1. Technical Field
The present disclosure relates to an apparatus and method for performing surgical tasks. In particular, the disclosure relates to disposable loading units (DLUs) configured for mounting to a robotic arm and having at least one automatically actuated surgical tool for performing a surgical task.
2. Description of Related Art
Accurate and precise manipulation of surgical instruments at or near a surgical site is required during surgical procedures, especially during minimally invasive procedures such as laparoscopic and endoscopic procedures. In laparoscopic and endoscopic surgical procedures, a small incision is made in the patient's body to provide access for a tube or cannula device.
Once extended into the patient's body, the cannula allows insertion of various surgical instruments for acting on organs, blood vessels, ducts, or body tissue far removed from the incision site. Such instruments may include apparatus for applying surgical clips as disclosed in U.S. Pat. No. 5,084,057; apparatus for applying surgical staples as disclosed in U.S. Pat. Nos. 5,040,715 and 5,289,963; and apparatus for suturing body tissue as disclosed in U.S. Pat. No. 5,403,328.
In minimally invasive procedures, the ability to perform surgical tasks is complicated due to limited maneuverability and reduced visibility. Therefore, a need exists for an apparatus and a procedure that enables the remote actuation of surgical instruments during minimally invasive procedures in a consistent, easy and rapid manner.
In non-laparoscopic and non-endoscopic procedures, accurate and precise manipulation and operation of surgical instruments is also required. For example, in a transmyocardial vascularization (TMR) procedure, wherein holes are formed in the heart wall to provide alternative blood flow channels for ischemic heart tissue, careful advancement and control of a lasing or coring device is necessary to form holes in the ischemic areas of the heart tissue.
In other cardiovascular procedures such as laser angioplasty wherein an optical fiber is inserted and advanced into a patient's vasculature to apply laser energy to obstructions and/or restrictions typically caused by plaque build-up, precise manipulation and operation is also required. Both continuous wave and pulsed high energy lasers have been used to provide the vaporizing laser energy. Insuring the plaque is actually ablated and not just pushed aside is important to prevent or delay restenosis.
The advent of computer imaging systems have enabled surgeons to precisely position and map the direction of travel of a surgical instrument prior to the utilization of the instrument in the operation. For example, an imaging system can locate the exact location of a lesion within a patient and allocate X, Y and Z coordinates to that lesion in space. A coring device can then be manually advanced to that location to slice the distal flat end face of the core so that a complete specimen can be removed for biopsy.
Robotic systems have also been developed to aid a surgeon in precisely mounting and positioning surgical instruments to perform a surgical task. For example, U.S. Pat. No. 5,571,110 to Matsen, III et al. discloses an orthopedic saw guide for confining the blade of a surgical saw to movement in a single plane while allowing translational and rotational movement of the blade within the plane to facilitate the performance of a surgical bone alteration task. The saw guide is positioned relative to a patient's bone by a robot-aided system.
However, known robotic systems, such as the saw guide disclosed in the Matsen et al. '110 patent, are typically limited to specific surgical tasks and are not adaptive for performing a wide variety of surgical tasks. Therefore, there is a need for a robotic system for aiding a surgeon to perform a wide variety of surgical tasks.
Another disadvantage of known robotic systems having surgical application is that the surgeon is required to manually control the position and operation of the surgical instrument. For example, systems have been developed wherein the surgeon is fitted with a mechanism which translates the surgeon's movements into mechanical movements whereby servo motors are actuated to manipulate the surgical instrument. For example, U.S. Pat. No. 5,624,398 to Smith et al. discloses a robotic system having a pair of articulate robotic arms responsive to the surgeon's movements during the surgery. However, any error in the surgeon's movements results in undesired manipulation of the robotic arms. Therefore, a fully automatic robotic system for aiding a surgeon to perform a wide variety of surgical tasks would be advantageous.
Another disadvantage with known robotic systems is their inability to remotely operate a conventional surgical tool, such as an apparatus for applying surgical staples or an apparatus for suturing body tissue which is mounted to the robotic arm.
Therefore, it would be advantageous to provide disposable loading units (DLUs) configured for mounting to a robotic arm of a robotic system and having at least one surgical tool extending from one end for performing a surgical task. The DLU would be actuated by an actuation assembly operatively associated with the robotic arm for controlling the operation and movement of the DLU. The DLU would include an electro-mechanical assembly operatively associated with the actuation assembly for controlling the operation and movement of the surgical tool.
