The present invention generally relates to minimally invasive endovascular interventional procedures including endovascular aneurysm repair (“EVAR”) and fenestrated EVAR (“FEVAR”) of an abdominal aortic aneurysm (“AAA”). The present invention specifically relates to a robotic control of the endovascular interventional procedures including robotic control of a EVAR/FEVAR deployment of an endovascular stent-graft (“endograft”) within the abdominal aorta to impede blood flood along the walls of the AAA.
An aorta is a main artery of a body that carries oxygen-rich blood from a heart through the body. An abdominal aorta aneurysm (“AAA”) is a bulge/ballooning in a weakened section of the aorta within an abdominal region of the body whereby the aorta may rupture and cause excessive internal bleeding within the abdomen that quickly results in death.
For example,
Various procedures have been proposed to repair AAA, of which, endovascular aneurysm repair (“EVAR”) and fenestrated EVAR (“FEVAR” are currently the most common techniques for the repair of an AAA. An EVAR/FEVAR procedure is typically carried out under x-ray fluoroscopy guidance and uses significant amounts of contrast and radiation to correctly position and orient an endovascular stent-graft (“endograft”) within the abdominal aorta for deploying the endograft to control the flow of blood through the AAA.
For example,
By further example,
There are various complications associated with an EVAR/FEVAR procedure.
First, on average, 50-100 mL of contrast dye is used during an EVAR/FEVAR procedure, which can result in acute renal failure in ˜7% of cases.
Second, the most common complication from an EVAR/FEVAR procedure is endoleaks resulting from an insufficient seal of the endograft to the abdominal aorta whereby the endoleaks involve incorrect blood flow around the endograft into the aneurysm.
For example, referring to
Similarly, for example, referring to
Third, another complication around EVAR/FEVAR procedures involves ischemia of the aortic side branches including the colonic, renal, and pelvic arteries. This can occur due to misplacement of the endograft such that the endograft partially or completely covers one of the side branches.
For example, referring to
More particularly to the x-ray fluoroscopy guidance for EVAR/FEVAR procedures, an endograft is contained within a deployment system that is used to navigate the endograft to a position and/or an orientation for deployment within the aorta. Such deployment systems tend to be relatively large and stiff endovascular devices. They typically involve a handle or set of knobs and dials at the proximal end of the device to control the various steps around the stent deployment at the distal end of the device. Specifically, the endograft lies within a distal part of the device and is only released once the device has been navigated to the appropriate position and/or orientation within the aorta. In some cases the endograft completely deploys in one step, while in other cases the endograft can be partially deployed to allow for correct positioning and/or orientation before the final deployment step firmly attaches the endograft to the vasculature through a retaining/sealing ring.
The endograft requires a sufficient amount of healthy vasculature whereby the retaining/sealing ring can be properly attached to the vasculature. If a healthy proximal attachment site is available beneath the renal arteries, then the endograft will not cover the renal arteries and may be attached to the vasculature below the renal arteries via a correct positioning and/or orientating of the deployment device.
For example, referring to
Conversely, if a healthy proximal attachment site is unavailable beneath the renal arteries, then alternative approaches are necessary to maintain flow to those arteries. One approach is to use a fenestrated endograft. In this case, the fenestrations of the fenestrated endograft must be lined up correctly with renal arteries and additional stents are placed within the renal arteries to connect the renal arteries to the main endograft.
For example, referring to
Under the x-ray fluoroscopy guidance, the endograft is visualized through x-ray visible markers that are located in key positions on the endograft including the retaining/sealing ring(s) and fenestrations, if any. Nonetheless, there are several drawbacks to a manual operation of the deployment device under x-ray fluoroscopy guidance including an inherent degree of difficulty in achieving a precise positioning and orientation of an endograft, a practical degree of instability of the endograft during the deployment (particularly for extension and cannulation of the aortic side branches), and lack of an intuitive concurrent control of the endograft and the c-arm of the x-ray device.
Endovascular surgery as known in the art generally is a minimal invasive intervention involving access through major blood vessels to a targeted area of a cardiovascular system including a heart and all blood vessels. Examples of endovascular surgery include, but are not limited to, EVAR, FEVAR, coronary stenting, peripheral vascular ballooning and stenting, mitral valve replacement, mitral clip placement, aortic valve replacement, left atrial appendage closure, perivalvular leak closure, etc.
