Security techniques for device assisted services

Information

  • Patent Grant
  • 10694385
  • Patent Number
    10,694,385
  • Date Filed
    Friday, July 13, 2018
    5 years ago
  • Date Issued
    Tuesday, June 23, 2020
    3 years ago
Abstract
Security techniques for device assisted services are provided. In some embodiments, secure service measurement and/or control execution partition is provided. In some embodiments, implementing a service profile executed at least in part in a secure execution environment of a processor of a communications device for assisting control of the communications device use of a service on a wireless network, in which the service profile includes a plurality of service policy settings, and wherein the service profile is associated with a service plan that provides for access to the service on the wireless network; monitoring use of the service based on the service profile; and verifying the use of the service based on the monitored use of the service.
Description
BACKGROUND OF THE INVENTION

With the advent of mass market digital communications, applications and content distribution, many access networks such as wireless networks, cable networks and DSL (Digital Subscriber Line) networks are pressed for user capacity, with, for example, EVDO (Evolution-Data Optimized), HSPA (High Speed Packet Access), LTE (Long Term Evolution), WiMax (Worldwide Interoperability for Microwave Access), DOCSIS, DSL, and Wi-Fi (Wireless Fidelity) becoming user capacity constrained. In the wireless case, although network capacity will increase with new higher capacity wireless radio access technologies, such as MIMO (Multiple-Input Multiple-Output), and with more frequency spectrum and cell splitting being deployed in the future, these capacity gains are likely to be less than what is required to meet growing digital networking demand.


Similarly, although wire line access networks, such as cable and DSL, can have higher average capacity per user compared to wireless, wire line user service consumption habits are trending toward very high bandwidth applications and content that can quickly consume the available capacity and degrade overall network service experience. Because some components of service provider costs go up with increasing bandwidth, this trend will also negatively impact service provider profits.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.



FIG. 1 illustrates a secure execution environment for device assisted services in accordance with some embodiments.



FIG. 2 illustrates another secure execution environment for device assisted services in accordance with some embodiments.



FIG. 3 illustrates another secure execution environment for device assisted services in accordance with some embodiments.



FIG. 4 illustrates another secure execution environment for device assisted services in accordance with some embodiments.



FIG. 5 illustrates another secure execution environment for device assisted services in accordance with some embodiments.



FIG. 6 illustrates another secure execution environment for device assisted services in accordance with some embodiments.



FIG. 7 illustrates another secure execution environment for device assisted services in accordance with some embodiments.



FIG. 8 illustrates another secure execution environment for device assisted services in accordance with some embodiments.



FIG. 9 illustrates another secure execution environment for device assisted services in accordance with some embodiments.



FIG. 10 illustrates another secure execution environment for device assisted services in accordance with some embodiments.



FIG. 11 illustrates another secure execution environment for device assisted services in accordance with some embodiments.





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.


In some embodiments, security techniques for device assisted services are provided. In some embodiments, secure service measurement and/or control execution partition techniques for device assisted services are provided. In some embodiments, a secure execution environment for device assisted services is provided. In some embodiments, a secure stack for device assisted services is provided. In some embodiments, a secure memory for device assisted services is provided. In some embodiments, a secure modem for device assisted services is provided (e.g., providing a secure communication link between the modem/modem driver and a service processor and/or agent on the device, such as a communications device or an intermediate networking device). In some embodiments, one or more secure monitoring points for device assisted services are provided. In some embodiments, one or more secure monitoring points with verification for device assisted services are provided (e.g., a secured monitoring point can be provided in a modem, which communicates securely to a secured execution environment in a CPU/processor, which can then verify such service usage measures). In some embodiments, a secure bus for device assisted services is provided. In some embodiments, a secure execution environment in the CPU/processor for device assisted services is provided. In some embodiments, secure access to a secure execution environment(s) for device assisted services is provided (e.g., securing communication from a bottom of the stack, such as modem drivers, which require credentials to access the bus as controlled by a service processor or secure agent on the device, and in which the traffic on the bus is encrypted). In some embodiments, various secure execution environments for device assisted services are provided using various hardware partition techniques (e.g., secure memory, secure modems, secure memory partition(s) in the CPU/processor), as described herein.


In some embodiments, device assisted services (DAS) provide for one or more of device based service usage measurements, service usage policy implementation, service usage accounting, service usage control, and any of the other functions described in various embodiments that assist, replace, and/or augment network based functions. For example, various DAS embodiments perform one or more of the following: facilitate and control activation to one or more access service networks; measure access and/or service usage on one or more access networks; control access and/or service usage on one or more access networks; account for different types of service usage on one or more access networks; implement quality of service (QOS) controls, collect and report QOS traffic demand, aggregate multiple device QOS demand reports to assess a measure of overall network QOS demand, and/or facilitate QOS resource allocation; and/or facilitate roaming between access networks. There are many more functions and embodiments for DAS as described with respect to various embodiments.


In some embodiments, various program/functional elements that perform the functions to implement various DAS embodiments are referred to herein as DAS agents or device assisted service agents, or in some embodiments, more specific terms are used to be more descriptive in specific examples. In some embodiments, device assisted service agent functions include service measurements and/or service measure recording and/or service measure reporting (e.g., to the service controller, the device, the user, or other device agents) and/or service measure synchronization (e.g., between device and network). In some embodiments, device assisted service agent functions include service usage controls and/or service usage control policy settings. In some embodiments, service usage controls include one or more of network authorization, network authentication, network admission, access control, service usage activity classification, allowing or disallowing one or more service usage activity and traffic shaping for one or more service usage activity.


In some embodiments, device assisted service agent functions include one or more of the following: reporting service usage to QOS control elements in the network, receiving QOS assignment from the network, reporting QOS assignments to the network, and/or communicating with QOS service reservation elements in the network. In some embodiments, device assisted service agent functions include one or more of implementing QOS service controls on the device based on one or more of the following criteria: fair queuing of service usage activities, differentiated QOS based on an assigned QOS hierarchy of service usage activities, service usage activity QOS assignments from the network for one or more service usage activities, service usage activity policy directives from the network for one or more service usage activities.


In some embodiments, a service control link is used for communication between the device assisted service agents and the service controller. In some embodiments, the service control link is a secure link (e.g., an encrypted communication link).


In some embodiments, the device assisted service agent functions include device assisted service system communication, measuring and/or recording and/or reporting and/or synchronizing service measures, observing communicating information for service control integrity, communicating information for service control policy instructions and/or settings, or updating device assisted software and/or agent settings.


In some embodiments, device assisted service on the device includes the following: service measurements, service controls, user interface and usage reporting, user policy options, accept policy instructions, protected execution partition provided to prevent hacking, malware, errors, and other security techniques. In some embodiments, device assisted service on the server includes one or more of the following: set policy, set configurations, install/update agents, check usage versus policy, check proper operation of agents, synchronize usage from network to device, and other verification techniques. For example, when errors in policy enforcement are detected, servers can perform actions to either further observe, quarantine, or suspend the device.


In some embodiments, a control server/control service network element receives service measures from the device. In some embodiments, the control server/control service network element receives service measures from the network. In some embodiments, the control server/control service network element sets policies and manages service across multiple networks (e.g., while one modem is shown in various figures, multiple modems can be employed for multiple networks with consistent service usage measures, service controls, QOS controls, UI (User Interface), user preferences, user usage reporting, and/or other settings/controls across different networks).