The subject disclosure is directed to disposable loading units configured for mounting to a robotic arm and having at least one automatically actuated surgical tool for performing a surgical task. The robotic arm acts on the DLUs with the dexterity and mobility of a surgeon's hand and can be programmed via an actuation assembly to actuate the surgical tool to perform the surgical task. Actuation commands are transmitted by electrical signals via cables from the actuation assembly to an electro-mechanical assembly within the DLUs. The electro-mechanical assembly within each DLU is configured to move and operate the surgical tool for performing the surgical task. For example, the electromechanical assembly may include servo motors for advancing, rotating and retracting a coring member of a coring DLU device; for harmonically oscillating a scalpel of a cutting DLU device; or for pivotally moving a suturing needle positioned on an axis of a longitudinal casing of a suturing DLU device.
One DLU presented and configured for mounting to the robotic arm is a coring DLU device for minimally invasive surgery, such as removing a specimen for biopsy. Still another DLU presented is a lasing DLU device for performing surgical procedures entailing the use of laser energy, such as TMR and angioplasty. Additional DLUs presented include a surgical fastener applying DLU device, a vessel clip applying DLU device, a cutting DLU device, a hole punching DLU device, and a vascular suturing DLU device.
Various robotic arm DLUs for performing surgical tasks will be described hereinbelow with reference to the drawings wherein:
The robotic arm disposable loading units (DLUS) and accompanying robotic system of the present disclosure shall be discussed in terms of performing a variety of surgical tasks, which include but not limited to endoscopic, arthroscopic and/or laparoscopic procedures. The present disclosure introduces and discusses several DLUs, which include a coring DLU, two cutting DLUs, an aortic hole-punching DLU, a lasing DLU, a fastener applying DLU, and a vascular suturing DLU. However, the present disclosure should not be construed to limit the present application to only these DLUs.
Referring now to the drawings wherein like reference numerals indicate similar structural elements, there is illustrated in
The robotic system 10 includes an actuation assembly 12, a monitor 14, a robot 16, and a DLU 18 releasably attached to the robot 16 and having at least one surgical tool 20 for performing at least one surgical task. The robot 16 includes a trunk 22 extending from a base 24, a shoulder 26 connecting the trunk to an upper arm 28, an elbow 30 connecting the upper arm 28 to a lower arm 32, and a wrist 34 attached to the lower arm 32 from which extends a mounting flange 36. The mounting flange 36 is capable of moving in six degrees of freedom.
The DLU 18 further includes a head portion 40 for housing an electromechanical assembly 19 (
The DLU 18 can be removed from the mounting flange 36 and be replaced with another DLU having a different surgical tool for performing a different surgical procedure. It is also contemplated to design a DLU having several surgical tools capable of performing several surgical procedures where the robot 16 can rotate the mounting flange 36 to select one of the surgical tools of the DLU when required.
In operation, the surgeon controls the actuation assembly 12 to control the movement and operation of the robot 16 and the DLU 18. Depending on the amount of rotation of the knobs 44 on the actuation assembly 12, the actuation assembly 12 transmits electrical signals to the robot 16 to electro-mechanically operate the moveable parts of the robot 16, such as to rotate the robot 16 about the vertical trunk 22 or to advance the mounting flange 36. The actuation assembly 12 may include a processor therein for storing operational commands and for transmitting digital signals to the electromechanical assembly 19. The actuation assembly 12 can also transmit electrical signals to the mounting flange 36 in the form of electrical signals for positioning and operating the DLU 18.
The actuation assembly 12 further transmits electrical signals to the electromechanical assembly 19 housed within the head portion 40 of the DLU 18 for actuating the electromechanical assembly 19 which in turn actuates the surgical tool 20. The electromechanical assembly 19 includes mechanisms for moving and operating the surgical tool 20, such as servo motors for harmonically oscillating a scalpel of a cutting DLU device, or rods for pivotally moving a suturing needle positioned on an axis of a longitudinal casing of a suturing DLU device. The DLU 18 may further include integrated circuitry, including a receiver 21 and a processor 23 for receiving digital signals from the actuation assembly. The receiver 21 and processor 23 are included within control means 25 electrically connected to the electromechanical assembly 19 as shown by
One type of electromechanical assembly can be used to advance, rotate and retract a coring portion 46 of a coring DLU device 48 as shown by
When the coring DLU device 48 is actuated by transmitting electrical signals to the electromechanical assembly 19, the tubular member 50 can be distally and proximally moved by rods traversing the longitudinal axis of the coring portion 46 and operatively associated with the electromechanical assembly 19.
