002 B1
6441498 Song Aug 2002 B1
6446316 Fürbacher et al. Sep 2002 B1
6578458 Akram et al. Jun 2003 B1
6649012 Masayuki et al. Nov 2003 B2
6703688 Fitzergald Mar 2004 B1
6713859 Ma Mar 2004 B1
6841413 Liu et al. Jan 2005 B2
6864156 Conn Mar 2005 B1
6902950 Ma et al. Jun 2005 B2
6943429 Glenn et al. Sep 2005 B1
6964889 Ma et al. Nov 2005 B2
6992400 Tikka et al. Jan 2006 B2
7042072 Kim et al. May 2006 B1
7049692 Nishimura et al. May 2006 B2
7109635 McClure et al. Sep 2006 B1
7183172 Lee et al. Feb 2007 B2
7190064 Wakabayashi Mar 2007 B2
7238560 Sheppard et al. Jul 2007 B2
7279750 Jobetto Oct 2007 B2
7288435 Aigner et al. Oct 2007 B2
7307003 Reif et al. Dec 2007 B2
7393770 Wood et al. Jul 2008 B2
7402901 Hatano et al. Jul 2008 B2
7427824 Iwamoto et al. Sep 2008 B2
7489032 Jobetto Feb 2009 B2
7596849 Carpenter et al. Oct 2009 B1
7619347 Bhattacharjee Nov 2009 B1
7635636 McClure et al. Dec 2009 B2
7714535 Yamazaki et al. May 2010 B2
7749882 Kweon et al. Jul 2010 B2
7790543 Abadeer et al. Sep 2010 B2
7843072 Park et al. Nov 2010 B1
7855101 Furman et al. Dec 2010 B2
7868419 Kerr et al. Jan 2011 B1
7910405 Okada et al. Mar 2011 B2
7960218 Ma et al. Jun 2011 B2
8004089 Jobetto Aug 2011 B2
8183151 Lake May 2012 B2
8420447 Tay et al. Apr 2013 B2
8503186 Lin et al. Aug 2013 B2
8643148 Lin et al. Feb 2014 B2
8658475 Kerr Feb 2014 B1
8664044 Jin et al. Mar 2014 B2
8772853 Hong et al. Jul 2014 B2
8791532 Graf et al. Jul 2014 B2
8802495 Kim et al. Aug 2014 B2
8803242 Marino et al. Aug 2014 B2
8816407 Kim et al. Aug 2014 B2
8835978 Mauder et al. Sep 2014 B2
8906755 Hekmatshoartabari et al. Dec 2014 B1
8921990 Park et al. Dec 2014 B2
8927968 Cohen et al. Jan 2015 B2
8941248 Lin et al. Jan 2015 B2
8963321 Lenniger et al. Feb 2015 B2
8983399 Kawamura et al. Mar 2015 B2
9064883 Meyer Jun 2015 B2
9165793 Wang et al. Oct 2015 B1
9214337 Carroll et al. Dec 2015 B2
9349700 Hsieh et al. May 2016 B2
9368429 Ma et al. Jun 2016 B2
9406637 Wakisaka Aug 2016 B2
9461001 Tsai et al. Oct 2016 B1
9520428 Fujimori Dec 2016 B2
9530709 Leipold et al. Dec 2016 B2
9613831 Morris et al. Apr 2017 B2
9646856 Meyer et al. May 2017 B2
9653428 Hiner et al. May 2017 B1
9786586 Shih Oct 2017 B1
9812350 Costa Nov 2017 B2
9824951 Leipold et al. Nov 2017 B2
9824974 Gao et al. Nov 2017 B2
9859254 Yu et al. Jan 2018 B1
9875971 Bhushan et al. Jan 2018 B2
9941245 Skeete et al. Apr 2018 B2
10134837 Fanelli et al. Nov 2018 B1
10727212 Moon Jul 2020 B2
10773952 Costa Sep 2020 B2
10784348 Fanelli et al. Sep 2020 B2
10882740 Costa Jan 2021 B2
20010004131 Masayuki et al. Jun 2001 A1
20020070443 Mu et al. Jun 2002 A1
20020074641 Towle et al. Jun 2002 A1
20020127769 Ma et al. Sep 2002 A1
20020127780 Ma et al. Sep 2002 A1
20020137263 Towle et al. Sep 2002 A1
20020185675 Furukawa Dec 2002 A1
20030207515 Tan et al. Nov 2003 A1
20040021152 Nguyen et al. Feb 2004 A1
20040164367 Park Aug 2004 A1
20040166642 Chen et al. Aug 2004 A1
20040219765 Reif et al. Nov 2004 A1
20050037595 Nakahata Feb 2005 A1
20050077511 Fitzergald Apr 2005 A1
20050079686 Aigner et al. Apr 2005 A1
20050212419 Vazan et al. Sep 2005 A1
20060057782 Gardes et al. Mar 2006 A1
20060099781 Beaumont et al. May 2006 A1
20060105496 Chen et al. May 2006 A1
20060108585 Gan et al. May 2006 A1
20060228074 Lipson et al. Oct 2006 A1
20060261446 Wood et al. Nov 2006 A1
20070020807 Geefay et al. Jan 2007 A1
20070045738 Jones et al. Mar 2007 A1
20070069393 Asahi et al. Mar 2007 A1
20070075317 Kato et al. Apr 2007 A1
20070121326 Nall et al. May 2007 A1
20070158746 Ohguro Jul 2007 A1
20070181992 Lake Aug 2007 A1
20070190747 Humpston et al. Aug 2007 A1
20070194342 Kinzer Aug 2007 A1
20070252481 Iwamoto et al. Nov 2007 A1
20070276092 Kanae et al. Nov 2007 A1
20080050852 Hwang et al. Feb 2008 A1
20080050901 Kweon et al. Feb 2008 A1
20080164528 Cohen et al. Jul 2008 A1
20080251927 Zhao et al. Oct 2008 A1
20080265978 Englekirk Oct 2008 A1
20080272497 Lake Nov 2008 A1
20080277800 Hwang et al. Nov 2008 A1
20080315372 Kuan et al. Dec 2008 A1
20090008714 Chae Jan 2009 A1
20090010056 Kuo et al. Jan 2009 A1
20090014856 Knickerbocker Jan 2009 A1
20090090979 Zhu et al. Apr 2009 A1
20090179266 Abadeer et al. Jul 2009 A1
20090243097 Koroku et al. Oct 2009 A1
20090261460 Kuan et al. Oct 2009 A1
20090302484 Lee et al. Dec 2009 A1
20100003803 Oka et al. Jan 2010 A1
20100012354 Hedin et al. Jan 2010 A1
