1. Field of the Invention
This invention relates generally to electronic devices, and more particularly, to interconnect structures for providing electrical conductivity between conductive layers.
2. Discussion of the Related Art
After removal of the photoresist, a Ti/TiN adhesion layer 26 is deposited on the resulting structure, i.e., on the exposed top surface of the dielectric layer 22 and in the opening 24 and on the exposed portion of the metal layer 20 as shown in
Next, a tungsten nucleation layer 28 is deposited on the entire Ti/TiN adhesion layer 26, the tungsten nucleation layer 28 having a thickness on the order of 50A (
It will be readily understood that it is desirable that the conductive interconnect 38 have very low resistance. The inclusion of a tungsten nucleation layer 28 as described above significantly increases the resistance of the interconnect 38 to electric current traveling between one metal layer and the other. For example, the resistivity of the tungsten nucleation layer is approximately 100 μΩ-cm, and the inclusion thereof greatly increases the overall resistance of the interconnect 38 as compared to pure tungsten.
In addition, there is a continuing trend in electronic devices to decrease device dimensions where possible. In furtherance thereof, the ratio of the length of the conductive interconnect to the cross-sectional width thereof, i.e., the aspect ratio thereof, at approximately 15:1 the in present technology, is expected to increase, i.e., for a given length of conductive interconnect, the cross-sectional width thereof is expected to decrease. This in itself will provide an increase in the resistance of the interconnect.
There is therefore an urgent need to overcome these problems by providing a conductive interconnect or plug with substantially reduced resistance as compared to the prior art. The conductive interconnect should be formed by a simple and cost-effective process and provide high contact integrity.
Broadly stated, the present electronic structure comprises first and second conductive bodies, a dielectric layer between the first and second conductive bodies, the dielectric layer defining an opening therethrough, and a ruthenium body entirely filling the opening in the dielectric layer.
Further broadly stated, the present electronic structure comprises first and second conductive bodies, a dielectric layer between the first and second conductive bodies, the dielectric layer defining an opening therethrough, an adhesion layer within the opening in the dielectric layer and defining a remaining opening, and a ruthenium body entirely filling the remaining opening.
Further broadly stated, the present electronic structure comprises first and second conductive bodies, a dielectric layer between the first and second conductive bodies, the dielectric layer defining an opening therethrough, and an electrically conductive interconnect in the opening in the dielectric layer and providing electrically conductive connection between the first and second conductive bodies, the electrically conductive interconnect comprising an adhesion layer and a ruthenium body.
Further broadly stated, the present electronic structure comprises first and second conductive bodies, a dielectric layer between the first and second conductive bodies, the dielectric layer defining an opening therethrough, and an elongated electrically conductive interconnect in the opening providing electrically conductive connection between the first and second conductive bodies, the electrically conductive interconnect comprising ruthenium, wherein the ratio of the length of the electrically conductive interconnect to the minimum cross-sectional width of the electrically conductive interconnect is 20:1 or greater.
Further broadly stated, the present electronic structure comprises providing a first conductive body, providing a dielectric layer over the first conductive body, providing an opening through the dielectric layer, providing a ruthenium body entirely filling the opening in the dielectric layer, and providing a second conductive body over the dielectric layer.
Further broadly stated is a method of fabricating an electronic structure comprising providing a first conductive body, providing a dielectric layer over the first conductive body, providing an opening through the dielectric layer, providing an adhesion layer in the opening through the dielectric layer to define a remaining opening, providing a ruthenium body entirely filling the remaining opening, and providing a second conductive body over the dielectric layer.
The present invention is better understood upon consideration of the detailed description below, in conjunction with the accompanying drawings. As will become readily apparent to those skilled in the art from the following description, there are shown and described embodiments of this invention simply by way of the illustration of the best mode to carry out the invention. As will be realized, the invention is capable of other embodiments and its several details are capable of modifications and various obvious aspects, all without departing from the scope of the invention. Accordingly, the drawings and detailed description will be regarded as illustrative in nature and not as restrictive.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as said preferred mode of use, and further objects and advantages thereof, will best be understood by reference to the following detailed description of illustrative embodiments when read in conjunction with the accompanying drawings, wherein:
Reference is now made in detail to specific embodiments of the present invention which illustrate the best mode presently contemplated by the inventors for practicing the invention.
The ruthenium has low bulk resistivity and has good adhesion to the dielectric layer 66 as well as to copper and tantalum. As will readily be seen, the inclusion of a high-resistivity tungsten nucleation layer is avoided. Resistance of the present interconnect 74 is substantially reduced relative to a comparable prior art plug.
After removal of the photoresist, a Ti adhesion layer 170 is deposited on the resulting structure, i.e., on the exposed top surface of the dielectric layer 166 and in the opening 168 and on and in contact with the exposed portion of the conductive layer 158 as shown in
Again, the ruthenium has low bulk resistivity and has good adhesion to the dielectric 166 as well as to copper and tantalum. Use of a high-resistivity tungsten nucleation layer is avoided, and resistance of the present plug is substantially reduced relative to a comparable prior art plug. The inclusion of the titanium adhesion layer 170 enhances adhesion of the ruthenium and also enhances gettering.
In both embodiments, the provided electrically conductive interconnect is of lower resistance than in the prior art, and formed by a simple and cost-effective process providing high contact integrity.
For practical purposes,
The foregoing description of the embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Other modifications or variations are possible in light of the above teachings.
The embodiments were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill of the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.
Number | Name | Date | Kind |
---|---|---|---|
5731047 | Noddin | Mar 1998 | A |
5744832 | Wolters et al. | Apr 1998 | A |
5847327 | Fischer et al. | Dec 1998 | A |
5888888 | Talwar et al. | Mar 1999 | A |
6479100 | Jin et al. | Nov 2002 | B2 |
6509601 | Lee et al. | Jan 2003 | B1 |
6544835 | Yamamoto et al. | Apr 2003 | B2 |
7285308 | Hendrix et al. | Oct 2007 | B2 |
20060065928 | Nagai | Mar 2006 | A1 |
20060223300 | Simka et al. | Oct 2006 | A1 |
20090065940 | Kim et al. | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100078815 A1 | Apr 2010 | US |