This invention relates to caps and, more particularly, to antiseptic caps for use with medical connectors.
Certain embodiments disclosed herein relate to caps for medical connectors and more specifically relate to caps that can be used to disinfect and prevent future contamination of unconnected medical connectors, such as connectors that may be used for fluid flow or for fluid delivery systems.
Catheters are widely used to treat patients requiring a variety of medical procedures. Catheters can either be acute, or temporary, for short-term use or chronic for long-term treatment. Catheters are commonly inserted into central veins (such as the vena cava) from peripheral vein sites to provide access to a patient's vascular system.
Catheter connections, such as, for example, connections of catheters to dialysis machine tubing, to IV line tubing, to infusion ports and to catheter caps, which are used to seal the end of a catheter to protect the sterility of the catheter and prevent fluid loss and/or particle contamination, are most often made utilizing the medical industry's standardized Luer taper fittings. These fittings, which may either be male couplings or female couplings, include a tapered end of standardized dimensions. Coupling is made by the press-fit of mating parts. A threaded lock-fit or other type of securing mechanism is commonly utilized to ensure the integrity of the pressure fit of the Luer fittings. There are also other non-standard fittings that can be used to selectively couple multiple components together.
Catheter-related bloodstream infections (CRBSI), such as may be caused by microorganisms that enter a patient's body via intravascular catheters, are a significant cause of unnecessary illness, complications, and excess medical costs. A substantial number of such infections occur in U.S. intensive care units annually.
Providing antimicrobial agents in catheters is one approach for reducing these infections. Many of such catheters, however, do not have satisfactory results. Additionally, some microbes have developed resistance to the various antimicrobial agents used in the catheters.
It has been found that the use of antiseptic caps, such as the cap manufactured and sold by Excelsior under the trademark SWABCAP, greatly reduce the incidence of infections, resulting in, among other things, significant health benefits for patients and vast cost savings. However, there remains a need for alternative cap designs for use with a variety of medical fittings or connectors.
Disclosed herein are disinfecting caps that can reduce the threat of microorganisms entering the bloodstream of a patient via fluid flow or fluid delivery systems, such as, for example, medical connectors, needleless injection sites, and/or medical fluid transfer devices. In some embodiments, one or more caps can be configured for use with a medical infusion system with one or more luer connectors, such as a female or male medical connector having a luer fitting. In some embodiments, a cap has a base and a liquid-dispensing material, such as an absorbent material, that is configured to carry a therapeutic liquid or gel, such as a liquid or gel antiseptic or antimicrobial agent (e.g., isopropyl alcohol, or chlorhexidine gluconate, or metallic ions such as silver ions or copper ions, or any other suitable agent or agents for sanitizing or removing contaminants).
Embodiments will now be described with reference to the following drawings, which are provided by way of example, and not limitation Like reference numerals indicate identical or functionally similar elements. The sizes and relative proportions of all components and features shown in the drawings form part of this disclosure but should not be interpreted to be part of a claim unless specifically included in such claim.
Various systems, methods, and components can be used in different embodiments of medical caps. Some embodiments are illustrated in the accompanying figures; however, the figures are provided for convenience of illustration only, and should not be interpreted to limit the inventions to the particular combinations of features shown. Rather, any feature, structure, material, step, or component of any embodiment described and/or illustrated in this specification can be used by itself, or with or instead of any other feature, structure, material, step, or component of any other embodiment described and/or illustrated in this specification. Nothing in this specification is essential or indispensable. Any of the devices or connections or features that are described and/or illustrated anywhere in this specification can be configured to attach to or protect or sanitize luer connectors, which are in compliance with ISO standard 594 or ISO 80369, or can comply with any other industry standard that is applicable to medical fluid connectors.
Overview
This disclosure relates to embodiments of a sanitizing cap that can be used to disinfect and/or protect medical connectors. A cap may be used with intravascular connectors associated with a fluid pathway, such as an IV line. All references to any type of connector (e.g., a male luer connector) in this application should be understood to include and disclose any type of medical implement that accomplishes or facilitates storage or transfer of medical fluid or connection of medical fluid lines (e.g., any open or resealable fluid line connector, syringe, catheter connector, vial, vial adapter, pump cartridge or disposable, pharmaceutical compounding component, female connector, blood-line connector, IV bag, catheter inserter, venting or priming cap, etc.).
Fluid pathways, once established, may provide direct access to a patient's blood stream and can be used intermittently to administer medications to a patient. These fluid pathways can have one or more associated medical connectors that can be connected to other medical connectors. In some embodiments, a plurality of corresponding connectors can have male or female connection regions, such as male or female luer connection regions or luer locks. The connection regions can provide a convenient way to connect and disconnect the fluid pathway at various times. When connectors with connection regions are disconnected, one or more caps (e.g., luer caps) can protect the unconnected connectors from possible contamination. It can be advantageous for the caps to carry or contain some form of an antiseptic for disinfecting a connection region (e.g., a luer connection region) before sealing the connector off from possible future contamination from the outside. Any structure, step, material, or component that is illustrated and/or described in any embodiment in this specification can be used with or instead of any other structure, step, material, or component that is illustrated and/or described in any other embodiment in this specification. No structure, step, material, or component is essential or indispensable.
Antiseptic Cap
As shown in
To facilitate attaching the antiseptic cap 82 to a medical connector, in some embodiments, the antiseptic cap 82 can comprise a semi-rigid material capable of deformation when a load is applied. This can advantageously allow the interior surface 87 of the antiseptic cap 82 to temporarily and/or permanently deform when the interior surface 87 interacts with one or more features of the medical connector. In some embodiments, the antiseptic cap 82 can comprise a rigid material that is sufficiently pliable to permit the interior surface 87 to engage with a portion of a medical connector. In some embodiments, the interface between the medical connector and the cap 82 can form a fluid tight seal. When the antiseptic cap 82 is attached to a medical connector, such a fluid tight seal can be configured to function as a physical barrier that isolates a portion of the first chamber 84 from the outside environment. For example, in some embodiments, the fluid tight seal can be configured to inhibit an antiseptic agent from leaving the isolated portion of the first chamber 84 and/or can be configured to inhibit contaminants from entering the isolated portion of the first chamber 84. It will be appreciated that the ability of the interior surface 87 to deform can advantageously allow the cap 82 to be removably attached to a medical connector without the use of threads. For example, in some embodiments, the semi-rigid material can be configured to allow threads of a medical connector to slide into the first chamber 84 such that the interior surface 87 deforms radially outward as the threads interact with the interior surface 87 when they are sliding in. In some embodiments, the interior surface 87 can be configured to rebound radially inward after the threads interact with the interior surface 87 and slide further into the first chamber 84. When the medical connector is fully inserted into the antiseptic cap 82, the interior surface 87 can be configured to deform radially outward wherever the medical connector interacts with the interior surface. Advantageously, a threadless antiseptic cap (e.g., antiseptic cap 82) can be configured to receive one or more medical connectors having one or more different features (e.g., various thread characteristics, differently sized connectors, among others).
The antiseptic cap 82 can comprise any suitable material (e.g., semi-rigid material). For example, in some embodiments, the antiseptic cap 82 can comprise a thermoplastic elastomer (e.g., Santoprene®). The semi-rigid material of the antiseptic cap 82 can have any suitable durometer. For example, in some embodiments, the antiseptic cap 82 can have a Shore A durometer in the range of approximately 60 to approximately 1050, although any suitable durometer can be used, such as, for example, at least: about 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, among others (e.g., any durometer between about 50 and about 100). For example, in some embodiments, the antiseptic cap 82 can comprise Santoprene® having a Shore A hardness of at least about 90.
As shown in
The first chamber 84 can comprise any suitable depth 84L1, shown in
As shown in
As shown in
In some embodiments, the plurality of ribs 120 can comprise any suitable number, such as for example, 1 to 20 or more ribs. In some embodiments, the plurality of ribs 120 can comprise one or more types and/or sizes of ribs. For example, as shown in FIG. 1D, in some embodiments, the antiseptic cap 82 can comprise 12 axial ribs with two different sizes: 3 larger ribs 120a and 9 smaller ribs 120b, although any suitable combination and arrangement can be used. For example, in some embodiments, the large ribs 120a can comprise a dimension (e.g., a diameter) that is greater than the small ribs 120b, such as, for example, a 0.443 inch diameter for the large ribs 120a and a 0.424 inch diameter for the small ribs 120b.
As shown in
As shown in
Some examples of devices and cap assemblies that can be configured to use an antiseptic cap without threads (e.g., the antiseptic cap 82 as described above with reference to
Antiseptic Cap with Thread Cover
As shown in
In some embodiments, as shown in
As shown in
In some embodiments, as illustrated in
The thread cover 210 can be sized and configured to provide a universal fit to most commercially available valves, connectors and access devices, or the thread cover 210 can be customized to dock with a particular access device.
The thread cover 210 may be made of a deformable material capable of flexing upon application of force. In some embodiments, the thread cover 210 may comprise the same material as any other portion of the antiseptic cap 82. Alternatively, the thread cover 210 may comprise a material different than one or more portions of the cap. As shown in
Antiseptic Cap with Outer Shroud
As shown in the Figures, the cap 900 comprises a housing 910 including a first chamber 925. The first chamber 925 can be configured to be removably attached to a medical connector 800, as illustrated in
As shown, and in some embodiments, the housing 910 includes a skirt 920 and a protrusion 930. As illustrated, in some embodiments, the skirt 920 and the protrusion 930 can be positioned and/or oriented such that their respective central longitudinal axes are generally collinear, such as with the protrusion 930 positioned within the skirt 920. As shown, and in some embodiments, the protrusion 930 has an opening or recess 932 (see
As shown in
As described herein, in some embodiments, the protrusion 930 has an opening 932 comprising a lip or rim 934. As shown in
As shown, the fluid-delivery or absorbent material 940 can be positioned and/or oriented on and/or within the cap 900 such that the proximal end of the fluid-delivery material 940 extends further in the proximal direction than the proximal-most tip of the protrusion 930. An interior space within the fluid-delivery material 940 can comprise a tapered surface, as shown in
As shown in
As discussed herein with reference to
Any or all of the steps of cleaning and/or sanitizing can include wiping along a surface to be cleaned and/or sanitized during connection. In some embodiments, as shown in
In some embodiments, as illustrated in
In some embodiments, the skirt 920 may not include a tapered region 822. As illustrated in
With further reference to
Antiseptic Male Protrusion Cap
Shown in
In some embodiments, the opening of the base 710 and/or the interior region 787 of the base 710 can comply with one or more, or all, of the luer requirements of any version of ISO standard 594 or ISO 80369 or any other industry standard that is applicable to medical fluid connectors. For example, the proximal opening of the base 710 can be approximately the same diameter and include approximately the same taper as a male luer of a medical connector to which the cap 700 is configured to attach. In some embodiments, the cap 700 can comprise a fluid-delivery material, such as an absorbent material within and/or attached to the base 710, as described in further detail herein. For example, in some embodiments, an absorbent material can be placed within the interior region 787 of the base 710. In some embodiments, the base 710 can comprise one or more flanges, such as outer flange 725 shown in
In some embodiments, the base 710 is made of material that is rigid, resilient, and/or flexible. The base 710 material may be any suitable material, such as plastic (e.g., polypropylene), or any material that is suitable to cover a connection portion of a medical connector, or any material that is resistant to microorganism growth.
In some embodiments, the assembly 700 may have one or more ventilating structures, pores, slits and grooves, that make the assembly breathable such that one or more of liquid, fluid, or gas can pass from the inside of the cap to the outside of the cap.
