This disclosure relates generally to a robotic system for inspecting a part, and more particularly to a robotic system for inspecting a part without contacting the surface of the part.
Parts of large structures, such as aircraft and other vehicles, can require inspections, such as for wear or damage or to measure material properties of the parts. A visual or manual inspection can be difficult to achieve due to the size and/or the shape of the part or the overall structure. For parts with hard-to-inspect areas, some robots are programmed to position an inspection device in contact with a surface of the part and, when in contact, move the inspection device along the surface by following probes or other guides fixed on the surface. However, robots programmed to place inspection devices in contact with the surface of parts are prone to causing inadvertent damage to the part, particularly when the surface of the part is difficult to access or has a complex shape. Furthermore, in some situations, such as due to constraints associated with the size and/or shape of the part or overall structure, contacting the surface of the structure can be difficult, if not impossible.
The subject matter of the present application provides examples of a robotic system for inspecting a part and associated methods that overcome the above-discussed shortcomings of prior art techniques. The subject matter of the present application has been developed in response to the present state of the art, and in particular, in response to shortcomings of conventional systems.
Disclosed herein is a robotic system for inspecting a part. The robotic system comprises a robot comprising an articulating arm and an end effector, coupled to the articulating arm. The robotic system further includes three or more proximity sensors on the end effector and spaced apart from each other. Each one of the three or more proximity sensors is configured to detect a measured distance from the proximity sensor to a surface, such that the end effector is continuously displaced from the surface. The robotic system also includes a controller. The controller is configured to receive measured distances from the three or more proximity sensors. The controller is also configured to orient the end effector to a predetermined orientation based on the measured distances. The controller is further configured to, after orienting the end effector to the predetermined orientation, calculate an average of the measured distances. Additionally, the controller is configured to move the end effector to a predetermined operating distance from the surface based on the average of the measured distance. The preceding subject matter of this paragraph characterizes example 1 of the present disclosure.
The controller is further configured to orient the end effector to a perpendicular orientation, normal to the surface, based on the measured distances. The preceding subject matter of this paragraph characterizes example 2 of the present disclosure, wherein example 2 also includes the subject matter according to example 1, above.
The controller is further configured to determine when the measured distance from at least one of the three or more proximity sensors is outside an allowable distance tolerance and automatically reorient the end effector to the predetermined orientation when the measured distance from the at least one proximity sensor is determined to be outside of the allowable distance tolerance. The preceding subject matter of this paragraph characterizes example 3 of the present disclosure, wherein example 3 also includes the subject matter according to any of examples 1-2, above.
Additionally, the controller is configured to determine when the average of the measured distances is outside an allowable average-distance tolerance from the surface, the allowable average-distance tolerance corresponding with the predetermined operating distance and automatically move the end effector to the predetermined operating distance when the average of the measured distances is determined to be outside of the allowable average-distance tolerance. The preceding subject matter of this paragraph characterizes example 4 of the present disclosure, wherein example 4 also includes the subject matter according to example 3, above.
The three or more proximity sensors comprise four proximity sensors on and spaced apart from each other on the end effector. The preceding subject matter of this paragraph characterizes example 5 of the present disclosure, wherein example 5 also includes the subject matter according to of any examples 1-4, above.
The four proximity sensors comprise a first set of proximity sensors and a second set of proximity sensors. The first set of proximity sensors comprises two proximity sensors that are opposite each other on the end effector and spaced apart at a first length from each other. The second set of proximity sensors comprises two other proximity sensors, that are opposite each other on the end effector and spaced apart at a second length from each other. The first length and the second length are equal. The preceding subject matter of this paragraph characterizes example 6 of the present disclosure, wherein example 6 also includes the subject matter according to example 5, above.
The system further comprises a scanning apparatus disposed on the end effector and configured to scan the surface. The controller is configured to maintain the end effector at the predetermined operating distance while the scanning apparatus is scanning the surface. The predetermined operating distance correlating with the distance of the scanning apparatus relative to the surface such that the scanning apparatus is displaced from the surface. The preceding subject matter of this paragraph characterizes example 7 of the present disclosure, wherein example 7 also includes the subject matter according to any of examples 1-6, above.
Additionally, the system comprises a machining tool disposed on the end effector and configured to machine the surface as the scanning apparatus is scanning the surface. The preceding subject matter of this paragraph characterizes example 8 of the present disclosure, wherein example 8 also includes the subject matter according to example 7, above.