The present invention proposes a novel and unique integration of optical shape sensing and robotic control for navigating a treatment device within the cardiovascular system, more particularly a novel and unique integration of optical shape sensing with robotic control for navigating an endograft within an abdominal aorta during an EVAR or FEVAR.
One form of the present invention is a robotic system for operating an endovascular deployment device including a treatment device mounted to a delivery tool connected to a proximal control, and further including an optical shape sensor (e.g., an endograft deployment device incorporating an optical shape sensor). The robotic system employs a robot attachable to the proximal control and/or the delivery tool for navigating the treatment device within a cardiovascular system (e.g., a robot controlling an axial rotation and/or axial translation of an endograft mounted to a sheath catheter within an abdominal aorta). The robotic system further employs a robot controller for controlling a navigation of the treatment device within the cardiovascular system by the robot derived from a spatial registration between a shaping sensing of a portion or entirety of the endovascular deployment device by the optical shape sensor and a medical image of the cardiovascular system (e.g., a spatial registration of shape sensing data to an X-ray/reconstructed image of an abdominal aorta).
For purposes of the present invention, the terms of the art of the present invention including, but not limited to “optical shape sensor”, “endograft”, “deployment device”, “robot”, “navigating/navigation”, “control/controlling”, “spatial registration”, “shape sensing” and “cardiovascular system” are to be interpreted as understood in the art of the present invention and as exemplary described herein.
For purposes of the present invention, the term “endovascular deployment device” broadly encompasses and descriptively labels all known deployment devices for deploying endotreatment device including, but not limited to, the Endurant®II AAA Stent Graft System, the Zenith® System for AAA, the AFX® Endovascular AAA System, MitraClip Percutaneous Mitral Valve Repair System, WATCHMAN Left Atrial Appendage Closure Device, SAPIEN XT Transcatheter Heart Valve, and in general endograft, stent, clip, and valve delivery and deployment systems.
For purposes of the present invention, the term “proximal control” broadly encompasses and descriptively labels deployment controls located at a proximal end of known endovascular deployment devices including, but not limited to, knobs, wheels, screws, injection channels, pull wires, sliders, levers etc.
For purposes of the present invention, the term “delivery tool” broadly encompasses and descriptively labels tools distally extending from the proximal control for mounting treatment device including, but not limited to, deployment devices, sheath catheters, balloon catheters, guidewires, etc.
For purposes of the present invention, the term “treatment device” broadly encompasses and descriptively labels tools distally extending from the proximal control and for mounting treatment device including, but not limited to, endografts (non-fenestrated and fenestrated), stents, clips, valves, closure devices, annuloplasty rings, etc.
For purposes of the present invention, the term “medical image” broadly encompasses all known image forms utilized for diagnosis, planning and guidance of vascular interventional procedures including, but not limited to, modality images (e.g., an X-ray image), reconstructed images, rendered images, segmented images, modeled images, etc.
For purposes of the present invention, the term “controller” broadly encompasses all structural configurations of an application specific main board or an application specific integrated circuit housed within or linked to a computer or another instruction execution device/system for controlling an application of various inventive principles of the present invention as subsequently described herein. The structural configuration of the controller may include, but is not limited to, processor(s), computer-usable/computer readable storage medium(s), an operating system, application module(s), peripheral device controller(s), slot(s) and port(s). Examples of a computer includes, but is not limited to, a server computer, a client computer, a workstation and a tablet.
For purposes of the present invention, the term “module” broadly encompasses a component of the imaging quality controller consisting of an electronic circuit or an executable program (e.g., executable software and/firmware) for executing a specific application.
The foregoing form and other forms of the present invention as well as various features and advantages of the present invention will become further apparent from the following detailed description of various embodiments of the present invention read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the present invention rather than limiting, the scope of the present invention being defined by the appended claims and equivalents thereof.
To facilitate an understanding of the present invention, an example of a system for executing an EVAR procedure and a FEVAR procedure will now be described in connection with
For purposes of the present invention, the terms of the art of the present invention including, but not limited to “optical shape sensor”, “sheath catheter”, “guidewire”, “catheter balloon”, “monitor”, “interface” and “workstation” are to be interpreted as known in the art of the present invention and exemplary described herein.