In some embodiments, traffic type refers to one or more of the following: best effort network traffic, real-time traffic (e.g., live voice such as VOIP, live video, etc.), streaming traffic, multi-cast traffic, uni-cast traffic, point to point traffic, file types, traffic associated with an application, real time traffic, traffic with an assigned priority, traffic without an assigned priority, and traffic for a certain network.


In some embodiments, service usage activity refers to a usage of service by a device. In some embodiments, service usage activity can be one or more of connection to an access network, connection to certain destinations, URLs or addresses on a network, connection to the network by one or more applications, transmission of certain types of traffic, a type of transaction based service, a type of advertising based services, or a combination of one or more of the following: an application type, a network destination/address/URL, a traffic type, and a transaction type.


In some embodiments, protection of the device assisted service agents/functional elements to protect the functions that perform the device assisted functions is provided with a protected execution partition on the CPU (Central Processor Unit), APU (Auxiliary Processor Unit), or another hardware based processor. For example, such hardware protected execution capabilities in the CPU, APU, or other processor can be combined in some embodiments with either OS software functions or other native mode software functions to create secure program execution partitions as described herein. In some embodiments, the term host is used to refer to the hardware and firmware and/or software system that executes the device applications and networking stack. In some embodiments, some of the device assisted service agents/functions are implemented in a modem execution partition environment.



FIG. 1 illustrates a secure execution environment 100 (e.g., for a communications device) for device assisted services in accordance with some embodiments. As shown in FIG. 1, the device execution environments include program/functional elements for a communications (e.g., a communications device can be an intermediate networking device, such as 3G/4G WWAN to WLAN bridges/routers/gateways, femto cells, DOCSIS modems, DSL modems, remote access/backup routers, and other intermediate network devices, or a mobile communications device, such as a mobile phone, a PDA, an eBook reader, a music device, an entertainment/gaming device, a computer, laptop, a netbook, a tablet, a home networking system, and/or any other mobile communications device) device that utilizes the modem subsystems #1 (125) through #N (127) to connect to one or more of the access networks #1 (136) through #N (138). In some embodiments, a communications device includes multiple program execution partitions. As shown in FIG. 1, four execution partitions are provided: an application execution partition 102 in which, for example, application programs execute, a kernel execution partition 112 in which, for example, the lower level drivers and basic low level OS programs execute, a protected device assisted service (DAS) execution partition 114 (also referred to as protected DAS partition) in which, in some embodiments, some or all of the device assisted service agents and/or functions execute, and a modem execution partition 124 in which, for example, the modem program elements execute and, in some embodiments, some or all of the device assisted service agents and/or functions execute. In some embodiments, each of these execution partitions are optimized for different software functions, each providing programs with the basic physical memory, data memory, CPU or APU or modem processor execution resources, high level and/or low level OS, memory management, file storage, I/O device resources (e.g., user interface (UI), peripherals, etc.), network communications stack, other device resources, and/or other resources that are required or used for operation of the programs. The collection of these hardware and software resources for the CPU or APU is sometimes referred to herein with the term host.


As shown, FIG. 1 illustrates an application execution partition 102 and a kernel execution partition 112, which are shown as separate partitions within the device execution environments. For example, this separation is based on the manner in which “kernel programs” (e.g., drivers and network stack, etc.) are commonly supported as compared to “application programs” (e.g., browsers, word processors, user interfaces, etc.) within the context of several different popular operating systems (OS) (e.g., Windows, UNIX, Linux, MAC OS, certain mobile device OSs, certain embedded device OSs, etc.). In some embodiments, this functional separation is not required, and, in some embodiments, other functional separations are supported.


As shown in FIG. 1, protected device assisted service agents, such as the protected DAS partition device assisted service agents 110, execute in the protected DAS partition 114 while unprotected device assisted service agents and/or OS networking stack elements and applications (e.g., applications 106A through 106C) execute outside of the secure device assisted service execution partition 114, such as the application partition device assisted service agents 104 and the OS networking stack and/or kernel partition device assisted service agents 108. For example, the protected DAS partition 114 can make it more difficult for a hacker, malware or system errors to compromise, attack or modify the device assisted service measurements, service policy implementation or service usage control operations on the device (e.g., communications device). In some embodiments, the protected DAS partition 114 need not support open access to all programs and OS elements so that it can be easier to protect. Also, as shown, a bus driver 116 in the application execution partition 102 provides for communication with a modem bus 120, which is in communication with a bus driver 121 in the modem execution partition 124. The protected DAS partition also includes a host service control link 118, which facilitates communication with a host secure channel 150 as shown.


In some embodiments, the protected DAS partition 114 is a protected execution partition on the main device that is supported by certain configurations in the host (e.g., a secure virtual execution environment or a separate hardware security function). For example, this protected execution partition can be used to provide added service measurement integrity and/or service control integrity for a device assisted service enabled device. In some embodiments, as described herein, the operating system (OS) also performs a role in establishing the protected execution partition for secure operation of device assisted services, and, in some embodiments, this role is performed by native software or firmware operating on secure hardware elements.


In some embodiments, the DAS agents responsible for maintaining service control integrity execute in the protected DAS partition 114. For example, the protected DAS partition device assisted service agents 110 can include one or more of the following: one or more service usage measurement functions; some or all of the device networking stack functions that are monitored and/or controlled by the device assisted services system; device drivers that interface to an OS networking stack to observe or manipulate stack traffic; access control integrity functions; service policy control functions; service UI functions; application identification functions, and/or functions to classify service usage activities by combinations of application, address/URL and/or traffic type; modem bus driver functions; and/or modem data encryption functions to prevent other unauthorized programs from bypassing the device assisted service measurements and/or controls by directly accessing the modem around the stack. In some embodiments, the system designer or a given set of design criteria determine which of the various described device assisted agent functions should be executed in protected DAS partition 114 to strengthen the service control integrity for the system.


In some embodiments, the device operating system provides for the protected DAS partition 114 in addition to conventional security features available in the operating system. In some embodiments, the protected DAS partition 114 provides an execution partition with increased program execution protection in which, for example, service measurement and/or service control programs (agents) can execute in a mode that provides for higher access control integrity (e.g., proper service usage reporting and/or service measurement and/or service control system operation with increased protection from attacks, errors, malware, etc.). In some embodiments, a hardware assisted secure execution partition provides for increased program execution protection for device assisted service agent functions.


In some embodiments, a service control link (e.g., host service control link 118 via host secure channel 150 to network service control link 152) is used for communication between the device assisted service agents and a service controller 122. In some embodiments, the service control link is a secure link (e.g., an encrypted communications link). In some embodiments, an encrypted secure control link can be implemented over the higher layers of the network stack (e.g., TCP, HTTP, TLS, etc.), and, in some embodiments, the encrypted link can be implemented over lower layers in the network stack, such as the IP layer or the access network layers (e.g., the WWAN device management channels or signaling layers). In some embodiments, service control link security is provided at least in part by encrypting link traffic between the device and the service controller 122. In some embodiments, service control link security is provided at least in part by running the service control link device side program agents in the protected DAS partition 114. In some embodiments, service control link security is achieved at least in part by restricting access to the service control link to certain device assisted service agents that are allowed to communicate with the service controller 122. In some embodiments, the agents that are allowed to communicate with the service control link perform such communications using encrypted communications. In some embodiments, the encrypted communications is accomplished with a secure inter-agent communication bus on the device. In some embodiments, the only mechanism for modifying the configuration of the operation, execution code, execution instructions and/or settings of certain device assisted service processor agents executing in the protected DAS partition 114 is through the service control link. In some embodiments, the only mechanism for modifying any program elements executing inside the protected DAS partition 114 is through the service control link so that only the service controller 122 may modify the operation or service policy settings for the agents located in the service measurement and/or service control execution partition.