The end effector further comprises manual input features, onboard the end effector and configured to be manually manipulated to adjust a location of the end effector relative to the surface. The preceding subject matter of this paragraph characterizes example 9 of the present disclosure, wherein example 9 also includes the subject matter according to any of examples 1-8, above.
Each one of the three or more proximity sensors generates a beam and is individually adjustable to adjust an angle of the beam relative to a central axis of the end effector. The preceding subject matter of this paragraph characterizes example 10 of the present disclosure, wherein example 10 also includes the subject matter according to any of examples 1-9, above.
Further disclosed herein is a system for inspecting a part. The system comprises a surface to be inspected and a robotic system. The robotic system comprises a robot comprising an articulating arm and an end effector, coupled to the articulating arm. The robotic system further comprises three or more proximity sensors on the end effector and spaced apart from each other. Each one of the three or more proximity sensors is configured to detect a measured distance from the proximity sensor to the surface, such that the end effector is continuously displaced from the surface. The robotic system also includes a controller. The controller is configured to receive measured distances from the three or more proximity sensors. The controller is also configured to orient the end effector to a predetermined orientation based on the measured distances. The controller is further configured to, after orienting the end effector to the predetermined orientation, calculate an average of the measured distances. Additionally, the controller is configured to move the end effector to a predetermined operating distance from the surface based on the average of the measured distance. The preceding subject matter of this paragraph characterizes example 11 of the present disclosure.
The controller is further configured to orient the end effector to a perpendicular orientation, normal to the surface, based on the measured distances. The preceding subject matter of this paragraph characterizes example 12 of the present disclosure, wherein example 12 also includes the subject matter according to example 10, above.
Additionally, the controller is further configured to direct movement of the end effector to follow a scanning pattern along the surface. As the end effector is following the scanning pattern, the controller is configured to determine when the measured distance from at least one of the three or more proximity sensors is outside an allowable distance tolerance. The controller is also configured to automatically reorient the end effector to the predetermined orientation when the measured distance from the at least one proximity sensor is determined to be outside of the allowable distance tolerance. The controller is further configured to determine when the average of the measured distances is outside an allowable average-distance tolerance from the surface, the allowable average-distance tolerance corresponding with the predetermined operating distance. Additionally, the controller is configured to automatically move the end effector to the predetermined operating distance when the average of the measured distances is determined to be outside of the allowable average-distance tolerance. The preceding subject matter of this paragraph characterizes example 13 of the present disclosure, wherein example 13 also includes the subject matter according to any of examples 11-12, above.
The controller is further configured to maintain the end effector at the predetermined orientation and the predetermined operating distance as the surface is moved relative to the end effector. The controller is configured to determine when the measured distance from at least one of the three or more proximity sensors is outside an allowable distance tolerance. The controller is also configured to automatically reorient the end effector to the predetermined orientation when the measured distance from the at least one proximity sensor is determined to be outside of the allowable distance tolerance. The controller is further configured to determine when the average of the measured distances is outside an allowable average-distance tolerance from the surface, the allowable average-distance tolerance corresponding with the predetermined operating distance. Additionally, the controller is configured to automatically move the end effector to the predetermined operating distance when the average of the measured distances is determined to be outside of the allowable average-distance tolerance. The preceding subject matter of this paragraph characterizes example 14 of the present disclosure, wherein example 14 also includes the subject matter according to any of examples 11-12, above.
Additionally, disclosed herein is a method of inspecting a part. The method comprising the step of moving an end effector, via an articulating arm of a robot, relative to a target location on a surface. The method also comprises the step of detecting a measured distance from the target location on the surface to each one of three or more proximity sensors disposed on the end effector and spaced apart from each other. The method also comprises the step of orienting the end effector at a predetermined orientation based on the measured distances. The method further comprises the step of, after orientating the end effector to the predetermined orientation, calculating an average of the measured distances. Additionally, the method comprises the step of moving the end effector to a predetermined distance from the surface based on the average of the measured distances. The preceding subject matter of this paragraph characterizes example 15 of the present disclosure.
The step of moving the end effector, via the articulating arm of the robot, further comprises manipulating manual input features, onboard the end effector, to adjust a location of the end effector relative to the surface, such that beam generated from the three or more proximity sensors align with the target location on the surface. The preceding subject matter of this paragraph characterizes example 16 of the present disclosure, wherein example 16 also includes the subject matter according to example 15, above.