Referring to
Optical shape sensor (“OSS”) 44 uses light along one or more optical fibers for device localization and navigation during the EVAR/FEVAR procedure. An operating principle of OSS sensor 30 involves use of distributed strain measurement in the optical fiber including, but not limited to, use of characteristic Rayleigh backscatter or use of controlled grating patterns. A shape along the optical fiber begins at a specific point along OSS 44 associated with an origin of a OSS coordinate system 45 whereby a subsequent shape position and orientation of OSS 44 are relative to the origin of OSS coordinate system 45.
In order to introduce the use of OSS 44 into the EVAR/FEVAR procedure for providing image guidance of endograft 43nf or fenestrated endograft 43f, in practice OSS 44 may integrated into the endograft development in accordance with various approaches including, but not limited to:
“As further described herein, medical imaging such as image rendering and image modeling of endograft 43nf or fenestrated endograft 43f may be generated based on the optical shape sensing information in dependence upon the integration method. Robot 50 is attached to proximal control 41 and/or a delivery tool (e.g., heath catheter 42sc, guidewire 42gw and balloon catheter 42bc), for navigating endograft 43nf or fenestrated endograft 43f within an abdominal aorta. In practice, an attachment of robot 50 to proximal control 41 and/or the delivery tool includes, but is not limited to:
In one embodiment of robot 50 (
A key feature of robot 50 is the ability to hold endograft deployment device 40 and therefore endograft 43nf/fenestrated endograft 43f in a stable position/orientation that reduces a need for an operator to be holding a handle of proximal control in position/orientation at all times. In the event that endograft deployment device 40 and therefore endograft 43nf/fenestrated endograft 43f does slip, robot 50 may automatically attempt to reposition/reorient endograft 43nf/fenestrated endograft 43f within the abdominal aorta 11 or can warn the user. In addition, by incorporating force sensor(s) 57 as shown, forces required to insert endograft deployment device 40 into the abdominal aorta may be measured and force(s) required to hold endograft 43nf/fenestrated endograft 43f during vessel cannulation, etc., may also be measured. Such force readings could be used to warn the operator if excessive forces were applied to the patient.
Referring back to
Of importance to note is the integration of OSS 44 and robot 50 into the EVAR/FEVAR procedure reduces X-ray exposure for a robot monitor and a workstation operator.
Referring back to
Interface platform 73 is connected/coupled to OSS 44 and imaging modality 60 to respectively input shape sensing data and imaging data. More particularly, for the input of shape sensing data, a light detector (not shown) as known in the art for detecting light reflected by and/or transmitted through OSS 44 may be internal or external to interface platform 73.
Robot controller 74 and imaging controller 76 include and/or are accessible by an operating system (not shown) as known in the art for controlling various graphical user interfaces, data and images on monitor 78 as directed by a workstation operator via a keyboard, buttons, dials, joysticks, etc. of interface platform 72, and for storing/reading data as programmed and/or directed by the workstation operator of interface platform 72.
In practice, robot controller 74 and imaging controller 76 may be segregated or integrated within interface platform 73, or installed on workstation computers of different robot control workstation 70. Additionally, robot controller 74 may be incorporated within robot 50 and/or imaging controller 76 may be incorporated within imaging modality 60 whereby interface platform 73 provides user interfaces for accessing robot controller 74 and/or imaging controller 76.
Generally, robot controller 74 is connected to actuator controls of robot 50 for data/command communication 75 between robot 50 and robot controller 74 including, but not limited to, actuation commands from robot controller 74 to robot 50 and actuation data from robot 50 to robot controller 74 (e.g., a degree of axial translation and/or axial rotation of endograft deployment device 40 and any force feedback). Concurrently, imaging controller 76 is connected to imaging modality 60 for data/command communication 77 between imaging modality 60 and imaging controller 76 including, but not limited to, imaging data from imaging modality 60 to imaging controller 76 and actuation commands from imaging controller 76 to imaging modality 60.
Specifically, robot controller 74 execute various control schemes for the positioning, orientation and deployment of endograft 43nf/fenestrated endograft 43f into the abdominal aorta, and imaging controller 76 executes a control scheme for automatic control of an imaging of the abdominal aorta by imaging modality 60.
