The implementations disclosed herein relate to various medical devices and related components, including robotic and/or in vivo medical devices and related components. Certain implementations include various robotic medical devices, including robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity and further including a camera that is positioned through the support component and can be operated to manually or automatically track the arms or end effectors of the robotic device. Further implementations relate to methods and devices for operating the above devices.
Invasive surgical procedures are essential for addressing various medical conditions. When possible, minimally invasive procedures such as laparoscopy are preferred.
However, known minimally invasive technologies such as laparoscopy are limited in scope and complexity due in part to 1) mobility restrictions resulting from using rigid tools inserted through access ports, and 2) limited visual feedback. Known robotic systems such as the da Vinci® Surgical System (available from Intuitive Surgical, Inc., located in Sunnyvale, Calif.) are also restricted by the access ports, as well as having the additional disadvantages of being very large, very expensive, unavailable in most hospitals, and having limited sensory and mobility capabilities.
There is a need in the art for improved surgical methods, systems, and devices.
Discussed herein are various robotic surgical systems, including certain systems having camera lumens constructed and arranged to receive various camera systems, including tracking camera systems. Further implementations relate to surgical insertion devices constructed and arranged to be used to insert various surgical devices into a cavity of a patient while maintaining insufflation of the cavity.
In various Examples, a system of one or more computers can be configured to perform particular operations or actions through software, firmware, hardware, or a combination of them installed on the system that in operation causes or cause the system to perform the actions. One or more computer programs can be configured to perform particular operations or actions by virtue of including instructions that, when executed by data processing apparatus, cause the apparatus to perform the actions.
In Example 1, a robotic surgical system, comprising a device body constructed and arranged to be positioned at least partially within a body cavity of a patient through an incision, the device body comprising: a first robotic surgical arm operably coupled to the device body and comprising a first end effector; a second robotic surgical arm operably coupled to the device body and comprising a first end effector; a camera lumen defined in the device body; a positionable camera constructed and arranged to provide views of the first and second end effectors; and a surgical console comprising a processor constructed and arranged to execute an algorithm to position the positionable camera.
In Example 2, of Example of claim 1, wherein the positionable camera comprises a tip constructed and arranged to be capable of both pitch and yaw.
In Example 3, of Example of claim 1, wherein the processor is constructed and arranged to execute a control algorithm for positioning of the first and second robotic surgical arms.
In Example 4, of Example of claim 3, wherein the control algorithm is constructed and arranged to establish a camera reference frame and a robot reference frame.
In Example 5, of Example of claim 4, wherein the processor is configured to align the camera reference frame with the robot reference frame and re-position the positionable camera.
In Example 6, of Example of claim 4, wherein the robot coordinate frame is established relative to the device body and is defined by orthogonal unit vectors xR, yR, and zR.
In Example 7, of Example of claim 4, wherein the camera coordinate frame is defined by orthogonal unit vectors xC, yC, and zC.
In Example 8, of Example of claim 4, wherein the processor is configured to define locations PL and PR for the first and second end effectors, respectively.
In Example 9, of Example of claim 8, wherein the processor is configured to establish Midpoint PLPR between the end effectors via PL and PR.
In Example 10, of Example of claim 9, wherein the camera reference frame has an origin and the processor is configured to align the Midpoint PLPR and reposition the positionable camera.
In Example 11, a robotic surgical system, comprising a robotic surgical device comprising a first robotic surgical arm operably coupled to the device body and comprising a first end effector; a second robotic surgical arm operably coupled to the device body and comprising a first end effector; and a camera lumen defined in the device body; a positionable camera comprising an articulating tip and constructed and arranged to be inserted into the robotic surgical device such that the tip is oriented to view the first and second end effectors; and a surgical console comprising a processor constructed and arranged to execute a control algorithm to position the positionable camera, wherein the control algorithm is constructed and arranged to establish a camera reference frame, establish a robot reference frame, and position the camera tip relative to the camera reference frame or robot reference frame.
In Example 12, of Example of claim 11, wherein the robot coordinate frame is established relative to the device body and is defined by orthogonal unit vectors xR, yR, and zR.
In Example 13, of Example of claim 11, wherein the camera coordinate frame is defined by orthogonal unit vectors xC, yC, and zC.
In Example 14, of Example of claim 11, wherein the processor is configured to define locations PL and PR for the first and second end effectors, respectively.
In Example 15, of Example of claim 14, wherein the processor is configured to establish Midpoint PLPR between the end effectors via PL and PR, and wherein the camera reference frame has an origin and the processor is configured to align the Midpoint PLPR and reposition the positionable camera.
In Example 16, a robotic surgical system, comprising: a robotic surgical device comprising: a first robotic surgical arm operably coupled to the device body and comprising a first end effector; and a second robotic surgical arm operably coupled to the device body and comprising a first end effector; a positionable camera comprising an articulating tip and constructed and arranged to be inserted into the robotic surgical device such that the tip is oriented to view the first and second end effectors; and a processor constructed and arranged to execute a control algorithm to position the positionable camera, wherein the control algorithm is constructed and arranged to: establish a camera reference frame defined by orthogonal unit vectors xC, yC, and zC, establish a robot reference frame established relative to the device body and is defined by orthogonal unit vectors xR, yR, and zR, and position the camera tip relative to the camera reference frame or robot reference frame.
In Example 17, of Example of claim 16, further comprising a robot clamp constructed and arranged to rotatably couple the robotic surgical device to a support arm.
In Example 18, of Example of claim 16, wherein the robot clamp further comprises a release button and a clothespin member.
In Example 19, of Example of claim 16, further comprising an interface pod.
In Example 20, of Example of claim 16, further comprising an indicator light.
Other embodiments of these Examples include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods.
While multiple implementations are disclosed, still other implementations of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative implementations of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
The various systems and devices disclosed herein relate to devices for use in medical procedures and systems. More specifically, various implementations relate to various medical devices, including robotic devices having tracking camera systems and related methods and systems, including, in some implementations, controlling consoles and other devices to provide complete systems.
It is understood that the various implementations of robotic devices and related methods and systems disclosed herein can be incorporated into or used with any other known medical devices, systems, and methods. For example, the various implementations disclosed herein may be incorporated into or used with any of the medical devices and systems disclosed in U.S. Pat. No. 7,492,116 (filed on Oct. 31, 2007 and entitled “Robot for Surgical Applications”), U.S. Pat. No. 7,772,796 (filed on Apr. 3, 2007 and entitled “Robot for Surgical Applications”), U.S. Pat. No. 8,179,073 (issued May 15, 2011, and entitled “Robotic Devices with Agent Delivery Components and Related Methods”), U.S. Pat. No. 8,343,171 (issued Jan. 1, 2013 and entitled “Methods and Systems of Actuation in Robotic Devices”), U.S. Pat. No. 8,679,096 (issued Mar. 25, 2014 and entitled “Multifunctional Operational Component for Robotic Devices”), U.S. Pat. No. 8,834,488 (issued Sep. 16, 2014 and entitled “Magnetically Coupleable Surgical Robotic Devices and Related Methods”), U.S. Pat. No. 8,894,633 (issued Nov. 25, 2014 and entitled “Modular and Cooperative Medical Devices and Related Systems and Methods”), U.S. Pat. No. 8,968,267 (issued Mar. 3, 2015 and entitled “Methods and Systems for Handling or Delivering Materials for Natural Orifice Surgery”), U.S. Pat. No. 8,968,332 (issued Mar. 3, 2015 and entitled “Magnetically Coupleable Robotic Devices and Related Methods”), U.S. Pat. No. 8,974,440 (issued Mar. 10, 2015 and entitled “Modular and Cooperative Medical Devices and Related Systems and Methods”), U.S. Pat. No. 9,010,214 (Apr. 21, 2015 and entitled “Local Control Robotic Surgical Devices and Related Methods”), U.S. Pat. No. 9,060,781 (issued Jun. 23, 2015 and entitled “Methods, Systems, and Devices Relating to Surgical End Effectors”), U.S. Pat. No. 9,089,353 (issued Jul. 28, 2015 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), U.S. Pat. No. 9,498,292 (issued Nov. 22, 2016 and entitled “Single Site Robotic Devices and Related Systems and Methods”), U.S. Pat. No. 9,579,088 (issued Feb. 28, 2017 and entitled “Methods, Systems, and Devices for Surgical Visualization and Device Manipulation”), U.S. Pat. No. 9,743,987 (Aug. 29, 2017 and entitled “Methods, Systems, and Devices Relating to Robotic Surgical Devices, End Effectors, and Controllers”), U.S. Pat. No. 9,770,305 (issued Sep. 26, 2017 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), and U.S. Pat. No. 9,888,966 (issued Feb. 13, 2018 and entitled “Methods, Systems, and Devices Relating to Force Control Surgical Systems), all of which are hereby incorporated herein by reference in their entireties.
Further, the various implementations disclosed herein may be incorporated into or used with any of the medical devices and systems disclosed in copending U.S. Published Applications 2014/0046340 (filed Mar. 15, 2013 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), 2014/0058205 (filed Jan. 10, 2013 and entitled “Methods, Systems, and Devices for Surgical Access and Insertion”), 2014/0303434 (filed Mar. 14, 2014 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), 2015/0051446 (filed Jul. 17, 2014 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), 2016/0074120 (filed Sep. 14, 2015, and entitled “Quick-Release End Effectors and Related Systems and Methods”), 2016/0135898 (filed Nov. 11, 2015 entitled “Robotic Device with Compact Joint Design and Related Systems and Methods”), 2016/0157709 (filed Feb. 8, 2016 and entitled “Medical Inflation, Attachment, and Delivery Devices and Related Methods”), 2017/0035526 (filed Aug. 3, 2016 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), 2017/0354470 (filed May 18, 2017 and entitled “Robotic Surgical Devices, Systems, and Related Methods”), 2018/0055584 (filed Aug. 30, 2017 and entitled “Robotic Device with Compact Joint Design and an Additional Degree of Freedom and Related Systems and Methods”), 2018/0056527 (filed Aug. 25, 2017 and entitled “Quick-Release End Effector Tool Interface”), 2018/0140377 (filed Nov. 22, 2017 and entitled “Gross Positioning Device and Related Systems and Methods”), 2018/0147019 (filed Nov. 29, 2017 and entitled “User Controller with User Presence Detection and Related Systems and Methods”), and 2018/0161122 (filed Dec. 14, 2017 and entitled “Releasable Attachment Device for Coupling to Medical Devices and Related Systems and Methods”), all of which are hereby incorporated herein by reference in their entireties. In addition, the various implementations disclosed herein may be incorporated into or used with any of the medical devices and systems disclosed in U.S. Application 62/614,127 (filed Jan. 5, 2018), which is hereby incorporated herein by reference in its entirety.
Certain device and system implementations disclosed in the patents and/or applications listed above can be positioned within a body cavity of a patient in combination with a support component similar to those disclosed herein. An “in vivo device” as used herein means any device that can be positioned, operated, or controlled at least in part by a user while being positioned within a body cavity of a patient, including any device that is coupled to a support component such as a rod or other such component that is disposed through an opening or orifice of the body cavity, also including any device positioned substantially against or adjacent to a wall of a body cavity of a patient, further including any such device that is internally actuated (having no external source of motive force), and additionally including any device that may be used laparoscopically or endoscopically during a surgical procedure. As used herein, the terms “robot,” and “robotic device” shall refer to any device that can perform a task either automatically or in response to a command.