20100029045 Ramanathan et al. Feb 2010 A1
20100045145 Tsuda Feb 2010 A1
20100081232 Furman et al. Apr 2010 A1
20100081237 Wong et al. Apr 2010 A1
20100109122 Ding et al. May 2010 A1
20100120204 Kunimoto May 2010 A1
20100127340 Sugizaki May 2010 A1
20100173436 Ouellet et al. Jul 2010 A1
20100200919 Kikuchi Aug 2010 A1
20100314637 Kim et al. Dec 2010 A1
20110003433 Harayama et al. Jan 2011 A1
20110026232 Lin et al. Feb 2011 A1
20110036400 Murphy et al. Feb 2011 A1
20110062549 Lin Mar 2011 A1
20110068433 Kim et al. Mar 2011 A1
20110102002 Riehl et al. May 2011 A1
20110171792 Chang et al. Jul 2011 A1
20110272800 Chino Nov 2011 A1
20110272824 Pagaila Nov 2011 A1
20110294244 Hattori et al. Dec 2011 A1
20120003813 Chuang et al. Jan 2012 A1
20120045871 Lee et al. Feb 2012 A1
20120068276 Lin et al. Mar 2012 A1
20120094418 Grama et al. Apr 2012 A1
20120098074 Lin et al. Apr 2012 A1
20120104495 Zhu et al. May 2012 A1
20120119346 Im et al. May 2012 A1
20120153393 Liang et al. Jun 2012 A1
20120168863 Zhu et al. Jul 2012 A1
20120256260 Cheng et al. Oct 2012 A1
20120292700 Khakifirooz et al. Nov 2012 A1
20120299105 Cai et al. Nov 2012 A1
20130001665 Zhu et al. Jan 2013 A1
20130015429 Hong et al. Jan 2013 A1
20130049205 Meyer et al. Feb 2013 A1
20130099315 Zhu et al. Apr 2013 A1
20130105966 Kelkar et al. May 2013 A1
20130147009 Kim Jun 2013 A1
20130155681 Nall et al. Jun 2013 A1
20130196483 Dennard et al. Aug 2013 A1
20130200456 Zhu et al. Aug 2013 A1
20130221493 Kim et al. Aug 2013 A1
20130241040 Tojo et al. Sep 2013 A1
20130280826 Scanlan et al. Oct 2013 A1
20130299871 Mauder et al. Nov 2013 A1
20140015131 Meyer et al. Jan 2014 A1
20140035129 Stuber et al. Feb 2014 A1
20140134803 Kelly et al. May 2014 A1
20140168014 Chih et al. Jun 2014 A1
20140197530 Meyer et al. Jul 2014 A1
20140210314 Bhattacharjee et al. Jul 2014 A1
20140219604 Hackler, Sr. et al. Aug 2014 A1
20140252566 Kerr et al. Sep 2014 A1
20140252567 Carroll et al. Sep 2014 A1
20140264813 Lin et al. Sep 2014 A1
20140264818 Lowe, Jr. et al. Sep 2014 A1
20140306324 Costa et al. Oct 2014 A1
20140327003 Fuergut et al. Nov 2014 A1
20140327150 Jung et al. Nov 2014 A1
20140346573 Adam et al. Nov 2014 A1
20140356602 Oh et al. Dec 2014 A1
20150015321 Dribinsky et al. Jan 2015 A1
20150021754 Lin et al. Jan 2015 A1
20150097302 Wakisaka et al. Apr 2015 A1
20150108666 Engelhardt et al. Apr 2015 A1
20150115416 Costa et al. Apr 2015 A1
20150130045 Tseng et al. May 2015 A1
20150136858 Finn et al. May 2015 A1
20150197419 Cheng et al. Jul 2015 A1
20150235990 Cheng et al. Aug 2015 A1
20150235993 Cheng et al. Aug 2015 A1
20150243881 Sankman et al. Aug 2015 A1
20150255368 Costa Sep 2015 A1
20150262844 Meyer et al. Sep 2015 A1
20150279789 Mahajan et al. Oct 2015 A1
20150311132 Kuo et al. Oct 2015 A1
20150364344 Yu et al. Dec 2015 A1
20150380394 Jang et al. Dec 2015 A1
20150380523 Hekmatshoartabari et al. Dec 2015 A1
20160002510 Champagne et al. Jan 2016 A1
20160056544 Garcia et al. Feb 2016 A1
20160079137 Leipold et al. Mar 2016 A1
20160093580 Scanlan et al. Mar 2016 A1
20160100489 Costa et al. Apr 2016 A1
20160126111 Leipold et al. May 2016 A1
20160126196 Leipold et al. May 2016 A1
20160133591 Hong et al. May 2016 A1
20160155706 Yoneyama et al. Jun 2016 A1
20160284568 Morris et al. Sep 2016 A1
20160284570 Morris et al. Sep 2016 A1
20160343592 Costa et al. Nov 2016 A1
20160343604 Costa et al. Nov 2016 A1
20160347609 Yu et al. Dec 2016 A1
20160362292 Chang et al. Dec 2016 A1
20170024503 Connelly Jan 2017 A1
20170032957 Costa et al. Feb 2017 A1
20170033026 Ho et al. Feb 2017 A1
20170053938 Whitefield Feb 2017 A1
20170077028 Maxim et al. Mar 2017 A1
20170098587 Leipold et al. Apr 2017 A1
20170190572 Pan et al. Jul 2017 A1
20170200648 Lee et al. Jul 2017 A1
20170207350 Leipold et al. Jul 2017 A1
20170263539 Gowda et al. Sep 2017 A1
20170271200 Costa Sep 2017 A1
20170323804 Costa et al. Nov 2017 A1
20170323860 Costa et al. Nov 2017 A1
20170334710 Costa et al. Nov 2017 A1
20170358511 Costa et al. Dec 2017 A1
20180019184 Costa et al. Jan 2018 A1
20180019185 Costa et al. Jan 2018 A1
20180044169 Hatcher, Jr. et al. Feb 2018 A1
20180044177 Vandemeer et al. Feb 2018 A1
20180047653 Costa et al. Feb 2018 A1
20180076174 Costa et al. Mar 2018 A1
20180138082 Costa et al. May 2018 A1
20180138227 Shimotsusa et al. May 2018 A1
20180145678 Maxim et al. May 2018 A1
20180166358 Costa et al. Jun 2018 A1