As shown in FIG. 1, various server functions within the service controller 122 are provided. In some embodiments, a service history server 158 collects service usage measures from one or more of the device DAS agents and/or from various sources of potential network based service usage databases, such as the access network service usage 142 (e.g., carrier charging data record (CDR) systems), private network service usage 144 (e.g., MVNO or enterprise network service usage accounting system), and/or billing, mediation service usage log, reconciliation 148 (e.g., service provider billing or mediation system). In some embodiments, an access control integrity server 156 is used to compare various access control verification checks to ensure that the device assisted service agents have not been compromised. The various embodiments used in the access control integrity server 156 to perform these integrity checks are described with respect to various embodiments. Some embodiments include comparing device based service usage measures versus the service usage that should result if the desired service policy were properly implemented, comparing device based service usage measures versus the service usage that should result if the desired service policy were properly implemented with device based service usage measures that are executing in the protected DAS partition 114 and/or the modem execution partition 124, comparing network based service usage measures versus the service usage that should result if the desired service policy were properly implemented, and comparing network based service usage measures with device based service usage measures. In some embodiments, a policy control server 154 stores policy settings for the various service plans that can be implemented on the device, and communicates the appropriate policy settings to the appropriate device DAS agents.


In some embodiments, the service controller 122 has secure access to service measures, service control settings, software images, software security state(s), and/or other settings/functions, for example, by virtue of the hardware enhanced execution partition and the secure channel into the protected DAS partition 114. For example, the host secure channel 150 can be encrypted employing keys that are public/private or point to point private. Also, other link security, for example, can be implemented as described herein. For example, servers can ensure that the link remains authenticated and information is validated. For example, the service controller can perform one or more of the following verification techniques: compare the monitored service usage versus the policy, compare the monitored service usage versus other service usage measures and/or combined with various other network service usage measures.


In some embodiments, the protected DAS partition 114 includes a host service control link 118 as shown in FIG. 1 that works in combination, that is, in communication with a network service control link 152 to send and receive secure messages between the service controller and the host via a host secure channel 150. In some embodiments, the protected DAS partition 114 only accepts new program images from the service controller 122 and not from local programs or disks. In some embodiments, the protected DAS partition 114 cannot communicate with other applications and/or kernel programs. In some embodiments, the protected DAS partition 114 can also communicate with other applications and/or kernel programs but only to gather information or to set settings. In some embodiments, the protected DAS partition 114 can also communicate with other applications and/or kernel programs but only through a restricted encrypted communication bus that restricts outside program access to protected programs or agent functions, and can also restrict the agents inside of the protected partition from accepting unauthorized information or code modifications from programs outside the protected partition. Various other security techniques can be provided for the DAS execution environments as will be apparent to one of ordinary skill in the art in view of the embodiments described herein.


In some embodiments, the protected DAS partition 114 is created by employing CPU or APU hardware security features in addition to or in alternative to other software security features (e.g., virtual execution partitions) that can be provided by the operating system and/or other software. In some embodiments, the host hardware security features are provided with the operating system secure kernel operating modes. In some embodiments, the host hardware security features used for secure device assisted service execution partition operation are independent of the operating system kernel (e.g., implemented in secure program partitions in a separate secure program area not directly controlled by the OS and/or software that does not have access to the partitions).


In some embodiments, the hardware security features that support the protected DAS partition 114 include preventing other elements on the device from writing and/or reading certain memory areas reserved for device assisted service agents and/or control link functions. In some embodiments, this memory protection function is accomplished by locating the memory in a secure hardware partition that cannot be accessed by unauthorized device program elements (e.g., a separate bank of isolated memory space within the host CPU). In some embodiments, this memory protection function includes encrypting traffic to and from memory so that only authorized device program elements posses the counterpart encryption capability to access the memory. In some embodiments, the mechanism to access device assisted service agent memory and/or certain data elements is restricted to authorized device assisted service agents and/or the service controller via the service control link so that unauthorized program elements on the device cannot alter the device assisted service agent code and/or operation.


In some embodiments, the hardware security features that support the protected DAS partition 114 includes preventing unauthorized elements on the device from accessing the protected storage and/or file storage (e.g., “protected storage,” such as disk storage, non-volatile memory, embedded non-volatile memory, such as NVRAM, flash or NVROM, securely embedded non-volatile memory, and/or other types of storage) that is used to store the device assisted service agent programs. In some embodiments, this protected storage is maintained within the secure hardware partitions that also execute one or more of the device assisted service agents so that only authorized device assisted service agents have access to the storage locations. In some embodiments, the images that are stored in such protected file storage must be properly encrypted and signed for a boot loader to authorize loading the device assisted service agent programs into execution memory, and in some embodiments, if the images are not properly signed then an access control integrity error is generated and/or the program is not loaded. In some embodiments, such properly signed DAS images can only be obtained from the service controller. In some embodiments, such DAS images can only be loaded into protected file storage by the service controller. In some embodiments, the hardware security features that prevent unauthorized elements on the device from accessing the protected file storage include encrypting all traffic to and from the secure storage so that only authorized device program elements possess the counterpart encryption capability to access the storage. In some embodiments, access or access rights to re-program a device assisted service agent program store is restricted to the service controller via the service control link so that unauthorized program elements on the device are not authorized to alter the device assisted service agent code and/or operation.


In some embodiments, the hardware security features that protect device assisted service agent storage include a protected DAS partition in which an access control integrity agent function is isolated from other device program elements, and a secure service control link is also isolated in a similar manner, and the access control integrity agent scans the execution memory, data memory and/or file storage used by one or more device assisted services agents to measure and/or control services. In some embodiments, the purpose of the scan is to detect changes to the device assisted service agent code and/or data. In some embodiments, the purpose of the scan is to detect other unauthorized program elements or data that may be present in reserved or protected areas used for device assisted service agent execution. In some embodiments, reports of such scan audits are reported over the service control link to the service controller for further processing by use of cloud based resources to identify access control integrity violations. In some embodiments, the access control integrity agent functions include one or more of hashing other device assisted security agents, querying other device assisted security agents, observing the operation of other device assisted security agents or monitoring service measures and then either evaluating the results locally on the device to determine if they are within pre-defined allowable parameters or sending at least some of the results to the service controller for further analysis via the service control link. In some embodiments, the scan audits are compared with earlier versions of the scans to compare code configuration or operational characteristics. In some embodiments, the scan audits are compared against known databases for the code or operational characteristics that should be present in the DAS agents.


In some embodiments, an access control integrity agent, or a new version of the access control integrity agent can be downloaded by the service controller over the secure service control link. For example, this technique provides for a real time assessment of device service control security state as described above in the event that corruption or compromise of the secure device assisted service agent(s) has occurred. In some embodiments, the access control integrity agent that is downloaded can have a different configuration and/or operation than any agent previously loaded onto the device so that it is difficult or impossible for a hacker or malware to spoof the operation of the agent in a short period of time. For example, by requiring the agent to report security assessments back to the server in a period of time that is typically less than what is required to spoof the agent, the agent will either report back an accurate assessment of device status or will be blocked by a hacker or malware, and both of these conditions can provide the information required to take action if the device assisted services system has been corrupted or compromised.