Certain implementations provide for insertion of the present invention into the cavity while maintaining sufficient insufflation of the cavity. Further implementations minimize the physical contact of the surgeon or surgical users with the present invention during the insertion process. Other implementations enhance the safety of the insertion process for the patient and the present invention. For example, some implementations provide visualization of the present invention as it is being inserted into the patient's cavity to ensure that no damaging contact occurs between the system/device and the patient. In addition, certain implementations allow for minimization of the incision size/length. Further implementations reduce the complexity of the access/insertion procedure and/or the steps required for the procedure. Other implementations relate to devices that have minimal profiles, minimal size, or are generally minimal in function and appearance to enhance ease of handling and use.
As in manual laparoscopic procedures, a known insufflation system can be used to pump sterile carbon dioxide (or other gas) into the patient's abdominal cavity. This lifts the abdominal wall from the organs and creates space for the robot. In certain implementations, the system has no direct interface with the insufflation system. Alternatively, the system can have a direct interface to the insufflation system.
In certain implementations, the insertion port is a known, commercially-available flexible membrane placed transabdominally to seal and protect the abdominal incision. This off-the-shelf component is the same device used in the same way for Hand-Assisted Laparoscopic Surgery (HALS). The only difference is that the working arms of the robot are inserted into the abdominal cavity through the insertion port rather than the surgeon's hand. The robot body seals against the insertion port, thereby maintaining insufflation pressure. The port is single-use and disposable. Alternatively, any known port can be used.
Certain implementations disclosed herein relate to “combination” or “modular” medical devices that can be assembled in a variety of configurations. For purposes of this application, both “combination device” and “modular device” shall mean any medical device having modular or interchangeable components that can be arranged in a variety of different configurations, and the related systems. The modular components and combination devices disclosed herein also include segmented triangular or quadrangular-shaped combination devices. These devices, which are made up of modular components (also referred to herein as “segments”) that are connected to create the triangular or quadrangular configuration, can provide leverage and/or stability during use while also providing for substantial payload space within the device that can be used for larger components or more operational components. As with the various combination devices disclosed and discussed above, according to one implementation these triangular or quadrangular devices can be positioned inside the body cavity of a patient in the same fashion as those devices discussed and disclosed above.
The various system implementations described herein are used to perform robotic surgery. Further, the various implementations disclosed herein can be used in a minimally invasive approach to a variety of procedures that are typically performed “open” by known technologies, with the potential to improve clinical outcomes and health care costs, including, for example, general surgery applications in the abdominal cavity, such as, for example, colon resection and other known procedures. Further, the various implementations disclosed herein can be used in place of the known mainframe-like laparoscopic surgical robots that reach into the body from outside the patient. That is, the less-invasive robotic systems, methods, and devices according to the implementations disclosed herein feature small, self-contained surgical devices that are inserted in their entireties through a single incision in the patient's abdomen. Designed to utilize existing tools and techniques familiar to surgeons, the devices disclosed herein will not require a dedicated operating room or specialized infrastructure, and, because of their much smaller size, are expected to be significantly less expensive than existing robotic alternatives for laparoscopic surgery. Due to these technological advances, the various implementations herein could enable a minimally invasive approach to procedures performed in open surgery today. In certain implementations, the various systems described herein are based on and/or utilize techniques used in manual laparoscopic surgery including insufflation of the abdominal cavity and the use of ports to insert tools into the abdominal cavity.
As will be described in additional detail below, components of the various system implementations disclosed or contemplated herein include a control console and a robot having a tracking camera system. The robot implementations are constructed and arranged to be inserted into the insufflated abdominal cavity. The tracking camera system can be an integrated camera system that captures a view of the surgical target and can be manually or automatically controlled to track and capture an ongoing view of the arms and/or end effectors of the robotic device. The surgeon can then use that view on a display to help control the robot's movements. In certain implementations, the camera is designed so that it can be removed so it can be cleaned and used in other applications.
In other implementations as will be discussed in further detail herein, the system can include disposable or permanent sleeves positioned on or attached to the robotic device, an electro-surgery cautery generator, an insertion port, a support arm/structure, a camera, remote surgical displays, end-effectors (tools), an interface pod, a light source, and other system components.
The various implementations are disclosed in additional detail in the attached figures, which may include some written description therein.
According to one implementation, the Robotically Assisted Surgical Device (RASD) system 1 has several components. In one such implementation, and as shown in
In various implementations, the device 10 and each of the links of the arms 14, 16 contain a variety of actuators or motors. In one embodiment, any of the motors discussed and depicted herein can be brush or brushless motors. Further, the motors can be, for example, 6 mm, 8 mm, or 10 mm diameter motors. Alternatively, any known size that can be integrated into a medical device can be used. In a further alternative, the actuators can be any known actuators used in medical devices to actuate movement or action of a component. Examples of motors that could be used for the motors described herein include the EC 10 BLDC+GP10A Planetary Gearhead, EC 8 BLDC+GP8A Planetary Gearhead, or EC 6 BLDC+GP6A Planetary Gearhead, all of which are commercially available from Maxon Motors, located in Fall River, Mass. There are many ways to actuate these motions, such as with DC motors, AC motors, permanent magnet DC motors, brushless motors, pneumatics, cables to remote motors, hydraulics, and the like.
In these implementations, the robotic device 10 and camera 12 are both connected to the surgeon console using a cable: the robot cable 8A and camera cable 8B. Alternatively, any connection configuration can be used. In certain implementations, the system can also interact with other devices during use such as a electrosurgical generator, an insertion port, and auxiliary monitors.
As shown in
According to the implementations of
As is shown in
Alternatively, the assembly can be inserted into the robotic device 10 though a lumen 10D defined through the body 10A of the robotic device 10 as shown. In certain implementations, the lumen 10D includes a seal/port 10E to ensure that the patient's cavity remains insufflated (as shown in relation to
In use, the distal portion of the robotic device 10 is inserted inside the body of the patient. Thereafter, the robot and camera can both be controlled by the surgeon via the surgeon console sitting outside the sterile field. The surgeon console has user input devices (i.e. joysticks) that allow the surgeon to control the motion of the robot, as described in detail below. There are also pedal inputs and a touchscreen that control device 10 functions in certain implementations, as shown in
It is understood that in the described implementations, the robotic device 10 has a pair of miniaturized human-like arms 14, 16 attached to a central body or handle 10A, as shown in
The robot handle 10A in the implementation of
In these implementations, the camera 12 can be locked in place and can be removed using a latch button 32 on the camera handle 12A or elsewhere. In these implementations, the surgical robotic device is supported by a support arm 4 that is clamped to the operating table 2. As described in relation to
As shown in
Each robot arm 14, 16 in this implementation has six degrees of freedom, including the open/close function of the tool, as shown in
The surgical robot in this implementation has significant dexterity. As shown in
As best shown in
The bi-manual workspace 30C is approximated by an ellipse that is rotated 180 degrees about the shoulder pitch joint (J2 in
In addition, according to this implementation, the surgical robotic device 10 can reach any area of the abdominal cavity because it can be easily repositioned during the procedure via “gross positioning.” That is, the device 10 can be quickly, in a matter of seconds, be moved by adjusting the external support arm 4 and robot clamp 150. The combination of gross positioning of the robotic device 10 and the dexterity of the robot arms 14, 16 allow the surgeon to place the device 10 so it can work anywhere in the abdominal cavity with the arms 14, 16 well triangulated for the given procedure, as discussed below.
Turning to the insertion of the device 10 and camera 12 in greater detail,
In various implementations of the system 1, the device 10 is inserted into the abdomen of the patient by executing a series of configurations and/or arm positions. In certain implementations, the insertion 34 and retraction 36 controls or buttons allow the physician or user to executed the respective insertion and retraction steps/positions through the insertion and/or retraction, as would be understood. Further, in certain implementations, the camera latch 32 toggles the internal components of the device 10 and/or camera 12 into “locked” or “unlocked” positions, thereby securing the camera 12 within the device 10 or allowing it to be freely removed from the camera lumen, as would be understood.
Various implementations of the surgical robotic device 10 according to these implementations have an indicator light 38 or lights 38 disposed at the proximal end 10C of the device 10 and constructed and arranged to indicate any state of the device and can be any color or any intensity or of varying intensity. In certain implementations, LED lights or similar lighting components can be used, as would be appreciated by those of skill in the art.
In various implementations, the robotically articulated camera 12 is part of a system 1 to provide visual feedback to the surgeon from the perspective of the camera 12. In one specific implementation, the camera provides 1080 p 60 Hz. digital video. Alternatively, the camera can provide any known video quality.
As is shown in the implementation of
It is likewise understood that when the robotic device 10 is repositioned during surgery, the camera 12 and robotic device 10 can move together or in a coordinated fashion in this configuration. This results in coordinated triangulation between the robot and tools 18, 20 for any configuration, positioning, and use of the device 10.
In accordance with certain implementations, the camera 12 is designed to visualize all possible positions of the robot's tools 18, 20. Accordingly, the camera tip 12B can be robotically articulated as to reposition the field of view (C). It is understood that in certain implementations, the surgeon controls this movement via the surgeon console 100 (described in detail in relation to
As shown in the implementations of
As mentioned above, the approximate camera field of view (C) for a given location of the camera is shown in the implementation of
Further, as the robotic device 10 makes large motions with its arms 14, 16—like those described in
The system 1 according to certain implementations has a processor constructed and arranged to execute such a control algorithm. The control algorithm can be provided on computer-readable medium on a processor optionally having an operating system, memory, an input/output interface and the like, as would be appreciated by one of skill in the art. The processor in various implementations can be disposed in the camera handle 12A, device body 10A, in the surgical console 100 or elsewhere, as would be appreciated by those of skill in the art. For purposes of the discussed implementations, the processor is located inside the surgical console 100 as would be readily appreciated.
In these implementations, the control algorithm allows for automated and/or semi-automated positioning and re-positioning of the camera 12 about the pitch (α) and/or yaw (β) rotations shown in
In the implementation of
In this implementation, the xC axis is located so as to extend outward from the imaging tip 12B as an extension of the longitudinal axis of the camera 12 and thus point directly in line with the field of view of the camera 12 (as shown in
In this implementation, two angles are defined to describe the 2 DOF rotation of the camera frame {C} relative to the robot frame {R}; first angle α and second angle β. Many angles can be used, but in this representative implementation, fixed angles are used and are described by rotations about the xR and yR frames.
The first angle α is defined as a rotation of the camera tip 12B (xC axis) relative to the xR axis about the yR axis, as is shown in
In these implementations, the system can generate coordinate transformations from one of the camera frame {C} and/or the robot frame {R} to the other—or to any other coordinate frame.
As shown in the implementations of
According to certain of these implementations, the camera frame {C} is fixed to the camera tip 12B so it does not move relative to the view provided by the surgeon.
As shown in
Continuing with the implementation of
It is understood that the positioning of the camera 12 according to these implementations can be controlled and/or planned using several approaches. One approach is to allow the user to control the position of the camera 12 via an input device operably coupled to the console 100, and as described in detail in relation to
In further alternate implementations, additional data relating to the position of the camera 12 and other components such as the arms 14, 16 can be used to establish the reference frames {R}, {C} to choose the direction of the camera 12. These implementations can include end effector 18, 20 positions and velocities as well as many factors associated with the motion of the tools, as would be appreciated by those of skill in the art.