20180261470 Costa et al. Sep 2018 A1
20180269188 Yu et al. Sep 2018 A1
20180342439 Costa et al. Nov 2018 A1
20190013254 Costa et al. Jan 2019 A1
20190013255 Costa et al. Jan 2019 A1
20190043812 Leobandung Feb 2019 A1
20190057922 Costa et al. Feb 2019 A1
20190074263 Costa et al. Mar 2019 A1
20190074271 Costa et al. Mar 2019 A1
20190172842 Whitefield Jun 2019 A1
20190189599 Baloglu et al. Jun 2019 A1
20190287953 Moon et al. Sep 2019 A1
20190304910 Fillion Oct 2019 A1
20190304977 Costa et al. Oct 2019 A1
20190312110 Costa et al. Oct 2019 A1
20190326159 Costa et al. Oct 2019 A1
20190378819 Costa et al. Dec 2019 A1
20190378821 Costa et al. Dec 2019 A1
20200006193 Costa et al. Jan 2020 A1
20200058541 Konishi et al. Feb 2020 A1
20200115220 Hammond et al. Apr 2020 A1
20200118838 Hammond et al. Apr 2020 A1
20210348078 Haramoto et al. Nov 2021 A1
Foreign Referenced Citations (31)
Number Date Country
1696231 Nov 2005 CN
102956468 Mar 2013 CN
103811474 May 2014 CN
103872012 Jun 2014 CN
2996143 Mar 2016 EP
S505733 Feb 1975 JP
H11-220077 Aug 1999 JP
200293957 Mar 2002 JP
2002252376 Sep 2002 JP
2004273604 Sep 2004 JP
2004327557 Nov 2004 JP
2006005025 Jan 2006 JP
2007227439 Sep 2007 JP
2008235490 Oct 2008 JP
2008279567 Nov 2008 JP
2009026880 Feb 2009 JP
2009530823 Aug 2009 JP
2009200274 Sep 2009 JP
2009302526 Dec 2009 JP
2011216780 Oct 2011 JP
2011243596 Dec 2011 JP
2012129419 Jul 2012 JP
2012156251 Aug 2012 JP
2013162096 Aug 2013 JP
2013222745 Oct 2013 JP
2013254918 Dec 2013 JP
2014509448 Apr 2014 JP
201733056 Sep 2017 TW
2007074651 Jul 2007 WO
2018083961 May 2018 WO
2018125242 Jul 2018 WO
Non-Patent Literature Citations (318)
Entry
US 10,896,908 B2, 01/2021, Costa (withdrawn)
U.S. Appl. No. 16/204,214, filed Nov. 29, 2018.
U.S. Appl. No. 16/427,019, filed May 30, 2019.
U.S. Appl. No. 16/678,551, filed Nov. 8, 2019.
U.S. Appl. No. 16/678,573, filed Nov. 8, 2019.
U.S. Appl. No. 16/678,586, filed Nov. 8, 2019.
U.S. Appl. No. 16/678,619, filed Nov. 8, 2019.
Notice of Allowance for U.S. Appl. No. 15/287,273, dated Jun. 30, 2017, 8 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jul. 21, 2017, 5 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Sep. 7, 2017, 5 pages.
Extended European Search Report for European Patent Application No. 15184861.1, dated Jan. 25, 2016, 6 pages.
Office Action of the Intellectual Property Office for Taiwanese Patent Application No. 104130224, dated Jun. 15, 2016, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/885,202, dated Apr. 14, 2016, 5 pages.
Final Office Action for U.S. Appl. No. 14/885,202, dated Sep. 27, 2016, 7 pages.
Advisory Action for U.S. Appl. No. 14/885,202, dated Nov. 29, 2016, 3 pages.
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jan. 27, 2017, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jul. 24, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/885,243, dated Aug. 31, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated May 27, 2011, 13 pages.
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated Nov. 4, 2011, 20 pages.
Search Report for Japanese Patent Application No. 2011-229152, created on Feb. 22, 2013, 58 pages.
Office Action for Japanese Patent Application No. 2011-229152, drafted May 10, 2013, 7 pages.
Final Rejection for Japanese Patent Application No. 2011-229152, drafted Oct. 25, 2013, 2 pages.
International Search Report and Written Opinion for PCT/US2016/045809, dated Oct. 7, 2016, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/652,867, dated Oct. 10, 2017, 5 pages.
Bernheim et al., “Chapter 9: Lamination,” Tools and Manufacturing Engineers Handbook (book), Apr. 1, 1996, Society of Manufacturing Engineers, p. 9-1.
Fillion R. et al., “Development of a Plastic Encapsulated Multichip Technology for High Volume, Low Cost Commercial Electronics,” Electronic Components and Technology Conference, vol. 1, May 1994, IEEE, 5 pages.
Henawy, Mahmoud Al et al., “New Thermoplastic Polymer Substrate for Microstrip Antennas at 60 GHz,” German Microwave Conference, Mar. 15-17, 2010, Berlin, Germany, IEEE, pp. 5-8.
International Search Report and Written Opinion for PCT/US2017/046744, dated Nov. 27, 2017, 17 pages.
International Search Report and Written Opinion for PCT/US2017/046758, dated Nov. 16, 2017, 19 pages.
International Search Report and Written Opinion for PCT/US2017/046779, dated Nov. 29, 2017, 17 pages.