In some embodiments, the protected DAS partition and/or the modem execution partition can be used to securely store some or all of the device credentials that are used for one or more of device group association, activation, authorization to the access network and/or the DAS network, service level, and service usage accounting and/or billing.


In some embodiments, the modem subsystem also includes DAS elements that strengthen the access control integrity of the DAS system. As shown in FIG. 1, one or more modems can include, in some embodiments, DAS agent functions labeled modem partition DAS agents 126. The modem execution partition 124 of the modem sub system #1 (125) of the modem execution partition 124 includes modem partition DAS agents 126 in communication (e.g., secure communication, such as using encrypted communications) with a modem 128 and a modem service control link 130, which is in communication with the network service control link 152 via the modem secure channel #1 (132), as shown. Also, the modem 128 is in communication (e.g., secure communication, such as using encrypted communications) with the access network #1 (136), which is in communication with the access network service usage 142 and the Internet 140, which is in communication with a private network 146, which is in communication with the private network service usage 144, as shown.


Example embodiments for DAS agent functions that execute in the modem execution partition include modem encryption and modem service usage measures. In other embodiments, the modem execution partition can also include higher level DAS agent functions, such as stack traffic classification, stack manipulation, access control, and/or traffic control. For example, the modem execution partition can also include a full service processor that is fully capable of managing all aspects of service usage measurement and/or service control. It will now be apparent to one of ordinary skill in the art that the modem execution partition can employ a number of the service security embodiments described in the context of the protected DAS partition, for example, to enhance the service integrity of the DAS system. For example, the DAS agents on the modem can be stored in an encrypted and signed format on non-volatile (NV) memory on the modem that is only accessible by the network service control link or by a local secure control link from the protected DAS partition to the modem execution partition. As shown in FIG. 1, a separate secure modem control channel (e.g., modem secure channel #1 (132) through modem secure channel #N (134)) that is distinct from the host secure control channel 150 is provided. This separate modem control channel can either be implemented over the higher network layers of the device or over the lower access network layer so that special access to access network resources is required to even connect to the modem DAS agents 126 thereby further enhancing service control related security.


In some embodiments, the protected DAS partition provides for performing the DAS agent functions required for parental controls, enterprise WWAN management controls or roaming controls, and/or usage reporting in the protected execution space. In view of the DAS embodiments described herein, it will now be apparent to one of ordinary skill in the art how to implement such protected controls for these various and other application scenarios.


In some embodiments, a protected DAS partition provides for performing a virtual machine (VM) on top of a secure machine. The device application OS that is accessible by software that can be installed without special permissions can be isolated from the secure hardware and/or OS that is running under the VM. Using these techniques, malware can be “cocooned in” on the VM OS rather than “walled out” as discussed with respect to various embodiments described herein.


In some embodiments, communication between program/functional elements outside of the protected DAS partition to DAS agents inside the protected DAS partition is controlled by a secure encrypted channel. In some embodiments, only programs/functions that have access to communicate with DAS agents are allowed to do so, and, in some embodiments, even these outside programs are not allowed to modify the DAS agent configuration, only to report information and/or receive information.


For example, various embodiments can be used to connect to multiple access networks through multiple modems, with each modem potentially being associated with a different set of DAS service policies corresponding to the different types of access networks supported. In some embodiments, such as for 3G/4G modems, WWAN/WLAN modems, and various other multiple modem embodiments, the multiple modems can also be provided on the same multi-mode modem subsystem rather than on different modem subsystems.


In some embodiments, the various techniques and embodiments described herein can be readily applied to intermediate networking devices as will now be apparent to one of ordinary skill in the art. For example, an intermediate networking device can includes some or all of the DAS agents for managing, controlling, and/or measuring service usage for one or more devices in communication with a wireless network via the intermediate networking device, in which the DAS agents can be executed in secure execution environments or secure execution partitions using the various techniques described herein. In some embodiments, intermediate networking devices include, for example, WWAN/WLAN bridges, routers and gateways, cell phones with WWAN/WLAN or WWAN/Bluetooth, WWAN/LAN or WWAN/WPAN capabilities, femto cells, back up cards for wired access routers, and other forms/types of intermediate networking devices.



FIG. 2 illustrates another secure execution environment 200 for device assisted services in accordance with some embodiments. In particular, FIG. 2 illustrates an embodiment in which DAS agents do not actually replace the OS network stack elements, but instead one or more DAS agents include device driver programs that interface into the network stack and pass (e.g., securely communicate) traffic information or actual traffic back and forth with the stack. These device driver interface constructs are labeled OS driver framework and interface 208 as shown in FIG. 2. Example OS system constructs that provide for this type of architecture for DAS agents include Windows NDIS and/or TDI drivers, Windows Filter Platform (WFP), Berkeley Packet Filter, ipfw (e.g., a BSD packet filter that can be used for various OSs, such as Unix, Linux, MAC OS), and/or other platforms/programs performing these or similar functions. While these OS stack options are not secure in themselves, if the drivers that interface with them are secured as illustrated in FIG. 2 by executing the drivers in the protected DAS partition 214, then higher overall access control integrity/security levels can be achieved.


As shown in FIG. 2, the service measurement and/or policy control drivers 210 executed in the protected DAS partition 214 represent the DAS drivers that interface to the OS stack device driver interface constructs labeled OS driver framework and interface 208 executed in the kernel execution partition 212, which are in communication with/interface with OS Stack API(s) 207. As also shown, applications, such as applications 106A through 106C execute in the application execution partition 202. In some embodiments, service access control integrity is further enhanced by placing additional measurement points outside of the network stack, so that, for example, if the network stack service usage reporting is hacked, corrupted, and/or compromised, there is a secure additional or back-up service measure located on the device and/or in the network (e.g., modem agent 226 as shown in FIG. 2, which provides a service measurement point in the modem for measuring service usage by the device, and as shown also provides for secure communication with the modem agent 226 using modem encryption 225). For example, the service measure provided by the modem agent 226, modem encryption 225, and/or modem bus 120 functions shown in FIG. 2 can be executed in a protected partition (e.g., modem execution partition 124 as shown in FIG. 2 can be implemented as a secure or protected partition using the various techniques described herein).



FIG. 3 illustrates another secure execution environment 300 for device assisted services in accordance with some embodiments. As shown, some stack elements are executed in the kernel execution partition 312 and some stack elements are executed in the protected DAS execution partition 314. In some embodiments, the DAS agents 104 executed in the application execution partition 302 are directly monitoring and/or controlling stack traffic by intercepting it and imposing additional traffic measurement and/or filtering. Examples of such techniques are described herein with respect to various embodiments. As shown in FIG. 3, the network stack elements 308 are the OS stack elements that reside in the kernel execution partition 312 and the protected DAS network stack elements 310 are the stack elements that reside in protected DAS execution partition 314. For example, as some or potentially all of the stack network traffic processing resides in the protected DAS execution partition 314, a high level of service control integrity can be maintained using these techniques. For example, the modem bus driver 121 can be executed in a secure execution partition, such as modem execution partition 324, which can be implemented as a secure execution partition using the various techniques described herein, or the modem bus driver 121 can be executed in the protected DAS execution partition 314, so that unauthorized programs can be blocked from accessing the access network through the modem.


In some embodiments, the entire stack is executed in the protected DAS execution partition 314 with only a stack API executing in kernel execution partition 312. Various other embodiments involve implementing a minimum (e.g., in terms of a number of agents and/or functionality) in the protected DAS execution partition 314 required to secure a service measure that can be used to confirm the integrity of the service policy implementation (e.g., as described with respect to various other embodiments disclosed herein). As will now be apparent to one of ordinary skill in the art, various combinations of stack processing functions can be implemented in a secure host execution partition to strengthen the service measurement and/or service control integrity of the DAS system using the techniques and/or similar techniques to the various techniques described herein.