A further approach according to certain implementations is to control the movement of the camera 12 to be fixed on the end effectors 18, 20. When viewed from the camera perspective C according to these implementations, the end effector 18, 20 locations are defined as PL and PR, where PL and PR are vectors containing the x, y, and z coordinates of the location of the respective points. These can be detected via the camera 12 and their position can be established in the camera frame, as is shown in
In various of these implementations, it is therefore possible to calculate the midpoint Midpoint PLPR between the end effectors in the camera frame
Using these reference frames, it is possible to re-position an initial camera view C1 to a second camera view C2 via coordinate transformations to ensure the camera 12 remains centered on the tools 18, 20. For example, as is shown in
The camera 12 can then be re-positioned so as to zero the origin point Xc of the camera to the midpoint PRPL of the two tools 18, 20 via coordinate transformations, as is shown in
Further implementations involving the control of camera 12 utilize a running average position of each right 18 and left 20 end effector is calculated. In these implementations, the difference between average position and actual position is calculated for each arm 14, 16. If the difference is greater than a threshold value, the arm is considered to be moving. In these implementations, camera actuation outputs are calculated via the kinematics of the camera as compared with a target position. When only one arm is moving, the target position is the position of only the moving arm. If both arms are moving, the midpoint between the two end-effector positions is used as the target position, as would be understood.
In implementations such as these running-average kinematic control execute pseudo-code such as:
Alternatively, other clinical and robotic factors can be used to determine the camera location. For example, the velocity/position and/or the velocity/position history can be considered in the commanded camera position. In constructing and arranging the system, it is understood that a tool that moves quickly, often, or constantly, or other factors could “pull” the camera toward that tool, and that a more stationary tip may not hold the camera as close.
Further, it is well appreciated that various machine learning techniques or other algorithms can be used to determine the orientation of the camera 12. This could include neural networks, genetic algorithms, or many other machine learning algorithms known and appreciated in the art.
Alternatively, the surgeon may also choose to remove the camera 12 from the robotic device 10 and use it in another, known laparoscopic port 8 like a standard manual laparoscope as shown in
In certain implementations, the robotic device is piloted from the surgeon console 100 as shown in
The device 10 and camera 12 motion are controlled in this implementation via the surgeon console 100 with left and right hand input devices 108. The input devices 108 interface with the surgeon's hands and monitor the surgeon's movement. As has been previously described, the input devices 108 have a surgeon presence sensor to indicate the surgeon's hands are properly engaged. The devices can also provide haptic feedback by pushing on the surgeon's hands to indicate things such as workspace boundaries and to prevent collisions between the robot arms, as was also described in the incorporated references. These input devices 108 also control open/close functions of the robot's surgical tools.
The surgeon console 100 according to these implementations can also have foot pedals 110 that are used to control various robot functions including clutching, camera movements, and various electro cautery functions. Alternatively, other input devices on the console can be used to control those various functions.
The surgeon console 100 according to these implementations is constructed and arranged to be used in either a sitting (similar to Intuitive's da Vinci) or standing position (similar to manual laparoscopy). The console 100 is designed to be easily transported between operating rooms using castors and a transport handle 112.
A further implementation of the surgeon console 100 is shown in
The remote display 120 according to these implementations is operably coupled to the other components and can be wireless or wired. This display 120 can be used to show the view from the robot camera or any other video.
In the implementation of
In certain implementations one 110A of the foot pedals 110 or another input device can be used as a clutch that separates coordinated motion of the hand input devices from the motion of the robot. In certain implementations, the foot pedals 110 can be configured allow the user to move the hand input devices 108 to a more desirable location in their own workspace. Then the coordinated motion can be reengaged. Alternatively, in other implementations the clutch function might separate the coordinated motion of the hand input devices from the motion of the robot and then the hand input devices might automatically move to a desired portion. Then the coordinated motion can be reengaged.
In certain system implementations, various cables 126 are used to connect the robot, camera, electrosurgical generator, and the surgeon console, as is shown in
According to one implementation, all connections of the cables 126 to and from the various system 1 components are made through a connection pod 124, shown in
In these implementations, the pod 124 is permanently connected to the surgeon console 100 via an approximately 20′ (6 meters) cable 126 giving flexibility in the placement of the surgeon console within the operating room. Other lengths are of course possible. It is understood that in use, the pod 124 and cable 126 can be hung from the back of the console 100 for transport. When in use, the pod 124 can be placed near the electrosurgical generator and/or near the operating table.
In various implementations, the robotic device 10 and camera 12 both have pigtails 126A, 126B that are permanently attached to the robot and camera and then have connectors at the pod. The robot pigtail 126A carries electrical power and control signals as well as cautery energy. The camera pigtail 126B carries electrical power and control signals as well as a fiber optic cable for the video signal.
The pod 124 according to these implementations can also be constructed and arranged to interface with an electrosurgical generator (ESG) 128. On/Off control signals from the user at the surgeon console 100 are directly connected to the ESG 128 control inputs. The mono-polar return pad 130 is first connected to the pod 124 and then the cautery energy is routed from the ESG 128 to the appropriate surgical tools via the pod 124. In various implementations, each connection contains a sensor that allows the surgeon console to determine if connections are made correctly. This system 1 has been designed to ensure safety and simplicity of setup.
One interface pod 124 design is shown in
In various implementations, a known, commercially-available ESG 128 can interface with the system, according to one implementation. For example, in one specific implementation, the surgeon console can have two (IPX7) foot pedals 110 that open and close an electrical circuit that activates and deactivates the ESG 128. The pedals 110 are directly connected to the ESG 128. As a safety measure, the surgeon console 100 can disconnect the pedals from the ESG 128, but cannot activate the ESG 128. Activation of the ESG 128 requires the surgeon to also depress the pedals 110. Mono-polar cautery energy is delivered to the right arm of the robot and bi-polar energy is delivered to the left arm. The electrocautery energy is delivered to the surgical target through the specifically designed surgical tools—such as a grasper for bi-polar and scissors and hood for mono-polar energy. Verification testing-creepage, clearance, impedance and the like—has been performed to ensure proper interoperability function between the electrosurgical generator and the system.
Alternatively, the ESG 128 can interface with the system 1 through other input devices other than the foot pedals. Alternatively, the system has no pod 124. In addition to these specialized subsystems, certain implementations of the system can utilize one or more of the many standard general surgical and laparoscopic systems and techniques that are commonly available and provided by the users, as described below.
Further aspects of the system 1 are described herein.
In certain implementations, these surgical instruments 130 are designed to be single-use disposable accessories to the robot system 1. They can be chosen based on clinical need for the specific surgical task.
The tools 130 are inserted into the distal end of the robot forearm 14, 16 and then are locked in place using a ¼-turn bayonet-style connection as end effectors 18, 20, as shown in
According to certain implementations, the surgical robotic device 10 is intended to be cleaned and sterilized for reuse. The robotic device 10 has a molded silicon protective sleeve (not shown) that covers the areas between the robot base link and the forearms. This enables the robot to be cleaned and fully exposed during the sterilization process.
In certain implementations, protective and fitted sleeves are provided that are tailored to cover the robot arms 14, 16. One such sleeve 140 is shown in
The robot sleeve 140 also makes the device easily cleaned post-surgery and ensures that all patient contact surfaces are properly exposed during the sterilization process. Alternatively, any known sleeves or protective components can be used.
In certain implementations, a robot clamp 150 is provided to support the device 10 during the procedure. In these implementations, a known, commercially-available support arm 4 can be used to anchor the device 10 to the operating table 2, as shown in
One clamp 150 implementation is depicted in