Non-Final Office Action for U.S. Appl. No. 15/616,109, dated Oct. 23, 2017, 16 pages.
Corrected Notice of Allowability for U.S. Appl. No. 14/851,652, dated Oct. 20, 2017, 5 pages.
Final Office Action for U.S. Appl. No. 15/262,457, dated Dec. 19, 2017, 12 pages.
Supplemental Notice of Allowability and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/287,273, dated Oct. 18, 2017, 6 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Nov. 2, 2017, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/491,064, dated Jan. 2, 2018, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/872,910, dated Nov. 17, 2017, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/648,082, dated Nov. 29, 2017, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/652,826, dated Nov. 3, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/229,780, dated Oct. 3, 2017, 7 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jan. 17, 2018, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/498,040, dated Feb. 20, 2018, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/387,855, dated Jan. 16, 2018, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/795,915, dated Feb. 23, 2018, 6 pages.
International Preliminary Report on Patentability for PCT/US2016/045809, dated Feb. 22, 2018, 8 pages.
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Feb. 28, 2018, 5 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Feb. 23, 2018, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/676,415, dated Mar. 27, 2018, 14 page.
Non-Final Office Action for U.S. Appl. No. 15/676,621, dated Mar. 26, 2018, 16 pages.
Notice of Allowance for U.S. Appl. No. 15/795,915, dated Jun. 15, 2018, 7 pages.
Final Office Action for U.S. Appl. No. 15/387,855, dated May 24, 2018, 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Apr. 19, 2018, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/491,064, dated Apr. 30, 2018, 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Jun. 26, 2018, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/616,109, dated Jul. 2, 2018, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/676,621, dated Jun. 5, 2018, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/527,702, dated Jan. 10, 2020, 10 pages.
Office Action for Japanese Patent Application No. 2018-526613, dated Nov. 5, 2019, 8 pages.
Intention to Grant for European Patent Application No. 17757646.9, dated Feb. 27, 2020, 55 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034645, dated Sep. 19, 2019, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/063460, dated Feb. 25, 2020, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055317, dated Feb. 6, 2020, 17 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055321, dated Jan. 27, 2020, 23 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034699, dated Oct. 29, 2019, 13 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Apr. 1, 2020, 4 pages.
Final Office Action for U.S. Appl. No. 16/204,214, dated Mar. 6, 2020, 14 pages.
Notice of Allowance for U.S. Appl. No. 15/816,637, dated Apr. 2, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/527,702, dated Apr. 9, 2020, 8 pages.
Decision of Rejection for Japanese Patent Application No. 2015-180657, dated Mar. 17, 2020, 4 pages.
Dhar, S. et al., “Electron Mobility Model for Strained-Si Devices,” IEEE Transactions on Electron Devices, vol. 52, No. 4, Apr. 2005, IEEE, pp. 527-533.
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Apr. 15, 2020, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Apr. 30, 2020, 8 pages.
Advisory Action for U.S. Appl. No. 16/204,214, dated Apr. 15, 2020, 3 pages.
Examination Report for European Patent Application No. 16751791.1, dated Apr. 30, 2020, 15 pages.
Notification of Reasons for Refusal for Japanese Patent Application No. 2018-526613, dated May 11, 2020, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/873,152, dated May 11, 2020, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/454,687, dated May 15, 2020, 14 pages.
Ali, K. Ben et al., “RF SOI CMOS Technology on Commercial Trap-Rich High Resistivity SOI Wafer,” 2012 IEEE International SOI Conference (SOI), Oct. 1-4, 2012, Napa, California, IEEE, 2 pages.
Anderson, D.R., “Thermal Conductivity of Polymers,” Sandia Corporation, Mar. 8, 1966, pp. 677-690.
Author Unknown, “96% Alumina, thick-film, as fired,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/DataSheet.aspx?MatGUID=3996a734395a4870a9739076918c42978ckck=1.
Author Unknown, “CoolPoly D5108 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 2 pages.
Author Unknown, “CoolPoly D5506 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Dec. 12, 2013, 2 pages.
Author Unknown, “CoolPoly D-Series—Thermally Conductive Dielectric Plastics,” Cool Polymers, Retrieved Jun. 24, 2013, http://coolpolymers.com/dseries.asp, 1 page.
Author Unknown, “CoolPoly E2 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Aug. 8, 2007, http://www.coolpolymers.com/Files/DS/Datasheet_e2.pdf, 1 page.
Author Unknown, “CoolPoly E3605 Thermally Conductive Polyamide 4,6 (PA 4,6),” Cool Polymers, Inc., Aug. 4, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e3605.pdf.
Author Unknown, “CoolPoly E5101 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 27, 2007, 1 page, http://www.coolpolymers.com/Files/DS/Datasheet_e5101.pdf.
Author Unknown, “CoolPoly E5107 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 1 page, http://coolpolymers.com/Files/DS/Datasheet_e5107.pdf.
Author Unknown, “CoolPoly Selection Tool,” Cool Polymers, Inc., 2006, 1 page, http://www.coolpolymers.com/select.asp?Application=Substrates+%26+Electcronic_Packaging.
Author Unknown, “CoolPoly Thermally Conductive Plastics for Dielectric Heat Plates,” Cool Polymers, Inc., 2006, 2 pages, http://www.coolpolymers.com/heatplate.asp.
Author Unknown, “CoolPoly Thermally Conductive Plastics for Substrates and Electronic Packaging,” Cool Polymers, Inc., 2005, 1 page.
Author Unknown, “Electrical Properties of Plastic Materials,” Professional Plastics, Oct. 28, 2011, http://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.pdf, accessed Dec. 18, 2014, 4 pages.
Author Unknown, “Fully Sintered Ferrite Powders,” Powder Processing and Technology, LLC, Date Unknown, 1 page.
Author Unknown, “Heat Transfer,” Cool Polymers, Inc., 2006, http://www.coolpolymers.com/heattrans.html, 2 pages.
Author Unknown, “Hysol UF3808,” Henkel Corporation, Technical Data Sheet, May 2013, 2 pages.
