The present invention relates to a scanning exposure technique used in manufacturing of microdevice such as a semiconductor device.
In manufacturing of semiconductor device such as an IC or LSI, a multilayer circuit pattern is superpose-transferred onto a wafer. In some cases, different exposure apparatuses are used due to difference in accuracy required in respective layers, and superposition accuracy (matching accuracy) must be maintained among different exposure apparatuses. Especially, in an exposure apparatus based on a global alignment method of measuring plural superposition marks transferred on a wafer so as to correct a positional shift to a wafer xy plane (a plane vertical to an optical axis of a projection optical system (defined with mutually orthogonal x and y axes)) and a rotational shift about a θ axis (rotation about an axis parallel to the optical axis of the projection optical system (z axis orthogonal to the xy plane)), the following adjustment operations are performed.
Particularly, in a one-shot full exposure apparatus, regarding the third and fourth adjustment items, the linearity of the xy axes and the stability of the θ axis of the wafer stage are measured and corrected by the method proposed by the present applicant, i.e., measuring superposition marks formed by performing exposure and transfer such that adjacent shots partially overlap each other, and performing arithmetic processing at once on these measured data (for example, see Japanese Published Unexamined Patent Application No. 2000-299278).
For example, exposure is repeated such that adjacent shots in x and y directions partially overlap each other as shown in
However, in the method disclosed in the above JPA 2000-299278, in the case of scanning projection exposure apparatus (so-called scanner) to perform transfer by one-shot exposure using a slit shot, even if two or more superposition marks are formed in an area where shorter sides are adjacent, the influence of relative rotational angle obtained from the difference among these marks is small and the linearity of the xy axes and the stability of the θ axis of wafer stage cannot be measured with high accuracy.
The present invention has been made in consideration of the above situation, and has its object to provide a scanning exposure technique useful for improvement in overlay accuracy.
To solve the above problem and attain the object, the present invention provides the following aspects.
[Aspect 1]
An exposure apparatus which projects a pattern on an original onto a substrate via a projection optical system while scanning the original and the substrate, comprises a stage which holds and moves the substrate; a projection system which projects a slit shot pattern formed on the original onto plural areas of the substrate and an area partially overlapping four of the plural areas adjacent to each other, by having the original stand still and moving the stage; a measurement system which measures a positional deviation between partial patterns included in the shot patterns in the overlapping area; and a control system which controls movement of the stage based on a result of measurement by the measurement system.
[Aspect 2]
In the aspect 1, the projection system projects the shot pattern so as to arrange respective centers of gravity of the plural areas at grid points.
[Aspect 3]
In the aspect 2, the grid points where the centers of gravity are arranged are different by line.
[Aspect 4]
In any of the aspects 1 to 3, a plurality of the partial patterns are formed on each of two straight lines parallel with a lengthwise direction of the shot pattern.
[Aspect 5]
In any of the aspects 1 to 4, the control system calculates at least one of a positional error and a rotational error in each of the plural areas and the overlapping area as a moving characteristic of the stage.
[Aspect 6]
In any of the aspects 1 to 5, the control system controls movement of the stage based on the calculated moving characteristic.
[Aspect 7]
In any of the aspects 1 to 5, the control system corrects a moving characteristic of the stage based on the calculated moving characteristic.
[Aspect 8]
A device manufacturing method comprises a step of exposing a substrate to a pattern by using an exposure apparatus according to any of the aspects 1 to 7.
[Aspect 9]
An exposure method applied to an exposure apparatus which projects a pattern on an original onto a substrate via a projection optical system while scanning the original and the substrate, the method comprises steps of projecting a slit shot pattern formed on the original onto plural areas of the substrate and an area partially overlapping four of the plural areas adjacent to each other, by having the original stand still and moving a stage which holds the substrate; measuring a positional deviation between partial patterns included in the shot patterns in the overlapping area; and projecting the pattern on the original onto the substrate while controlling movement of the stage based on a result of measurement in the measurement step.
[Aspect 10]
In the aspect 9, in the projection step, the shot pattern is projected so as to arrange respective centers of gravity of the plural areas at grid points.
[Aspect 11]
In the aspect 10, the grid points where the centers of gravity are arranged are different by line.
[Aspect 12]
In any of the aspects 9 to 11, a plurality of the partial patterns are formed on each of two straight lines parallel with a lengthwise direction of the shot pattern.
[Aspect 13]
In any of the aspects 9 to 12, the method further comprises a step of calculating at least one of a positional error and a rotational error in each of the plural areas and the overlapping area as a moving characteristic of the stage based on a result of measurement in the measurement step, the control of movement of the stage in the exposure step is performed based on the moving characteristic calculated in the calculation step.