In implementations such as these, the clamp 150 has a clothespin member 158 that is optionally V-grooved. The clothespin member 158 permits the smooth and controlled rotation of the device 10. In these implementations, a clasping member 160 is disposed opposite the clothespin member 158, which is urged inward to secure the device at the interface ring 154, as would be appreciated.
Although various preferred implementations have been described, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope thereof.
Although the present invention has been described with reference to preferred implementations, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This application claims priority as a continuation of U.S. application Ser. No. 16/144,807, filed Sep. 27, 2018 and entitled “Robotic Surgical Devices with Tracking Camera Technology and Related Systems and Methods,” which Issued as U.S. Pat. No. 11,051,894 on Jul. 6, 2021, which claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application 62/564,076, filed Sep. 27, 2017 and entitled “Robotic Surgical Devices with Camera Tracking and Related Systems and Methods,” which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2858947 | Chapman | Nov 1958 | A |
3817403 | Glachet et al. | Jun 1974 | A |
3870264 | Robinson | Mar 1975 | A |
3922930 | Fletcher et al. | Dec 1975 | A |
3971266 | Inakura et al. | Jul 1976 | A |
3989952 | Timberlake et al. | Nov 1976 | A |
4246661 | Pinson | Jan 1981 | A |
4258716 | Sutherland | Mar 1981 | A |
4278077 | Mizumoto | Jul 1981 | A |
4353677 | Susnjara et al. | Oct 1982 | A |
4538594 | Boebel et al. | Sep 1985 | A |
4568311 | Miyaki | Feb 1986 | A |
4576545 | Maeda | Mar 1986 | A |
4623183 | Aomori | Nov 1986 | A |
4636138 | Gorman | Jan 1987 | A |
4645409 | Gorman | Feb 1987 | A |
4684313 | Minematsu et al. | Aug 1987 | A |
4736645 | Zimmer | Apr 1988 | A |
4762455 | Coughlan et al. | Aug 1988 | A |
4771652 | Zimmer | Sep 1988 | A |
4852391 | Ruch | Aug 1989 | A |
4854808 | Bisiach | Aug 1989 | A |
4896015 | Taboada et al. | Jan 1990 | A |
4897014 | Tietze | Jan 1990 | A |
4922755 | Oshiro et al. | May 1990 | A |
4922782 | Kawai | May 1990 | A |
4984959 | Kato | Jan 1991 | A |
4990050 | Tsuge et al. | Feb 1991 | A |
5019968 | Wang et al. | May 1991 | A |
5036724 | Rosheim | Aug 1991 | A |
5108140 | Bartholet | Apr 1992 | A |
5172639 | Wiesman et al. | Dec 1992 | A |
5176649 | Wakabayashi | Jan 1993 | A |
5178032 | Zona et al. | Jan 1993 | A |
5187032 | Sasaki et al. | Feb 1993 | A |
5187796 | Wang et al. | Feb 1993 | A |
5195388 | Zona et al. | Mar 1993 | A |
5201325 | McEwen et al. | Apr 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5263382 | Brooks et al. | Nov 1993 | A |
5271384 | McEwen et al. | Dec 1993 | A |
5284096 | Pelrine et al. | Feb 1994 | A |
5297443 | Wentz | Mar 1994 | A |
5297536 | Wilk | Mar 1994 | A |
5304899 | Sasaki et al. | Apr 1994 | A |
5307447 | Asano et al. | Apr 1994 | A |
5353807 | DeMarco | Oct 1994 | A |
5363935 | Schempf et al. | Nov 1994 | A |
5372147 | Lathrop et al. | Dec 1994 | A |
5382885 | Salcudean et al. | Jan 1995 | A |
5441494 | Oritz | Jan 1995 | A |
5388528 | Pelrine et al. | Feb 1995 | A |
5397323 | Taylor et al. | Mar 1995 | A |
5436542 | Petelin et al. | Jul 1995 | A |
5456673 | Ziegler et al. | Oct 1995 | A |
5458131 | Wilk | Oct 1995 | A |
5458583 | McNeely et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5515478 | Wang | May 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5553198 | Wang et al. | Sep 1996 | A |
5562448 | Mushabac | Oct 1996 | A |
5588442 | Scovil et al. | Dec 1996 | A |
5620417 | Jang et al. | Apr 1997 | A |
5623582 | Rosenberg | Apr 1997 | A |
5624380 | Takayama et al. | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5632761 | Smith et al. | May 1997 | A |
5645520 | Nakamura et al. | Jul 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5657584 | Hamlin | Aug 1997 | A |
5667354 | Nakazawa | Sep 1997 | A |
5672168 | de la Torre et al. | Sep 1997 | A |
5674030 | Sigel | Oct 1997 | A |
5728599 | Rosteker et al. | Mar 1998 | A |
5736821 | Suyama et al. | Apr 1998 | A |
5754741 | Wang et al. | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5769640 | Jacobus et al. | Jun 1998 | A |
5791231 | Cohn et al. | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5808665 | Green | Sep 1998 | A |
5815640 | Wang et al. | Sep 1998 | A |
5825982 | Wright et al. | Oct 1998 | A |
5833656 | Smith et al. | Nov 1998 | A |
5841950 | Wang et al. | Nov 1998 | A |
5845646 | Lemelson | Dec 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5876325 | Mizuno | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5878783 | Smart | Mar 1999 | A |
5895377 | Smith et al. | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5906591 | Dario et al. | May 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5911036 | Wright et al. | Jun 1999 | A |
5954692 | Smith et al. | Sep 1999 | A |
5971976 | Wang et al. | Oct 1999 | A |
5993467 | Yoon | Nov 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6030365 | Laufer | Feb 2000 | A |
6031371 | Smart | Feb 2000 | A |
6058323 | Lemelson | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6066090 | Yoon | May 2000 | A |
6086529 | Arndt | Jul 2000 | A |
6102850 | Wang et al. | Aug 2000 | A |
6106521 | Blewett et al. | Aug 2000 | A |
6107795 | Smart | Aug 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132441 | Grace | Oct 2000 | A |
6139563 | Cosgrove, III et al. | Oct 2000 | A |
6156006 | Brosens et al. | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6162171 | Ng et al. | Dec 2000 | A |
D438617 | Cooper et al. | Mar 2001 | S |
6206903 | Ramans | Mar 2001 | B1 |
D441076 | Cooper et al. | Apr 2001 | S |
6223100 | Green | Apr 2001 | B1 |
D441862 | Cooper et al. | May 2001 | S |
6238415 | Sepetka et al. | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6244809 | Wang et al. | Jun 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
D444555 | Cooper et al. | Jul 2001 | S |
6286514 | Lemelson | Sep 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6293282 | Lemelson | Sep 2001 | B1 |
6296635 | Smith et al. | Oct 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6309403 | Minoret et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6321106 | Lemelson | Nov 2001 | B1 |
6327492 | Lemelson | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398726 | Ramans et al. | Jun 2002 | B1 |
6400980 | Lemelson | Jun 2002 | B1 |
6408224 | Lemelson | Jun 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6436107 | Wang et al. | Aug 2002 | B1 |
6441577 | Blumenkranz et al. | Aug 2002 | B2 |
6450104 | Grant et al. | Sep 2002 | B1 |
6450992 | Cassidy | Sep 2002 | B1 |
6451027 | Cooper et al. | Sep 2002 | B1 |
6454758 | Thompson et al. | Sep 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6463361 | Wang et al. | Oct 2002 | B1 |
6468203 | Belson | Oct 2002 | B2 |
6468265 | Evans et al. | Oct 2002 | B1 |
6470236 | Ohtsuki | Oct 2002 | B2 |
6491691 | Morley et al. | Dec 2002 | B1 |
6491701 | Nemeyer et al. | Dec 2002 | B2 |
6493608 | Niemeyer et al. | Dec 2002 | B1 |
6496099 | Wang et al. | Dec 2002 | B2 |
6497651 | Kan et al. | Dec 2002 | B1 |
6508413 | Bauer et al. | Jan 2003 | B2 |
6512345 | Borenstein | Jan 2003 | B2 |
6522906 | Salisbury, Jr. et al. | Feb 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6548982 | Papanikolopoulos et al. | Apr 2003 | B1 |
6554790 | Moll | Apr 2003 | B1 |
6565554 | Niemeyer | May 2003 | B1 |
6574355 | Green | Jun 2003 | B2 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6591239 | McCall et al. | Jul 2003 | B1 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6610007 | Belson et al. | Aug 2003 | B2 |
6620173 | Gerbi et al. | Sep 2003 | B2 |
6642836 | Wang et al. | Nov 2003 | B1 |
6645196 | Nixon et al. | Nov 2003 | B1 |
6646541 | Wang et al. | Nov 2003 | B1 |
6648814 | Kim et al. | Nov 2003 | B2 |
6659939 | Moll et al. | Dec 2003 | B2 |
6661571 | Shioda et al. | Dec 2003 | B1 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6676684 | Morley et al. | Jan 2004 | B1 |
6684129 | Salisbury, Jr. et al. | Jan 2004 | B2 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6685698 | Morley et al. | Feb 2004 | B2 |
6687571 | Byme et al. | Feb 2004 | B1 |
6692485 | Brock et al. | Feb 2004 | B1 |
6699177 | Wang et al. | Mar 2004 | B1 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6702734 | Kim et al. | Mar 2004 | B2 |
6702805 | Stuart | Mar 2004 | B1 |
6714839 | Salisbury, Jr. et al. | Mar 2004 | B2 |
6714841 | Wright et al. | Mar 2004 | B1 |
6719684 | Kim et al. | Apr 2004 | B2 |
6720988 | Gere et al. | Apr 2004 | B1 |
6726699 | Wright et al. | Apr 2004 | B1 |
6728599 | Wright et al. | Apr 2004 | B2 |
6730021 | Vassiliades, Jr. et al. | May 2004 | B2 |
6731988 | Green | May 2004 | B1 |
6746443 | Morley et al. | Jun 2004 | B1 |
6764441 | Chiel et al. | Jul 2004 | B2 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6766204 | Niemeyer et al. | Jul 2004 | B2 |
6770081 | Cooper et al. | Aug 2004 | B1 |
6774597 | Borenstein | Aug 2004 | B1 |
6776165 | Jin | Aug 2004 | B2 |
6780184 | Tanrisever | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6785593 | Wang et al. | Aug 2004 | B2 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6792663 | Krzyzanowski | Sep 2004 | B2 |
6793653 | Sanchez et al. | Sep 2004 | B2 |
6799065 | Niemeyer | Sep 2004 | B1 |
6799088 | Wang et al. | Sep 2004 | B2 |
6801325 | Farr et al. | Oct 2004 | B2 |
6804581 | Wang et al. | Oct 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6817972 | Snow | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6817975 | Farr et al. | Nov 2004 | B1 |
6820653 | Schempf et al. | Nov 2004 | B1 |
6824508 | Kim et al. | Nov 2004 | B2 |
6824510 | Kim et al. | Nov 2004 | B2 |
6826977 | Grover et al. | Dec 2004 | B2 |
6832988 | Sprout | Dec 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6836703 | Wang et al. | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6837883 | Moll et al. | Jan 2005 | B2 |
6839612 | Sanchez et al. | Jan 2005 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6843793 | Brock et al. | Jan 2005 | B2 |
6852107 | Wang et al. | Feb 2005 | B2 |
6853879 | Sunaoshi | Feb 2005 | B2 |
6858003 | Evans et al. | Feb 2005 | B2 |
6860346 | Burt et al. | Mar 2005 | B2 |
6860877 | Sanchez et al. | Mar 2005 | B1 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6870343 | Borenstein et al. | Mar 2005 | B2 |
6871117 | Wang et al. | Mar 2005 | B2 |