Author Unknown, “PolyOne Therma-Tech™ LC-5000C TC LCP,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/datasheettext.aspx?matguid=89754e8bb26148d083c5ebb05a0cbff1.
Author Unknown, “Sapphire Substrate,” from CRC Handbook of Chemistry and Physics, Date Unknown, 1 page.
Author Unknown, “Thermal Properties of Plastic Materials,” Professional Plastics, Aug. 21, 2010, http://www.professionalplastics.com/professionalplastics/ThermalPropertiesofPlasticMaterials.pdf, accessed Dec. 18, 2014, 4 pages.
Author Unknown, “Thermal Properties of Solids,” PowerPoint Presentation, No Date, 28 slides, http://www.phys.huji.ac.il/Phys_Hug/Lectures/77602/PHONONS_2_thermal.pdf.
Author Unknown, “Thermal Resistance & Thermal Conductance,” C-Therm Technologies Ltd., accessed Sep. 19, 2013, 4 pages, http://www.ctherm.com/products/tci_thermal_conductivity/helpful_links_tools/thermal_resistance_thermal_conductance/.
Author Unknown, “The Technology: AKHAN's Approach and Solution: The Miraj Diamond™ Platform,” 2015, accessed Oct. 9, 2016, http://www.akhansemi.com/technology.html#the-miraj-diamond-platform, 5 pages.
Beck, D., et al., “CMOS on FZ-High Resistivity Substrate for Monolithic Integration of SiGe-RF-Circuitry and Readout Electronics,” IEEE Transactions on Electron Devices, vol. 44, No. 7, Jul. 1997, pp. 1091-1101.
Botula, A., et al., “A Thin-Film SOI 180nm CMOS RF Switch Technology,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF '09), Jan. 2009, pp. 1-4.
Carroll, M., et al., “High-Resistivity SOI CMOS Cellular Antenna Switches,” Annual IEEE Compound Semiconductor Integrated Circuit Symposium, (CISC 2009), Oct. 2009, pp. 1-4.
Colinge, J.P., et al., “A Low-Voltage, Low-Power Microwave SOI MOSFET,” Proceedings of 1996 IEEE International SOI Conference, Oct. 1996, pp. 128-129.
Costa, J. et al., “Integrated MEMS Switch Technology On SOI-CMOS,” Proceedings of Hilton Head Workshop: A Solid-State Sensors, Actuators and Microsystems Workshop, Jun. 1-5, 2008, Hilton Head Island, SC, IEEE, pp. 900-903.
Costa, J. et al., “Silicon RFCMOS SOI Technology with Above-IC MEMS Integration for Front End Wireless Applications,” Bipolar/BiCMOS Circuits and Technology Meeting, 2008, BCTM 2008, IEEE, pp. 204-207.
Costa, J., “RFCMOS SOI Technology for 4G Reconfigurable RF Solutions,” Session WEC1-2, Proceedings of the 2013 IEEE International Microwave Symposium, 4 pages.
Esfeh, Babak Kazemi et al., “RF Non-Linearities from Si-Based Substrates,” 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), Apr. 2-4, 2014, IEEE, 3 pages.
Finne, R. M. et al., “A Water-Amine-Complexing Agent System for Etching Silicon,” Journal of The Electrochemical Society, vol. 114, No. 9, Sep. 1967, pp. 965-970.
Gamble, H. S. et al., “Low-Loss CPW Lines on Surface Stabilized High-Resistivity Silicon,” IEEE Microwave and Guided Wave Letters, vol. 9, No. 10, Oct. 1999, pp. 395-397.
Huang, Xingyi, et al., “A Review of Dielectric Polymer Composites with High Thermal Conductivity,” IEEE Electrical Insulation Magazine, vol. 27, No. 4, Jul./Aug. 2011, pp. 8-16.
Joshi, V. et al., “MEMS Solutions in RF Applications,” 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Oct. 2013, IEEE, 2 pages.
Jung, Boo Yang, et al., “Study of FCMBGA with Low CTE Core Substrate,” 2009 Electronic Components and Technology Conference, May 2009, pp. 301-304.
Kerr, D.C., et al., “Identification of RF Harmonic Distortion on Si Substrates and Its Reduction Using a Trap-Rich Layer,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF 2008), Jan. 2008, pp. 151-154.
Lederer, D., et al., “New Substrate Passivation Method Dedicated to HR SOI Wafer Fabrication with Increased Substrate Resistivity,” IEEE Electron Device Letters, vol. 26, No. 11, Nov. 2005, pp. 805-807.
Lederer, Dimitri et al., “Substrate loss mechanisms for microstrip and CPW transmission lines on lossy silicon wafers,” Solid-State Electronics, vol. 47, No. 11, Nov. 2003, pp. 1927-1936.
Lee, Kwang Hong et al., “Integration of III-V materials and Si-CMOS through double layer transfer process,” Japanese Journal of Applied Physics, vol. 54, Jan. 2015, pp. 030209-1 to 030209-5.
Lee, Tzung-Yin, et al., “Modeling of SOI LET for RF Switch Applications,” IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, Anaheim, CA, IEEE, pp. 479-482.
Lu, J.Q., et al., “Evaluation Procedures for Wafer Bonding and Thinning of Interconnect Test Structures for 3D ICs,” Proceedings of the IEEE 2003 International Interconnect Technology Conference, Jun. 2-4, 2003, pp. 74-76.
Mamunya, Ye.P., et al., “Electrical and Thermal Conductivity of Polymers Filled with Metal Powders,” European Polymer Journal, vol. 38, 2002, pp. 1887-1897.
Mansour, Raafat R., “RF MEMS-CMOS Device Integration,” IEEE Microwave Magazine, vol. 14, No. 1, Jan. 2013, pp. 39-56.
Mazuré, C. et al., “Advanced SOI Substrate Manufacturing,” 2004 IEEE International Conference on Integrated Circuit Design and Technology, 2004, IEEE, pp. 105-111.
Micak, R. et al., “Photo-Assisted Electrochemical Machining of Micromechanical Structures,” Proceedings of Micro Electro Mechanical Systems, Feb. 7-10, 1993, Fort Lauderdale, FL, IEEE, pp. 225-229.