In some embodiments, the stack elements implemented in the protected DAS execution partition can include stack API, sockets layer, TCP, UDP, service measurements at one or more points in the stack, IP layer processing, VPN/IPSEC, PPP, access control, traffic classification, traffic queuing, traffic routing, traffic QOS, traffic demand reporting to QOS allocation servers, traffic statistics reporting to the QOS servers, traffic QOS reservation requests including by traffic type or app type or service priority to the servers, traffic throttling, traffic statistics gathering, traffic QOS priority identification, modem drivers, modem data encryption, and/or other stack element functionality or features.


In some embodiments, the above discussed service control mechanisms are controlled by policy commands received over the service control link from the servers or other authorized network elements. In some embodiments, the device also reports usage measures to servers or other authorized network elements. In some embodiments, the device also reports QOS demand to the servers or other authorized network elements and/or accepts QOS instructions from the servers or other authorized network elements. In some embodiments, the device reports traffic statistics, projected traffic demand, application usage, projected QOS demand can all be reported to the servers or other authorized network elements for the purpose of provisioning the right amount of data bandwidth and traffic priority to the device, and the servers or other authorized network elements aggregate such reports from many different devices to project needed allocations across the entire network and make global bearer channel level or base station level decisions bearer channel allocation and bearer channel QOS allocation decisions, which can also be tied into a bearer channel provisioning, or bearer channel QOS provisioning apparatus or other authorized network elements located in the access network.


For example, as will now be apparent to one of ordinary skill in the art in view of the various embodiments described herein, additional security measures, can be added in some embodiments to augment the secure service partitioning, including, for example, access control integrity checks. For example, in addition to the service control policy instructions that can be received from the servers or other authorized network elements, an intermediate policy control agent can be present to make additional higher level decisions on how instantaneous policy should be implemented.


As shown in FIG. 3, the modem control link, shown as modem local channel 330, provides a link from local connection to the host service control link 118, which in turn connects through the host secure channel 150 to the service controller 152. This communication channel can also be implemented or configured to provide for encrypted communication and, in some embodiments, can be used as an alternative to the direct connection from the modem service control link to the network service control link as disclosed with respect to other figures and various embodiments as described herein.


As shown in FIG. 3, the final stack elements that feed or communicate with the modem bus driver 121 are the protected DAS network stack elements 310 located in the protected DAS execution partition 314 (illustrated as a solid line in FIG. 3), or, in some embodiments, can be the network stack elements 308 located in the kernel execution partition 312 (illustrated as a dashed line in FIG. 3). In some embodiments, these final stack elements feed or communicate with the modem subsystem 125. In some embodiments, the modem subsystem 125 includes an encrypted link so that the stack elements 310 in the protected DAS execution partition 314 can communicate with the modem 128 but other software programs or hardware elements cannot, for example, thereby preventing the service measures and/or controls from being inappropriately bypassed or otherwise comprised. For example and as similarly discussed above, the modem subsystem 125, for example, can include its own the protected execution partition using various techniques described herein. The modem protected execution partition, for example, can also include a service measure (e.g., modem agent 226 can provide such a service measurement point in the modem subsystem 125, as similarly described above with respect to FIG. 2) to increase service control integrity verification as depicted by service measure. The modem service measure can be included in protected execution partition that can only be accessed by the service controller 122 by way of the modem local channel 330, or the modem service measure can only be accessed by another DAS agent 310 in protected execution partition 314. In some embodiments, the modem local channel 330 is implemented as a secure channel (e.g., an encrypted communication channel between the modem service control link 130 and the host service control link 118). As described herein, the modem driver can reside in protected service execution environment, or the modem traffic can be encrypted within service execution environment. For example, the encryption settings can be controlled by various secure control servers.



FIG. 4 illustrates another secure execution environment 400 for device assisted services in accordance with some embodiments. In particular, FIG. 4 illustrates a direct stack manipulation option performed by the DAS agents executed in the protected DAS execution partition 414, including, as shown, an app(lication) identify agent 420, an access control integrity agent 422, a policy control agent 424, a policy implementation agent 426, a service measure/service monitoring agent 428, a modem encryption agent 430, and a bus driver 432. For example, the policy implementation agent 426 performs access control and/or traffic shaping according a set of service control policies. The service control policies, for example, can be set by the service controller 122 or by the service controller 122 in coordination with the policy control agent 422. As shown the app identify agent 420 is in communication with the various applications 106A through 106C executed in the application execution partition 402. As also shown, the various applications 106A through 106C executed in the application execution partition 402 are in communication with the OS stack and/or stack API(s) 408 executed in the kernel execution partition 412.


In some embodiments, the protected service measure agent 428, the modem encryption agent 430, the modem driver agent 432, the application identifier agent 420, the access control integrity agent 422, and the policy control agent 424 are all implemented in protected DAS partition 414, as shown. In some embodiments, as will now be apparent to one of ordinary skill in the art, a subset of these functions can be implemented in a protected execution partition, such as the protected DAS partition, in various circumstances.



FIG. 4 also similarly shows various embodiments that are available for network based service usage measures and interfacing to the mediation and billing systems, and it should be understood that any or all of the embodiments and figures can be employed in the context of carrier networks, MVNOs, private networks, or open networks supporting enterprise IT manger controls, parental controls, multi-network controls, and/or roaming controls.



FIG. 5 illustrates another secure execution environment 500 for device assisted services in accordance with some embodiments. In particular, FIG. 5 is similar to that FIG. 4 except that FIG. 5 illustrates a modem service control link 132 that is connected directly to the service controller 122 via the network service control link 152 (e.g., via a modem secure channel). In some embodiments, a modem control link for DAS is established locally on the device or through an entirely different control channel, which, in some embodiments, provides enhanced security as discussed herein (e.g., it is very difficult to hack a service usage measure or service control that cannot be accessed on the device).



FIG. 6 illustrates another secure execution environment 600 for device assisted services in accordance with some embodiments. In particular, FIG. 6 illustrates a policy implementation agent 616 that includes the entire networking stack running in protected execution partition 614 and an OS stack API 608 that includes an application identifying function 620 in the kernel execution partition 612.



FIG. 7 illustrates another secure execution environment 700 for device assisted services in accordance with some embodiments. In particular, FIG. 7 illustrates DAS agents that do not replace the OS network stack elements, but instead one or more DAS agents are comprised of device driver programs that interface into the network stack and pass traffic information or actual traffic back and forth with the stack. These device driver interface constructs are labeled OS driver framework and interface 722 in FIG. 7 as similarly shown in and described with respect to FIG. 2, along with OS stack API 708, which includes application identifier function 720 as similarly discussed above with respect to FIG. 6, and are executed in kernel execution partition 712. Also, as shown, application partition DAS agents 104 are executed in application execution partition 702. The main difference between the embodiment in FIG. 7 and that shown in and described with respect to FIG. 2 is that the service measure agent 428, modem encryption agent 430, and modem driver agent 432 are executed in the protected DAS partition 714, as shown in FIG. 7. For example, this provides for enhanced service control security as described herein with respect to various embodiments.