6871563 | Choset et al. | Mar 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6892112 | Wang et al. | May 2005 | B2 |
6899705 | Niemeyer | May 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6905460 | Wang et al. | Jun 2005 | B2 |
6905491 | Wang et al. | Jun 2005 | B1 |
6911916 | Wang et al. | Jun 2005 | B1 |
6917176 | Schempf et al. | Jul 2005 | B2 |
6933695 | Blumenkranz | Aug 2005 | B2 |
6936001 | Snow | Aug 2005 | B1 |
6936003 | Iddan | Aug 2005 | B2 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6943663 | Wang et al. | Sep 2005 | B2 |
6949096 | Davison et al. | Sep 2005 | B2 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6963792 | Green | Nov 2005 | B1 |
6965812 | Wang et al. | Nov 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6974449 | Niemeyer | Dec 2005 | B2 |
6979423 | Moll | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984205 | Gazdzinski | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6993413 | Sunaoshi | Jan 2006 | B2 |
6994703 | Wang et al. | Feb 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6997908 | Carrillo, Jr. et al. | Feb 2006 | B2 |
6999852 | Green | Feb 2006 | B2 |
7025064 | Wang et al. | Apr 2006 | B2 |
7027892 | Wang et al. | Apr 2006 | B2 |
7033344 | Imran | Apr 2006 | B2 |
7039453 | Mullick | May 2006 | B2 |
7042184 | Oleynikov et al. | May 2006 | B2 |
7048745 | Tierney et al. | May 2006 | B2 |
7053752 | Wang et al. | May 2006 | B2 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066926 | Wallace et al. | Jun 2006 | B2 |
7074179 | Wang et al. | Jul 2006 | B2 |
7077446 | Kameda et al. | Jul 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7105000 | McBrayer | Sep 2006 | B2 |
7107090 | Salisbury, Jr. et al. | Sep 2006 | B2 |
7109678 | Kraus et al. | Sep 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7121781 | Sanchez et al. | Oct 2006 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7126303 | Farritor et al. | Oct 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7155315 | Niemeyer et al. | Dec 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7163525 | Franer | Jan 2007 | B2 |
7169141 | Brock et al. | Jan 2007 | B2 |
7182025 | Ghorbel et al. | Feb 2007 | B2 |
7182089 | Ries | Feb 2007 | B2 |
7199545 | Oleynikov et al. | Apr 2007 | B2 |
7206626 | Quaid, III | Apr 2007 | B2 |
7206627 | Abovitz et al. | Apr 2007 | B2 |
7210364 | Ghorbel et al. | May 2007 | B2 |
7214230 | Brock et al. | May 2007 | B2 |
7217240 | Snow | May 2007 | B2 |
7239940 | Wang et al. | Jul 2007 | B2 |
7250028 | Julian et al. | Jul 2007 | B2 |
7259652 | Wang et al. | Aug 2007 | B2 |
7273488 | Nakamura et al. | Sep 2007 | B2 |
7311107 | Harel et al. | Dec 2007 | B2 |
7339341 | Oleynikov et al. | Mar 2008 | B2 |
7372229 | Farritor et al. | May 2008 | B2 |
7403836 | Aoyama | Jul 2008 | B2 |
7438702 | Hart et al. | Oct 2008 | B2 |
7447537 | Funda et al. | Nov 2008 | B1 |
7492116 | Oleynikov et al. | Feb 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7574250 | Niemeyer | Aug 2009 | B2 |
7637905 | Saadat et al. | Dec 2009 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7670329 | Flaherty et al. | Mar 2010 | B2 |
7678043 | Gilad | Mar 2010 | B2 |
7731727 | Sauer | Jun 2010 | B2 |
7734375 | Buehler et al. | Jun 2010 | B2 |
7762825 | Burbank et al. | Jul 2010 | B2 |
7772796 | Farritor et al. | Aug 2010 | B2 |
7785251 | Wilk | Aug 2010 | B2 |
7785294 | Hueil et al. | Aug 2010 | B2 |
7785333 | Miyamoto et al. | Aug 2010 | B2 |
7789825 | Nobis et al. | Sep 2010 | B2 |
7789861 | Franer | Sep 2010 | B2 |
7794494 | Sahatjian et al. | Sep 2010 | B2 |
7865266 | Moll et al. | Jan 2011 | B2 |
7960935 | Farritor et al. | Jun 2011 | B2 |
7979157 | Anvari | Jul 2011 | B2 |
3021358 | Doyle et al. | Sep 2011 | A1 |
8179073 | Farritor et al. | May 2012 | B2 |
8231610 | Jo et al. | Jul 2012 | B2 |
8343171 | Farritor et al. | Jan 2013 | B2 |
8353897 | Doyle et al. | Jan 2013 | B2 |
8377045 | Schena | Feb 2013 | B2 |
8430851 | Mcginley et al. | Apr 2013 | B2 |
8604742 | Farritor et al. | Dec 2013 | B2 |
8636686 | Minnelli et al. | Jan 2014 | B2 |
8679096 | Farritor et al. | Mar 2014 | B2 |
8827337 | Murata et al. | Sep 2014 | B2 |
8828024 | Farritor et al. | Sep 2014 | B2 |
8834488 | Farritor et al. | Sep 2014 | B2 |
8864652 | Diolaiti et al. | Oct 2014 | B2 |
8888687 | Ostrovsky et al. | Nov 2014 | B2 |
8968332 | Farritor et al. | Mar 2015 | B2 |
8974440 | Farritor et al. | Mar 2015 | B2 |
8986196 | Larkin et al. | Mar 2015 | B2 |
9010214 | Markvicka et al. | Apr 2015 | B2 |
9060781 | Farritor et al. | Jun 2015 | B2 |
9089256 | Tognaccini et al. | Jul 2015 | B2 |
9089353 | Farritor et al. | Jul 2015 | B2 |
9138129 | Diolaiti | Sep 2015 | B2 |
9198728 | Wang | Dec 2015 | B2 |
9516996 | Diolaiti et al. | Dec 2016 | B2 |
9649020 | Finlay | May 2017 | B2 |
9717563 | Tognaccini et al. | Aug 2017 | B2 |
9743987 | Farritor et al. | Aug 2017 | B2 |
9757187 | Farritor et al. | Sep 2017 | B2 |
9770305 | Farritor et al. | Sep 2017 | B2 |
9789608 | Itkowitz et al. | Oct 2017 | B2 |
9814640 | Khaligh | Nov 2017 | B1 |
9816641 | Bock-Aronson et al. | Nov 2017 | B2 |
9849586 | Rosheim | Dec 2017 | B2 |
9857786 | Cristiano | Jan 2018 | B2 |
9888966 | Farritor et al. | Feb 2018 | B2 |
9956043 | Farritor et al. | May 2018 | B2 |
10008017 | Itkowitz et al. | Jun 2018 | B2 |
10111711 | Farritor et al. | Oct 2018 | B2 |
10137575 | Itkowitz et al. | Nov 2018 | B2 |
10159533 | Moll et al. | Dec 2018 | B2 |
10220522 | Rockrohr | Mar 2019 | B2 |
10258425 | Mustufa et al. | Apr 2019 | B2 |
10307199 | Farritor et al. | Jun 2019 | B2 |
10342561 | Farritor et al. | Jul 2019 | B2 |
10368952 | Tognaccini et al. | Aug 2019 | B2 |
10507066 | DiMaio et al. | Dec 2019 | B2 |
10555775 | Hoffman et al. | Feb 2020 | B2 |
10582973 | Wilson et al. | Mar 2020 | B2 |
10695137 | Farritor et al. | Jun 2020 | B2 |
10729503 | Cameron | Aug 2020 | B2 |
10737394 | Itkowitz et al. | Aug 2020 | B2 |
10751136 | Farritor et al. | Aug 2020 | B2 |
10751883 | Nahum | Aug 2020 | B2 |
10806538 | Farritor et al. | Oct 2020 | B2 |
10966700 | Farritor | Apr 2021 | B2 |
11032125 | Farritor et al. | Jun 2021 | B2 |
11298195 | Ye | Apr 2022 | B2 |
11382702 | Tognaccini et al. | Jul 2022 | B2 |
11529201 | Mondry et al. | Dec 2022 | B2 |
11595242 | Farritor et al. | Feb 2023 | B2 |
20010018591 | Brock et al. | Aug 2001 | A1 |
20010049497 | Kalloo et al. | Dec 2001 | A1 |
20020003173 | Bauer et al. | Jan 2002 | A1 |
20020013601 | Nobles et al. | Jan 2002 | A1 |
20020026186 | Woloszko et al. | Feb 2002 | A1 |
20020038077 | de la Torre et al. | Mar 2002 | A1 |
20020065507 | Zando-Azizi | May 2002 | A1 |
20020091374 | Cooper | Jun 2002 | A1 |
20020103417 | Gazdzinski | Aug 2002 | A1 |
20020111535 | Kim et al. | Aug 2002 | A1 |
20020120254 | Julian et al. | Aug 2002 | A1 |
20020128552 | Nowlin et al. | Sep 2002 | A1 |
20020140392 | Borenstein et al. | Oct 2002 | A1 |
20020147487 | Sundquist et al. | Oct 2002 | A1 |
20020151906 | Demarais et al. | Oct 2002 | A1 |
20020156347 | Kim et al. | Oct 2002 | A1 |
20020171385 | Kim et al. | Nov 2002 | A1 |
20020173700 | Kim et al. | Nov 2002 | A1 |
20020190682 | Schempf et al. | Dec 2002 | A1 |
20030020810 | Takizawa et al. | Jan 2003 | A1 |
20030045888 | Brock et al. | Mar 2003 | A1 |
20030065250 | Chiel et al. | Apr 2003 | A1 |
20030089267 | Ghorbel et al. | May 2003 | A1 |
20030092964 | Kim et al. | May 2003 | A1 |
20030097129 | Davison et al. | May 2003 | A1 |
20030100817 | Wang et al. | May 2003 | A1 |
20030109780 | Coste-Maniere et al. | Jun 2003 | A1 |
20030114731 | Cadeddu et al. | Jun 2003 | A1 |
20030135203 | Wang et al. | Jun 2003 | A1 |
20030139742 | Wampler et al. | Jul 2003 | A1 |
20030144656 | Ocel et al. | Jul 2003 | A1 |
20030159535 | Grover et al. | Aug 2003 | A1 |
20030167000 | Mullick | Sep 2003 | A1 |
20030172871 | Scherer | Sep 2003 | A1 |
20030179308 | Zamorano et al. | Sep 2003 | A1 |
20030181788 | Yokoi et al. | Sep 2003 | A1 |
20030225479 | Waled | Dec 2003 | A1 |
20030229268 | Uchiyama et al. | Dec 2003 | A1 |
20030229338 | Irion et al. | Dec 2003 | A1 |
20030230372 | Schmidt | Dec 2003 | A1 |
20040024311 | Quaid | Feb 2004 | A1 |
20040034282 | Quaid | Feb 2004 | A1 |
20040034283 | Quaid | Feb 2004 | A1 |
20040034302 | Abovitz et al. | Feb 2004 | A1 |
20040050394 | Jin | Mar 2004 | A1 |
20040070822 | Shioda et al. | Apr 2004 | A1 |
20040099175 | Perrot et al. | May 2004 | A1 |
20040102772 | Baxter et al. | May 2004 | A1 |
20040106916 | Quaid et al. | Jun 2004 | A1 |
20040111113 | Nakamura et al. | Jun 2004 | A1 |
20040117032 | Roth | Jun 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138552 | Harel et al. | Jul 2004 | A1 |
20040140786 | Borenstein | Jul 2004 | A1 |
20040153057 | Davison | Aug 2004 | A1 |
20040173116 | Ghorbel et al. | Sep 2004 | A1 |
20040176664 | Iddan | Sep 2004 | A1 |
20040215331 | Chew et al. | Oct 2004 | A1 |
20040225229 | Viola | Nov 2004 | A1 |
20040254680 | Sunaoshi | Dec 2004 | A1 |
20040267326 | Ocel et al. | Dec 2004 | A1 |
20050014994 | Fowler et al. | Jan 2005 | A1 |
20050021069 | Feuer et al. | Jan 2005 | A1 |
20050029978 | Oleynikov et al. | Feb 2005 | A1 |
20050043583 | Killmann et al. | Feb 2005 | A1 |
20050049462 | Kanazawa | Mar 2005 | A1 |
20050054901 | Yoshino | Mar 2005 | A1 |
20050054902 | Konno | Mar 2005 | A1 |
20050064378 | Toly | Mar 2005 | A1 |
20050065400 | Banik et al. | Mar 2005 | A1 |
20050070850 | Albrecht | Mar 2005 | A1 |
20050083460 | Hattori et al. | Apr 2005 | A1 |
20050095650 | Julius et al. | May 2005 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050143644 | Gilad et al. | Jun 2005 | A1 |
20050154376 | Riviere et al. | Jul 2005 | A1 |
20050165449 | Cadeddu et al. | Jul 2005 | A1 |
20050177026 | Hoeg et al. | Aug 2005 | A1 |
20050234294 | Saadat et al. | Oct 2005 | A1 |
20050234435 | Layer | Oct 2005 | A1 |
20050272977 | Saadat et al. | Dec 2005 | A1 |
20050283137 | Doyle et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20050288665 | Woloszko | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060046226 | Bergler et al. | Mar 2006 | A1 |
20060079889 | Scott | Apr 2006 | A1 |
20060100501 | Berkelman et al. | May 2006 | A1 |
20060119304 | Farritor et al. | Jun 2006 | A1 |
20060149135 | Paz | Jul 2006 | A1 |
20060152591 | Lin | Jul 2006 | A1 |
20060155263 | Lipow | Jul 2006 | A1 |