To this end, from the imaging data generated by imaging modality 60, imaging controller 76 generates EVAR/FEVAR medical image(s) 78 for display on monitor 71 including, but not limited to, a pre-operative or intra-operative image of the anatomy (such as an x-ray, CT, MRI, IVUS, OCT, or ultrasound) and an image model of endograft 43nf/fenestrated endograft 43f and the utilized delivery tools (e.g., sheath catheter 42sc, guidewire 42gw and balloon catheter 42bc). From image(s) 78, the workstation operator implements the control schemes via interface platform 72.
The control schemes will now be described herein in the context of a two-dimensional (“2D”) medical image 79 as shown in
For purposes of the present invention, the terms “delivery position target” and “delivery orientation target” respectively broadly encompass a navigation target within the cardiovascular system of a position and an orientation of a specific feature of a delivery tool or a treatment device prior to or during deployment, and the terms “delivery position restriction” and “delivery orientation restriction” respectively broadly encompass a navigation boundary within the cardiovascular system of a position and an orientation of a specific feature of a delivery tool or a treatment device prior to or during deployment.
The following control schemes will be described in terms of “an endograft position target” and “an endograft orientation target” respectively broadly encompassing a navigation target within an abdominal aorta of a position and an orientation of a sealing/retaining ring of an endograft prior to deployment, and the terms “sheath position restriction” respectively broadly encompass a navigation boundary within an abdominal aorta of a position a sheath catheter during the deployment.
From this description of the control schemes, those having ordinary skill in the art will appreciate how to implement variations of the described control schemes in accordance with the inventive principles of the present invention.
Robotic Position Control Scheme. For this control scheme, robot controller 74 controls a position of endograft 43nf/fenestrated endograft 43f by using the optical shape sensing information about key features of endograft 43nf/fenestrated endograft 43f and endograft deployment device 40 registered to the imaging of the abdominal aorta. More particularly, robot controller 74 determines how to command robot 50 to translate endograft 43nf/fenestrated endograft 43f (e.g., via axial translation) by using:
For example, referring to
Alternatively for embodiments involving the creation of fenestrations in endograft 43nf during or subsequent to the deployment of endograft 43nf, an endograft position target 91 above renal arteries 12 for an optically sensed sealing/retaining ring (not shown) of endograft 43nf adjacent the distal tip of main endograft deployment device 40(M) may be delineated by the workstation operator via interface platform 73. In response to actuation commands from robot controller 74 associated with the delineation of endograft position target 91, robot 50 will axially translate main endograft deployment device 40(M) until the optical shape sensing feedback indicates the sealing/retaining ring is located at endograft position target 91.
By further example, still referring to
This control scheme may be used for the introduction of devices 40 as shown in
Robotic Orientation Control Scheme. For this control scheme, robot controller 74 controls the orientation endograft 43nf/fenestrated endograft 43f by using the optical shape sensing information about key features of endograft 43nf/fenestrated endograft 43f registered to the imaging of the abdominal aorta. More particularly, robot controller 74 determines how to command robot 50 to orient endograft 43nf/fenestrated endograft 43f (e.g., via axial rotation) by using:
For example, referring to
By further example, still referring to
Endograft Deployment Control Scheme. For this control scheme, robot controller 74 communicates actuation commands to robot 50 for robotic control of the deployment of endograft 43nf/fenestrated endograft 43f.
For example with endograft deployment device 40 of
By additional example with endograft deployment device 40 of
Finally, by further example with endograft deployment device 40 of
During any such robotic actuation of the stent deployment process, information regarding a phase of the endograft deployment from actuators/encoders of robot 50 and regarding a shape of endograft deployment device 40 from OSS 44 may be used to provide the workstation operator with a virtual representation of how endograft 43nf/fenestrated endograft 43f is deploying within the visualization framework.
Virtual Fixture Control Scheme. For this control scheme, virtual boundaries for motions of the endograft deployment device may be defined within the patient anatomy or robot space. For example, as shown in
To this end, the robotic system may apply a force feedback to prevent the workstation operator from pushing the endograft deployment device into an undesired location. This “force feedback” can be expressed as a resistive force, physically limiting the workstation operator from moving the endograft deployment device into the unwanted area, or simply as a signal to the workstation operator. In practice, such a system would not require active degrees of freedom, but could be operated with resistive degrees of freedom only, which may be considered less intrusive to the workstation operator than a robotic capable of active motion. Virtual fixturing may be further used, for example, to prevent the workstation operator from blocking the renal bifurcation during the endograft deployment by limiting the depth of insertion.