The grooves 711 can have any suitable form and/or configuration. For example, as shown in
In some embodiments, the grooves 711 can comprise any suitable number, such as for example, 1 to 10 or more grooves. In some embodiments, the grooves 711 can comprise one or more types and/or sizes of grooves. For example, as shown in
Projections
As shown in the Figures, the antiseptic cap 800 comprises a first chamber 84. The first chamber 84 can be configured to be removably attached to a medical connector, as discussed herein. For example, in some embodiments, the first chamber 84 can comprise an interior surface 87 configured to interact with a portion of a medical connector, such as, for example, an end of a medical connector, one or more threads of a medical connector, and/or one or more features of a medical connector, among others.
In some embodiments, as shown in
The plurality of projections 810 are configured to interact with any of the medical connectors described and contemplated herein. For example, in some embodiments, the plurality of projections 810 can be configured to interact with a medical connector engaged with the antiseptic cap 800, as described herein. The interaction of these various structures can advantageously contact and clean a medical connector attached to the antiseptic cap 800. As shown in
In some embodiments, the projections 810 may contain a uniform diameter and/or width along an entire length of the projection 810. For example, one or more projections 810 comprise a cylindrical shape. Alternatively, at least one or more projections 810 of the antiseptic cap 82 may have a varying width, such that the one or more projections 810 tapers from an end tip of the projection 810 to a base 820 of the projection 810. For example, as illustrated, in some embodiments, the base 820 of a projection 810 can be wider than a portion of the projection 810 extending from the base 820. In some embodiments, a narrower portion of the projection 810 may have increased flexibility with respect to a wider portion of the projection 810 allowing the narrower portion to move more freely within the first chamber 84. The narrower portion of the projection 810 may engage with at least a portion of a medical connector to more tightly grip the connector when attached. For example, the narrower portion of the projection 810 may be sufficient malleable to permit the medical connector to bend, flex, and/or move the projections 810 along at least a portion of the medical connector, thereby enabling the plurality of projections 810 to shift and/or move within the first chamber 84. Alternatively, the projections 810 may be configured to not have more flexible portion and, as such, inhibit movement of the projection when connected to a medical connector.
In some embodiments, the plurality of projection 810 can comprise any suitable number, such as for example, 1 to 50 or more projections. In some embodiments, the plurality of projections 810 can comprise one or more types and/or sizes of projections. For example, in some embodiments, the antiseptic cap 800 can comprise more than 30 axial projections with varying diameters, although any suitable combination and arrangement can be used. For example, in some embodiments, larger projections 810 can comprise a dimension (e.g., a diameter and/or length) that is greater than smaller projections 810.
The one or more bases 820 of the plurality of projections 810 may be attached to one or more interior surfaces 87 of the first chamber 84, as discussed herein. In some embodiments, the base 820 may be formed with the interior surface 87 of the first chamber 84. For example, the base 820 may be integrally formed with the remainder of the antiseptic cap 800. Integrally forming the base 820 with a surface of the first chamber 84 may, in some instances, advantageously decrease the chances of one or more projections 810 becoming disengaged from the antiseptic cap 800. In some embodiments, at least one of the base 820 and/or a portion of the projection 810 may be formed separate from the antiseptic cap 800.
The first chamber 84 can receive and/or house any suitable antiseptic. For example, in some embodiments, the antiseptic cap 800 may utilize the plurality of projections 810 as an antiseptic fluid-delivery material. As shown in
Antiseptic fluid may be maintained between the plurality of projections 810 through capillary action. As such, in some embodiments, the number, size, and/or distance between one or more of the projections 810 may be configured to ensure that the capillary attractive forces interacting between the antiseptic fluid and the projections 810 is sufficient to retain the antiseptic fluid within the first chamber 84. For example, the antiseptic fluid may be recessed and maintained within the first chamber 84 even when the antiseptic cap 800 is inverted and placed in any angle. In some embodiments, retaining the antiseptic fluid within the first chamber 84 advantageously inhibits contact between the projections 810 and/or antiseptic fluid and microbes or other contaminants before use or between uses, when the antiseptic cap 800 is inverted during delivery and/or prior to use.
As illustrated, the exterior surface of the projections 810 can be flat and/or planar, and/or substantially flat and/or substantially planar. In some embodiments, the projections 810 may have any suitable surface texture, such as, for example, smooth and/or rough. In some embodiments, the projections 810 can be made of a compressible, deformable, and/or resilient material. However, any suitable material can be used.
As shown in
Second Chamber
As shown in
As shown in
A suitable additive 1090 can be configured to inhibit ingestion of the cap 82 or can be configured to inhibit the placing of the cap 82 in the mouth of a patient, such as in the mouth of an infant patient. In some embodiments, the additive 1090 may comprise a negative-taste agent that is unpleasant, repulsive, unattractive, and/or undesirable to human taste. For example, the negative-taste agent can taste bitter, hot, spicy, sour, sharp, vinegary, and/or putrid to an average human. The additive 1090 can be incorporated into and/or integrated within the cap 82 in any suitable way. For example, in some embodiments, a piece of paper or any other delivery vehicle (e.g., a sponge or a foam or a gel, etc.) comprising an additive 1090 can be attached to the cap 82, such as by placing it within the second chamber 85 (e.g., the paper can be coated with the additive 1090), a sticker comprising an additive 1090 can be attached to a portion of the cap 82 (e.g., a sticker coated with the additive 1090 can be placed within the second chamber 85), an additive 1090 can be blended into the material of the cap 82 (e.g., by way of impregnation, or any other process which results in the additive 1090 becoming a part of the material matrix of the cap), and/or an additive 1090 can be coated on a portion of the material of the cap 82 (e.g., by spraying the cap with the additive 1090 or by treating the cap with a liquid comprising an additive 1090), among others (e.g., the cap 82 can comprise an additive 1090 material that releasably retains the additive 1090). In some embodiments, the additive 1090 can comprise Bitrex® compound (available from Johnson Matthey Fine Chemicals company of Scotland), although any suitable negative-taste agent can be used. In some embodiments, the additive 1090 can be incorporated into and/or integrated with an antiseptic cap holder (e.g., cap holders 402) in any suitable way as described above with respect to the cap 82. The additive 1090 can advantageously inhibit ingestion of the cap 82 (e.g., if a child places the cap 82 in her or his mouth). While the additive 1090 shown in
The depth 85L1, shown in
As shown in
Absorbent Material Positioned at Least Partially Outside an Antiseptic Cap
Shown in
As shown, the absorbent material 1020 can be attached to the proximal end 702 of the base 710. In some embodiments, as shown in
In some embodiments, the base 710 is made of material that is rigid, or more rigid than the absorbent material 1020, or resilient, or flexible. The base material may be any suitable material, such as plastic (e.g., polypropylene), or any material that is suitable to cover a connection portion of a medical connector, or any material discussed herein that is resistant to microorganism growth. The fluid-delivery material or absorbent material 1020, as described herein, may be made of a material that can retain at least some liquid or gel against gravity in one or more different orientations. In some embodiments, the absorbent material 1020 is configured such that it does not lose any clinically significant amount of antiseptic during normal use during the time period of normal use in any orientation when the antiseptic is carried by the absorbent material 1020 and when the absorbent material 1020 is not in contact with another substance. In some embodiments, the fluid-delivery material, such as an absorbent material 1020, is a deformable or openable or otherwise movable material or mechanism such that when the cap 700 is coupled to a luer. The fluid-delivery material or absorbent material 1020 may compress or retract or otherwise move in response to the coupling of the cap 700 to a medical implement. The absorbent material 1020 may be sized and configured to snuggly contact or encompass or surround or envelop at least a portion of, or generally all of, the circumference of the connection region (e.g., a male protrusion or male luer). Upon coupling of the cap 700 to a medical implement, the absorbent material 1020 may be configured to wipe at least an outside surface of the connection region and apply an antiseptic or antimicrobial agent generally or substantially uniformly or evenly to the outside surface of the connection region.
As illustrated, the fluid-delivery material or absorbent material 1020 can stretch or expand (e.g., to increase the size of an opening in the fluid-delivery material) during coupling to receive a portion of the connector and/or to exert a force (e.g., a restoring force) against the portion of the connector to assist in providing tight, close, and/or constricting contact between the fluid-delivery material and the portion of the connector. In some embodiments, the absorbent material 1020, while compressing or retracting or otherwise moving in the coupling movement, releases antiseptic onto the connection region as it comes in contact with the connection region. In some embodiments, an absorbent material 1020 may be made of foam (e.g., such as a polyester or a polyurethane), gauze, sponge, or any other suitable material. The absorbent material 1020 can have any suitable form and/or configuration described herein. It will be understood that any feature, structure, material, step, or component of any embodiment described and/or illustrated herein (such as the antiseptic material 86 of antiseptic cap 82 of
In some embodiments, the base 710 is harder or more rigid or less compressible than the absorbent material 1020. The absorbent material 1020 may have a larger cross-sectional width than at least a portion of the base 710. For example, the absorbent material 1020 may comprise a cross-sectional width larger than an outer flange 725 of the base 710 when the absorbent material 1020 is attached to the base 710. The base 710 may be composed of a material that is less permeable to fluid or liquid migration or transfer than the absorbent material 1020. As shown, in some embodiments, at least a portion of the absorbent material 1020 can extend further in the proximal direction than any portion of the base 710 before, after, and/or during use.
Any suitable method may be used to attach any absorbent material 1020 of a cap 700 to a base 710 material of a cap 700, such as by attaching the absorbent material 1020 to a proximal 702 or upper outside surface of the cap 700. For example, in some embodiments, heat staking may be used to melt and seal at least a portion of the sheets 601 and 602 to each other and/or around a portion (e.g., an edge) of the perimeter of the upper or proximal portion 702 of the base 710 of the cap, such as in the embodiment shown in
In some embodiments, as shown in
Delivery Systems
The present application includes a number of embodiments of delivery systems (e.g. syringes, strips, holders, sleeves, etc.) for an antiseptic cap. Though one or more Figures may show a delivery system with a particular embodiment of a cap, it shall be understood that any other caps or other medical devices disclosed herein can be used in and/or with any of the delivery systems in addition to or instead of the illustrated cap. For example, any one of the embodiments of the caps shown in
Antiseptic Cap Holder Assembly
The cap holder 402, in some embodiments, prevents contamination of an antiseptic cap 82 within the cap holder 402. For example, a user may handle the antiseptic cap holder assembly 404 via one or more portions of the cap holder 402, such as the flange 418 extending out from the cap holder 402. The cap holder 402 may act as a guard against contact of the antiseptic cap 82 by a user.
The cap holder 402 can comprise any suitable material (e.g., rigid or semi-rigid material). In some embodiments, the cap holder 402 can comprise any suitable polymer. In some embodiments, the polymer may include a thermoplastic polymer, such as an aliphatic polymer or thermoplastic elastomer. For example, the cap holder 402 may comprise at least one of polypropylene and polyethylene (such as low, medium, or high density polyethylene). A semi-rigid material of the cap holder 402 can have any suitable durometer. For example, in some embodiments, the cap holder 402 can have a Shore A durometer in the range of approximately 60 to approximately 1050, although any suitable durometer can be used, such as, for example, about 50, about 55, about 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, among others (e.g., any durometer between about 50 and about 100). However, it will be understood that the cap holder 402 can have any durometer sufficient to house an antiseptic cap 82.