20060189845 | Maahs et al. | Aug 2006 | A1 |
20060195015 | Mullick et al. | Aug 2006 | A1 |
20060196301 | Oleynikov et al. | Sep 2006 | A1 |
20060198619 | Oleynikov et al. | Sep 2006 | A1 |
20060241570 | Wilk | Oct 2006 | A1 |
20060241732 | Denker et al. | Oct 2006 | A1 |
20060253109 | Chu | Nov 2006 | A1 |
20060258938 | Hoffman et al. | Nov 2006 | A1 |
20060258954 | Timberlake et al. | Nov 2006 | A1 |
20060261770 | Kishi et al. | Nov 2006 | A1 |
20070032701 | Fowler et al. | Feb 2007 | A1 |
20070043397 | Ocel et al. | Feb 2007 | A1 |
20070055342 | Wu et al. | Mar 2007 | A1 |
20070080658 | Farritor et al. | Apr 2007 | A1 |
20070088277 | Mcginley et al. | Apr 2007 | A1 |
20070088340 | Brock et al. | Apr 2007 | A1 |
20070106113 | Ravo | May 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070123748 | Meglan | May 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070142725 | Hardin et al. | Jun 2007 | A1 |
20070156019 | Larkin | Jul 2007 | A1 |
20070156211 | Ferren et al. | Jul 2007 | A1 |
20070167955 | De La Menardiere et al. | Jul 2007 | A1 |
20070225633 | Ferren et al. | Sep 2007 | A1 |
20070225634 | Ferren et al. | Sep 2007 | A1 |
20070241714 | Oleynikov et al. | Oct 2007 | A1 |
20070244520 | Ferren et al. | Oct 2007 | A1 |
20070250064 | Darois et al. | Oct 2007 | A1 |
20070255273 | Fernandez et al. | Nov 2007 | A1 |
20070287884 | Schena | Dec 2007 | A1 |
20080004634 | Farritor et al. | Jan 2008 | A1 |
20080015565 | Davison | Jan 2008 | A1 |
20080015566 | Livneh | Jan 2008 | A1 |
20080021440 | Solomon | Jan 2008 | A1 |
20080033569 | Ferren et al. | Feb 2008 | A1 |
20080045803 | Williams et al. | Feb 2008 | A1 |
20080058835 | Farritor et al. | Mar 2008 | A1 |
20080058989 | Oleynikov et al. | Mar 2008 | A1 |
20080071289 | Cooper | Mar 2008 | A1 |
20080071290 | Larkin et al. | Mar 2008 | A1 |
20080103440 | Ferren et al. | May 2008 | A1 |
20080109014 | de la Pena | May 2008 | A1 |
20080111513 | Farritor et al. | May 2008 | A1 |
20080119870 | Williams et al. | May 2008 | A1 |
20080132890 | Woloszko et al. | Jun 2008 | A1 |
20080161804 | Rioux et al. | Jun 2008 | A1 |
20080164079 | Ferren et al. | Jul 2008 | A1 |
20080168639 | Otake et al. | Jul 2008 | A1 |
20080183033 | Bern et al. | Jul 2008 | A1 |
20080221591 | Farritor et al. | Sep 2008 | A1 |
20080269557 | Marescaux et al. | Oct 2008 | A1 |
20080269562 | Marescaux et al. | Oct 2008 | A1 |
20090002414 | Shibata et al. | Jan 2009 | A1 |
20090012532 | Quaid et al. | Jan 2009 | A1 |
20090020724 | Paffrath | Jan 2009 | A1 |
20090024142 | Ruiz Morales | Jan 2009 | A1 |
20090048612 | Farritor | Feb 2009 | A1 |
20090054909 | Farritor et al. | Feb 2009 | A1 |
20090069821 | Farritor et al. | Mar 2009 | A1 |
20090076536 | Rentschler et al. | Mar 2009 | A1 |
20090137952 | Ramamurthy et al. | May 2009 | A1 |
20090143787 | De La Pena | Jun 2009 | A9 |
20090163929 | Yeung | Jun 2009 | A1 |
20090171373 | Farritor | Jul 2009 | A1 |
20090234369 | Bax | Sep 2009 | A1 |
20090236400 | Cole | Sep 2009 | A1 |
20090240246 | Devill et al. | Sep 2009 | A1 |
20090247821 | Rogers | Oct 2009 | A1 |
20090248038 | Blumenkranz et al. | Oct 2009 | A1 |
20090281377 | Newell et al. | Nov 2009 | A1 |
20090299143 | Conlon et al. | Dec 2009 | A1 |
20090305210 | Guru et al. | Dec 2009 | A1 |
20090326322 | Diolaiti | Dec 2009 | A1 |
20100010294 | Conlon et al. | Jan 2010 | A1 |
20100016659 | Weitzner et al. | Jan 2010 | A1 |
20100016853 | Burbank | Jan 2010 | A1 |
20100026347 | Tizuka | Feb 2010 | A1 |
20100042097 | Newton et al. | Feb 2010 | A1 |
20100056863 | Dejima et al. | Mar 2010 | A1 |
20100069710 | Yamatani et al. | Mar 2010 | A1 |
20100069940 | Miller et al. | Mar 2010 | A1 |
20100081875 | Fowler et al. | Apr 2010 | A1 |
20100101346 | Johnson et al. | Apr 2010 | A1 |
20100130986 | Mailloux et al. | May 2010 | A1 |
20100139436 | Kawashima et al. | Jun 2010 | A1 |
20100185212 | Sholev | Jul 2010 | A1 |
20100198231 | Manzo et al. | Aug 2010 | A1 |
20100204713 | Ruiz Morales | Aug 2010 | A1 |
20100245549 | Allen et al. | Sep 2010 | A1 |
20100250000 | Blumenkranz et al. | Sep 2010 | A1 |
20100262162 | Omori | Oct 2010 | A1 |
20100263470 | Bannasch et al. | Oct 2010 | A1 |
20100274079 | Kim et al. | Oct 2010 | A1 |
20100292691 | Brogna | Nov 2010 | A1 |
20100301095 | Shelton, IV et al. | Dec 2010 | A1 |
20100318059 | Farritor et al. | Dec 2010 | A1 |
20100331856 | Carlson et al. | Dec 2010 | A1 |
20110015569 | Kirschenman et al. | Jan 2011 | A1 |
20110020779 | Hannaford et al. | Jan 2011 | A1 |
20110071347 | Rogers | Mar 2011 | A1 |
20110071544 | Steger et al. | Mar 2011 | A1 |
20110075693 | Kuramochi et al. | Mar 2011 | A1 |
20110077478 | Freeman et al. | Mar 2011 | A1 |
20110082365 | Mcgrogan et al. | Apr 2011 | A1 |
20110098529 | Ostrovsky et al. | Apr 2011 | A1 |
20110107866 | Oka et al. | May 2011 | A1 |
20110152615 | Schostek et al. | Jun 2011 | A1 |
20110224605 | Farritor et al. | Sep 2011 | A1 |
20110230894 | Simaan | Sep 2011 | A1 |
20110237890 | Farritor et al. | Sep 2011 | A1 |
20110238079 | Hannaford et al. | Sep 2011 | A1 |
20110238080 | Ranjit et al. | Sep 2011 | A1 |
20110264078 | Lipow et al. | Oct 2011 | A1 |
20110270443 | Kamiya et al. | Nov 2011 | A1 |
20110276046 | Heimbecker et al. | Nov 2011 | A1 |
20120016175 | Roberts et al. | Jan 2012 | A1 |
20120029727 | Sholev | Feb 2012 | A1 |
20120035582 | Nelson et al. | Feb 2012 | A1 |
20120059392 | Diolaiti | Mar 2012 | A1 |
20120078053 | Phee et al. | Mar 2012 | A1 |
20120109150 | Quaid et al. | May 2012 | A1 |
20120116362 | Kieturakis | May 2012 | A1 |
20120179168 | Farritor et al. | Jul 2012 | A1 |
20120221147 | Goldberg et al. | Aug 2012 | A1 |
20120253515 | Coste-Maniere et al. | Oct 2012 | A1 |
20130001970 | Suyama et al. | Jan 2013 | A1 |
20130041360 | Farritor et al. | Feb 2013 | A1 |
20130055560 | Nakasugi et al. | Mar 2013 | A1 |
20130125696 | Long | May 2013 | A1 |
20130131695 | Scarfogliero | May 2013 | A1 |
20130178867 | Farritor et al. | Jul 2013 | A1 |
20130282023 | Burbank et al. | Oct 2013 | A1 |
20130304084 | Beira et al. | Nov 2013 | A1 |
20130325030 | Hourtash et al. | Dec 2013 | A1 |
20130325181 | Moore | Dec 2013 | A1 |
20130345717 | Markvicka et al. | Dec 2013 | A1 |
20130345718 | Crawford et al. | Dec 2013 | A1 |
20140039515 | Mondry et al. | Feb 2014 | A1 |
20140046340 | Wilson et al. | Feb 2014 | A1 |
20140055489 | Itkowitz et al. | Feb 2014 | A1 |
20140058205 | Frederick et al. | Feb 2014 | A1 |
20140100587 | Farritor et al. | Apr 2014 | A1 |
20140137687 | Nogami et al. | May 2014 | A1 |
20140221749 | Grant et al. | Aug 2014 | A1 |
20140232824 | DiMaio et al. | Aug 2014 | A1 |
20140276944 | Farritor et al. | Sep 2014 | A1 |
20140303434 | Farritor et al. | Oct 2014 | A1 |
20140371762 | Farritor et al. | Dec 2014 | A1 |
20150051446 | Farritor | Feb 2015 | A1 |
20150057537 | Dillon et al. | Feb 2015 | A1 |
20150157191 | Phee et al. | Jun 2015 | A1 |
20150223896 | Farritor et al. | Aug 2015 | A1 |
20150297299 | Yeung et al. | Oct 2015 | A1 |
20160066999 | Forgione et al. | Mar 2016 | A1 |
20160135898 | Frederick et al. | May 2016 | A1 |
20160291571 | Cristiano | Oct 2016 | A1 |
20160303745 | Rockrohr | Oct 2016 | A1 |
20170014197 | Mccrea et al. | Jan 2017 | A1 |
20170035526 | Farritor et al. | Feb 2017 | A1 |
20170078583 | Haggerty et al. | Mar 2017 | A1 |
20170252096 | Felder et al. | Sep 2017 | A1 |
20170354470 | Farritor et al. | Dec 2017 | A1 |
20180132956 | Cameron | May 2018 | A1 |
20180153578 | Cooper et al. | Jun 2018 | A1 |
20180338777 | Bonadio et al. | Nov 2018 | A1 |
20190059983 | Germain et al. | Feb 2019 | A1 |
20190090965 | Farritor et al. | Mar 2019 | A1 |
20190209262 | Mustufa et al. | Jul 2019 | A1 |
20190327394 | Ramirez et al. | Oct 2019 | A1 |
20200138534 | Garcia Kilroy et al. | May 2020 | A1 |
20200214775 | Farritor et al. | Jul 2020 | A1 |
20200330175 | Cameron | Oct 2020 | A1 |
20200368915 | Itkowitz et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
2918531 | Jan 2015 | CA |
102499759 | Jun 2012 | CN |
102821918 | Dec 2012 | CN |
104523309 | Apr 2015 | CN |
104582600 | Apr 2015 | CN |
104622528 | May 2015 | CN |
204337044 | May 2015 | CN |
105025826 | Nov 2015 | CN |
102010040405 | Mar 2012 | DE |
0105656 | Apr 1984 | EP |
0279591 | Aug 1988 | EP |
1354670 | Oct 2003 | EP |
2286756 | Feb 2011 | EP |
2286756 | Feb 2011 | EP |
2329787 | Jun 2011 | EP |
2563261 | Mar 2013 | EP |
2684528 | Jan 2014 | EP |
2123225 | Dec 2014 | EP |
2815705 | Dec 2014 | EP |
2881046 | Oct 2015 | EP |
2937047 | Oct 2015 | EP |
5959371 | Apr 1984 | JP |
61165061 | Jul 1986 | JP |
S6268293 | Mar 1987 | JP |
04144533 | May 1992 | JP |
05-115425 | May 1993 | JP |
06507809 | Sep 1994 | JP |
06508049 | Sep 1994 | JP |
2006508049 | Sep 1994 | JP |
07-016235 | Jan 1995 | JP |
07-136173 | May 1995 | JP |
7306155 | Nov 1995 | JP |
08-224248 | Sep 1996 | JP |
2001500510 | Jan 2001 | JP |
2001505810 | May 2001 | JP |
2002000524 | Jan 2002 | JP |
2003220065 | Aug 2003 | JP |
2004144533 | May 2004 | JP |
2004-180781 | Jul 2004 | JP |
2004283940 | Oct 2004 | JP |
2004322310 | Nov 2004 | JP |
2004329292 | Nov 2004 | JP |
2006507809 | Mar 2006 | JP |
2009106606 | May 2009 | JP |
2009297809 | Dec 2009 | JP |
2010533045 | Oct 2010 | JP |
2010536436 | Dec 2010 | JP |
2011504794 | Feb 2011 | JP |
2011045500 | Mar 2011 | JP |
2011115591 | Jun 2011 | JP |
2012176489 | Sep 2012 | JP |
2012504017 | Feb 2015 | JP |
2015526171 | Sep 2015 | JP |
2016213937 | Dec 2016 | JP |
2017113837 | Jun 2017 | JP |
199221291 | May 1991 | WO |
2001089405 | Nov 2001 | WO |
2002082979 | Oct 2002 | WO |
2002100256 | Dec 2002 | WO |
2005009211 | Jul 2004 | WO |
2005044095 | May 2005 | WO |
2006052927 | Aug 2005 | WO |
2006005075 | Jan 2006 | WO |
2006079108 | Jan 2006 | WO |
2006079108 | Jul 2006 | WO |
2007011654 | Jan 2007 | WO |
2007111571 | Oct 2007 | WO |
2007149559 | Dec 2007 | WO |
2009014917 | Jan 2009 | WO |
2009023851 | Feb 2009 | WO |
2009144729 | Dec 2009 | WO |
2009158164 | Dec 2009 | WO |
2010039394 | Apr 2010 | WO |
2010042611 | Apr 2010 | WO |
2010046823 | Apr 2010 | WO |
2010050771 | May 2010 | WO |
2010083480 | Jul 2010 | WO |
2011075693 | Jun 2011 | WO |
2011118646 | Sep 2011 | WO |
2011135503 | Nov 2011 | WO |
2011163520 | Dec 2011 | WO |
2013009887 | Jan 2013 | WO |
2013052137 | Apr 2013 | WO |
2013106569 | Jul 2013 | WO |