A lasing DLU device 80 is illustrated in
A controlled advancement mechanism is provided within the DLU head portion 84 and in engagement with the laser energy transmission mechanism 82 for advancing the laser energy transmission mechanism 82 at a controlled rate coordinated with the laser energy generator output to ablate body tissue. Controlled advancement mechanisms which can be incorporated within the head portion 84 include constant and/or variable rate springs, motors, and other mechanisms which can be coordinated with the laser energy generator to advance one or both of the laser energy transmission mechanism 82 during ablation.
A surgical fastener applying DLU device 90 is illustrated in
Reference can be made to U.S. Pat. No. 4,508,253 issued to Green on Apr. 2, 1985 or European Patent Application No. 92 116880.3 published on Apr. 21, 1993, the contents of both documents are incorporated herein by reference, for a more detailed explanation of the operation of the body portion components during a surgical fastening procedure. It is provided that the hand portion of the fastener applying apparatus disclosed in the '006 patent is incorporated within the structure and construction of the electro-mechanical assembly 19 of the surgical fastener applying DLU device 90 for operating the body portion components in the same manner as the hand portion operates the body portion components in the above-noted '006 patent.
A clip pusher is provided within body portion 104 to individually distally advance a distal-most surgical clip to the jaw assembly 106 while the jaw portions 110 are in the spaced-apart position. An actuator 112 disposed within the body portion 104 is longitudinally movable in response to actuation of the electromechanical assembly 19 within the head portion 102. A jaw closure member 114 is positioned adjacent the first and second jaw portions 110 to move the jaw portions 110 to the approximated position. The actuator 112 and the jaw closure member 114 define an interlock therebetween to produce simultaneous movement of the actuator 112 and the jaw closure member 114 when the actuator 112 is positioned adjacent the distal end portion of the body portion 104.
Reference can be made to U.S. Pat. No. 5,300,081 issued to Young et al. on Apr. 5, 1994, the contents of which are incorporated herein by reference, for a more detailed explanation of the operation of the body portion components during a vessel clip applying procedure. It is provided that the hand portion of the vessel clip applying apparatus disclosed in the '081 patent is incorporated within the structure and construction of the electro-mechanical assembly 19 of the vessel clip applying DLU device 100 for operating the body portion components in the same manner as the hand portion operates the body portion components in the above-noted '081 patent.
With reference to
A release lever is included within the electro-mechanical assembly 19 and is movable from a blocking position to allow the cutting tube 128 to be removed from the outer tube 126. An anvil 132 is positioned at a distal end of the outer tube 126 for forcing each cut tissue section proximally into the chamber 130 of the cutting tube 128 as the cutting tube 128 is advanced to cut the body tissue. The electro-mechanical assembly may include an oscillation assembly operatively associated with the cutting tube 128 to harmonically oscillate the cutting tube 128.
A second embodiment of a cutting DLU device 140 is shown by
With reference to
The distal end of body portion 156 includes an elliptical opening 157 to receive punch blade 158 when the actuating rod 154 is moved to the unactuated position. The elliptical opening 157 includes a sharp circumference for cutting tissue disposed between the distal end of body portion 156 and the punch blade 158 when the actuating rod 154 is moved proximally for forming an elliptical hole in a coronary artery for the performance of the CABG procedure.
Finally, with reference to
Reference can be made to U.S. Pat. No. 5,478,344 issued to Stone et al. on Dec. 26, 1995, the contents of which are incorporated herein by reference, for a more detailed explanation of the operation of the body portion components during a vascular suturing procedure. It is provided that the hand portion of the vascular suturing apparatus disclosed in the '344 patent is incorporated within the structure and construction of the electro-mechanical assembly 19 of the vascular suturing DLU device 180 for operating the body portion components in the same manner as the hand portion operates the body portion components in the above-noted '344 patent.
It is contemplated to have feedback forces initiated by pressure and other parameters indicative of the surgical task being performed by the at least one surgical tool of the DLU transmitted back through a microprocessor to a digital-to-analog circuit board. This force feedback control system allows the robotic system to be programmed before the surgical task is performed with guidance, pressure, and other parameters which can be continuously monitored to control the operation and movement of the DLU and of the at least one surgical tool.