As shown in
Additionally or alternatively, the lid 450 may be sealed to at least a portion of the antiseptic cap 82. Attachment directly to the antiseptic cap 82 permits the lid 450 to seal the first chamber 84 and prevent the removal of any antiseptic material 86 and/or antiseptic fluid within the antiseptic cap 82. In some embodiments, the lid 450 may form a double seal when the lid 450 is sealed against both the antiseptic cap holder 402 and the antiseptic cap 82 within the antiseptic cap holder 402. For example, a double seal may provide an extra barrier to prevent contamination of an antiseptic cap 82 and/or prevent an antiseptic material from escaping from the antiseptic cap 82. Providing a double seal may advantageously improve shelf life.
In some embodiments, the lid 450 may be thermally bonded to one or more of the antiseptic cap holder 402 and the antiseptic cap 82. Thermal bonding may occur using standard heat sealing technology, such as impulse, induction, conduction, radiant, or other heat sealing techniques. In some embodiments, the lid 450 could be attached to the antiseptic cap holder 402 and/or the antiseptic cap 82 by utilizing an adhesive bond or by a suitable mechanical or friction connection, such as a snap-fit.
The lid 450 could be made of any suitable material, such as foil, plastic, a laminate, etc. In one aspect, the lid 450 could be made of a foil material having a thickness of approximately 1 to 2 mil.
The antiseptic cap holder 402 and/or the antiseptic cap 82, in some instances, can comprise a structure, element or the like that prevents the relative rotation of the antiseptic cap holder 402 and the antiseptic cap 82. In some embodiments, the structure or element may facilitate attaching the antiseptic cap to a medical connector by engaging the antiseptic cap 82 and locking the antiseptic cap 82 in place to prevent rotation of the antiseptic cap 82 when positioned inside the antiseptic cap holder 402. For example, in some embodiments, the inner wall surface 412 of the antiseptic cap holder 402 may comprise internal ribs and/or internal slots. The internal ribs and/or internal slots may be configured to interact with the plurality of ribs 120 and/plurality of slots 122 of the antiseptic cap 82, is described herein with respect to
By way of another example, in some embodiments, the antiseptic cap holder 402 may have a feature or structure that forms an interference fit with the external surface of the antiseptic cap 82. In some embodiments, an inner surface 412 of the antiseptic cap holder 402 may have a feature or structure to form an interference fit with a portion of the antiseptic cap 82. Additionally or alternatively, the antiseptic cap 82 may have one or more features to form an interference fit with the antiseptic cap holder 402.
In some instances, as described in further detail below, the antiseptic cap holder 402 may contain a plurality of ribs and/or slots on the outer wall surface configured to prevent rotation of the antiseptic cap holder 402 relative to a syringe assembly, such as syringe assembly 1210 as shown and discussed in relation to
It is contemplated that the antiseptic cap holder assembly 404 need not be coupled or combined with a syringe assembly. As shown in
The antiseptic caps and/or antiseptic cap holder assemblies disclosed herein may be distributed and/or packaged in various suitable methods. Suitable methods include, but are not limited to, individual packages, a pouch package containing a plurality of antiseptic cap holder assemblies (such as a dispensing bag discussed herein with reference to
Dispensing Bag
In any embodiments, as shown, a delivery system can comprise a generally elongate portion comprising a tube or sheath region with an interior cavity having an interior width or diameter that corresponds to the outer width or diameter of each of a plurality of medical articles to be contained within and dispensed from the delivery system. For example, the interior width or diameter of the elongate portion of the delivery system can be about the same as or slightly larger than the outer width or diameter of each of the plurality of medical articles to permit the plurality of medical articles to be contained loosely within the elongate portion, thereby enabling the plurality of medical articles to shift and/or move within the tube or sheath without being affixed or engaged with each other or with the tube or sheath. For example, in some embodiments, the interior of the elongate portion is shaped and composed such that the plurality of medical articles can automatically form a single vertical column of medical articles in the elongate portion as individual units of the medical articles are inserted or loaded into a proximal opening of the delivery system. The loose containment can permit a column of medical articles positioned within the tube or sheath to move toward a dispensing region of the delivery system (e.g., a constriction or a reduced-width region) as medical articles are removed through a distal dispensing region in multiples or singly (one at a time).
The interior width or diameter of the elongate portion of the delivery system can be sufficiently small so that it does not permit more than one full medical article to occupy the same level (e.g., a vertical level) within the elongate portion of the delivery system at the same time, thereby resisting clogging or other obstruction of the elongate portion by interference among the contained medical articles. The interior wall or walls of the elongate portion can have a coefficient of friction that is sufficiently low (or slippery) to permit reliable and consistent migration of the loose medical articles through the delivery system during use (such as when being pushed or pulled by a user through the delivery system), and/or that is sufficiently high (or slide resistant) to create an inertial position for each medical article during containment within the elongate portion to resist free-sliding and bunching up of the medical articles contained in the delivery system. The wall or walls of the elongate portion can be flexible and/or collapsible such that an irregular, non-smooth surface topography is produced along the interior wall or walls (e.g., comprising wrinkles or creases) in normal use when the elongate portion contains medical articles, in order to produce a low-level of resistance to rapid sliding of the medical articles through the tube or sheath when not being pushed or pulled out of the delivery system by a user.
The dispensing bag 2000, as shown in
Each of the cap holder assemblies 2004 may include any antiseptic cap holder and an antiseptic cap described herein. While the figures illustrate the dispensing bag 2000 housing five antiseptic cap holder assemblies 2004, it will be understood that any number of disinfectant filled devices can be packaged within a dispensing bag 2000. It will also be understood that any of the embodiments of the dispensing bag 2000 described and/or contemplated herein can be modified to be used with any antiseptic cap described and/or contemplated herein or within the '546 Application, the '359 Application, the '952 Application, the '847 Application, the '897 Application, and the '157 Application.
In some embodiments, as shown in
The chamber 2016 can comprise any suitable shape and/or configuration capable of receiving at least a portion an antiseptic cap hold assembly 2004. For example, as shown in
A width of the chamber 2016, as shown in
A length of the chamber 2016 may be sufficiently long to house a plurality of antiseptic cap holder assemblies 2016 and prevent accidental or incidental removal of the antiseptic cap holder assemblies 2016 from the chamber 2016.
In some embodiments, the interior surface of the dispensing bag 2000 may be attached to one or more of the antiseptic cap holder assemblies 2004 contained within the chamber 2016. The attachment may utilize an adhesive bond or by a suitable mechanical or friction connection, such as a snap-fit.
In some embodiments, as illustrated in
As shown in
The opening 2020 can comprise any suitable shape and/or configuration capable of permitting access to, while resisting accidental removal of, an antiseptic cap holder assembly 2004 from within the chamber 2016. For example,
As shown in
As shown in
In embodiments in which a portion of the antiseptic cap holder assembly 2004 protrudes beyond the opening 2020, a user may remove the antiseptic cap holder assembly 2004 from the dispensing bag 2000. In some embodiments, the opening 2020 may have a diameter the same size as or greater than the antiseptic cap holder assembly 2004. It will be appreciated that location of the opening 2020, as well as the relative size, indicated in
To remove the antiseptic cap holder assembly 2004 from the dispensing bag 2000, a user may grasp a portion of the antiseptic cap holder assembly 2004 that is positioned within the bag 200, or that is protruding beyond the opening 2020, and apply a removal force, such as a downward force (if the dispensing bag 2000 is positioned in a vertically hanging orientation). In some embodiments, a user may push the antiseptic cap holder assembly 2004 out through the opening 2020 by grasping at least a portion of the dispensing bag 2000 and applying a pinching force or other force to the antiseptic cap holder assembly 2004 through the dispensing bag 200 to advance the antiseptic cap holder assembly 2004 through the opening 2020. In some embodiments, the dispensing bag 2000 may advantageously eliminate the need for direct contact with the antiseptic cap holder assembly 2004 during removal from the dispensing bag 2000. In some embodiments, the dispensing bag 2000 facilitates removal of the antiseptic cap holder assembly 2004 through an efficient process that only requires the use of a single hand.
The antiseptic cap holder assembly 2004 may be withdrawn from the dispensing bag 2000 such that the removal (e.g., downward) force required to withdraw the antiseptic cap holder assembly 2004 from the chamber 2016 is greater than the force of gravity on the leading (distalmost) antiseptic cap holder assembly 2004 located within or partially within the dispensing bag, such that the antiseptic cap holder assembly 2004 does not drop through the hole 2024 merely under the force of gravity.
To prevent accidental removal of the antiseptic cap holder assembly 2004 from the dispensing bag 2000, in some embodiments, the dispensing bag 2000 can comprise a semi-rigid or resilient or elastomeric material capable of deformation when a force is applied. As the antiseptic cap holder assembly 2004 is being removed from the chamber 2016, the opening 2020 can be configured to deform radially outward or in an opening direction that is generally perpendicular to the longitudinal axis of the dispensing bag 200 in one or more locations where the antiseptic cap holder assembly 2004 contacts or otherwise interacts with the opening 2020. In some embodiments, the opening 2020 can be configured to rebound radially inward in a closing direction, generally opposite from the opening direction, after the antiseptic cap holder assembly 2004 is removed from the dispensing bag 2000 through the opening 2020. This may advantageously allow the opening 2020 of the dispensing bag 2000 to temporarily and/or permanently deform when the opening 2020 interacts with one or more features of the antiseptic cap holder assembly 2004. In some embodiments, the ability of the opening 2020 to deform can permit the antiseptic cap holder assembly 2004 to be removably contained within the chamber 2016. In some embodiments, the distal opening 2020 is smaller than a proximal opening in the dispensing bag, which can permit the rapid loading of multiple antiseptic cap holder assemblies 2004 through the proximal opening in quick succession during manufacturing, while resisting the unintentionally unloading of the contained antiseptic cap holder assemblies 2004 out of the distal opening 2020.
The dispensing bag 2000, in some embodiments, may comprise one or more features configured to allow the user to create an opening 2020 and gain access to one or more antiseptic cap holder assemblies 2004 within the chamber 2016.
In some embodiments, the dispensing bag 2000 may be manufactured utilizing one or more steps described herein. A plurality of sheets of material, such as two sheets, may be placed in alignment to provide the faces of the dispensing bag 2000. For example, a first sheet may be placed on top of a second sheet with both sheets being generally the same size and shape. In some embodiments, the sheets may be rectangular; however, the sheets may comprise any shape suitable to form the dispensing bag 2000. One or more edges or other regions of the sheets may be bonded or sealed to provide the chamber 2016 of the dispensing bag 2000. Any suitable method may be used to bond or seal the one or more edges or other regions. For example, in some embodiments, heat staking and/or thermal bonding may be used to melt and seal at least a portion of the sheets to each other and/or around a portion (e.g., an edge) of a perimeter of the chamber 2016. Thermal bonding may be performed using standard heat sealing technology, such as impulse, induction, conduction, radiant, or other heat sealing techniques. Additionally or alternatively, the edges may be sealed by utilizing sonic welding, an adhesive bond, or by any suitable mechanical or friction connection, such as a snap-fit. In some embodiments, an attachment agent, such as glue or solvent or adhesive, or any other suitable agent may be used. With reference to
The proximal portion 2008 of the dispensing bag 2000 can include one or more hanging holes 2024, in some embodiments. For example, the hole 2024 may include a die cut hole or holes. The hole 2024 can be sized and configured to allow the dispensing bag 2000 to be hung on a convenient hanger. For example, a user may utilize the one or more holes 2024 to hang the dispensing bag 2000 on an IV pole. The hole 2024 can comprise any suitable shape and/or configuration capable of allowing the dispensing bag 2000 to be hung on a hanger. The location of the hole 2024, as well as the relative size, indicated in
The dispensing bag 2000 may be made of non-permeable or very low permeable material. In some embodiments, the material may be generally chemically inert and/or non-conductive. The dispensing bag 2000 can provide an extra barrier to keep the caps and the antiseptic cap holder assembly 2004 from being contaminated, which provides improved shelf life. The dispensing bag 2000 may provide protection against contamination of the antiseptic cap holder assemblies 2004 when being handled. The dispensing bag 2000 can be configured to function as a physical barrier that isolates at least a portion of the antiseptic cap holder assembly 2004 from the outside environment. For example, in some embodiments, the dispensing bag 2000 can be configured to inhibit contaminants from entering the chamber 2016.