The method further comprises the step of individually adjusting an angle of a beam generated from each of the three of more proximity sensors to align with the target location on the surface. The preceding subject matter of this paragraph characterizes example 17 of the present disclosure, wherein example 17 also includes the subject matter according to any of examples 15-16, above.
The method further comprises the step of maintaining the end effector at the predetermined orientation and the predetermined operating distance as the end effector follows a scanning pattern along the surface. The method also comprises the step of determining when the measured distance from at least one of the three or more proximity sensors is outside an allowable distance tolerance. The method further comprises the step of automatically reorienting the end effector to the predetermined orientation when the measured distance from the at least one proximity sensor is determined to be outside of the allowable distance tolerance. The method additionally comprises the step of determining when the average of the measured distances is outside an allowable average-distance tolerance from the surface, the allowable average-distance tolerance corresponding with the predetermined operating distance. The method also comprises the step of automatically moving the end effector to the predetermined operating distance when the average of the measured distances is determined to be outside of the allowable average-distance tolerance. The preceding subject matter of this paragraph characterizes example 18 of the present disclosure, wherein example 18 also includes the subject matter according to any of examples 15-17, above.
The method further comprises the step of maintaining the end effector at the predetermined orientation and the predetermined operating distance as the surface is moved relative to the end effector. The method also comprises the step of determining when the measured distance from at least one of the three or more proximity sensors is outside an allowable distance tolerance. The method further comprises the step of automatically reorienting the end effector to the predetermined orientation when the measured distance from the at least one proximity sensor is determined to be outside of the allowable distance tolerance. The method additionally comprises the step of determining when the average of the measured distances is outside an allowable average-distance tolerance from the surface, the allowable average-distance tolerance corresponding with the predetermined operating distance. The method also comprises the step of automatically moving the end effector to the predetermined operating distance when the average of the measured distances is determined to be outside of the allowable average-distance tolerance. The preceding subject matter of this paragraph characterizes example 19 of the present disclosure, wherein example 19 also includes the subject matter according to any of examples 15-17, above.
The method further comprises the step of scanning the surface to detect anomalies in the surface, via a scanning apparatus disposed on the end effector. The predetermined operating distances correlating with the distance of the scanning apparatus relative to the surface such that the scanning apparatus is displaced from the surface. The preceding subject matter of this paragraph characterizes example 20 of the present disclosure, wherein example 20 also includes the subject matter according to any of examples 15-19, above.
The described features, structures, advantages, and/or characteristics of the subject matter of the present disclosure may be combined in any suitable manner in one or more examples, including embodiments and/or implementations. In the following description, numerous specific details are provided to impart a thorough understanding of examples of the subject matter of the present disclosure. One skilled in the relevant art will recognize that the subject matter of the present disclosure may be practiced without one or more of the specific features, details, components, materials, and/or methods of a particular example, embodiment, or implementation. In other instances, additional features and advantages may be recognized in certain examples, embodiments, and/or implementations that may not be present in all examples, embodiments, or implementations. Further, in some instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the subject matter of the present disclosure. The features and advantages of the subject matter of the present disclosure will become more fully apparent from the following description and appended claims, or may be learned by the practice of the subject matter as set forth hereinafter.
In order that the advantages of the subject matter may be more readily understood, a more particular description of the subject matter briefly described above will be rendered by reference to specific examples that are illustrated in the appended drawings. Understanding that these drawings depict only typical examples of the subject matter, they are not therefore to be considered to be limiting of its scope. The subject matter will be described and explained with additional specificity and detail through the use of the drawings, in which:
Reference throughout this specification to “one example,” “an example,” or similar language means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present disclosure. Appearances of the phrases “in one example,” “in an example,” and similar language throughout this specification may, but do not necessarily, all refer to the same example. Similarly, the use of the term “implementation” means an implementation having a particular feature, structure, or characteristic described in connection with one or more examples of the present disclosure, however, absent an express correlation to indicate otherwise, an implementation may be associated with one or more examples.