[Aspect 14]
In any of the aspects 9 to 13, the method further comprises a step of calculating at least one of a positional error and a rotational error in each of the plural areas and the overlapping area as a moving characteristic of the stage based on a result of measurement in the measurement step, the control of movement of the stage in the exposure step is performed by correcting a moving characteristic of the stage based on the moving characteristic calculated in the calculation step.
More particularly, the measurement means (step) obtains measurement data of-relative positional difference dx, dy and relative rotational angle difference dθ between adjacent shots from relative distances between the superposition marks in the shot overlap area. Then the above measurement data is represented with only one equation constructed with positional differences dxi, dyi in an unknown shot and a rotational error dθi in wafer plane in the unknown shot, and arithmetic processing is performed by using mathematical calculation means.
By the above method, in a wafer where the adjustment of xy coordinate parallelism between the reticle projection image and the wafer stage as the above-described first adjustment item, and the xy axis rectangularity adjustment of the wafer stage as the second adjustment item are performed, the adjustment of linearity of the xy axes of the wafer stage as the third adjustment item and the measurement of stability of the θ axis of the wafer stage as the fourth adjustment item can be performed.
Further, nonlinear positional errors in the stage xy plane are measured, and, appropriate stage grid error correction is performed in correspondence with the stage position based on the result of measurement, thereby an exposure apparatus with high matching accuracy can be realized.
As described above, according to the present invention, in a scanning exposure apparatus, a wafer stage moving characteristic can be measured with high accuracy.
Other objects and advantages besides those discussed above shall be apparent to those skilled in the art from the description of a preferred embodiment of the invention which follows. In the description, reference is made to accompanying drawings, which form a part thereof, and which illustrate an example of the invention. Such example, however, is not exhaustive of the various embodiments of the invention, and therefore reference is made to the claims which follow the description for determining the scope of the invention.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Hereinbelow, preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
[First Embodiment]
First, a first embodiment of the present invention will be described.
As shown in
Note that in addition to the wafer stage, a reticle stage movable in the xy plane orthogonal to the optical axis of the projection lens 9 while holding the reticle 8 may be provided as long as it scans the reticle 8 and the wafer 10 relatively to each other.
Further, as shown in
In the exposure apparatus having the above construction, while the reticle 8 is stopped in a predetermined position, a long, slit-like pattern image corresponding to a drawing pattern (this drawing pattern is also referred to as “a slit shot pattern” or “a slit-like shot pattern”) 17 on the reticle 8 as shown in
In the center (gravity) position of at least one of first shots 22 to 25, its phase is shifted from the center (gravity) position of a second shot 21.
The above pattern image is transferred onto the wafer 10 in a shot array as shown in
The mark measurement unit 5 measures these superposition marks 26 to 33 regarding all the shots, and as described later, the arithmetic processing unit 2 calculates the relative positional errors and attitude errors of all the shots transferred on the wafer at cone.
Among the superposition marks 26 to 33 in
At this time, the errors of positions and attitudes (rotational angles about the z axis) of the shots (i), (j), (k), (l) and (m) are defined as (dxi,dyi,dθi), (dxj,dyj,dθj), (dxk,dyk,dθk), (dxl,dyl,dθl) and (dxm,dym,dθim).
Further, errors unique to the respective superposition marks caused by distortion of reticle projection image and/or stage measurement scale error are defined as DXUL1, DXUL2, DYUL1, DYUL2, DXUR1, DXUR2, DYUR1, DYUR2, DXDL1, DXDL2, DYDL1, DYDL2, DXDR1, DXDR2, and DYDRI, DYDR2.
Further, in a case where irregular errors such as rounding errors caused upon measurement of the respective superposition marks are defined as exLU1(i,j), exLU2(i,j), eyLU1(i,j), eyLU2(i,j), exUR1(i,k), exUR2(i,k), eyUR1(i,k), eyUR2(i,k), exDL1 (i,l), exDL2(i,l), eyDL1 (i,l), eyDL2(i,l), exDR1 (i,m), exDR2(i,m), and eyDR1 (i,m), eyDR2(i,m), the following expressions (1) to (16) hold.