In some embodiments, all or a portion of the dispensing bag 2000 may be made of a transparent material, thereby allowing a user to readily identify the bag as a holder of a particular type of medical devices (such as antiseptic caps), and/or to read information printed on the packaging of one or more types of medical devices within the bag, and/or to determine the quantity of antiseptic cap holder assemblies 2004 remaining within the dispensing bag 2000 (such as to determine when it will be necessary to replace the bag), from the outside of the bag and/or from any viewing angle. In some embodiments, the dispensing bag 2000 avoids some complications associated with hanging the dispensing bag 2000 backwards, as the dispensing bag may be viewed and/or accessed from the front and back side, as shown in
As shown in
Strip Package
Each of the antiseptic cap holder assemblies 404 included in the strip package 600 may include any antiseptic cap holder and/or an antiseptic cap described herein. While
As shown in the figures, the strip package 600 may include a one or more antiseptic caps 82 and/or antiseptic cap holder assemblies 404 attached to a cover, or strip 604. For example, as shown in
The strip 604 has a width that is narrower than its length. A cap-storage device that is not a strip can comprise any other suitable shape and/or configuration capable of receiving at least a portion of an antiseptic cap 82 and/or an antiseptic cap holder assembly 404. A cap-storage device can comprise any suitable structure (e.g., straight and/or curved) and have any suitable shape (e.g., cylindrical, tapered).
A width of the strip 604, as shown in
While
As shown in
Additionally or alternatively, the strip 604 may be sealed to at least a portion of the antiseptic cap 82, as identified by reference 608 in
As shown in
In some embodiments, the strip 604 may be thermally bonded to one or more of the antiseptic cap holder 402 and the antiseptic cap 82. Thermal bonding may occur using standard heat sealing technology, such as impulse, induction, conduction, radiant, or other heat sealing techniques. In some embodiments, the strip 604 could be attached to the cap holder 402 and/or the antiseptic cap 82 by utilizing an adhesive bond or by a suitable mechanical or friction connection, such as a snap-fit.
To remove an antiseptic cap holder assembly 404 from the strip package 600, a user may grasp a portion of the antiseptic cap holder assembly 404 that is extending from the strip 604 and apply a removal force, such as a downward force (if the strip package 600 is positioned in a vertically hanging orientation). In some embodiments, as discussed herein, a user may utilize a notch and/or perforation to remove at least a portion of the strip 604 when removing an antiseptic cap holder assembly 404. This advantageously maintains at least one seal on the antiseptic cap holder assembly 404 upon removal from the strip package 600. In some embodiments, the strip package 600 facilitates removal of the antiseptic cap holder assembly 404 through an efficient process that only requires the use of a single hand.
In some embodiments, the dispensing bag 2000 may advantageously eliminate the need for direct contact with the antiseptic cap 82 during removal from the strip package 600. The antiseptic cap holder 402 may prevent contamination of an antiseptic cap 82 within the antiseptic cap holder 402. For example, a user may handle the antiseptic cap holder assembly 404 via one or more portions of the antiseptic cap holder 402, such as the flange 418 extending out from the antiseptic cap holder 402. The antiseptic cap holder 402 may act as a guard against contact of the antiseptic cap 82 by a user.
The antiseptic cap holder assembly 404 may be withdrawn from the strip package 600 such that the removal (e.g., downward) force required to remove the antiseptic cap holder assembly 404 from the strip 604 is lesser than the strength of the hole 610, such that the hole 610 does not tear and when the strip package 600 is in a vertically hanging position. For example, the peel force could generally be less than two pounds of force to start peeling, and less than one pound of force to continue peeling.
In some embodiments, the strip 604 could be made of any suitable material. For example, the strip 604 may comprise a foil, a plastic, a laminate, etc. In some instances, the strip 604 can be made of a foil material having a thickness of approximately 1 to 2 mil. The strip 604 can have a thick foil with a top coat of PET (polyethylene terephthalate), such as 48-gauge PET, then a polymer coat such as PDX which could be white, and a bottom coat of a peelable sealing layer, such as Allegro B, manufactured by Rollprint Packaging Products, Inc. The sealing layer can form an adhesive bond that can be peelable. The antiseptic caps 82 and/or antiseptic cap holder assemblies 404 may be attached to the strip 604 by induction heating of the foil, which melts the peelable sealing layer to adhere it to the antiseptic caps 82 and/or antiseptic cap holder assemblies 404.
In some embodiments, all or a portion of the strip package 600 may be made of a transparent material, thereby allowing a user to readily identify the strip package 600 as a holder of a particular type of medical devices (such as antiseptic caps and/or antiseptic cap holder assemblies), and/or to read information printed on the packaging of one or more types of medical devices within the bag, and/or to determine the quantity of antiseptic cap holder assemblies 404 remaining on the strip package 600 (such as to determine when it will be necessary to replace the strip package 600), from any viewing angle. In some embodiments, the strip package 600 avoids some complications associated with hanging the strip package 600 backwards, as the strip package 600 may be viewed and/or accessed from the front and back side.
Various features of the strip package 600 can comprise the various illustrated dimensions and proportions, which form part of this disclosure. It will be appreciated that these dimensions are exemplary and non-limiting. Indeed, it will be understood that the dimensions can be modified for any suitable embodiment, and that their relative proportions can differ in various embodiments.
Syringe Assembly
The plunger 1240 may include an elongate shaft, a proximal end 1242, and a distal end (not shown in
As shown in
In some embodiments, as illustrated in
The cap holder assembly 1220 can be removed from the plunger 1240. In some embodiments, removal of the cap holder assembly 1220 from the plunger 1240 involves placing one's thumb or finger through the one or more apertures 1270 against a lower surface of the cap holder assembly 1220. A user may push against the cap holder assembly 1220 with a finger or thumb to urge the cap holder assembly 1220 out of the chamber 1260. Ultimately, the cap holder assembly 1220 is ejected from the chamber 1260. In this way, the antiseptic cap 1282 could be conveniently used at a different time than the syringe 1210.
In some embodiments, the chamber 1260 of the plunger 1240 may include an interior surface comprising a plurality of circumferentially spaced ribs. The plurality of ribs may be configured to contact an antiseptic cap holder assembly 1220 and secure the antiseptic cap holder assembly 1220 within the chamber 1260. The ribs, in some instances, could each contain a slot shaped to receive a corresponding rib located on an outer surface of the antiseptic cap holder assembly 1220 to secure the cap holder assembly 1220 within the chamber 1260. The ribs of the chamber 1260 could also be tapered to facilitate the controlled removal of the antiseptic cap holder assembly 1220, and prevent the antiseptic cap holder assembly 1220 from ejecting too rapidly. The ribs can provide a decreasing amount of resistance against the cap holder 1222 as the antiseptic cap holder assembly 1220 is urged out of the chamber 1260. It will also be understood that any of the embodiments described and/or contemplated herein can be modified to be used with chamber 1260 shown in
As partially shown in
In some embodiments, the plunger 1240 may not include a chamber and an antiseptic cap holder and/or antiseptic cap holder assembly may be retrofitted to be attached to a distal end of the plunger 1240. The plunger 1204, in some instances, may comprise a button at the distal end and the cap and/or the antiseptic cap holder assembly may be configured to engage the button. For example, the cap and/or antiseptic cap holder assembly may include a proximal end that is removably or fixedly attached to a button of the plunger. The proximal end may include an opening dimensioned to fit about the button and can comprise a member for attaching to the button. In some embodiments, the attaching member includes a plurality of circumferentially spaced, and axially inwardly directed tabs extending from an inner wall surface. In some embodiments, the tabs engage a lower surface of the button to attach the cap holder and/or antiseptic cap holder assembly to the plunger.
The syringe assembly 1210 can be fabricated from any material suitable for its purpose and includes glass and polymeric material. Suitable polymeric materials include, but are not limited to, homopolymers, copolymers and terpolymers formed from monomers such as olefins, cyclic olefins, amides, esters, and ethers. The polymeric material may be a blend of more than one polymeric material and can be a monolayer structure or a multilayer structure. In some embodiments, the syringe barrel and the plunger are injection molded from a polypropylene material.
Antiseptic Material
Unless otherwise noted, the antiseptic material described below refers to components that are the same as or generally similar to the components discussed herein in the present application. It will be understood that the features described below can be used with any of the embodiments described and/or contemplated herein. For example, any one of the antiseptic caps disclosed herein can be modified to include an absorbent material, as described below.
An antiseptic material may include medical grade materials capable of storing and releasing an antiseptic liquid, or liquid having other medical purposes, and includes materials such as sponges, rupturable capsules and other materials or devices capable of serving this purpose. Suitable sponges can include any sponge suitable for use for medical purposes and can be naturally occurring or synthetic. The antiseptic material can be cut into suitable shapes or can be molded into the desired shape. It is desirable that the antiseptic material be attached to an antiseptic cap to prevent the antiseptic material from inadvertently falling out and/or off of the antiseptic cap. For example, the antiseptic material may be attached to an antiseptic cap by any suitable method such as ultrasonic or vibrational welding or other suitable technique.
As discussed herein, the absorbent material can comprise any material suitable for storing and/or releasing antiseptic liquid. In some embodiments, the antiseptic material can comprise any suitable polymer. In some embodiments, the polymer may include a polymer foam. For example, the antiseptic material may include a polyurethane, polyester, polycarbonate, and/or polyamid. The antiseptic material may comprise an open-cell foam. In some embodiments, the foam may comprise a density of about 0.8 to about 2.8 pounds per cubic foot.
In some embodiments, one or more portions of the any one of the antiseptic caps described herein may be coated and/or impregnated with an antiseptic fluid, an anticoagulant fluid, and/or an antimicrobial fluid. The one or more portions of the antiseptic cap that may be coated and/or impregnated include an inner surface of a cap wall, threads, an outer surface of the cap wall, an inner surface of the cap wall, and/or any additional features of the caps disclosed herein.
The antiseptic can comprise any substance suitable for its purpose. Suitable substances include, but are not limited to, isopropyl alcohol (IPA), Chlorhexidine, silver, citrate salt solution, etc. In some embodiments, the antiseptic agent can contain antibacterial agents such as those classified as aminoglycosides, beta lactams, quinolones or fluoroquinolones, macrolides, sulfonamides, sulfamethaxozoles, tetracyclines, treptogramins, oxazolidinones (such as linezolid), clindamycins, lincomycins, rifamycins, glycopeptides, polymxins, lipo-peptide antibiotics, as well as pharmacologically acceptable sodium salts, pharmacologically acceptable calcium salts, pharmacologically acceptable potassium salts, lipid formulations, derivatives and/or analogs of the above. In another embodiment, the antiseptic agent can contain antifungal agents. In another embodiment, the antiseptic agent can contain antiviral agents. The antiseptic may be a blend of more than one antiseptic material.