Referring to
The robotic system 100 includes a robot 102. In some examples, the robot 102 has an articulating arm 106 or an arm with multiple, independently articulatable segments. According to one example, the articulating arm 106 is a mechanical arm that facilitates movement of a tool center point 107 of the robot 102, located at the end of the articulating arm 106, with multiple degrees of freedom (e.g., six degrees of freedom), including adjustability of a distance (i.e., movement along a z-axis), a position (i.e., movement along a x-axis and/or y-axis that are perpendicular to the z-axis), and an orientation (e.g. rotation about one or more of the x-axis, y-axis, or z-axis) of the tool center point 107 relative to a surface 104. In one example, the robot 102 is a collaborative robot, or cobot, such as a commercially available cobot, which may be beneficial due to its general availability, cost-effectiveness and ease of programming. In other examples, the robot 102 is a custom designed robot, with custom specifications, such as the overall size of the robot or length of the articulating arm 106. Customizing the specifications of the robot 102 may be particularly useful for inspecting uniquely shaped or sized surfaces of parts.
The robotic system 100 further comprises an end effector 108, which is coupled to the articulating arm 106 at the tool center point 107 of the robot 102. The end effector 108 is fixed relative to the tool center point 107, such that the end effector 108 experiences the same movement as the tool center point 107, which is moved by the articulating arm 106. Accordingly, as the articulating arm 106 moves the tool center point 107 relative to a part 101 the end effector 108 correspondingly moves relative to the part 101.
The end effector 108 includes a base 109 and a plurality of proximity sensors 110. The proximity sensors 110 are coupled to the base 109 of the end effector 108 and spaced apart from each other. The proximity sensors 110 are configured to detect and measure the distance from the proximity sensor 110 to the surface 104 of the part 101. As used herein the distance detected by the proximity sensors 110, from each proximity sensor 110 to the surface 104, is called a measured distance 112. Generally, each proximity sensor 110 emits an emitted beam and receives a corresponding reflected beam reflected off of the surface 104. The characteristics of the emitted beam and the reflected beam are compared to determine the measured distance 112.
In some examples, the plurality of proximity sensors 110 includes three or more proximity sensors 110. In one example, the plurality of proximity sensors 110 includes four proximity sensors 110. In certain examples, the plurality of proximity sensors 110 are equidistantly spaced apart about a perimeter of the base 109 of the end effector 108. In other examples, the plurality of proximity sensors 110 are located on opposite sides of the base 109 of the end effector 108, such that, for example, a first row of proximity sensors 110 is on one side of the base 109 and a second row of proximity sensors 110 is on an opposite side of the base 109. The number of proximity sensors 110 and spacing of the proximity sensors 110 are configured to allow each one of the proximity sensors 110 to detect a corresponding measured distance 112, which is utilized to orient and position the end effector 108 to a predetermined orientation and predetermined operating distance relative to the surface 104.
The proximity sensors 110 may be any type of sensors capable of detecting the measured distance 112 including, but not limited to, an RF-antenna sensor, an optical sensor, a laser sensor, a radar sensor, a sonar sensor, a lidar sensor, an ultrasonic sensor, an x-ray sensor, an acoustic sensor, and/or an infrared sensor.
The robotic system 100 further includes a controller 114 in electrical communication with the robot 102. In some examples, the controller 114 is configured to automatically control the movement of the robot 102. In other examples, the controller 114 is configured to allow a user to control the movement of the robot 102 manually. For example, the controller 114 may be operated by a user via a computer terminal. The computer terminal may be configured to provide various measurements to the user including, but not limited to, the distance from each proximity sensor 110 to the surface 104 and the orientation of the end effector 108 relative to the surface 104. Using the controller 114, and the data determined by the controller 114, the user can move the robot 102 via the computer terminal.
In yet other examples, the controller 114 may be configured to allow both user control of the movement of the robot 102 and automatic control of the robot 102. For example, a user can utilize the controller 114 to move the end effector 108 to a distance and/or orientation, relative to the surface 104, based on the measured distance 112 from the proximity sensors 110 or the user's preferences, then allow the controller 114 to automatically make further adjustments to the distance and/or orientation to move the end effector 108 to the predetermined orientation and predetermined operating distance relative to the surface 104.
Referring to
After orientating the end effector 108 to the predetermined orientation 116, the controller 114 is configured to calculate an average of the measured distances 112 from each of the proximity sensors 110. The controller 114 is further configured to move the end effector 108 to a predetermined operating distance 118 from the surface 104 based on the average of the measured distances 112. For example, if the end effector 108 is targeting a target location 130 and the predetermined orientation was set to a normal orientation and the predetermined operating distance 118 was set to 5 inches±10%, the controller 114 would move the end effector 108 in the x-axis and y-axis until the end effector 108 was at the normal orientation relative to the target location 130. The controller 114 would then move the end effector 108 in the z-axis relative to the surface 104, while keeping the x-axis and y-axis constant, until the average of the measured distances 112 was at 5 inches±10%.