FIG. 8 illustrates another secure execution environment 800 for device assisted services in accordance with some embodiments. In particular, FIG. 8 illustrates a more simplified embodiment that is similar to that of FIG. 7. In FIG. 8, only an access control integrity agent 422 and a service measure 428 are executed in protected DAS partition 814, and the bus driver 432 and the service measurement and/or policy control drivers 210 are executed in the kernel execution partition 712. This embodiment illustrates that provided that at least one protected service measure is provided on the device, then the DAS service control integrity can be very high. For example, if it is not possible to access the program code or control traffic for the service measure agent 428, and the host service control link 118 except through the encrypted control channel from the service controller 122, then this simplified configuration can be almost as secure as that possible with network based service measures. It will now be apparent to one of ordinary skill in the art that this technique similarly applies to a service measure and control link similarly implemented in a protected modem execution partition 324. In some embodiments, the access control integrity agent 422 provides additional security, for example, in the event that the protected DAS partition 814 is breached or compromised.



FIG. 9 illustrates another secure execution environment 900 for device assisted services in accordance with some embodiments. In particular, FIG. 9 illustrates an embodiment similar to that of FIG. 8 except that, in particular, in addition to the service measure being executed in protected DAS partition 914, the modem encryption agent 430 is also implemented in/executed in the protected DAS partition 914. For example, this prevents unauthorized software from defeating the service measurements and/or service controls by going around the network stack directly to the modem.



FIG. 10 illustrates another secure execution environment 1000 for device assisted services in accordance with some embodiments. In particular, FIG. 10 illustrates an embodiment similar to that of FIG. 9 except that, in particular, there are additional app partition DAS agents 104 executing in the application execution partition 702. For example, this illustrates that some DAS agents can be implemented in application space (e.g., UI agent, policy control agent, and various other DAS agents as described herein) while still maintaining a high level of service measurement and/or control security as long as there are a few key measures and/or controls implemented in protected execution partitions using the various techniques described herein.



FIG. 11 illustrates another secure execution environment 1100 for device assisted services in accordance with some embodiments. In particular, FIG. 11 illustrates how the server cloud can be assisted by the on board access control integrity agent to detect tampering with other service measurement(s) and/or control agent(s), or to protect the service measurement and/or control system from being attacked by malware and/or otherwise comprised. As shown, the access control integrity agent 422 executes inside the protected DAS partition 1114 and is in communication with file storage 1130 (e.g., for persistently maintaining device status and/or other settings or status or monitoring information). The access control integrity agent 422 performs the various access control integrity check functions as, for example, described herein with respect to various embodiments, and, in some embodiments, in coordination with the servers over the secure control channel (e.g., host secure channel 150). In some embodiments, the access control integrity agent 422 can send the service controller 122 information about the other service measurements and/or control agents so that the service controller 122 can determine if the agents are working properly or have been tampered with or otherwise compromised. For example, such information can include sections of code, hashes, code segments, code variations from a previous image, code variations from a historical image, responses to queries, checksums, observations of operating behavior or patterns, service usage, policy implementation behavior, and/or other information that may be indicative of tampering, corruption, and/or a compromise of any of the device agents/measures. In some embodiments, the access control integrity agent 422 checks the operating environment for signs of malware signatures, or sends application and/or driver information or other information about the operating environments to the servers for further processing to detect malware. In some embodiments, the access control integrity agent 422 performs basic operations on protected DAS partition memory, kernel execution partition memory areas, application execution partition memory areas, on disk storage areas or on other file storage areas to detect known malware hashes or signatures, etc., or the access control integrity agent 422 can send the hashes to the servers for comparison against malware databases (e.g., to compare against signatures for known malware or for further behavioral based or other security/malware detection techniques).


In some embodiments, the DAS system is implemented in a manner that is robust to losses in service control link (e.g., coverage outages on a WWAN link or loss of connection on a wired link). In some embodiments, the DAS system to be implemented in a manner that is robust to one or more server elements in the service controller going offline or failing for any reason. The following embodiments facilitate these techniques, as described below.


In some embodiments, it is advantageous for one or more of the device assisted service agents to maintain a record of the service usage reports and/or other reporting that is provided to the service controller regarding device service control state (e.g., present service plan settings, current service usage policy settings, current user preference settings, current DAS settings, current encrypted control channel and/or local encrypted communication channel key information, current DAS agent status reports, current DAS agent security state reports, current ambient service usage and/or transaction records, current service control integrity threat reports, user status information, device status information, application status information, device location, device QOS state, and/or other state and/or settings information). In addition to such information that exists on the device and is reported to the service controller, additional service information can be derived and recorded in the service controller, such as information received from outside the device and/or analysis of the device reported information (e.g., network based service usage measures, analysis of device service usage, comparison of device reports with other information, analysis of access control integrity agent reports, information received from roaming networks, information input to the service controller from parental control terminals, enterprise control terminals, virtual service provider control terminals, access network authorization information, service integrity violation level, and many other types of information used to properly measure and/or control the device services). For example, the information reported from the device and received or derived outside the device that is required to adequately define the actions needed from the service controller to maintain proper DAS system operation is sometimes referred to herein as the “device service state.”


In some embodiments, the service controller functions are highly scalable and can be executed on a number of hardware and software platforms (e.g., different virtual machines in a server, different servers in a data center, or different servers located in different data centers). For example, in such embodiments the service controller can be designed so that the programs that execute the various service controller server functions can derive all of the information necessary to properly manage the device at any moment in time by knowing past device service state and current service state that adequately define the next set of actions the service controller needs to implement to properly maintain the DAS system operation. By designing the system in this way, if the server that is running the service controller server functions for any given device in question were to go down or become disconnected from the device, then another server could later resume proper operation of the DAS system by assigning another service controller server function to the device and recovering or restoring the necessary past device service state and the necessary current device service state.


For example, this can be accomplished in some embodiments as described below. The service controller saves the current device service state into a common database (e.g., which can be centralized or distributed) that is available to all service controller server functions. The device service state is saved each time the device communicates with the service controller, or at regular time intervals, or a combination of both. The device retains its current and past service state reports even after they are reported at least until the service controller sends the device a message confirming that the service controller has saved a given device service state. Once the device receives this save confirmation for a given device state report then it is no longer required to retain that particular device state report once the device has no further use for it. In this manner, if a service controller server function goes down then a save confirmation for one or more reported device states is not transmitted to the device by the service controller, and the device can retain that report. A server load balancer detects that a given service controller server function has gone down, looks up the devices that were being controlled by that service controller server function, finds that the device in question was one of those devices and re-assigns a new service controller server function (either in the same data center or in another data center) to control the device in question. The newly assigned service controller server function then recovers all past device states that were recorded in the service controller database and are required to properly manage the DAS system, and then asks the device to transmit or re-transmit all device state reports that were not saved in the service controller database. Once the device transmits or re-transmits the requested information, the newly assigned service controller function then has the information it needs to properly manage the DAS system, it saves all the reported device state information, and then sends save confirmations to the device so that the device need no longer retain the older service state reports. The newly assigned service controller server function can then resume the DAS system operation with a set of actions that are identical or very similar to the actions that would have been taken by the original service controller server function if it had not gone down. One of ordinary skill in the art will now appreciate that the above techniques can also be used to accommodate temporary losses in the connection between the device and the service controller. For example, such techniques provide for a highly scalable and robust approach to implement a distributed service controller across multiple data centers for reliable service redundancy. In some embodiments, the past device service state information is saved in the protected DAS execution partition and/or the modem execution partition, for example, so that it is protected from corruption.


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.