In some embodiments, a quantity of physiological, antimicrobial metal compound is added to the resin for direct molding of an article. Physiological, antimicrobial metals are meant to include the precious metals, such as silver, gold and platinum, and copper and zinc. Physiological, antimicrobial metal compounds used herein may include oxides and salts of silver and also gold, for example: silver acetate, silver benzoate, silver carbonate, silver citrate, silver chloride, silver iodide, silver nitrate, silver oxide, silver sulfa diazine, silver sulfate, gold chloride and gold oxide. Platinum compounds such as chloroplatinic acid or its salts (e.g., sodium and calcium chloroplatinate) may also be used. Also, compounds of copper and zinc may be used, for example: oxides and salts of copper and zinc such as those indicated above for silver. Single physiological, antimicrobial metal compounds or combinations of physiological, antimicrobial metal compounds may be used.
In some embodiments, physiological, antimicrobial metal compounds used may include silver acetate, silver oxide, silver sulfate, gold chloride and a combination of silver oxide and gold chloride. The particles of the silver compounds are sufficiently able to be extracted to form a zone of inhibition to prevent and kill bacteria growth.
In some embodiments, the devices herein are impregnated with triclosan and silver compounds or triclosan and chlorhexidine.
Further details regarding the embodiments disclosed herein, including an antiseptic cap, can be used are found in the '546 Application, the '359 Application, the '952 Application, the '847 Application, the '897 Application, and the '157 Application. It will be understood that any of the functions, materials, methods, systems, and devices described and/or contemplated within the '546 Application, the '359 Application, the '952 Application, the '847 Application, the '897 Application, and the '157 Application can be modified to be used with the various functions, materials, methods, systems, and devices systems described herein. For example, the antiseptic cap may further comprise any embodiment described and/or contemplated within '546 Application, the '359 Application, the '952 Application, the '847 Application, the '897 Application, and the '157 Application. Additionally, any of the functions, materials, methods, systems, and devices described and/or contemplated herein can be modified to be used with the various functions, materials, methods, systems, and devices systems described and/or contemplated within the '546 Application, the '359 Application, the '952 Application, the '847 Application, the '897 Application, and the '157 Application.
Other Variations
Although this invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while several variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow. Moreover, language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result.
The entire contents of U.S. Provisional Patent Application No. 62/408,546, filed on Oct. 14, 2016, U.S. Provisional Patent Application No. 62/420,359, filed on Nov. 10, 2016, U.S. Provisional Patent Application No. 62/490,952, filed on Apr. 27, 2017, U.S. Provisional Patent Application No. 62/526,847, filed on Jun. 29, 2017, U.S. Provisional Patent Application No. 62/527,897, filed on Jun. 30, 2017, and U.S. Provisional Patent Application No. 62/571,157, filed on Oct. 11, 2017, are hereby incorporated by reference herein in their entireties, forming part of the present disclosure. Any feature, structure, material, method, or step that is described and/or illustrated in any embodiment in any of the foregoing provisional patent applications can be used with or instead of any feature, structure, material, method, or step that is described and/or illustrated in the following paragraphs of this specification or the accompanying drawings.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/056407 | 10/12/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/071717 | 4/19/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
382297 | Fry | May 1888 | A |
877946 | Overton | Feb 1908 | A |
1793068 | Dickinson | Feb 1931 | A |
2098340 | Henahan | Nov 1937 | A |
2436297 | Guarnaschelli | Feb 1948 | A |
2457052 | Le Clair | Dec 1948 | A |
2771644 | Martin | Nov 1956 | A |
2842382 | Franck | Jul 1958 | A |
2968497 | Treleman | Jan 1961 | A |
3127892 | Bellamy, Jr. et al. | Apr 1964 | A |
3270743 | Gingras | Sep 1966 | A |
3301392 | Eddingfield | Jan 1967 | A |
3304047 | Martin | Feb 1967 | A |
3334860 | Bolton, Jr. | Aug 1967 | A |
3411665 | Blum | Nov 1968 | A |
3484121 | Quinton | Dec 1969 | A |
3538950 | Porteners | Nov 1970 | A |
3604582 | Boudin | Sep 1971 | A |
3707972 | Villari et al. | Jan 1973 | A |
3729031 | Baldwin | Apr 1973 | A |
3882858 | Klemm | May 1975 | A |
3977401 | Pike | Aug 1976 | A |
3987930 | Fuson | Oct 1976 | A |
4041934 | Genese | Aug 1977 | A |
4053052 | Jasper | Oct 1977 | A |
4066067 | Micheli | Jan 1978 | A |
4076285 | Martinez | Feb 1978 | A |
4079738 | Dunn et al. | Mar 1978 | A |
4095810 | Kulle | Jun 1978 | A |
4121585 | Becker, Jr. | Oct 1978 | A |
4133441 | Mittleman et al. | Jan 1979 | A |
4143853 | Abramson | Mar 1979 | A |
4150845 | Kopacz et al. | Apr 1979 | A |
4192443 | McLaren | Mar 1980 | A |
4194509 | Pickering et al. | Mar 1980 | A |
4195632 | Parker et al. | Apr 1980 | A |
4233982 | Bauer et al. | Nov 1980 | A |
4243035 | Barrett | Jan 1981 | A |
4245835 | Kontos | Jan 1981 | A |
4264664 | Kunz | Apr 1981 | A |
4280632 | Yuhara | Jul 1981 | A |
4294370 | Toeppen | Oct 1981 | A |
4317446 | Ambrosio et al. | Mar 1982 | A |
4324239 | Gordon et al. | Apr 1982 | A |
4334551 | Pfister | Jun 1982 | A |
4335756 | Sharp et al. | Jun 1982 | A |
4340049 | Munsch | Jul 1982 | A |
4340052 | Dennehey et al. | Jul 1982 | A |
4354490 | Rogers | Oct 1982 | A |
4379458 | Bauer et al. | Apr 1983 | A |
4384589 | Morris | May 1983 | A |
4387879 | Tauschinski | Jun 1983 | A |
4397442 | Larkin | Aug 1983 | A |
4402691 | Rosenthal et al. | Sep 1983 | A |
4405312 | Gross et al. | Sep 1983 | A |
4417890 | Dennehey et al. | Nov 1983 | A |
4427126 | Ostrowsky | Jan 1984 | A |
4430073 | Bemis et al. | Feb 1984 | A |
4432764 | Lopez | Feb 1984 | A |
4432766 | Bellotti et al. | Feb 1984 | A |
4436125 | Blenkush | Mar 1984 | A |
4439179 | Lueders et al. | Mar 1984 | A |
4439184 | Wheeler | Mar 1984 | A |
4440207 | Genatempo et al. | Apr 1984 | A |
4444310 | Odell | Apr 1984 | A |
4457749 | Bellotti et al. | Jul 1984 | A |
4461368 | Plourde | Jul 1984 | A |
4480940 | Woodruff | Nov 1984 | A |
4507111 | Gordon et al. | Mar 1985 | A |
4511359 | Vaillancourt | Apr 1985 | A |
4538836 | Kruetten | Sep 1985 | A |
4610469 | Wolff-Mooij | Sep 1986 | A |
4619640 | Potolsky et al. | Oct 1986 | A |
4623332 | Lindmayer et al. | Nov 1986 | A |
4624664 | Peluso et al. | Nov 1986 | A |
4629159 | Wellenstam | Dec 1986 | A |
4660803 | Johnston et al. | Apr 1987 | A |
4662878 | Lindmayer | May 1987 | A |
4666057 | Come et al. | May 1987 | A |
4666427 | Larsson et al. | May 1987 | A |
4671306 | Spector | Jun 1987 | A |
4700744 | Rutter et al. | Oct 1987 | A |
4703762 | Rathbone et al. | Nov 1987 | A |
4723603 | Plummer | Feb 1988 | A |
4728075 | Paradis | Mar 1988 | A |
4728321 | Chen | Mar 1988 | A |
4745950 | Mathieu | May 1988 | A |
4747502 | Luenser | May 1988 | A |
4752983 | Crieshaber | Jun 1988 | A |
4774964 | Bonaldo | Oct 1988 | A |
4774965 | Rodriguez et al. | Oct 1988 | A |
4778447 | Velde et al. | Oct 1988 | A |
4781702 | Herrli | Nov 1988 | A |
4799926 | Haber | Jan 1989 | A |
4804015 | Albinsson | Feb 1989 | A |
4810241 | Rogers | Mar 1989 | A |
4811847 | Reif et al. | Mar 1989 | A |
4813933 | Turner | Mar 1989 | A |
4816024 | Sitar et al. | Mar 1989 | A |
4834271 | Litwin | May 1989 | A |
4862913 | Wildfang | Sep 1989 | A |
4883483 | Lindmayer | Nov 1989 | A |
4915687 | Sivert | Apr 1990 | A |
4917669 | Bonaldo | Apr 1990 | A |
4927019 | Haber et al. | May 1990 | A |
4935010 | Cox et al. | Jun 1990 | A |
4950260 | Bonaldo | Aug 1990 | A |
4957637 | Cornell | Sep 1990 | A |
D313277 | Haining | Dec 1990 | S |
D314050 | Sone | Jan 1991 | S |
4983161 | Dadson et al. | Jan 1991 | A |
4989733 | Patry | Feb 1991 | A |
4991629 | Ernesto et al. | Feb 1991 | A |