As the robotic system 100 is moved relative to the surface 104, or as the surface 104 is moved relative to the robotic system 100, the controller 114 can be configured to automatically adjust the orientation and distance of the end effector 108 relative to the surface 104, based on the real-time data from the proximity sensors 110. In other words, the controller 114 is configured to utilize a feedback system, based on the continuous detection of the measured distance 112 from each of the proximity sensors 110, to automatically adjust the orientation to the predetermined orientation 116 of the end effector 108 and automatically adjust the distance to the predetermined operating distance 118 of the end effector 108, based on the feedback system. Accordingly, the controller 114 can continuously adjust the orientation and distance of the end effector 108, based on real-time and local information.
In some examples, a tolerance is defined for the predetermined operating distance 118 and/or the predetermined orientation 116. For example, the controller 114 may be configured to determine when the measure distance 112 from at least one of the plurality of proximity sensors 110 is outside of an allowable distance tolerance for the proximity sensor 110 and automatically reorient the end effector 108 to the predetermined orientation 116 when the measured distance 112 from at least one proximity sensor 110 is determined to be outside of the allowable distance tolerance. In other words, although the controller 114 is continuously monitoring the measured distance 112 from the proximity sensors 110, the controller 114 only adjusts the orientation of the end effector 108 if the measured distance 112 shows that at least one of the proximity sensors 110 is outside of the allowable distance tolerance.
Likewise, the controller 114 may be configured to determine when the average of the measured distances 112 from the proximity sensors 110 is outside an allowable average-distance tolerance from the surface 104, the allowable average-distance tolerance corresponding with the predetermined operating distance 118. The controller 114 automatically moves the end effector 108 to the predetermined operating distance 118 when the average of the measured distances 112 is determined to be outside of the allowable average-distance tolerance. In other words, while the controller 114 is continuously monitoring the measured distance 112 from the proximity sensors 110, the controller 114 only adjusts the distance of the end effector 108 relative to the surface 104 if the average of the measured distances 112 is outside of the allowable average-distance tolerance.
As shown in
The scanning apparatus 122 may be any type of scanning device capable of scanning or imaging a surface including, but not limited to, a camera, a radar device, a thermo-imaging device, and an x-ray device. The scanning apparatus 122 may be used for wear or defect identification, radar scanning, or to assist while performing maintenance on the part 101. The predetermined operating distance 118 takes into account the length of the scanning apparatus 122, such that the scanning apparatus 122 remains at least a certain distance from the surface 104 to avoid inadvertently contacting the surface 104 while scanning the surface 104.
In some examples, the robotic system 100 can further include a machining tool 124 disposed on the end effector 108 or forming part of the end effector 108. The machining tool 124 is configured to machine the surface 104 while the scanning apparatus 122 is scanning the surface 104. The machining tool 124 may be any type of machining tool 124 capable of machining the surface 104 including, but not limited to a machining tool 124 configured for, laser ablation, CO2 pellet blasting, girt blasting or other media blasting, plasma torch cutting, chemical torch cutting, welding, painting, etc. In some examples, the machining tool 124 remains displaced or spaced apart from the surface 104, such that the machining tool 124 does not contact the surface 104. In other examples, the machining tool 124 may come in contact with the surface 104, while the end effector 108 and scanning apparatus 122 remain displaced from the surface 104.
The robotic system 100 is configured to maintain the predetermined orientation 116 and predetermined operating distance 118 from all types of surface shapes, including complex and curved surfaces, flat surfaces, convex surfaces, or concave surfaces. In some examples, the robotic system 100 may further include secondary proximity sensors, not shown, coupled at any location along to the robotic system 100, such as the articulating arm 106, a base of the robot 102, the end effector 108, etc. The secondary proximity sensors are be configured to detect distances from the corresponding features of the robotic system 100 to surrounding surfaces, and help maintain the corresponding features at a certain distance threshold away from the surrounding surfaces by providing feedback to the controller 114. In other words, secondary proximity sensors may be used to avoid a part of the robotic system 100 from contacting the surface on the part 101. Accordingly, in some examples, while the proximity sensors 110 are utilized to maintain a certain distance away from the surface 104, the secondary proximity sensors can be utilized to maintain a certain distance away from other surfaces not currently being analyzed.