exUL1(i,j)=dxj−dxi+hdθj+hdθi+ΔxUL1+εxUL1(i,j) (1)
exUL2(i,j)=dxj−dxi+hdθj+hdθi+ΔxUL2+εxUL2(i,j) (2)
eyUL1(i,j)=dyj−dyi+gdθj+fdθi+ΔyUL1+εyUL1(i,j) (3)
eyUL2(i,j)=dyj−dyi+fdθj+gdθi+ΔyUL2+εyUL2(i,j) (4)
exUR1(i,k)=dxk−dxi+hdθk+hdθi+ΔxUR1+εxUR1(i,k) (5)
exUR2(i,k)=dxk−dxi+hdθk+hdθi+ΔxUR2+εxUR2(i,k) (6)
eyUR1(i,k)=dyk−dyi−gdθk−fdθi+ΔyUR1+εxUR1(i,l) (7)
eyUR2(i,k)=dyk−dyi−fdθk−gdθi+ΔyUR2+εyUR2(i,j) (8)
−exD1(i,j)=dxl−dxi−hdθl−hdθi+ΔxDL1+εxDL1(i,l) (9)
−exDL1(i,j)=dxl−dxi−hdθl−hdθi+ΔxDL1+εxDL2(i,l) (10)
−eyDL1(i,j)=dyl−dyi+gdθl+fdθi+ΔyDL1+εyDL1(i,l) (11)
−eyDL1(i,j)=dyl−dyi+fdθj+gdθi+ΔyDL1+εyDL2(i,l) (12)
−exDR1(i,m)=dxm−dxi−hdθm−hdθi+ΔxDR1+εxDR1(i,m) (13)
−exDR2(i,m)=dxm−dxi−hdθm−hdθi+ΔxDR2+εxDR2(i,m) (14)
−eyDR1(i,m)=dym−dyi−gdθm−fdθi+ΔyDR1+εyDR1(i,m) (15)
−eyDR2(i,k)=dym−dyi−fdθm−gdθi+ΔyDR2+εyDR2(i,m) (16)
Note that the errors caused by the distortion of reticle projection image and/or stage measurement scale error and the irregular errors such as rounding errors caused upon measurement of superposition marks are previously measured by measurement means such as an absolute meter, and these errors are obtained by calculation of stage rectangularity and/or scale errors.
Further, it may be arranged such that considering that the above errors cannot be distinguished from the stage rectangularity and/or scale errors, the errors are not obtained by calculation of stage rectangularity and/or scale errors.
In the above expressions (1) to (16), assuming that, in odd-numbered (or even-numbered) shots, the number of shots with all the superposition marks is Na, while in even-numbered (or odd-numbered) shots, the number of shots related to formation of superposition marks is Nb, the total number of shots is Na+Nb. As the x direction, the y direction and the θ direction are unknown in each shot, the number of unknowns, including the unique error to each superposition mark, is 3(Na+Nb)+8.
On the other hand, the number of the equations is 16Na, however, unless the mean value of the positional error (dxi, dyi) and attitude error (dθi), the slopes of array in the x and y directions, and the array scale error are set to constant values in each even-numbered shots and odd-numbered shots, the equations are indefinite simultaneous equations and a solution cannot be obtained.
Accordingly, the following equations (17) to (23) are added.
Note that “Xi” and “Yi” are vector elements, indicating the central wafer coordinate position in each shot, adjusted such that the total sum of all the shots becomes zero.
From the above equations, 16Na+7 simultaneous equations are constructed.
As described above, the number of unknowns in the simultaneous equations is 3(Na+Nb)+8.
Accordingly, the number of equations and the number of unknowns must satisfy the relation shown in the following equation (24).
16Na+7≧3(Na+Nb)+8 (24)
By expressing the above constructed simultaneous equations in only one simultaneous equation, and by performing arithmetic processing using mathematical computation means by the least square method, the arithmetic processing unit 2 performs arithmetic processing of the relative positional errors and attitude errors of all the shots transferred onto the wafer 10 at once, and the correction processing unit 3 corrects the relative positional errors and attitude errors of all the shots calculated by the arithmetic processing unit 2 to appropriate values such that the exposure control unit 1 performs control reflecting the result of correction, e.g., moving control of the wafer stage 11 (positional correction).
According to the above embodiment, as a wafer stage moving characteristic, the linearity of the x and y axes and the stability of the θ axis can be measured with high accuracy.
Further, as the nonlinear positional errors of the wafer stage in the xy plane are measured and the stage grid errors are appropriately corrected in correspondence with the stage position based on the result of measurement, exposure with high matching accuracy can be realized, and a semiconductor device can be manufactured more accurately by using the above method.
[Second Embodiment]
As a second embodiment of the present invention, in an odd-numbered or even-numbered shot, upon movement in an array direction (y direction), the shot central position is shifted in a direction along the long side (x direction) by 1 pitch of superposition mark as shown in
This embodiment is advantageous in a case where the stage grid change cannot be precisely measured since the shot shape is long in the x direction and the shot interval is wide.