5006114 | Rogers et al. | Apr 1991 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5031622 | LaHaye | Jul 1991 | A |
5047021 | Utterberg | Sep 1991 | A |
5065783 | Ogle, II | Nov 1991 | A |
5070885 | Bonaldo | Dec 1991 | A |
5071411 | Hillstead | Dec 1991 | A |
5098385 | Walsh | Mar 1992 | A |
5108370 | Bonaldo | Apr 1992 | A |
5122123 | Vaillancourt | Jun 1992 | A |
5127626 | Hilal et al. | Jul 1992 | A |
5139483 | Ryan | Aug 1992 | A |
5143104 | Iba et al. | Sep 1992 | A |
5147333 | Raines | Sep 1992 | A |
5154703 | Bonaldo | Oct 1992 | A |
5184742 | DeCaprio et al. | Feb 1993 | A |
5190534 | Kendall | Mar 1993 | A |
5195957 | Tollini | Mar 1993 | A |
RE34223 | Bonaldo | Apr 1993 | E |
5199948 | McPhee | Apr 1993 | A |
5201725 | Kling | Apr 1993 | A |
5203775 | Frank et al. | Apr 1993 | A |
5205821 | Kruger et al. | Apr 1993 | A |
5211634 | Vaillancourt | May 1993 | A |
5215537 | Lynn et al. | Jun 1993 | A |
5242421 | Chan | Sep 1993 | A |
5242425 | White et al. | Sep 1993 | A |
5246011 | Caillouette | Sep 1993 | A |
5251873 | Atkinson et al. | Oct 1993 | A |
D342134 | Mongeon | Dec 1993 | S |
5269771 | Thomas et al. | Dec 1993 | A |
5281206 | Lopez | Jan 1994 | A |
5284475 | Mackal | Feb 1994 | A |
5295657 | Atkinson | Mar 1994 | A |
5301686 | Newman | Apr 1994 | A |
5306243 | Bonaldo | Apr 1994 | A |
5312377 | Dalton | May 1994 | A |
5324270 | Kayan et al. | Jun 1994 | A |
5330450 | Lopez | Jul 1994 | A |
5344414 | Lopez et al. | Sep 1994 | A |
5352410 | Hansen et al. | Oct 1994 | A |
5356396 | Wyatt et al. | Oct 1994 | A |
5360413 | Leason et al. | Nov 1994 | A |
5370636 | Von Witzleben | Dec 1994 | A |
5380306 | Brinon | Jan 1995 | A |
5391150 | Richmond | Feb 1995 | A |
5402826 | Molnar et al. | Apr 1995 | A |
5405331 | Behnke et al. | Apr 1995 | A |
5405333 | Richmond | Apr 1995 | A |
5411499 | Dudar et al. | May 1995 | A |
5417673 | Gordon | May 1995 | A |
5425465 | Healy | Jun 1995 | A |
5433330 | Yatsko et al. | Jul 1995 | A |
5439451 | Collinson et al. | Aug 1995 | A |
5441487 | Vedder | Aug 1995 | A |
5445623 | Richmond | Aug 1995 | A |
5456668 | Ogle, II | Oct 1995 | A |
5456675 | Wolbring et al. | Oct 1995 | A |
5464399 | Boettgee | Nov 1995 | A |
5470327 | Helgren et al. | Nov 1995 | A |
5471706 | Wallock et al. | Dec 1995 | A |
5474536 | Bonaldo | Dec 1995 | A |
5480393 | Bommarito | Jan 1996 | A |
5492147 | Challender | Feb 1996 | A |
5496288 | Sweeney | Mar 1996 | A |
5501426 | Atkinson et al. | Mar 1996 | A |
5507733 | Larkin et al. | Apr 1996 | A |
5507744 | Tay et al. | Apr 1996 | A |
5514177 | Kurz et al. | May 1996 | A |
5518026 | Benjey | May 1996 | A |
5520665 | Fleetwood | May 1996 | A |
5520666 | Choudhury et al. | May 1996 | A |
5531695 | Swisher | Jul 1996 | A |
5533708 | Atkinson et al. | Jul 1996 | A |
5533983 | Haining | Jul 1996 | A |
5535785 | Werge et al. | Jul 1996 | A |
5536258 | Folden | Jul 1996 | A |
5540661 | Tomisaka et al. | Jul 1996 | A |
5549566 | Elias et al. | Aug 1996 | A |
5549651 | Lynn | Aug 1996 | A |
5552115 | Malchesky | Sep 1996 | A |
5552118 | Mayer | Sep 1996 | A |
5554127 | Crouther et al. | Sep 1996 | A |
5554135 | Menyhay | Sep 1996 | A |
5555908 | Edwards et al. | Sep 1996 | A |
5569235 | Ross et al. | Oct 1996 | A |
5573516 | Tyner | Nov 1996 | A |
5575769 | Vaillancourt | Nov 1996 | A |
5578059 | Patzer | Nov 1996 | A |
5580530 | Kowatsch et al. | Dec 1996 | A |
5584819 | Kopfer | Dec 1996 | A |
5591137 | Stevens | Jan 1997 | A |
5591143 | Trombley, III et al. | Jan 1997 | A |
5597536 | Mayer | Jan 1997 | A |
5613615 | Zeyfang et al. | Mar 1997 | A |
5616130 | Mayer | Apr 1997 | A |
5620088 | Martin et al. | Apr 1997 | A |
5624402 | Imbert | Apr 1997 | A |
RE35539 | Bonaido | Jun 1997 | E |
5645538 | Richmond | Jul 1997 | A |
5674206 | Allton et al. | Oct 1997 | A |
5676346 | Leinsing | Oct 1997 | A |
5685868 | Lundquist | Nov 1997 | A |
5688253 | Lundquist | Nov 1997 | A |
5694978 | Heilmann et al. | Dec 1997 | A |
5699821 | Paradis | Dec 1997 | A |
5700248 | Lopez | Dec 1997 | A |
5702017 | Goncalves | Dec 1997 | A |
5722537 | Sigler | Mar 1998 | A |
5735826 | Richmond | Apr 1998 | A |
5738144 | Rogers | Apr 1998 | A |
5743892 | Loh et al. | Apr 1998 | A |
5749861 | Guala et al. | May 1998 | A |
5776116 | Lopez | Jul 1998 | A |
5782816 | Werschmidt et al. | Jul 1998 | A |
5785693 | Haining | Jul 1998 | A |
5792120 | Menyhay | Aug 1998 | A |
5806831 | Paradis | Sep 1998 | A |
5810792 | Fangrow, Jr. et al. | Sep 1998 | A |
5814024 | Thompson et al. | Sep 1998 | A |
5820601 | Mayer | Oct 1998 | A |
5820604 | Fox et al. | Oct 1998 | A |
5827244 | Boettger | Oct 1998 | A |
5839715 | Leinsing | Nov 1998 | A |
5848994 | Richmond | Dec 1998 | A |
5941857 | Nguyen et al. | Aug 1999 | A |
5947954 | Bonaldo | Sep 1999 | A |
5951519 | Utterberg | Sep 1999 | A |
5954957 | Chin-Loy et al. | Sep 1999 | A |
5971972 | Rosenbaum | Oct 1999 | A |
D416086 | Parris et al. | Nov 1999 | S |
5989229 | Chiappetta | Nov 1999 | A |
6029946 | Doyle | Feb 2000 | A |
6036171 | Weinheimer et al. | Mar 2000 | A |
6041805 | Gydesen et al. | Mar 2000 | A |
6045539 | Menyhay | Apr 2000 | A |
6050978 | Orr et al. | Apr 2000 | A |
6063062 | Paradis | May 2000 | A |
6068011 | Paradis | May 2000 | A |
6068475 | Stoyka, Jr. | May 2000 | A |
6068617 | Richmond | May 2000 | A |
6079432 | Paradis | Jun 2000 | A |
6095356 | Rits | Aug 2000 | A |
6099519 | Olsen et al. | Aug 2000 | A |
6106502 | Richmond | Aug 2000 | A |
6113068 | Ryan | Sep 2000 | A |
6113572 | Gailey et al. | Sep 2000 | A |
6116468 | Nilson | Sep 2000 | A |
6117114 | Paradis | Sep 2000 | A |
6126640 | Tucker et al. | Oct 2000 | A |
6142446 | Leinsing | Nov 2000 | A |
6152913 | Feith et al. | Nov 2000 | A |
6158614 | Haines et al. | Dec 2000 | A |
6170522 | Tanida | Jan 2001 | B1 |
6171287 | Lynn et al. | Jan 2001 | B1 |
6179141 | Nakamura | Jan 2001 | B1 |
6202870 | Pearce | Mar 2001 | B1 |
6202901 | Gerber et al. | Mar 2001 | B1 |
6206134 | Stark et al. | Mar 2001 | B1 |
6206860 | Richmond | Mar 2001 | B1 |
6217564 | Peters et al. | Apr 2001 | B1 |
6227391 | King | May 2001 | B1 |
6242393 | Ishida et al. | Jun 2001 | B1 |
6245048 | Fangrow et al. | Jun 2001 | B1 |
6245056 | Walker | Jun 2001 | B1 |
6248380 | Kocher et al. | Jun 2001 | B1 |
6250315 | Ernster | Jun 2001 | B1 |
6267754 | Peters | Jul 2001 | B1 |
6299132 | Weinheimer et al. | Oct 2001 | B1 |
6315761 | Shcherbina et al. | Nov 2001 | B1 |
6375231 | Picha et al. | Apr 2002 | B1 |
6394983 | Mayoral et al. | May 2002 | B1 |
6402207 | Segal et al. | Jun 2002 | B1 |
6428520 | Lopez | Aug 2002 | B1 |
6431219 | Redler et al. | Aug 2002 | B1 |
6499719 | Clancy et al. | Dec 2002 | B1 |
6508792 | Szames et al. | Jan 2003 | B2 |
6508807 | Peters | Jan 2003 | B1 |
6541802 | Doyle | Apr 2003 | B2 |
6543745 | Enerson | Apr 2003 | B1 |
6550493 | Williamson et al. | Apr 2003 | B2 |
6555504 | Ayai et al. | Apr 2003 | B1 |
6581906 | Pott et al. | Jun 2003 | B2 |
6585691 | Vitello | Jul 2003 | B1 |
6595964 | Finley et al. | Jul 2003 | B2 |
6596981 | Huet | Jul 2003 | B1 |
6609696 | Enerson | Aug 2003 | B2 |
6632199 | Tucker et al. | Oct 2003 | B1 |
6666852 | Niedosoial, Jr. | Dec 2003 | B2 |
6679395 | Pfefferkorn et al. | Jan 2004 | B1 |
6679870 | Finch et al. | Jan 2004 | B1 |
6681803 | Taneya et al. | Jan 2004 | B2 |
6685694 | Finch et al. | Feb 2004 | B2 |
6692468 | Waldenburg | Feb 2004 | B1 |
6695817 | Fangrow | Feb 2004 | B1 |
6716396 | Anderson | Apr 2004 | B1 |
6722705 | Korkor | Apr 2004 | B2 |
6746998 | Doyle | Jun 2004 | B2 |
6827766 | Carnes et al. | Dec 2004 | B2 |
6840501 | Doyle | Jan 2005 | B2 |
6875205 | Leinsing | Apr 2005 | B2 |
6899315 | Mailville et al. | May 2005 | B2 |
6911025 | Miyahar | Jun 2005 | B2 |
6916051 | Fisher | Jul 2005 | B2 |
6943035 | Davies et al. | Sep 2005 | B1 |
6955669 | Curutcharry | Oct 2005 | B2 |
6964406 | Doyle | Nov 2005 | B2 |
7004934 | Vaillancourt | Feb 2006 | B2 |
7037302 | Vaiilancourt | May 2006 | B2 |
7040598 | Raybuck | May 2006 | B2 |
7044441 | Doyle | May 2006 | B2 |
7056308 | Utterberg | Jun 2006 | B2 |
7083605 | Miyahara | Aug 2006 | B2 |
7100891 | Doyle | Sep 2006 | B2 |
7125396 | Leinsing et al. | Oct 2006 | B2 |
7140592 | Phillips | Nov 2006 | B2 |
7160272 | Eyal et al. | Jan 2007 | B1 |
7182313 | Doyle | Feb 2007 | B2 |
7198611 | Connell et al. | Apr 2007 | B2 |
7244249 | Leinsing et al. | Jul 2007 | B2 |