INCORPORATION BY REFERENCE

This application incorporates the following provisional and nonprovisional U.S. patent applications by reference: application Ser. No. 12/694,445, filed Jan. 27, 2010, entitled SECURITY TECHNIQUES FOR DEVICE ASSISTED SERVICES; application Ser. No. 12/380,780, filed Mar. 2, 2009, entitled AUTOMATED DEVICE PROVISIONING AND ACTIVATION; Application No. 61/206,354, filed Jan. 28, 2009, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD; provisional Application No. 61/206,944, filed Feb. 4, 2009, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD; provisional Application No. 61/207,393, filed Feb. 10, 2009, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD; provisional Application No. 61/207,739, filed Feb. 13, 2009, entitled SERVICES POLICY COMMUNICATION SYSTEM AND METHOD; and provisional Application No. 61/252,151, filed on Oct. 15, 2009, entitled SECURITY TECHNIQUES FOR DEVICE ASSISTED SERVICES.

Claims
  • 1. A system, comprising: a processor of a communications device configured to: implement a service profile executed at least in part in a secure execution environment for assisting control of the communications device use of a service on a wireless network, wherein the service profile includes a plurality of service policy settings, and wherein the service profile is associated with a service plan that provides for access to the service on the wireless network;operate a host service control link in the secure execution environment to connect securely to a network service controller through a first control channel, the host service control link to receive one or more messages from the network service controller through the first control channel, and based on the one or more messages, to update one or more of the service policy settings;monitor use of the service based on the service profile; andverify the use of the service based on the monitored use of the service;a memory of the communications device coupled to the processor and configured to provide the processor with instructions, the memory comprising a secure partition accessible only from the secure execution environment; anda secure modem subsystem including: a wireless modem to communicate with the wireless network;a modem control link to connect securely to the network service controller through a second control channel.
  • 2. The system of claim 1, wherein the second control channel connects the modem control link to the network service controller through a modem local channel on the communications device, the modem local channel providing secure communication between the modem control link and the host service control link.
  • 3. The system of claim 1, wherein the second control channel is separately secured from the first control channel.
  • 4. The system of claim 1, wherein the secure modem subsystem further comprises a modem agent accessible only by the network service controller through the second control channel.
  • 5. The system of claim 4, wherein the modem agent comprises a service measurement point for use of the service.
  • 6. The system of claim 5, wherein the modem agent communicates a report of the use of the service to the network service controller through the second control channel.
  • 7. The system of claim 6, wherein the processor separately communicates a report of the monitored use of the service from the secure execution environment through the first control channel.
  • 8. The system of claim 1, wherein the one or more service policy settings updated through the host service control link include an access control setting, a traffic control setting, and/or an admission control setting.
  • 9. The system of claim 1, wherein the one or more service policy settings updated through the host service control link include a network or device management communication setting.
  • 10. The system of claim 1, wherein the secure execution environment is implemented at least in part as a hardware partition.
  • 11. The system of claim 1, wherein the secure execution environment is implemented at least in part as a software partition.
  • 12. The system of claim 1, wherein the secure execution environment is implemented at least in part in a virtual machine executed on the processor.
US Referenced Citations (1447)
Number Name Date Kind
5131020 Liebesny et al. Jul 1992 A
5283904 Carson et al. Feb 1994 A
5325532 Crosswy et al. Jun 1994 A
5572528 Shuen Nov 1996 A
5577100 McGregor et al. Nov 1996 A
5594777 Makkonen et al. Jan 1997 A
5617539 Ludwig et al. Apr 1997 A
5630159 Zancho May 1997 A
5633484 Zancho et al. May 1997 A
5633868 Baldwin et al. May 1997 A
5754953 Briancon et al. May 1998 A
5774532 Gottlieb et al. Jun 1998 A
5794142 Vanttila et al. Aug 1998 A
5814798 Zancho Sep 1998 A
5889477 Fastenrath Mar 1999 A
5892900 Ginter et al. Apr 1999 A
5903845 Buhrmann et al. May 1999 A
5915008 Dulman Jun 1999 A
5915226 Martineau Jun 1999 A
5933778 Buhrmann et al. Aug 1999 A
5940472 Newman et al. Aug 1999 A
5974439 Bollella Oct 1999 A
5983270 Abraham et al. Nov 1999 A
6035281 Crosskey et al. Mar 2000 A
6038452 Strawczynski et al. Mar 2000 A
6038540 Krist et al. Mar 2000 A
6047268 Bartoli et al. Apr 2000 A
6058434 Wilt et al. May 2000 A
6061571 Tamura May 2000 A
6064878 Denker et al. May 2000 A
6078953 Vaid et al. Jun 2000 A
6081591 Skoog Jun 2000 A
6098878 Dent et al. Aug 2000 A
6104700 Haddock et al. Aug 2000 A
6115823 Velasco et al. Sep 2000 A
6119933 Wong et al. Sep 2000 A
6125391 Meltzer et al. Sep 2000 A
6141565 Feuerstein et al. Oct 2000 A
6141686 Jackowski et al. Oct 2000 A
6148336 Thomas et al. Nov 2000 A
6154738 Call Nov 2000 A
6157636 Voit et al. Dec 2000 A
6185576 Mcintosh Feb 2001 B1
6198915 McGregor et al. Mar 2001 B1
6219786 Cunningham et al. Apr 2001 B1
6226277 Chuah May 2001 B1
6246870 Dent et al. Jun 2001 B1
6263055 Garland et al. Jul 2001 B1
6292828 Williams Sep 2001 B1
6317584 Abu-Amara et al. Nov 2001 B1
6370139 Redmond Apr 2002 B2
6381316 Joyce et al. Apr 2002 B2
6393014 Daly et al. May 2002 B1