[Third Embodiment]
Further, as a third embodiment of the present invention, the number of marks within one shot is increased as shown in
This reduces the influence of the errors upon measurement of the respective superposition marks, exUL1(i,j), exUL2(i,j), eyUL1(i,j), eyUL2(i,j), exUR1(i,j), exUR2(i,j), eyUR1(i,j), eyUR2(i,j), exDL1(i,j), exDL2(i,j), eyDL1(i,j), eyDL2(i,j), exDR1(i,j), exDR2(i,j), and eyDR1(i,j), eyDR2(i,j), and improves the estimated accuracy.
Then simultaneous equations are constructed by using the obtained measurement data of the superposition marks as in the case of the first embodiment, thus the positional and attitude errors (dxi,dyi,dθi) in each shot can be obtained.
As the types of shot central position coordinates in the shot long side direction are increased, more accurate stage grid measurement and correction can be expected.
[Fourth Embodiment]
Next, a semiconductor device manufacturing process utilizing the exposure apparatus will be described.
On the other hand, at step 3 (wafer fabrication), a wafer is fabricated by using material such as silicon. At step 4 (wafer process), called a preprocess, an actual circuit is formed by the above exposure apparatus on the wafer by a lithography technique using the above mask and wafer. At the next step 5 (assembly), called a post process, a semiconductor chip is fabricated by using the wafer formed at step 4. Step 5 includes an assembly process (dicing and bonding), a packaging process (chip encapsulation) and the like. At step 6 (inspection), inspections such as a device operation check, a durability test and the like are performed on the semiconductor device formed at step 5. The semiconductor device is completed through these processes, and is shipped at step 7.
The wafer process at step 4 has the following steps: an oxidation step of oxidizing the surface of the wafer; a CVD step of forming an insulating film on the surface of the wafer; an electrode formation step of forming electrodes by vapor deposition on the wafer: an ion implantation step of injecting ions in the wafer; a resist processing step of coating the wafer with photo resist; an exposure step of transferring the circuit pattern onto the resist-processed wafer by the above-described exposure apparatus; a development step of developing the wafer exposed at the exposure step; an etching step of removing other portions than the resist developed at the development step; and a resist stripping step of removing the resist which is unnecessary after the completion of etching. These steps are repeated, to form a multiple layers of circuit patterns on the wafer.
[Other Embodiment]
The object of the present invention can also be achieved by providing software program code for realizing an exposure method using the above-described error calculation and error correction to a system or an apparatus directly or from a remote place, and reading and executing the program code with a computer of the system or apparatus. In this case, the program may be software other than a program having a function equivalent to that of the program.
Accordingly, the program and/or software itself is an aspect of the present invention.
In such case, the program having any form such as object code, an interpreter-executable program and script data supplied to an OS, can be employed as long as it has a program function.
Further, the storage medium, such as a flexible disk, a hard disk, an optical disk, a magneto-optical disk, an MO, a CD-ROM, a CD-R, a CD-RW, a magnetic tape, a non-volatile type memory card, a ROM, and a DVD (DVD- ROM and DVD-R) can be used for providing the program.
As a method for supplying the program, a data file of a computer program itself or a compressed file having automatic installation function, which can be a computer program forming the present invention on a client computer, may be downloaded from a home page on the Internet to a connected client computer by using a browser on the client computer. Further, the program data file may be divided into plural segment files and may be downloaded from different home pages. That is, a www server apparatus for downloading the program data file to the client computer is an aspect of the present invention.
Further, the program of the present invention may be encrypted and stored on a storage medium such as a CD-ROM delivered to users, such that a user who satisfied a predetermined condition is allowed to download key information to decryption from a homepage via e.g. the Internet, then the program is decrypted with the key information and installed into a computer, thereby the present invention is realized.
Furthermore, besides aforesaid functions according to the above embodiments are realized by executing the program code which is read by a computer, the present invention includes a case where an OS (operating system) or the like working on the computer performs a part or entire actual processing in accordance with designations of the program code and realizes functions according to the above embodiments.
Furthermore, the present invention also includes a case where, after the program code read from the storage medium is written in a function expansion card which is inserted into the computer or in a memory provided in a function expansion unit which is connected to the computer, CPU or the like contained in the function expansion card or unit performs a part or entire process in accordance with designations of the program code and realizes functions of the above embodiments.
The present invention is not limited to the above embodiments and various changes and modifications can be made within the spirit and scope of the present invention. Therefore, to appraise the public of the scope of the present invention, the following claims are made.
This application claims priority from Japanese Patent Application No. 2003-292921 filed on Aug. 13, 2003, the entire contents of which are hereby incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2003-292921(PAT.) | Aug 2003 | JP | national |