Morris, Art, “Monolithic Integration of RF-MEMS within CMOS,” 2015 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Apr. 27-29, 2015, IEEE, 2 pages.
Niklaus, F., et al., “Adhesive Wafer Bonding,” Journal of Applied Physics, vol. 99, No. 3, 031101 (2006), 28 pages.
Parthasarathy, S., et al., “RF SOI Switch FET Design and Modeling Tradeoffs for GSM Applications,” 2010 23rd International Conference on VLSI Design, (VLSID '10), Jan. 2010, pp. 194-199.
Raskin, J.P., et al., “Coupling Effects in High-Resistivity SIMOX Substrates for VHF and Microwave Applications,” Proceedings of 1995 IEEE International SOI Conference, Oct. 1995, pp. 62-63.
Raskin, Jean-Pierre et al., “Substrate Crosstalk Reduction Using SOI Technology,” IEEE Transactions on Electron Devices, vol. 44, No. 12, Dec. 1997, p. 2252-2261.
Rong, B., et al., “Surface-Passivated High-Resistivity Silicon Substrates for RFICs,” IEEE Electron Device Letters, vol. 25, No. 4, Apr. 2004, pp. 176-178.
Sherman, Lilli M., “Plastics that Conduct Heat,” Plastics Technology Online, Jun. 2001, Retrieved May 17, 2016, http://www.ptonline.com/articles/plastics-that-conduct-heat, Gardner Business Media, Inc., 5 pages.
Tombak, A., et al., “High-Efficiency Cellular Power Amplifiers Based on a Modified LDMOS Process on Bulk Silicon and Silicon-On-Insulator Substrates with Integrated Power Management Circuitry,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 1862-1869.
Yamanaka, A., et al., “Thermal Conductivity of High-Strength Polyetheylene Fiber and Applications for Cryogenic Use,” International Scholarly Research Network, ISRN Materials Science, vol. 2011, Article ID 718761, May 25, 2011, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 18, 2013, 20 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Nov. 26, 2013, 21 pages.
Applicant-Initiated Interview Summary for U.S. Appl. No. 13/852,648, dated Jan. 27, 2014, 4 pages.
Advisory Action for U.S. Appl. No. 13/852,648, dated Mar. 7, 2014, 4 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jun. 16, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Sep. 26, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jan. 22, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jun. 24, 2015, 20 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Oct. 22, 2015, 20 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Feb. 19, 2016, 12 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 20, 2016, 14 pages.
Non-Final Office Action for U.S. Appl. No. 14/315,765, dated Jan. 2, 2015, 6 pages.
Final Office Action for U.S. Appl. No. 14/315,765, dated May 11, 2015, 17 pages.
Advisory Action for U.S. Appl. No. 14/315,765, dated Jul. 22, 2015, 3 pages.
Non-Final Office Action for U.S. Appl. No. 14/260,909, dated Mar. 20, 2015, 20 pages.
Final Office Action for U.S. Appl. No. 14/260,909, dated Aug. 12, 2015, 18 pages.
Non-Final Office Action for U.S. Appl. No. 14/261,029, dated Dec. 5, 2014, 15 pages.
Notice of Allowance for U.S. Appl. No. 14/261,029, dated Apr. 27, 2015, 10 pages.
Corrected Notice of Allowability for U.S. Appl. No. 14/261,029, dated Nov. 17, 2015, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/529,870, dated Feb. 12, 2016, 14 pages.
Notice of Allowance for U.S. Appl. No. 14/529,870, dated Jul. 15, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/293,947, dated Apr. 7, 2017, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/293,947, dated Aug. 14, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/715,830, dated Apr. 13, 2016, 16 pages.
Final Office Action for U.S. Appl. No. 14/715,830, dated Sep. 6, 2016, 13 pages.
Advisory Action for U.S. Appl. No. 14/715,830, dated Oct. 31, 2016, 6 pages.
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Feb. 10, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Mar. 2, 2017, 8 pages.
Non-Final Office Action for U.S. Appl. No. 14/851,652, dated Oct. 7, 2016, 10 pages.
Notice of Allowance for U.S. Appl. No. 14/851,652, dated Apr. 11, 2017, 9 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Jul. 24, 2017, 6 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Sep. 6, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 14/959,129, dated Oct. 11, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/173,037, dated Jan. 10, 2017, 8 pages.
Final Office Action for U.S. Appl. No. 15/173,037, dated May 2, 2017, 13 pages.
Advisory Action for U.S. Appl. No. 15/173,037, dated Jul. 20, 2017, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/173,037, dated Aug. 9, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Feb. 15, 2017, 10 pages.
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Jun. 6, 2017, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/229,780, dated Jun. 30, 2017, 12 pages.
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Aug. 7, 2017, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/408,560, dated Sep. 25, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/287,202, dated Aug. 25, 2017, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/353,346, dated May 23, 2017, 15 pages.
Notice of Allowance for U.S. Appl. No. 15/353,346, dated Sep. 25, 2017, 9 pages.
Welser, J. et al., “Electron Mobility Enhancement in Strained-Si N-Type Metal-Oxide-Semiconductor Field-Effect Transistors,” IEEE Electron Device Letters, vol. 15, No. 3, Mar. 1994, IEEE, pp. 100-102.
Zeng, X. et al., “A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of A Nanocomposite with High Thermal Conductivity,” ACS Nano, vol. 11, No. 5, 2017, American Chemical Society, pp. 5167-5178.
Quayle Action for U.S. Appl. No. 16/703,251, dated Jun. 26, 2020, 5 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated May 20, 2020, 4 pages.
Notice of Allowability for U.S. Appl. No. 15/695,579, dated Jun. 25, 2020, 4 pages.
Notice of Allowance for U.S. Appl. No. 16/368,210, dated Jun. 17, 2020, 10 pages.
Non-Final Office Action for U.S. Appl. No. 16/374,125, dated Jun. 26, 2020, 12 pages.
Non-Final Office Action for U.S. Appl. No. 16/390,496, dated Jul. 10, 2020, 17 pages.
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated May 19, 2020, 15 pages.