Referring to
In one example, as shown in
In certain examples, the end effector 108 includes manual input features 120. The manual input features 120 are configured to be manually manipulated, by a user, to adjust a location of the end effector 108 relative to the surface 104. In some examples, the manual input features 120 are used, prior to any adjustments by the controller 114, to position the end effector 108 near a target location on the part 101. Such manual positioning may be helpful in locating the end effector 108 close to the predetermined orientation and predetermined operating distance before using the controller 114 to automatically fine-tune the position by adjusting the orientation and distance to the predetermined values. In some examples, the manual input features 120 may be used, after the controller 114 has positioned the end effector 108 to the predetermined orientation and predetermined operating distance, to adjust the end effector 108 to another orientation, position from a target location (i.e., move in the x-axis and/or y-axis), and/or adjust the distance away from the target location (i.e., move in the z-axis). In other words, the manual input features 120 can be used to manually change the orientation, position, and/or distance from the measurements automatically determined by the controller 114 at the target location 130. Manually manipulation of the manual input features 120 may result in any of various operations, including but not limited to, moving the end effector 108 along the x-axis, moving the end effector 108 along the y-axis, normalizing the end effector 108 at the current distance away from the surface, and/or moving the end effector 108 away from the surface. Additionally, in certain examples, at least one of the manual input features 120 is configured to change an operation state of the robot 102 into a free-drive mode, which allows the user to manually position the robot 102 at the user's discretion by using other ones of the manual input features 120.
The manual input features 120 may be any type of feature capable of manually manipulation by a user including, but not limited to, buttons, switches, knobs, joystick, touch pad, etc.
The end effector 108 may include a plurality of actuators 111 each coupling a corresponding one of the proximity sensors 110 to the base 109. Moreover, the actuators 111 are actuatable to adjust an orientation of the proximity sensors 110 relative to the base 109. In some examples, each one of the actuators 111 is independently actuatable, relative to the other ones of the actuators 111, to adjust an orientation of a corresponding one of the proximity sensors 110 relative to the other ones of the proximity sensors 110. According to certain examples, the actuators 111 facilitate rotational motion of the proximity sensors 110 about respective axes that are perpendicular to a central axis 113 of the base 109. Adjusting the orientation of the proximity sensors 110 relative to the base 109 adjusts an angle of the beams 126, relative to the central axis 113 of the base 109, generated by the proximity sensors 110.
The actuators 111 may by any type of actuator capable of rotational movement relative to the base 109 including but not limited to, electric actuators, hydraulic actuators, pneumatic actuators, and manual actuators. The actuators 111 may be manually adjustable by a user or adjustable by the controller 114. Generally, each of the proximity sensors 110 will be adjusted, via the actuator 111, to the same orientation relative to the base 109. In some examples, such as when a scanning apparatus 122 (see, e.g.,
In some examples, the proximity sensors 110 are removable from the end effector 108 and exchangeable for other sizes or types of proximity sensors 110. For example, based on the part 101 being inspected, exchanging a proximity sensor 110, which generates a narrow ultrasonic beam, for a proximity sensor 110, which generates an wide ultrasonic beam, or exchanging a laser proximity sensor for an ultrasonic proximity sensor, etc., may be desirable.
Referring to
As shown in
In another example, the robotic system 100 is used to move the robot 102 relative to the part 101, as the part 101 remains fixed. The robot 102 is moved over the surface 104 of the part 101 in a scanning pattern. Any scanning pattern can be used to scan the part 101. The robot 102 may be preprogrammed to follow a scanning pattern or the controller 114 may instruct the robot 102 to move in a scanning pattern. In one example, while moving in the scanning pattern, the robotic system 100 may be scanning and/or imaging the surface 104 of the part 101 using a scanning apparatus 122 disposed on the end effector 108. In another example, while moving in the scanning pattern, the robotic system 100 may be using both the scanning apparatus 122 and a machining tool, not shown, to perform any maintenance or repairs to the surface 104.
The controller 114 utilizes a feedback system to continuously monitor the measured distances 112 from each of the proximity sensors 110, and automatically adjust the orientation to the predetermined orientation, as well as, automatically adjust the operating distance to the predetermined operating distance, as the robot 102 is moved over the surface 104. In some examples, the controller 114 will determine if at least one measured distance 112 corresponding to a proximity sensor 110 is outside an allowable distance tolerance, and only adjust the end effector 108 to the predetermined orientation when at least one measured distance 112 is outside the allow distance tolerance. In other examples, the controller 114 will also determine where the average of the measured distances 112 is outside an allowable average-distance tolerance from the surface 104, and only adjust the end effector 108 to the predetermined operating distance when the average of the measured distances 112 is determined to be outside of the allowable average-distance tolerance.