Automatic Imaging Control. For this control scheme, referring to
In summary, referring to
From the description of the exemplary embodiments herein as shown in
Furthermore, as one having ordinary skill in the art will appreciate in view of the teachings provided herein, features, elements, components, etc. described in the present disclosure/specification and/or depicted in the
Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future (e.g., any elements developed that can perform the same or substantially similar function, regardless of structure). Thus, for example, it will be appreciated by one having ordinary skill in the art in view of the teachings provided herein that any block diagrams presented herein can represent conceptual views of illustrative system components and/or circuitry embodying the principles of the invention. Similarly, one having ordinary skill in the art should appreciate in view of the teachings provided herein that any flow charts, flow diagrams and the like can represent various processes which can be substantially represented in computer readable storage media and so executed by a computer, processor or other device with processing capabilities, whether or not such computer or processor is explicitly shown.
Furthermore, exemplary embodiments of the present invention can take the form of a computer program product or application module accessible from a computer-usable and/or computer-readable storage medium providing program code and/or instructions for use by or in connection with, e.g., a computer or any instruction execution system. In accordance with the present disclosure, a computer-usable or computer readable storage medium can be any apparatus that can, e.g., include, store, communicate, propagate or transport the program for use by or in connection with the instruction execution system, apparatus or device. Such exemplary medium can be, e.g., an electronic, magnetic, optical, electromagnetic, infrared or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include, e.g., a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), flash (drive), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD. Further, it should be understood that any new computer-readable medium which may hereafter be developed should also be considered as computer-readable medium as may be used or referred to in accordance with exemplary embodiments of the present invention and disclosure.
Having described preferred and exemplary embodiments of novel and inventive system and method for robotic control of optical shape sensing based endograft deployment, (which embodiments are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons having ordinary skill in the art in light of the teachings provided herein, including the
Moreover, it is contemplated that corresponding and/or related systems incorporating and/or implementing the device or such as may be used/implemented in a device in accordance with the present disclosure are also contemplated and considered to be within the scope of the present invention. Further, corresponding and/or related method for manufacturing and/or using a device and/or system in accordance with the present disclosure are also contemplated and considered to be within the scope of the present invention.
This application is the U.S. National Phase application under 35 U.S.C. § 371 of International Application Serial No. PCT/IB2016/050044, filed on Jan. 6, 2016, which claims the benefit of U.S. Application Ser. No. 62/106,262, filed on Jan. 22, 2015. These applications are hereby incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2016/050044 | 1/6/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/116821 | 7/28/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6665554 | Charles | Dec 2003 | B1 |
6810281 | Brock | Oct 2004 | B2 |
7930065 | Larkin et al. | Apr 2011 | B2 |
8460175 | Jo | Jun 2013 | B2 |
8528565 | Hauck et al. | Sep 2013 | B2 |
9259278 | Jensen | Feb 2016 | B2 |
9326788 | Batross | May 2016 | B2 |
9404734 | Ramamurthy et al. | Aug 2016 | B2 |
9623209 | Wenderow | Apr 2017 | B2 |
9726476 | Ramamurthy et al. | Aug 2017 | B2 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20080188921 | Yamasaki | Aug 2008 | A1 |
20090228020 | Wallace et al. | Sep 2009 | A1 |
20110224686 | Larkin et al. | Sep 2011 | A1 |
20120191086 | Moll et al. | Jul 2012 | A1 |
20120283747 | Popovic | Nov 2012 | A1 |
20130324833 | Barley | Dec 2013 | A1 |
20140052241 | Godefridus et al. | Feb 2014 | A1 |
20140275997 | Chopra et al. | Sep 2014 | A1 |
20140316436 | Bar | Oct 2014 | A1 |
20140343416 | Panescu | Nov 2014 | A1 |
20140343568 | Fenech | Nov 2014 | A1 |
20150045813 | Kostrzewski | Feb 2015 | A1 |
20150057575 | Tsusaka | Feb 2015 | A1 |
20150141808 | Elhawary et al. | May 2015 | A1 |
20150209112 | Moll et al. | Jul 2015 | A1 |
20160081760 | Verard | Mar 2016 | A1 |
20160183841 | Duindam | Jun 2016 | A1 |
20160256230 | Kowshik | Sep 2016 | A1 |
20170203116 | Sadler | Jul 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20180263716 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62106262 | Jan 2015 | US |