Non-Final Office Action for U.S. Appl. No. 16/454,809, dated May 15, 2020, 12 pages.
Examination Report for Singapore Patent Application No. 11201901193U, dated May 26, 2020, 6 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014662, dated May 7, 2020, 18 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014665, dated May 13, 2020, 17 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014666, dated Jun. 4, 2020, 18 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014667, dated May 18, 2020, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014669, dated Jun. 4, 2020, 15 pages.
Non-Final Office Action for U.S. Appl. No. 15/676,693, dated May 3, 2018, 14 pages.
Notice of Allowance for U.S. Appl. No. 15/789,107, dated May 18, 2018, 8 pages.
Final Office Action for U.S. Appl. No. 15/616,109, dated Apr. 19, 2018, 18 pages.
Notice of Allowance for U.S. Appl. No. 15/676,693, dated Jul. 20, 2018, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/695,629, dated Jul. 11, 2018, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/387,855, dated Aug. 10, 2018, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/914,538, dated Aug. 1, 2018, 9 pages.
Notice of Allowance and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Sep. 28, 2018, 16 pages.
Corrected Notice of Allowance for U.S. Appl. No. 15/676,693, dated Aug. 29, 2018, 5 pages.
Final Office Action for U.S. Appl. No. 15/601,858, dated Nov. 26, 2018, 16 pages.
Non-Final Office Action for U.S. Appl. No. 15/945,418, dated Nov. 1, 2018, 13 pages.
First Office Action for Chinese Patent Application No. 201510746323.X, dated Nov. 2, 2018, 12 pages.
Advisory Action for U.S. Appl. No. 15/601,858, dated Jan. 22, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Jan. 9, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Jan. 11, 2019, 8 pages.
International Preliminary Report on Patentability for PCT/US2017/046744, dated Feb. 21, 2019, 11 pages.
International Preliminary Report on Patentability for PCT/US2017/046758, dated Feb. 21, 2019, 11 pages.
International Preliminary Report on Patentability for PCT/US2017/046779, dated Feb. 21, 2019, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/992,613, dated Feb. 27, 2019, 15 pages.
Non-Final Office Action for U.S. Appl. No. 15/695,579, dated Jan. 28, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/992,639, dated May 9, 2019, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/695,579, dated Mar. 20, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated May 13, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Apr. 17, 2019, 9 pages.
Tsai, Chun-Lin, et al., “Smart GaN platform; Performance & Challenges,” IEEE International Electron Devices Meeting, 2017, 4 pages.
Tsai, Szu-Ping., et al., “Performance Enhancement of Flip-Chip Packaged AIGAaN/GaN HEMTs by Strain Engineering Design,” IEEE Transcations on Electron Devices, vol. 63, Issue 10, Oct. 2016, pp. 3876-3881.
Final Office Action for U.S. Appl. No. 15/992,613, dated May 24, 2019, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/873,152, dated May 24, 2019, 11 pages.
Notice of Allowance for U.S. Appl. No. 16/168,327, dated Jun. 28, 2019, 7 pages.
Lin, Yueh, Chin, et al., “Enhancement-Mode GaN MIS-HEMTs With LaHfOx Gate Insulator for Power Application,” EEE Electronic Device Letters, vol. 38, Issue 8, 2017, 4 pages.
Shukla, Shishir, et al., “GaN-on-Si Switched Mode RF Power Amplifiers for Non-Constant Envelope Signals,” IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, 2017, pp. 88-91.
International Search Report and Written Opinion for International Patent Application No. PCT/US19/25591, dated Jun. 21, 2019, 7 pages.
Notice of Reasons for Refusal for Japanese Patent Application No. 2015-180657, dated Jul. 9, 2019, 4 pages.
Notice of Allowance for U.S. Appl. No. 15/601,858, dated Aug. 16, 2019, 8 pages.
Advisory Action for U.S. Appl. No. 15/992,613, dated Jul. 29, 2019, 3 pages.
Final Office Action for U.S. Appl. No. 15/873,152, dated Aug. 8, 2019, 13 pages.
Notice of Allowance for U.S. Appl. No. 15/975,230, dated Jul. 22, 2019, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Aug. 28, 2019, 8 pages.
Fiorenza, et al., “Detailed Simulation Study of a Reverse Embedded-SiGE Strained-Silicon MOSFET,” IEEE Transactions on Electron Devices, vol. 55, Issue 2, Feb. 2008, pp. 640-648.
Fiorenza, et al., “Systematic study of thick strained silicon NMOSFETS for digital applications,” International SiGE Technology and Device Meeting, May 2006, IEEE, 2 pages.
Huang, et al., “Carrier Mobility Enhancement in Strained Si-On-Insulator Fabricated by Wafer Bonding,” Symposium on VLSI Technology, Digest of Technical Papers, 2001, pp. 57-58.
Nan, et al., “Effect of Germanium content on mobility enhancement for strained silicon FET,” Student Conference on Research and Development, Dec. 2017, IEEE, pp. 154-157.
Sugii, Nobuyuki, et al., “Performance Enhancement of Strained-Si MOSFETs Fabricated on a Chemical-Mechanical-Polished SiGE Substrate,” IEEE Transactions on Electron Devices, vol. 49, Issue 12, Dec. 2002, pp. 2237-2243.
Yin, Haizhou, et al., “Fully-depleted Strained-Si on Insulator NMOSFETs without Relaxed SiGe Buffers,” International Electron Devices Meeting, Dec. 2003, San Francisco, California, IEEE, 4 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Feb. 5, 2020, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/992,613, dated Sep. 23, 2019, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated Oct. 9, 2019, 15 pages.
Non-Final Office Action for U.S. Appl. No. 15/816,637, dated Oct. 31, 2019, 10 pages.
Advisory Action for U.S. Appl. No. 15/873,152, dated Oct. 11, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/873,152, dated Dec. 10, 2019, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/703,251, dated Aug. 27, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/454,687, dated Aug. 14, 2020, 7 pages.
Final Office Action for U.S. Appl. No. 16/454,809, dated Aug. 21, 2020, 12 pages.
Advisory Action for U.S. Appl. No. 16/454,809, dated Oct. 23, 2020, 3 pages.