2014011238 | Jan 2014 | WO |
2014025399 | Feb 2014 | WO |
2014144220 | Sep 2014 | WO |
2014146090 | Sep 2014 | WO |
2015009949 | Jan 2015 | WO |
2015031777 | Mar 2015 | WO |
2015088655 | Jun 2015 | WO |
2016077478 | May 2016 | WO |
2017024081 | Feb 2017 | WO |
2017064303 | Apr 2017 | WO |
2017201310 | Nov 2017 | WO |
2018045036 | Mar 2018 | WO |
Entry |
---|
Abbott et al., “Design of an Endoluminal NOTES Robotic System,” from the Proceedings of the 2007 IEEE/RSJ Int'l Conf. on Intelligent Robot Systems, San Diego, CA, Oct. 29-Nov. 2, 2007, pp. 410-416. |
Allendorf et al., “Postoperative Immune Function Varies Inversely with the Degree of Surgical Trauma in a Murine Model,” Surgical Endoscopy 1997; 11:427-430. |
Ang, “Active Tremor Compensation in Handheld Instrument for Microsurgery,” Doctoral Dissertation, tech report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon Unviersity, May 2004, 167pp. |
Atmel 80C5X2 Core, http://www.atmel.com, 2006, 186pp. |
Bailey et al., “Complications of Laparoscopic Surgery,” Quality Medical Publishers, Inc., 1995, 25pp. |
Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, 2002; 16: 1389-1402. |
Bauer et al., “Case Report: Remote Percutaneous Renal Percutaneous Renal Access Using a New Automated Telesurgical Robotic System,” Telemedicine Journal and e-Health 2001; (4): 341-347. |
Begos et al., “Laparoscopic Cholecystectomy: From Gimmick to Gold Standard,” J Clin Gastroenterol, 1994; 19(4): 325-330. |
Berg et al., “Surgery with Cooperative Robots,” Medicine Meets Virtual Reality, Feb. 2007, 1 pg. |
Breda et al., “Future developments and perspectives in laparoscopy,” Eur. Urology 2001; 40(1): 84-91. |
Breedveld et al., “Design of Steerable Endoscopes to Improve the Visual Perception of Depth During Laparoscopic Surgery,” ASME, Jan. 2004; vol. 126, pp. 1-5. |
Breedveld et al., “Locomotion through the Intestine by means of Rolling Stents,” Proceedings of the ASME Design Engineering Technical Conferences, 2004, pp. 1-7. |
Calafiore et al., Multiple Arterial Conduits Without Cardiopulmonary Bypass: Early Angiographic Results,: Ann Thorac Surg, 1999; 67: 450-456. |
Camarillo et al., “Robotic Technology in Surgery: Past, Present and Future,” The American Journal of Surgery, 2004; 188: 2S-15. |
Cavusoglu et al., “Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments,” In McLaughliin, M.L., Hespanha, J.P., and Sukhatme, G., editors. Touch in virtual environments, IMSC Series in Multimedia 2001, 28pp. |
Dumpert et al., “Stereoscopic In Vivo Surgical Robots,” IEEE Sensors Special Issue on In Vivo Sensors for Medicine, Jan. 2007, 10 pp. |
Green, “Telepresence Surgery”, Jan. 1, 1995, Publisher: IEEE Engineering in Medicine and Biology. |
Cleary et al., “State of the Art in Surgical Rooties: Clinical Applications and Technology Challenges”, “Computer Aided Surgery”, Jan. 1, 2002, pp. 312-328, vol. 6. |
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Jan. 1, 2002, pp. 1-17. |
Franzino, “The Laprotek Surgical System and the Next Generation of Robotics,” Surg Clin North Am, 2003 83(6): 1317-1320. |
Franklin et al., “Prospective Comparison of Open vs. Laparoscopic Colon Surgery for Carcinoma: Five-Year Results,” Dis Colon Rectum, 1996; 39: S35-S46. |
Flynn et al, “Tomorrow's surgery: micromotors and microrobots for minimally invasive procedures,” Minimally Invasive Surgery & Allied Technologies, 1998; 7(4): 343-352. |
Fireman et al., “Diagnosing small bowel Crohn's desease with wireless capsule endoscopy,” Gut 2003; 52: 390-392. |
Fearing et al., “Wing Transmission for a Micromechanical Flying Insect,” Proceedings of the 2000 IEEE International Conference to Robotics & Automation, Apr. 2000; 1509-1516. |
Faraz et al., “Engineering Approaches to Mechanical and Robotic Design for Minimaly Invasive Surgery (MIS),” Kluwer Academic Publishers (Boston), 2000, 13pp. |
Falcone et al., “Robotic Surgery,” Clin. Obstet. Gynecol. 2003, 46(1): 37-13. |
Fraulob et al., “Miniature assistance module for robot-assisted heart surgery,” Biomed. Tech. 2002, 47 Suppl. 1, Pt. 1: 12-15. |
Fukuda et al., “Mechanism and Swimming Experiment of Micro Mobile Robot in Water,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994: 814-819. |
Fukuda et al., “Micro Active Catheter System with Multi Degrees of Freedom,” Proceedings of the IEEE International Conference on Robotics and Automation, May 1994, pp. 2290-2295. |
Fuller et al., “Laparoscopic Trocar Injuries: A Report from a U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) Systematic Technology Assessment of Medical Products (STAMP) Committe,” U.S. Food and Drug Adminstration, available at http://www.fdaJ:?;ov, Finalized: Nov. 7, 2003; Updated: Jun. 24, 2005, 11 pp. |
Dumpert et al., “Improving in Vivo Robot Visioin Quality,” from the Proceedings of Medicine Meets Virtual Realtiy, Long Beach, CA, Jan. 26-29, 2005. 1 pg. |
Dakin et al., “Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems,” Surg Endosc., 2003; 17: 574-579. |
Cuschieri, “Technology for Minimal Access Surgery,” BMJ, 1999, 319: 1-6. |
Grady, “Doctors Try New Surgery for Gallbladder Removal,” The New York Times, Apr. 20, 2007, 3 pp. |
Choi et al., “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sep. 2005, 4pp. |
Chanthasopeephan et al., (2003), “Measuring Forces in Liver Cutting: New Equipment and Experimenal Results,” Annals of Biomedical Engineering 31:1372-1382. |
Cavusoglu et al., “Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Industrial Robot: An International Journal, 2003; 30(1): 22-29. |
Guber et al., “Miniaturized Instrument Systems for Minimally Invasive Diagnosis and Therapy,” Biomedizinische Technic. 2002, Band 47, Erganmngsband 1: 198-201. |
Southern Surgeons Club (1991), “A prospective analysis of 1518 laparoscopic cholecystectomies,” N. Eng. 1 Med. 324 (16): 1073-1078. |
Suzumori et al., “Development of Flexible Microactuator and its Applications to Robotics Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation, 1991: 1622-1627. |
Wolfe et al. (1991), Endoscopic Cholecystectomy: An analysis of Complications, Arch. Surg. 1991; 126: 1192-1196. |
Mack et al., “Present Role of Thoracoscopy in the Diagnosis and Treatment of Diseases of the Chest,” Ann Thorac Surgery, 1992; 54: 403-409. |
Peters, “Minimally Invasive Colectomy: Are the Potential Benefits Realized?” Dis Colon Rectum 1993; 36: 751-756. |
Tendick et al. (1993), “Sensing and Manipulation Problems in Endoscopic Surgery: Experiment, Analysis, and Observation,” Presence 2(1): 66-81. |
Sackier et al., “Robotically assisted laparoscopic surgery,” Surgical Endoscopy, 1994; 8:63-6. |
Stiff et al., “Long-term Pain: Less Common After Laparoscopic than Open Cholecystectomy,” British Journal of Surgery, 1994; 81: 1368-1370. |
Slatkin et al., “The Development of a Robotic Endoscope,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 162-171, 1995. |
Taylor et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng Med Biol, 1995; 279-87. |
Way et al., EDITORS, “Fundamentals of Laparoscopic Surgery,” Churchill Livingstone Inc., 1995; 14 pp. |
Guo et al., “Micro Active Guide Wire Catheter System—Characteristic Evaluation, Electrical Model* and Operability Evaluation of Micro Active Catheter,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Apr. 1996; 2226-2231. |
Schippers et al. (1996), “Requirements and Possibilities of Computer-Assisted Endoscopic Surgery,” In: Computer Integrated Surgery: Technology and Clinical Applications, pp. 561-565. |
Liem et al., “Comparison of Conventional Anterior Surgery and Laparoscopic Surgery for Inguinal-hernia Repair,” New England Journal of Medicine, 1997; 336 (22):1541-1547. |
Kazemier et al. (1998), “Vascular Injuries During Laparoscopy,” J. Am. Coli. Surg. 186(5): 604-5. |
Palm. William. “Rapid Prototyping Primer” May 1998 (revised Jul. 30, 2002) (http://www.me.psu.edu/lamancusa/ rapidpro/primer/chapter2.htm), 12 pages. |
Tendick et al., “Applications of Micromechatronics in Minimally Invasive Surgery,” IEEE/ASME Transactions on Mechatronics, 1998; 3(1): 34-42. |
Worn et al., “Espirit Project No. 33915: Miniaturised Robot for Micro Manipulation (MINIMAN),” Nov. 1998, http://www.ipr.ira.ujka.de/-microbot/miniman. |
Macfarlane et al., “Force-Feedback Grasper Helps Restore the Sense of Touch in Minimally Invasive Surgery,” Journal of Gastrointestinal Surgery, 1999; 3: 278-285. |
Rosen et al., “Force Controlled and Teleoperated Endoscopic, Grasper for Minimally Invasive Surgery- Experimental Performance Evaluation,” IEEE Transactions of Biomedical Engineering, Oct. 1999; 46(10): 1212-1221. |
Gong et al., “Wireless endoscopy,” Gastrointestinal Endoscopy 2000; 51 (6): 725-729. |
Heikkinen et al., “Comparison of laparoscopic and open Nissen fundoplication two years after operation: A prospective randomized trial,” Surgical Endoscopy, 2000; 14:1019-1023. |
Li et al. (2000), “Microvascular Anastomoses Performed in Rats Using a Microsurgical Telemanipulator,” Comp. Aid. Surg., 5: 326-332. |
Ishiyama et al., “Spiral-type Micro-machine for Medical Applications,” 2000 International Symposium on Micromechatronics and Human Science, 2000; 65-69. |
Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy 2000; 52 6: 817-819. |
Salky, “What is the Penetration of Endoscopic Techniques into Surgical Practice?” Digestive Surgery 2000; 17:422-426. |
Schurr et al., “Robotics and Telemanipulation Technologies for Endoscopic Surgery,” Surgical Endoscopy, 2000; 14:375-381. |
Abbou et al., “Laparoscopic Radical Prostatectomy with a Remote Controlled Robot,” The Journal of Urology, Jun. 2001; 165: 1964-1966. |
Horgan et al., “Technical Report: Robots in Laparoscopic Surgery,” Journal of Laparoendoscopic & Advanced Surgical Techniques, 2001; 11(6): 415-419. |
Kang et al., “Robotic Assistants Aid Surgeons During Minimally Invasive Procedures,” IEEE Engineering in Medicine and Biology, Jan .- Feb. 2001: 94-104. |
Lafullarde et al., “Laparoscopic Nissen Fundoplication: Five-year Results and Beyond,” Arch/Surg, Feb. 2001; 136: 180-184. |
Mack, “Minimally Invasive and Robotic Surgery,” JAMA, Feb. 2001; 285(5): 568-572. |
Peirs et al., “A miniature manipulator for integration in a self-propelling endoscope,” Sensors and Actuators A, 2001, 92: 343-349. |