7282186 | Lake, Jr. et al. | Oct 2007 | B2 |
7306197 | Parrino et al. | Dec 2007 | B2 |
7306198 | Doyle | Dec 2007 | B2 |
7306566 | Raybuck | Dec 2007 | B2 |
7309326 | Fangrow, Jr. | Dec 2007 | B2 |
7316669 | Ranalletta | Jan 2008 | B2 |
7347458 | Rome et al. | Mar 2008 | B2 |
7350764 | Raybuck | Apr 2008 | B2 |
7361164 | Simpson et al. | Apr 2008 | B2 |
7431712 | Kim | Oct 2008 | B2 |
7452349 | Miyahar | Nov 2008 | B2 |
7497484 | Ziman | Mar 2009 | B2 |
7516846 | Hansen | Apr 2009 | B2 |
7588563 | Guala | Sep 2009 | B2 |
7614426 | Kitani et al. | Nov 2009 | B2 |
7635344 | Tennican et al. | Dec 2009 | B2 |
D607325 | Rogers et al. | Jan 2010 | S |
7645274 | Whitley | Jan 2010 | B2 |
7651481 | Raybuck | Jan 2010 | B2 |
7666170 | Guala | Feb 2010 | B2 |
7708714 | Connell et al. | May 2010 | B2 |
7731678 | Tennican et al. | Jun 2010 | B2 |
7731679 | Tennican et al. | Jun 2010 | B2 |
7749189 | Tennican et al. | Jul 2010 | B2 |
7753891 | Tennican et al. | Jul 2010 | B2 |
7758566 | Simpson et al. | Jul 2010 | B2 |
7763006 | Tennican | Jul 2010 | B2 |
7766182 | Trent et al. | Aug 2010 | B2 |
7768897 | Ramsey et al. | Aug 2010 | B2 |
7776011 | Tennican et al. | Aug 2010 | B2 |
7780794 | Rogers et al. | Aug 2010 | B2 |
7794675 | Lynn | Sep 2010 | B2 |
7799010 | Tennican | Sep 2010 | B2 |
7803139 | Fangrow, Jr. | Sep 2010 | B2 |
7803140 | Fangrow, Jr. | Sep 2010 | B2 |
7815614 | Fangrow, Jr. | Oct 2010 | B2 |
7857793 | Raulerson et al. | Dec 2010 | B2 |
7922701 | Buchman | Apr 2011 | B2 |
7959026 | Bertani | Jun 2011 | B2 |
7985302 | Rogers et al. | Jul 2011 | B2 |
7993309 | Schweikert | Aug 2011 | B2 |
7998134 | Fangrow et al. | Aug 2011 | B2 |
8065773 | Vaillancourt et al. | Nov 2011 | B2 |
8066670 | Cluff et al. | Nov 2011 | B2 |
8069523 | Vaillancourt et al. | Dec 2011 | B2 |
8113837 | Zegarelli | Feb 2012 | B2 |
8162899 | Tennican | Apr 2012 | B2 |
8167847 | Anderson et al. | May 2012 | B2 |
8172825 | Solomon et al. | May 2012 | B2 |
8177772 | Christensen et al. | May 2012 | B2 |
8206514 | Rogers et al. | Jun 2012 | B2 |
8231587 | Solomon et al. | Jul 2012 | B2 |
8231602 | Anderson et al. | Jul 2012 | B2 |
8262628 | Fangrow, Jr. | Sep 2012 | B2 |
8262643 | Tennican | Sep 2012 | B2 |
8273303 | Ferlic et al. | Sep 2012 | B2 |
8281824 | Molema et al. | Oct 2012 | B2 |
8328767 | Solomon et al. | Dec 2012 | B2 |
8336152 | Kerr et al. | Dec 2012 | B2 |
8343112 | Solomon et al. | Jan 2013 | B2 |
8361408 | Lynn | Jan 2013 | B2 |
8372045 | Needle et al. | Feb 2013 | B2 |
8377040 | Burkholz et al. | Feb 2013 | B2 |
8419713 | Solomon et al. | Apr 2013 | B1 |
8480968 | Lynn | Jul 2013 | B2 |
8523830 | Solomon et al. | Sep 2013 | B2 |
8523831 | Solomon et al. | Sep 2013 | B2 |
8533887 | Hirst | Sep 2013 | B2 |
8545479 | Kitani et al. | Oct 2013 | B2 |
8641681 | Solomon et al. | Feb 2014 | B2 |
8641684 | Utterberg et al. | Feb 2014 | B2 |
8647308 | Solomon et al. | Feb 2014 | B2 |
8647326 | Solomon et al. | Feb 2014 | B2 |
8671496 | Kerr et al. | Mar 2014 | B2 |
8740864 | Hoang et al. | Jun 2014 | B2 |
8758307 | Grimm et al. | Jun 2014 | B2 |
8777504 | Shaw et al. | Jul 2014 | B2 |
8845593 | Anderson et al. | Sep 2014 | B2 |
8910919 | Bonnal et al. | Dec 2014 | B2 |
8968268 | Anderson et al. | Mar 2015 | B2 |
8999073 | Rogers et al. | Apr 2015 | B2 |
9072296 | Mills et al. | Jul 2015 | B2 |
9078992 | Ziebol et al. | Jul 2015 | B2 |
9095500 | Brandenburger et al. | Aug 2015 | B2 |
9095667 | Von Schuckmann | Aug 2015 | B2 |
9101750 | Solomon et al. | Aug 2015 | B2 |
9114915 | Solomon et al. | Aug 2015 | B2 |
9125600 | Steube et al. | Sep 2015 | B2 |
9149624 | Lewis | Oct 2015 | B2 |
9180252 | Gelblum et al. | Nov 2015 | B2 |
9192449 | Kerr et al. | Nov 2015 | B2 |
9216440 | Ma et al. | Dec 2015 | B2 |
9233208 | Tekeste | Jan 2016 | B2 |
9242084 | Solomon et al. | Jan 2016 | B2 |
9259284 | Rogers et al. | Feb 2016 | B2 |
9259535 | Anderson et al. | Feb 2016 | B2 |
9283367 | Hoang et al. | Mar 2016 | B2 |
9283368 | Hoang et al. | Mar 2016 | B2 |
9283369 | Ma et al. | Mar 2016 | B2 |
9289588 | Chen | Mar 2016 | B2 |
9302049 | Tekeste | Apr 2016 | B2 |
9320858 | Grimm et al. | Apr 2016 | B2 |
9320859 | Grimm et al. | Apr 2016 | B2 |
9320860 | Grimm et al. | Apr 2016 | B2 |
9352140 | Kerr et al. | May 2016 | B2 |
9352141 | Wong | May 2016 | B2 |
9399125 | Burkholz | Jul 2016 | B2 |
9408971 | Carlyon | Aug 2016 | B2 |
9527660 | Tennican | Dec 2016 | B2 |
9592375 | Tennican | Mar 2017 | B2 |
9700676 | Anderson et al. | Jul 2017 | B2 |
9700677 | Anderson et al. | Jul 2017 | B2 |
9700710 | Anderson et al. | Jul 2017 | B2 |
9707348 | Anderson et al. | Jul 2017 | B2 |
9707349 | Anderson et al. | Jul 2017 | B2 |
9707350 | Anderson et al. | Jul 2017 | B2 |
9809355 | Solomon et al. | Nov 2017 | B2 |
9867975 | Gardner et al. | Jan 2018 | B2 |
9907617 | Rogers | Mar 2018 | B2 |
9933094 | Fangrow | Apr 2018 | B2 |
9999471 | Rogers et al. | Jun 2018 | B2 |
10016587 | Gardner et al. | Jul 2018 | B2 |
10046156 | Gardner | Aug 2018 | B2 |
10166381 | Gardner et al. | Jan 2019 | B2 |
10201692 | Chang | Feb 2019 | B2 |
10328207 | Anderson et al. | Jun 2019 | B2 |
20020193752 | Lynn | Dec 2002 | A1 |
20030060749 | Aneas | Mar 2003 | A1 |
20030062376 | Sears et al. | Apr 2003 | A1 |
20030153865 | Connell et al. | Aug 2003 | A1 |
20030208165 | Christensen et al. | Nov 2003 | A1 |
20040034042 | Tsuji et al. | Feb 2004 | A1 |
20040048542 | Thomascheisky et al. | Mar 2004 | A1 |
20040052689 | Yao | Mar 2004 | A1 |
20040215148 | Hwang et al. | Oct 2004 | A1 |
20050013836 | Raad | Jan 2005 | A1 |
20050015075 | Wright et al. | Jan 2005 | A1 |
20050065479 | Schiller et al. | Mar 2005 | A1 |
20050124942 | Richmond | Jun 2005 | A1 |
20050124970 | Kunin et al. | Jun 2005 | A1 |
20050147524 | Bousquet | Jul 2005 | A1 |
20050147525 | Bousquet | Jul 2005 | A1 |
20050148930 | Hseih et al. | Jul 2005 | A1 |
20050214185 | Castaneda | Sep 2005 | A1 |
20050228362 | Vaillancourt | Oct 2005 | A1 |
20060058734 | Phillips | Mar 2006 | A1 |
20060129109 | Shaw et al. | Jun 2006 | A1 |
20060142730 | Proulx et al. | Jun 2006 | A1 |
20060161115 | Fangrow | Jul 2006 | A1 |
20060195117 | Rucker et al. | Aug 2006 | A1 |
20060202146 | Doyle | Sep 2006 | A1 |
20060253084 | Nordgren | Nov 2006 | A1 |
20060261076 | Anderson | Nov 2006 | A1 |
20070088292 | Fangrow | Apr 2007 | A1 |
20070088293 | Fangrow | Apr 2007 | A1 |
20070088294 | Fangrow | Apr 2007 | A1 |
20070167910 | Tennican et al. | Jul 2007 | A1 |
20070179453 | Lim et al. | Aug 2007 | A1 |
20070187353 | Fox et al. | Aug 2007 | A1 |
20070249996 | Tennican et al. | Oct 2007 | A1 |
20070265578 | Tennican et al. | Nov 2007 | A1 |
20070287989 | Crawford et al. | Dec 2007 | A1 |
20080027399 | Harding et al. | Jan 2008 | A1 |
20080033371 | Updegraff et al. | Feb 2008 | A1 |
20080039803 | Lynn | Feb 2008 | A1 |
20080058733 | Vogt et al. | Mar 2008 | A1 |
20080093245 | Periasamy et al. | Apr 2008 | A1 |
20080095680 | Steffens et al. | Apr 2008 | A1 |
20080097315 | Miner et al. | Apr 2008 | A1 |
20080103485 | Kruger | May 2008 | A1 |
20080128646 | Clawson | Jun 2008 | A1 |
20080147047 | Davis et al. | Jun 2008 | A1 |
20080177250 | Howlett et al. | Jul 2008 | A1 |
20080190485 | Guala | Aug 2008 | A1 |
20080287920 | Fangrow et al. | Nov 2008 | A1 |
20090008393 | Howlett et al. | Jan 2009 | A1 |
20090012426 | Tennican | Jan 2009 | A1 |
20090028750 | Ryan | Jan 2009 | A1 |
20090062766 | Howlett et al. | Mar 2009 | A1 |
20090093757 | Tennican | Apr 2009 | A1 |
20090137969 | Colantonio et al. | May 2009 | A1 |
20090205151 | Fisher et al. | Aug 2009 | A1 |
20090205656 | Nishibayashi et al. | Aug 2009 | A1 |
20090259194 | Pinedjian et al. | Oct 2009 | A1 |
20090270832 | Vancaillie et al. | Oct 2009 | A1 |
20100004510 | Kuroshima | Jan 2010 | A1 |
20100047123 | Solomon et al. | Feb 2010 | A1 |
20100049170 | Solomon et al. | Feb 2010 | A1 |
20100050351 | Colantonio et al. | Mar 2010 | A1 |
20100064456 | Ferlic | Mar 2010 | A1 |
20100152670 | Low | Jun 2010 | A1 |
20100160894 | Julian et al. | Jun 2010 | A1 |
20100172794 | Ferlic et al. | Jul 2010 | A1 |
20100242993 | Hoang et al. | Sep 2010 | A1 |
20100253070 | Cheon et al. | Oct 2010 | A1 |
20100292673 | Korogi et al. | Nov 2010 | A1 |
20100306938 | Rogers et al. | Dec 2010 | A1 |
20110030726 | Vaillancourt et al. | Feb 2011 | A1 |
20110044850 | Solomon et al. | Feb 2011 | A1 |