While the invention has been illustrated and described as embodied in an apparatus and method for performing surgical tasks, it is not intended to be limited to the details shown, since it will be understood that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and its operation can be made by those skilled in the art without departing in any way from the spirit or scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 11/928,053, filed Oct. 30, 2007, which is a continuation of U.S. patent application Ser. No. 10/851,819, filed on May 21, 2004, now abandoned, which is a continuation of U.S. patent application Ser. No. 09/804,531, filed on Mar. 12, 2001, now U.S. Pat. No. 6,827,712, which is a divisional of U.S. patent application Ser. No. 09/099,740, filed on Jun. 18, 1998, now U.S. Pat. No. 6,231,565, which claims the benefit of, and priority to, U.S. Provisional Patent Application Ser. No. 60/049,923, filed on Jun. 18, 1997, the entire contents of each application being incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4411266 | Cosman | Oct 1983 | A |
4508253 | Green | Apr 1985 | A |
4565200 | Cosman | Jan 1986 | A |
4604787 | Silvers, Jr. | Aug 1986 | A |
4655630 | Rinehart | Apr 1987 | A |
4907589 | Cosman | Mar 1990 | A |
4921393 | Andeen et al. | May 1990 | A |
4955862 | Sepetka | Sep 1990 | A |
4966597 | Cosman | Oct 1990 | A |
4979949 | Matsen et al. | Dec 1990 | A |
5040715 | Green et al. | Aug 1991 | A |
5084057 | Green et al. | Jan 1992 | A |
5095915 | Engelson | Mar 1992 | A |
5122137 | Lennox | Jun 1992 | A |
5154717 | Matsen, III et al. | Oct 1992 | A |
5187796 | Wang et al. | Feb 1993 | A |
5236432 | Matsen, III et al. | Aug 1993 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5300081 | Young et al. | Apr 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5315996 | Lundquist | May 1994 | A |
5329923 | Lundquist | Jul 1994 | A |
5334145 | Lundquist et al. | Aug 1994 | A |
5391144 | Sakurai et al. | Feb 1995 | A |
5397323 | Taylor et al. | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5437288 | Schwartz et al. | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5445166 | Taylor | Aug 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5478344 | Stone et al. | Dec 1995 | A |
5497785 | Viera | Mar 1996 | A |
5515478 | Wang | May 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5545193 | Fleischman et al. | Aug 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5553198 | Wang et al. | Sep 1996 | A |
5571110 | Matsen, III et al. | Nov 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5624398 | Smith et al. | Apr 1997 | A |
5645520 | Nakamura et al. | Jul 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5728149 | Laske et al. | Mar 1998 | A |
5746701 | Noone | May 1998 | A |
5748767 | Raab | May 1998 | A |
5754741 | Wang et al. | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5782571 | Hufford et al. | Jul 1998 | A |
5785705 | Baker | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5800423 | Jensen | Sep 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5814038 | Jensen et al. | Sep 1998 | A |
5815640 | Wang et al. | Sep 1998 | A |
5820623 | Ng | Oct 1998 | A |
5833632 | Jacobsen et al. | Nov 1998 | A |
5841950 | Wang et al. | Nov 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5911036 | Wright et al. | Jun 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5971976 | Wang et al. | Oct 1999 | A |
5980504 | Sharkey et al. | Nov 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
6001093 | Swanson et al. | Dec 1999 | A |
6004279 | Crowley et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6007570 | Sharkey et al. | Dec 1999 | A |
6017354 | Culp et al. | Jan 2000 | A |
6024695 | Taylor et al. | Feb 2000 | A |
6048339 | Zirps et al. | Apr 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6073051 | Sharkey et al. | Jun 2000 | A |
6095149 | Sharkey et al. | Aug 2000 | A |
6099514 | Sharkey et al. | Aug 2000 | A |
6099541 | Klopotek | Aug 2000 | A |
6102850 | Wang et al. | Aug 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6126682 | Sharkey et al. | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132441 | Grace | Oct 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6231565 | Tovey et al. | May 2001 | B1 |
6264650 | Hovda et al. | Jul 2001 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6463361 | Wang et al. | Oct 2002 | B1 |
6496099 | Wang et al. | Dec 2002 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
8005571 | Sutherland et al. | Aug 2011 | B2 |
8041459 | Sutherland et al. | Oct 2011 | B2 |
8100896 | Podhajsky | Jan 2012 | B2 |
8170717 | Sutherland et al. | May 2012 | B2 |
Number | Date | Country |
---|---|---|
064731 | Apr 1995 | EP |
Number | Date | Country | |
---|---|---|---|
20110282360 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
60049923 | Jun 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09099740 | Jun 1998 | US |
Child | 09804531 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11928053 | Oct 2007 | US |
Child | 13191560 | US | |
Parent | 10851819 | May 2004 | US |
Child | 11928053 | US | |
Parent | 09804531 | Mar 2001 | US |
Child | 10851819 | US |