Yu et al., “Microrobotic Cell Injection,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 2001: 620-625. |
Yu, Bsn, Rn, “M2ATM Capsule Endoscopy A Breakthrough Diagnostic Tool for Small Intestine Imagining, ” vol. 25, No. 1, 2001, Gastroenterology Nursing, pp. 24-27. |
Guo et al., “Fish-like Underwater Microrobot with 3 DOF,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002; 738-743. |
Leggett et al. (2002), “Aortic injury during laparoscopic Fundoplication,” Surg. Endoscopy 16(2): 362. |
Mei et al., “Wireless Drive and Control of a Swimming Microrobot,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 1131-1136. |
Melvin et al., “Computer-Enhanced vs. Standard Laparoscopic Antireflux Surgery,” J Gastrointest Surg 2002; 6: 11-16. |
Menciassi et al., “Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Oct. 2002; 1379-1384. |
Munro (2002), “Laparoscopic access: complications, technologies, and techniques,” Curro Opin. Obstet. Gynecol., 14(4): 365-74. |
Nio et al., “Efficiency of manual vs robotical (Zeus) assisted laparoscopic surgery in the performance of standardized tasks,” Surg Endosc, 2002; 16: 412-415. |
Phee et al., “Analysis and Development of Locomotion Devices for the Gastrointestinal Tract,” IEEE Transactions on Biomedical Engineering, vol. 49, No. 6, Jun. 2002: 613-616. |
Rosen et al., “Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model,” Computer Aided Surgery, vol. 7, pp. 49-61, 2002. |
Rosen et al., “The Blue DRAGON - A System of Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1876-1881, May 2002. |
Ruurda et al., “Robot-Assisted surgical systems: a new era in laparoscopic surgery,” Ann R. Coll Surg Engl. 2002; 84: 223-226. |
Rosen et al., Objective Evaluation of Laparoscopic Skills Based on Haptic Information and Tool/Tissue Interactions, Computer Aided Surgery, vol. 7, Issue 1, pp. 49-61, Jul. 2002. |
Satava, “Surgical Robotics: The Early Chronicles,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):6-16. |
Thomann et al., “The Design of a new type of Micro Robot for the Intestinal Inspection,” Proceedings of the 2002 IEEE Intl. Conference on Intelligent Robots and Systems, Oct. 2002: 1385-1390. |
Orlando et al. (2003), “Needle and Trocar Injuries in Diagnostic Laparoscopy under Local Anesthesia: What Is the True Incidence of These Complications?” Journal of Laparoendoscopic & Advanced Surgical Techniques, 13(3): 181-184. |
Lehman et al., Dexterous miniature in vivo robot for NOTES, 2009, IEEE, p. 244-249. |
Mihelj et al., ARMin II—7 DoF rehabilitation robot: mechanics and kinematics, 2007, IEEE, p. 4120-4125. |
Zhang et al., Cooperative robotic assistant for laparoscopic surgery: CoBRASurge, 2009, IEEE, p. 5540-5545. |
Riviere et al., “Toward Active Tremor Canceling in Handheld Microsurgical Instruments,” IEEE Transactions on Robotics and Automation, Oct. 2003, 19(5): 793-800. |
Albers et al., Design and development process of a humanoid robot upper body through experimentation, 2004, IEEE, p. 77-92 (Year: 2004). |
Glukhovsky et al., “The development and application of wireless capsule endoscopy,” Int. J. Med. Robot. Comput. Assist. Surgery, 2004; 1(1): 114-123. |
Hanly et al., “Robotic Abdominal Surgery,” The American Journal of Surgery, 2004; 188 (Suppl. to Oct. 1994); 19S-26S. |
Hanly et al., “Value of the SAGES Learning Center in introducing new technology,” Surgical Endoscopy, 2004; 19 (4): 477-483. |
Hissink, “Olympus Medical develops capsule camera technology,” Dec. 2004, accessed Aug. 29, 2007, http://www.letsgodigital.org, 3 pp. |
Kalloo et al., “Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity,” Gastrointestinal Endoscopy, 2004; 60(1): 114-117. |
Menciassi et al., “Locomotion of a Leffed Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results,” IEEE Int. Conf. on Engineering in Medicine and Biology, San Francisco, CA, pp. 2767-2770, Sep. 2004. |
Miller, Ph.D., et al., “In-Vivo Stereoscopic Imaging System with 5 Degrees-of-Freedom for Minimal Access Surgery,” Dept. of Computer Science and Dept. of Surgery, Columbia University, New York, NY, 7 p. , 2004. |
Oleynikov et al., “In Vivo Camera Robots Provide Improved Vision for Laparoscopic Surgery,” Computer Assisted Radiology and Surgery (CARS), Chicago, IL, Jun. 23 - 26, 2004b. |
Patronik et al., “Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions,” MICCAI, 2004, pp. 9-16. |
Patronik et al., “Development of a Tethered Epicardial Crawler for Minimally Invasive Cardiac Therapies,” IEEE, pp. 239-240, 2004. |
Rentschler et al., “In Vivo Robots for Laparoscopic Surgery,” Studies in Health Technology and Infonnatics - Medicine Meets Virtual Reality, ISO Press, Newport Beach, CA, 2004a, 98: 316-322. |
Rentschler et al., “Theoretical and Experimental Analysis of In Vivo Wheeled Mobility,” ASME Design Engineering Technical Conferences: 28th Biennial Mechanisms and Robotics Conference, Salt Lake City, Utah, Sep. 28 - Oct. 2, 2004; pp. 1-9. |
Jagannath et al., “Peroral transgastric endoscopic ligation of fallopian tubes with long-term survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 61 (3): 449-453. |
Kantsevoy et al., “Endoscopic gastrojejunostomy with survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 62(2): 287-292. |
Menciassi et al., “Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract,” J. Micromech. Microeng, 2005; 15: 2045-2055. |
Oleynikov et al., “In Vivo Robotic Laparoscopy,” Surgical Innovation, Jun. 2005, 12(2): 177-181. |
Oleynikov et al., “Miniature Robots Can Assist in Laparoscopic Cholecystectomy,” Journal of Surgical Endoscopy, 19-4: 473-476, 2005. |
Park et al., “Experimental studies of transgastric gallbladder surgery: cholecystectomy and cholecystogastric anastomosis (videos),” Gastrointestinal Endoscopy, 2005; 61 (4): 601-606. |
Patronik et al., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Computer Aided Surgery, 10(4): 225-232, Jul. 2005. |
Platt et al., “In Vivo Robotic Cameras can Enhance Imaging Capability During Laparoscopic Surgery,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005; 1 pg. |
Rentschler et al., “Mobile In Vivo Robots Can Assist in Abdominal Exploration,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, April 13-16, 2005b. |
Rentschler et al., “Modeling, Analysis, and Experimental Study of In Vivo Wheeled Robotic Mobility,” IEEE Transactions on Robotics, 22 (2): 308-321, 2005c. |
Rentschler et al., “Toward In Vivo Mobility,” Studies in Health Technology and Infonnatics - Medicine Meets Virtual Reality, ISO Press, Long Beach, CA, 2005a, III: 397-403. |
Rosen et al., “Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery - Analytical and Experimental Approaches,” Studies in Health Technology and Infonnatics-Medicine Meets Virtual Reality, pp. 442-448, Jan. 2005. |
Smart Pill “Fastastic Voyage: Smart Pill to Expand Testing,” http://www.smartpilldiagnostics.com, Apr. 13, 2005, 1 pg. |
Strong et al., “Efficacy of Novel Robotic Camera vs. a Standard Laproscopic Camera,” Surgical Innovation vol. 12, No. 4, Dec. 2005, Westminster Publications, Inc., pp. 315-318. |
Kantsevoy et al., “Transgastric endoscopic splenectomy,” Surgical Endoscopy, 2006; 20: 522-525. |
Ko et al., “Per-Oral transgastric abdominal surgery,” Chinese Journal of Digestive Diseases, 2006; 7: 67-70. |
Micron, http://www.micron.com, 2006, 1/4-inch VGA NTSC/PAL CMOS Digital Image Sensor, 98 pp. |
Rentschler et al., “Mechanical Design of Robotic In Vivo Wheeled Mobility,” ASME Journal of Mechanical Design, 2006a; pp. 1-11, Accepted. |
Rentschler et al., “Miniature in vivo robots for remote and harsh environments,” IEEE Transaction on Information Technology in Biomedicine, Jan. 2006; 12(1): pp. 66-75. |
Rentschler et al., “Mobile In Vivo Biopsy Robot,” IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006; 4155-4160. |
Rentschler et al., “Mobile In Vivo Biopsy and Camera Robot,” Studies in Health and Infonnatics Medicine Meets Virtual Reality, vol. 119: 449-454, IOS Press, Long Beach, CA, 2006e. |
Rentschler et al., “Mobile In Vivo Camera Robots Provide Sole Visual Feedback for Abdominal Exploration and Cholecystectomy,” Journal of Surgical Endoscopy, 20-1: 135-138, 2006b. |
Rentschler et al., “Natural Orifice Surgery with an Endoluminal Mobile Robot,” The Society of American Gastrointestinal Endoscopic Surgeons, Dallas, TX, April 2006d. |
Stefanini et al., “Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular Compliant and Slippery Environment,” Int. Journal of Robotics Research, vol. 25, No. 5-6, pp. 551-560, Mav-Jun. 2006. |
Sharp LL-151-3D, http://www.sharp3d.com, 2006, 2 pp. |
Crystal Eyes, http://www.reald.com, 2007 (Stereo 3D visualization for CAVEs, theaters and immersive environments), 1 pg. |
O'Neill, “Surgeon takes new route to gallbladder,” The Oregonian, Jun. 2007; 2 pp. |
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-abdominal Camera and Retractor,” Ann Surg, Mar. 2007; 245(3): 379-384. |
Rentschler et al., “An In Vivo Mobile Robot for Surgical Vision and Task Assistance,” Journal of Medical Devices, Mar. 2007; vol. 1: 23-29. |
Rentschler et al., “In vivo Robotics during the NEEMO 9 Mission,” Medicine Meets Virtual Reality, Feb. 2007; 1 pg. |
Schwartz, “In the Lab: Robots that Slink and Squirm,” The New York Times, Mar. 27, 2007, 4 pp. |
Gopura et al., Mechanical designs of active upper-limb exoskeleton robots: State-of-the-art and design difficulties, 2009, IEEE, p. 178-187 (Year: 2009). |
Xu et al., “System Design of an Insertable Robotic Effector Platform for Single Access (SPA) Surgery” , The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 11-15, 2009, St. Louis Mo USA pp. 5546-5552. |
Gopura et al., A brief review on upper extremity robotic exoskeleton systems, 2011, IEEE, p. 346-351 (Year: 2011). |
Midday Jeff et al., “Material Handling System for Robotic natural Orifice Surgery,”, Proceedings of the 2011 Design of medical Devices Conference, Apr. 12-14, 2011, Minneapolis, MN 4 pages. |
Keller et al., Design of the pediatric arm rehabilitation robot ChARMin, 2014, IEEE, p. 530-535 (Year: 2014). |
Number | Date | Country | |
---|---|---|---|
20210330404 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
62564076 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16144807 | Sep 2018 | US |
Child | 17367915 | US |