20110046564 | Zhong | Feb 2011 | A1 |
20110046603 | Felsovalyi et al. | Feb 2011 | A1 |
20110062703 | Lopez | Mar 2011 | A1 |
20110064512 | Shaw et al. | Mar 2011 | A1 |
20110082431 | Burgess et al. | Apr 2011 | A1 |
20110217212 | Solomon et al. | Sep 2011 | A1 |
20110232020 | Rogers et al. | Sep 2011 | A1 |
20110265825 | Rogers et al. | Nov 2011 | A1 |
20110311602 | Mills et al. | Dec 2011 | A1 |
20110314619 | Schweikert | Dec 2011 | A1 |
20120031904 | Kuhn et al. | Feb 2012 | A1 |
20120039764 | Solomon et al. | Feb 2012 | A1 |
20120157965 | Wotton et al. | Jun 2012 | A1 |
20120195807 | Ferlic | Aug 2012 | A1 |
20120216359 | Rogers et al. | Aug 2012 | A1 |
20120216360 | Rogers et al. | Aug 2012 | A1 |
20120283696 | Cronenberg et al. | Nov 2012 | A1 |
20120302970 | Tennican | Nov 2012 | A1 |
20120302997 | Gardner et al. | Nov 2012 | A1 |
20130030414 | Gardner | Jan 2013 | A1 |
20130035667 | Anderson et al. | Feb 2013 | A1 |
20130053751 | Holtham | Feb 2013 | A1 |
20130072908 | Solomon et al. | Mar 2013 | A1 |
20130085313 | Fowler et al. | Apr 2013 | A1 |
20130098398 | Kerr et al. | Apr 2013 | A1 |
20130098938 | Efthimiadis | Apr 2013 | A1 |
20130123754 | Solomon et al. | May 2013 | A1 |
20130171030 | Ferlic et al. | Jul 2013 | A1 |
20130183635 | Wilhoit | Jul 2013 | A1 |
20130197485 | Gardner | Aug 2013 | A1 |
20130274686 | Ziebol et al. | Oct 2013 | A1 |
20140048079 | Gardner et al. | Feb 2014 | A1 |
20140052074 | Tekeste | Feb 2014 | A1 |
20140101876 | Rogers et al. | Apr 2014 | A1 |
20140155868 | Nelson et al. | Jun 2014 | A1 |
20140227144 | Liu et al. | Aug 2014 | A1 |
20140228809 | Wong | Aug 2014 | A1 |
20140249476 | Grimm et al. | Sep 2014 | A1 |
20140249477 | Grimm et al. | Sep 2014 | A1 |
20140249486 | Grimm et al. | Sep 2014 | A1 |
20140339812 | Carney et al. | Nov 2014 | A1 |
20140339813 | Cederschiöld et al. | Nov 2014 | A1 |
20150141934 | Gardner et al. | May 2015 | A1 |
20150148287 | Woo et al. | May 2015 | A1 |
20150165127 | Haefele et al. | Jun 2015 | A1 |
20150217106 | Banik et al. | Aug 2015 | A1 |
20150231380 | Hoang et al. | Aug 2015 | A1 |
20150237854 | Mills et al. | Aug 2015 | A1 |
20150238703 | Glocker | Aug 2015 | A1 |
20150258324 | Chida et al. | Sep 2015 | A1 |
20150273199 | Adams et al. | Oct 2015 | A1 |
20150297455 | Sanders et al. | Oct 2015 | A1 |
20150297881 | Sanders et al. | Oct 2015 | A1 |
20150306369 | Burkholz et al. | Oct 2015 | A1 |
20150314119 | Anderson et al. | Nov 2015 | A1 |
20150320926 | Fitzpatrick et al. | Nov 2015 | A1 |
20150374968 | Solomon et al. | Dec 2015 | A1 |
20160001058 | Ziebol et al. | Jan 2016 | A1 |
20160015931 | Ryan et al. | Jan 2016 | A1 |
20160015959 | Solomon et al. | Jan 2016 | A1 |
20160045629 | Gardner et al. | Feb 2016 | A1 |
20160067365 | Ma et al. | Mar 2016 | A1 |
20160067471 | Ingram et al. | Mar 2016 | A1 |
20160088995 | Ueda et al. | Mar 2016 | A1 |
20160089530 | Sathe | Mar 2016 | A1 |
20160101276 | Tekeste | Apr 2016 | A1 |
20160106969 | Neftel | Apr 2016 | A1 |
20160121097 | Steele | May 2016 | A1 |
20160144118 | Solomon et al. | May 2016 | A1 |
20160158520 | Ma et al. | Jun 2016 | A1 |
20160158521 | Hoang et al. | Jun 2016 | A1 |
20160158522 | Hoang et al. | Jun 2016 | A1 |
20160184527 | Tekeste | Jun 2016 | A1 |
20160213912 | Daneluzzi | Jul 2016 | A1 |
20160250420 | Maritan et al. | Sep 2016 | A1 |
20170143447 | Rogers et al. | May 2017 | A1 |
20170203092 | Ryan et al. | Jul 2017 | A1 |
20170239443 | Abitabilo et al. | Aug 2017 | A1 |
20170361023 | Anderson et al. | Dec 2017 | A1 |
20180369562 | Gardner | Dec 2018 | A1 |
20190038888 | Gardner | Feb 2019 | A1 |
20190111245 | Gardner | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
2 148 847 | Dec 1995 | CA |
2402327 | Oct 2000 | CN |
2815392 | Sep 2006 | CN |
201150420 | Nov 2008 | CN |
201519335 | Jul 2010 | CN |
89 06 628 | Sep 1989 | DE |
29517133 | Jan 1997 | DE |
0 108 785 | May 1984 | EP |
0 227 219 | Jul 1987 | EP |
0 245 872 | Nov 1987 | EP |
0 639 385 | Feb 1995 | EP |
0 769 265 | Apr 1997 | EP |
1 061 000 | Oct 2000 | EP |
1 331 020 | Jul 2003 | EP |
1 471 011 | Oct 2004 | EP |
1 977 714 | Oct 2008 | EP |
2 444 117 | Apr 2012 | EP |
2 606 930 | Jun 2013 | EP |
2 493 149 | May 1982 | FR |
2 782 910 | Mar 2000 | FR |
123221 | Feb 1919 | GB |
2 296 182 | Jun 1996 | GB |
2 333 097 | Jul 1999 | GB |
2 387 772 | Oct 2003 | GB |
57-131462 | Aug 1982 | JP |
04-99950 | Feb 1992 | JP |
09-216661 | Aug 1997 | JP |
2000157630 | Jun 2000 | JP |
2002-234567 | Aug 2002 | JP |
2002-291906 | Oct 2002 | JP |
2006-182663 | Jul 2006 | JP |
2014-117461 | Jun 2014 | JP |
2 246 321 | Feb 2005 | RU |
WO 198303975 | Nov 1983 | WO |
WO 198505040 | Nov 1985 | WO |
WO 199812125 | Mar 1998 | WO |
WO 2004035129 | Apr 2004 | WO |
WO 2004112846 | Dec 2004 | WO |
WO 2006007690 | Jan 2006 | WO |
WO 2006044236 | Apr 2006 | WO |
WO 2007008511 | Jan 2007 | WO |
WO 2007056773 | May 2007 | WO |
WO 2007137056 | Nov 2007 | WO |
WO 2008042285 | Apr 2008 | WO |
WO 2008086631 | Jul 2008 | WO |
WO 2008089196 | Jul 2008 | WO |
WO 2008100950 | Aug 2008 | WO |
WO 2008140807 | Nov 2008 | WO |
WO 2009002474 | Dec 2008 | WO |
WO 2009117135 | Sep 2009 | WO |
WO 2009123709 | Oct 2009 | WO |
WO 2009136957 | Nov 2009 | WO |
WO 2009153224 | Dec 2009 | WO |
WO 2010002757 | Jan 2010 | WO |
WO 2010002808 | Jan 2010 | WO |
WO 2010034470 | Apr 2010 | WO |
WO 2010039171 | Apr 2010 | WO |
WO 2011028722 | Mar 2011 | WO |
WO 2011053924 | May 2011 | WO |
WO 2011119021 | Sep 2011 | WO |
WO 2012162006 | Nov 2012 | WO |
WO 2012184716 | Dec 2013 | WO |
WO 2013192574 | Dec 2013 | WO |
WO 2014074929 | May 2014 | WO |
WO 2014140949 | Sep 2014 | WO |
WO 2015119940 | Aug 2015 | WO |
WO 2015174953 | Nov 2015 | WO |
WO 2017015047 | Jan 2017 | WO |
WO 2017127365 | Jul 2017 | WO |
WO 20171127364 | Jul 2017 | WO |
WO 2018009653 | Jan 2018 | WO |
WO 2018071717 | Apr 2018 | WO |
WO 2018237090 | Dec 2018 | WO |
WO 2018237122 | Dec 2018 | WO |
WO 2019178560 | Sep 2019 | WO |
Entry |
---|
International Preliminary Report on Patentability, re PCT Application No. PCT/US17/56407, dated Apr. 16, 2019. |
Baxter Minicap: Photographs of the Baxter Minicap (Sep. 1, 1998) (4 pages). |
Baxter, “Peritoneal Dialysis Patient Connectology,” Product Descriptions in 1 page, downloaded Jul. 1, 2011. |
Catheter Connections, “Introducing DualCap,” Product Brochure in 1 page, Copyright 2011. |
Charney “Baxter Healthcare InterlinkTM IV Access System” in 1 page, from Handbook of Modern Hospital Safety. Published Mar. 1999. |
Conical Fittings; International Standard, “Conical fittings with 6% (Luer) Taper for Syringes, Needles and certain Other Medical Equipment—Part 2: Lock Fittings”, Ref. No. ISO 594-2:1998, International Organization for Standardization (Sep. 1, 1998) 2nd ed. (16 pages). |
Devine, redacted version of letter from David A. Divine, Esq. of Lee & Hayes, dated May 16, 2011 (3 pages). |
Devine, redacted version of letter from David A. Divine, Esq. of Lee & Hayes, dated May 27, 2011 (3 pages). |
Hospira, “You Work in Neverland,” Lifeshield Product Brochure in 2 pages, Published 2009. |
Hyprotek, “Port Protek,” Product Brochure in 1 page, downloaded Sep. 19, 2011 from http://www.hyprotek.com/products.html. |
ICU Medical Inc., “Oncology System Solutions,” Product Brochure in 17 pages, Copyright 2013. |
ICU Medical Inc, “Protective Cap,” Photographs of Spiros Protective Cap in 2 pages, Product available 2013. |
International Search Report and Written Opinion re PCT/US2018/038625, dated Sep. 11, 2018 (12 pages). |
International Search Report and Written Opinion, re PCT Application No. PCT/US17/56407, dated Dec. 11, 2017. |
Menyhay et al., “Disinfection of Neecileless Catheter Connectors and Access Ports with Alcohol May Not Prevent Microbial Entry: The Promise of a Novel Antiseptic-Barrier Cap” Infection Control Hospital and Epidemology, vol. 27, No. 1 (Jan. 2006) (5 pages). |
Photographs of the Baxter Minicap (Sep. 1, 1998) (4 pages). |
International Search Report and Written Opinion re PCT Application No. PCT/US19/22610, dated Jul. 22, 2019. |
Number | Date | Country | |
---|---|---|---|
20190282795 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62408546 | Oct 2016 | US | |
62420359 | Nov 2016 | US | |
62490952 | Apr 2017 | US | |
62526847 | Jun 2017 | US | |
62527897 | Jun 2017 | US | |
62571157 | Oct 2017 | US |