Decision to Grant for Japanese Patent Application No. 2018-526613, dated Aug. 17, 2020, 5 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/025591, dated Oct. 15, 2020, 6 pages.
Advisory Action for U.S. Appl. No. 16/390,496, dated Mar. 1, 2021, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/390,496, dated Apr. 5, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/204,214, dated Feb. 17, 2021, 11 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,551, dated Apr. 7, 2021, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,573, dated Feb. 19, 2021, 11 pages.
Applicant-Initiated Interview Summary for U.S. Appl. No. 16/678,573, dated May 7, 2021, 2 pages.
Supplementary Examination Report for Singapore Patent Application No. 11201901194S, dated Mar. 10, 2021, 3 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/055317, dated Apr. 22, 2021, 11 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/055321, dated Apr. 22, 2021, 14 pages.
Office Action for Taiwanese Patent Application No. 108140788, dated Mar. 25, 2021, 18 pages.
Notice of Allowance for U.S. Appl. No. 16/527,702, dated Nov. 13, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/374,125, dated Dec. 16, 2020, 9 pages.
Final Office Action for U.S. Appl. No. 16/390,496, dated Dec. 24, 2020, 21 pages.
Non-Final Office Action for U.S. Appl. No. 16/426,527, dated Nov. 20, 2020, 7 pages.
Final Office Action for U.S. Appl. No. 16/204,214, dated Nov. 30, 2020, 15 pages.
Notice of Allowance for U.S. Appl. No. 16/454,809, dated Nov. 25, 2020, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/427,019, dated Nov. 19, 2020, 19 pages.
First Office Action for Chinese Patent Application No. 201680058198.6, dated Dec. 29, 2020, 14 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/034645, dated Jan. 14, 2021, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/426,527, dated May 14, 2021, 9 pages.
Final Office Action for U.S. Appl. No. 16/427,019, dated May 21, 2021, 16 pages.
Advisory Action for U.S. Appl. No. 16/427,019, dated Aug. 2, 2021, 3 pages.
Final Office Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,551, dated Jun. 28, 2021, 9 pages.
Final Office Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,573, dated Jun. 28, 2021, 10 pages.
Notice of Allowance for U.S. Appl. No. 16/678,619, dated Jul. 8, 2021, 10 pages.
Notice of Reasons for Refusal for Japanese Patent Application No. 2020119130, dated Jun. 29, 2021, 4 pages.
Notice of Reasons for Rejection for Japanese Patent Application No. 2019507765, dated Jun. 28, 2021, 4 pages.
Search Report for Japanese Patent Application No. 2019507768, dated Jul. 15, 2021, 42 pages.
Notice of Reasons for Refusal for Japanese Patent Application No. 2019507768, dated Jul. 26, 2021, 4 pages.
Reasons for Rejection for Japanese Patent Application No. 2019507767, dated Jun. 25, 2021, 5 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/063460, dated Jun. 10, 2021, 9 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/034699, dated Aug. 5, 2021, 9 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/014662, dated Aug. 5, 2021, 11 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/014665, dated Aug. 5, 2021, 10 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/014666, dated Aug. 5, 2021, 11 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/014667, dated Aug. 5, 2021, 8 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/014669, dated Aug. 5, 2021, 9 pages.
Decision to Grant for Japanese Patent Application No. 2020119130, dated Sep. 7, 2021, 4 pages.
Second Office Action for Chinese Patent Application No. 201680058198.6, dated Sep. 8, 2021, 8 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/426,527, dated Aug. 18, 2021, 4 pages.
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,551, dated Sep. 13, 2021, 3 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,551, dated Oct. 21, 2021, 8 pages.
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,573, dated Sep. 10, 2021, 3 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,573, dated Oct. 21, 2021, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,586, dated Aug. 12, 2021, 16 pages.
Non-Final Office Action for U.S. Appl. No. 16/427,019, dated Dec. 2, 2021, 17 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Nov. 24, 2021, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,573, dated Nov. 24, 2021, 3 pages.
Final Office Action for U.S. Appl. No. 16/678,586, dated Nov. 22, 2021, 15 pages.
Examination Report for European Patent Application No. 17755402.9, dated Dec. 20, 2021, 12 pages.
Examination Report for European Patent Application No. 17755403.7, dated Dec. 20, 2021, 13 pages.
Borel, S. et al., “Control of Selectivity between SiGe and Si in Isotropic Etching Processes,” Japanese Journal of Applied Physics, vol. 43, No. 6B, 2004, pp. 3964-3966.
Decision of Rejection for Chinese Patent Application No. 201680058198.6, dated Nov. 12, 2021, 6 pages.
Notice of Allowance for Japanese Patent Application No. 2019507767, dated Jan. 19, 2021, 6 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/043968, dated Nov. 19, 2021, 15 pages.
Non-Final Office Action for U.S. Appl. No. 16/426,527, dated Feb. 16, 2022, 9 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Jan. 27, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,573, dated Jan. 27, 2022, 3 pages.
Advisory Action for U.S. Appl. No. 16/678,586, dated Jan. 26, 2022, 3 pages.
Non-Final Office Action for U.S. Appl. No. 17/102,957, dated Feb. 17, 2022, 9 pages.
Decision to Grant for Japanese Patent Application No. 2019507765, dated Feb. 10, 2022, 6 pages.
Decision to Grant for Japanese Patent Application No. 2019507768, dated Feb. 10, 2022, 6 pages.
Office Letter for Taiwanese Patent Application No. 108140788, dated Jan. 5, 2022, 16 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Mar. 9, 2022, 3 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,586, dated Mar. 3, 2022, 14 pages.
Non-Final Office Action for U.S. Appl. No. 16/844,406, dated Mar. 14, 2022, 16 pages.
Summons to Attend for European Patent Application No. 16751791.1, dated Feb. 28, 2022, 10 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,573, dated Mar. 31, 2022, 3 pages.
Related Publications (1)
Number Date Country
20200235040 A1 Jul 2020 US
Provisional Applications (2)
Number Date Country
62866926 Jun 2019 US
62795804 Jan 2019 US