In yet another example, the robotic system 100 is used to keep the robot 102 relatively still, only adjusting the orientation and distance of the end effector 108 relative to the surface 104, while the part 101 is moved relative to the robot 102. As the part 101 is moved, relative to the robot 102, the proximity sensors 110 are continuously detecting the measured distance 112 from the proximity sensor 110 to the surface 104. The controller 114 can use the measured distances 112 to automatically adjust the orientation and distance of the end effector 108 based on the current position of the end effector 108 relative to the surface 104, to keep the end effector 108 at the predetermined orientation and predetermined operating distance. As described above, the controller 114 can also account for tolerances within the measured distances 112 and average of the measured distances 112 when determining whether the orientation or distance should be adjusted.
Referring to
Now referring to
In some examples, the method 200 further includes manipulating manual input features 120, onboard the end effector 108, to adjust the location of the end effector 108 relative to the surface 104. In one example, the manual input features 120 are adjusted such that beams 126 generated from the three or more proximity sensors 110 align with the target location 130 on the surface 104.
In certain examples, the method 200 further includes maintaining the end effector 108 at the predetermined orientation 116 and the predetermined operating distance 118 as the end effector 108 follows a scanning pattern along the surface 104. In one example, the controller 114 determines when the measured distance 112 from at least one of the three or more proximity sensors 110 is outside an allowable distance tolerance and automatically reorients the end effector 108 to the predetermined orientation 116 when the measured distance 112 from the at least one proximity sensor 110 is determined to be outside of the allowable distance tolerance. Additionally, in some examples, the controller 114 determines when the average of the measured distances 112 is outside an allowable average-distance tolerance from the surface 104, the allowable average-distance tolerance corresponding with the predetermined operating distance 118 and automatically moves the end effector 108 to the predetermined operating distance 118 when the average of the measured distances 112 is determined to be outside of the allowable average-distance tolerance.
In some examples, the method includes maintaining the end effector 108 at the predetermined orientation 116 and the predetermined operating distance 118 as the surface 104 is moved relative to the end effector 108. As described above, the controller 114, in some examples, determines when the measures distance 112 is outside the allowable distance tolerance and/or the average of the measure distances 112 is outside the allowable average-distance tolerance and automatically adjusts the end effector 108 accordingly.
Although described in a depicted order, the method may proceed in any of a number of ordered combinations.
In the above description, certain terms may be used such as “up,” “down,” “upper,” “lower,” “horizontal,” “vertical,” “left,” “right,” “over,” “under” and the like. These terms are used, where applicable, to provide some clarity of description when dealing with relative relationships. But, these terms are not intended to imply absolute relationships, positions, and/or orientations. For example, with respect to an object, an “upper” surface can become a “lower” surface simply by turning the object over. Nevertheless, it is still the same object. Further, the terms “including,” “comprising,” “having,” and variations thereof mean “including but not limited to” unless expressly specified otherwise. An enumerated listing of items does not imply that any or all of the items are mutually exclusive and/or mutually inclusive, unless expressly specified otherwise. The terms “a,” “an,” and “the” also refer to “one or more” unless expressly specified otherwise. Further, the term “plurality” can be defined as “at least two.”
Additionally, instances in this specification where one element is “coupled” to another element can include direct and indirect coupling. Direct coupling can be defined as one element coupled to and in some contact with another element. Indirect coupling can be defined as coupling between two elements not in direct contact with each other, but having one or more additional elements between the coupled elements. Further, as used herein, securing one element to another element can include direct securing and indirect securing. Additionally, as used herein, “adjacent” does not necessarily denote contact. For example, one element can be adjacent another element without being in contact with that element.
As used herein, the phrase “at least one of”, when used with a list of items, means different combinations of one or more of the listed items may be used and only one of the items in the list may be needed. The item may be a particular object, thing, or category. In other words, “at least one of” means any combination of items or number of items may be used from the list, but not all of the items in the list may be required. For example, “at least one of item A, item B, and item C” may mean item A; item A and item B; item B; item A, item B, and item C; or item B and item C. In some cases, “at least one of item A, item B, and item C” may mean, for example, without limitation, two of item A, one of item B, and ten of item C; four of item B and seven of item C; or some other suitable combination.
Unless otherwise indicated, the terms “first,” “second,” etc. are used herein merely as labels, and are not intended to impose ordinal, positional, or hierarchical requirements on the items to which these terms refer. Moreover, reference to, e.g., a “second” item does not require or preclude the existence of, e.g., a “first” or lower-numbered item, and/or, e.g., a “third” or higher-numbered item.
As used herein, a system, apparatus, structure, article, element, component, or hardware “configured to” perform a specified function is indeed capable of performing the specified function without any alteration, rather than merely having potential to perform the specified function after further modification. In other words, the system, apparatus, structure, article, element, component, or hardware “configured to” perform a specified function is specifically selected, created, implemented, utilized, programmed, and/or designed for the purpose of performing the specified function. As used herein, “configured to” denotes existing characteristics of a system, apparatus, structure, article, element, component, or hardware which enable the system, apparatus, structure, article, element, component, or hardware to perform the specified function without further modification. For purposes of this disclosure, a system, apparatus, structure, article, element, component, or hardware described as being “configured to” perform a particular function may additionally or alternatively be described as being “adapted to” and/or as being “operative to” perform that function.
The schematic flow chart diagrams included herein are generally set forth as logical flow chart diagrams. As such, the depicted order and labeled steps are indicative of one example of the presented method. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more steps, or portions thereof, of the illustrated method. Additionally, the format and symbols employed are provided to explain the logical steps of the method and are understood not to limit the scope of the method. Although various arrow types and line types may be employed in the flow chart diagrams, they are understood not to limit the scope of the corresponding method. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the method. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted method. Additionally, the order in which a particular method occurs may or may not strictly adhere to the order of the corresponding steps shown.
The present subject matter may be embodied in other specific forms without departing from its spirit or essential characteristics. The described examples are to be considered in all respects only as illustrative and not restrictive. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Name | Date | Kind |
---|---|---|---|
4718023 | Arora | Jan 1988 | A |
9710919 | Teng et al. | Jul 2017 | B2 |
9841503 | Olsson et al. | Dec 2017 | B2 |
20110014371 | Herre | Jan 2011 | A1 |
20140067185 | Tralshawala | Mar 2014 | A1 |
20150306763 | Meier | Oct 2015 | A1 |
20170095932 | Murakami | Apr 2017 | A1 |
20220281032 | Boselli | Sep 2022 | A1 |
Entry |
---|
V. Prabakaran et al., “Hornbill: A Self-Evaluating Hydro-Blasting Reconfigurable Robot for Ship Hull Maintenance,” in IEEE Access, vol. 8, p. 193790-193800, 2020, doi: 10.1109/ACCESS.2020.3033290. (Year: 2020). |
J. Sanz, M. Ferre, A. Espada, M. C. Narocki and J. Fernández-Pardo, “Robotized inspection system of the external aircraft fuselage based on ultrasound,” 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010, pp. 2612-2617, doi: 10.1109/IROS.2010.5653073. (Year: 2010). |
V. Prabakaran et al., “Hornbill: A Self-Evaluating Hydro-Blasting Reconfigurable Robot for Ship Hull Maintenance, ” in IEEE Access, vol. 8, pp. 193790-193800, 2020, doi: 10.1109/ACCESS.2020.3033290. (Year: 2020). |
S. Christmann, I. Busboom, V. K. S. Feige and H. Haehnel, “Towards Automated Quality Inspection Using a Semi-Mobile Robotized Terahertz System,” 2020 Third International Workshop on Mobile Terahertz Systems (IWMTS), Essen, Germany, 2020, pp. 1-5, doi: 10.1109/IWMTS49292.2020.9166259. (Year: 2020). |
Yuan, Peijiang, et al. “Surface normal measurement in the end effector of a drilling robot for aviation.” 2014 IEEE international conference on robotics and automation (ICRA). IEEE, 2014. (Year: 2014). |
YouTube video, 1000W Rust Cleaning Laser—Removes Rust Effortlessly, https://www.youtube.com/watch?/=ACGSzBXKONo accessed Nov. 10, 2021. |
Robotiq Sanding Kit, https://robotiq.com/products/sanding-kit?ref=nav_product_new_button accessed Nov. 10, 2021. |
Number | Date | Country | |
---|---|---|---|
20230146712 A1 | May 2023 | US |