6397259 Lincke et al. May 2002 B1
6401113 Lazaridis et al. Jun 2002 B2
6418147 Wiedeman Jul 2002 B1
6438575 Khan et al. Aug 2002 B1
6445777 Clark Sep 2002 B1
6449479 Sanchez Sep 2002 B1
6466984 Naveh et al. Oct 2002 B1
6477670 Ahmadvand Nov 2002 B1
6502131 Vaid et al. Dec 2002 B1
6505114 Luciani Jan 2003 B2
6510152 Gerszberg et al. Jan 2003 B1
6522629 Anderson, Sr. Feb 2003 B1
6532235 Benson et al. Mar 2003 B1
6532579 Sato et al. Mar 2003 B2
6535855 Cahill et al. Mar 2003 B1
6535949 Parker Mar 2003 B1
6539082 Lowe et al. Mar 2003 B1
6542500 Gerszberg et al. Apr 2003 B1
6542992 Peirce et al. Apr 2003 B1
6546016 Gerszberg et al. Apr 2003 B1
6563806 Yano et al. May 2003 B1
6570974 Gerszberg et al. May 2003 B1
6574321 Cox et al. Jun 2003 B1
6574465 Marsh et al. Jun 2003 B2
6578076 Putzolu Jun 2003 B1
6581092 Motoyama Jun 2003 B1
6591098 Shieh et al. Jul 2003 B1
6598034 Kloth Jul 2003 B1
6601040 Kolls Jul 2003 B1
6603969 Vuoristo et al. Aug 2003 B1
6603975 Inouchi et al. Aug 2003 B1
6606744 Mikurak Aug 2003 B1
6628934 Rosenberg et al. Sep 2003 B2
6631122 Arunachalam et al. Oct 2003 B1
6636721 Threadgill et al. Oct 2003 B2
6639975 O'Neal et al. Oct 2003 B1
6640097 Corrigan et al. Oct 2003 B2
6640334 Rasmussen Oct 2003 B1
6650887 McGregor et al. Nov 2003 B2
6651101 Gai et al. Nov 2003 B1
6654786 Fox et al. Nov 2003 B1
6654814 Britton et al. Nov 2003 B1
6658254 Purdy et al. Dec 2003 B1
6662014 Walsh Dec 2003 B1
6678516 Nordman et al. Jan 2004 B2
6683853 Kannas et al. Jan 2004 B1
6684244 Goldman et al. Jan 2004 B1
6690918 Evans et al. Feb 2004 B2
6697821 Ziff et al. Feb 2004 B2
6725031 Watler et al. Apr 2004 B2
6725256 Albal et al. Apr 2004 B1
6732176 Stewart et al. May 2004 B1
6735206 Oki et al. May 2004 B1
6748195 Phillips Jun 2004 B1
6748437 Mankude et al. Jun 2004 B1
6751296 Albal et al. Jun 2004 B1
6754470 Hendrickson et al. Jun 2004 B2
6757717 Goldstein Jun 2004 B1
6760417 Wallenius Jul 2004 B1
6763000 Walsh Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6765864 Natarajan et al. Jul 2004 B1
6765925 Sawyer et al. Jul 2004 B1
6782412 Brophy et al. Aug 2004 B2
6785889 Williams Aug 2004 B1
6792461 Hericourt Sep 2004 B1
6829596 Frazee Dec 2004 B1
6829696 Balmer et al. Dec 2004 B1
6839340 Voit et al. Jan 2005 B1
6842628 Arnold et al. Jan 2005 B1
6873988 Herrmann et al. Mar 2005 B2
6876653 Ambe et al. Apr 2005 B2
6879825 Daly Apr 2005 B1
6882718 Smith Apr 2005 B1
6885997 Roberts Apr 2005 B1
6901440 Bimm et al. May 2005 B1
6920455 Weschler Jul 2005 B1
6922562 Ward et al. Jul 2005 B2
6928280 Xanthos et al. Aug 2005 B1
6934249 Bertin et al. Aug 2005 B1
6934751 Jayapalan et al. Aug 2005 B2
6947723 Gurnani et al. Sep 2005 B1
6947985 Hegli et al. Sep 2005 B2
6952428 Necka et al. Oct 2005 B1
6957067 Iyer et al. Oct 2005 B1
6959202 Heinonen et al. Oct 2005 B2
6959393 Hollis et al. Oct 2005 B2
6965667 Trabandt et al. Nov 2005 B2
6965872 Grdina Nov 2005 B1
6967958 Ono et al. Nov 2005 B2
6970692 Tysor Nov 2005 B2
6970927 Stewart et al. Nov 2005 B1
6982733 McNally et al. Jan 2006 B1
6983370 Eaton et al. Jan 2006 B2
6996062 Freed et al. Feb 2006 B1
6996076 Forbes et al. Feb 2006 B1
6996393 Pyhalammi et al. Feb 2006 B2
6998985 Reisman et al. Feb 2006 B2
7002920 Ayyagari et al. Feb 2006 B1
7007295 Rose et al. Feb 2006 B1
7013469 Smith et al. Mar 2006 B2
7017189 DeMello et al. Mar 2006 B1
7024200 McKenna et al. Apr 2006 B2
7024460 Koopmas et al. Apr 2006 B2
7027055 Anderson et al. Apr 2006 B2
7027408 Nabkel et al. Apr 2006 B2
7031733 Alminana et al. Apr 2006 B2
7032072 Quinn et al. Apr 2006 B1
7039027 Bridgelall May 2006 B2
7039037 Wang et al. May 2006 B2
7039403 Wong May 2006 B2
7039713 Van Gunter et al. May 2006 B1
7042988 Juitt et al. May 2006 B2
7043225 Patel et al. May 2006 B1
7043226 Yamauchi May 2006 B2
7043268 Yukie et al. May 2006 B2
7047276 Liu et al. May 2006 B2
7058022 Carolan et al. Jun 2006 B1
7058968 Rowland et al. Jun 2006 B2
7068600 Cain Jun 2006 B2
7069248 Huber Jun 2006 B2
7082422 Zirngibl et al. Jul 2006 B1
7084775 Smith Aug 2006 B1
7092696 Hosain et al. Aug 2006 B1
7095754 Benveniste Aug 2006 B2
7102620 Harries et al. Sep 2006 B2
7110753 Campen Sep 2006 B2
7113780 Mckenna et al. Sep 2006 B2
7113997 Jayapalan et al. Sep 2006 B2
7120133 Joo et al. Oct 2006 B1
7133386 Holur et al. Nov 2006 B2
7133695 Beyda Nov 2006 B2
7136361 Benveniste Nov 2006 B2
7139569 Kato Nov 2006 B2
7142876 Trossen et al. Nov 2006 B2
7149229 Leung Dec 2006 B1
7149521 Sundar et al. Dec 2006 B2
7151764 Heinonen et al. Dec 2006 B1
7158792 Cook et al. Jan 2007 B1
7162237 Silver et al. Jan 2007 B1
7165040 Ehrman et al. Jan 2007 B2
7167078 Pourchot Jan 2007 B2
7174156 Mangal Feb 2007 B1
7174174 Boris et al. Feb 2007 B2
7177919 Truong et al. Feb 2007 B1
7180855 Lin Feb 2007 B1
7181017 Nagel et al. Feb 2007 B1
7191248 Chattopadhyay et al. Mar 2007 B2
7197321 Erskine et al. Mar 2007 B2
7200112 Sundar et al. Apr 2007 B2
7200551 Senez Apr 2007 B1
7203169 Okholm et al. Apr 2007 B1
7203721 Ben-Efraim et al. Apr 2007 B1
7203752 Rice et al. Apr 2007 B2
7212491 Koga May 2007 B2
7219123 Fiechter et al. May 2007 B1
7222190 Klinker et al. May 2007 B2
7222304 Beaton et al. May 2007 B2
7224968 Dobson et al. May 2007 B2
7228354 Chambliss et al. Jun 2007 B2
7236780 Benco Jun 2007 B2
7242668 Kan et al. Jul 2007 B2
7242920 Morris Jul 2007 B2
7245901 McGregor et al. Jul 2007 B2
7248570 Bahl et al. Jul 2007 B2
7251218 Jorgensen Jul 2007 B2
7260382 Lamb et al. Aug 2007 B1
7266371 Amin et al. Sep 2007 B1
7269157 Klinker et al. Sep 2007 B2
7271765 Stilp et al. Sep 2007 B2
7272660 Powers et al. Sep 2007 B1
7280816 Fratti et al. Oct 2007 B2
7280818 Clayton Oct 2007 B2
7283561 Picher-Dempsey Oct 2007 B1
7283963 Fitzpatrick et al. Oct 2007 B1
7286834 Walter Oct 2007 B2
7286848 Vireday et al. Oct 2007 B2
7289489 Kung et al. Oct 2007 B1
7290283 Copeland, III Oct 2007 B2
7310424 Gehring et al. Dec 2007 B2
7313237 Bahl et al. Dec 2007 B2
7315892 Freimuth et al. Jan 2008 B2
7317699 Godfrey et al. Jan 2008 B2
7318111 Zhao Jan 2008 B2
7320029 Rinne et al. Jan 2008 B2
7322044 Hrastar Jan 2008 B2
7324447 Morford Jan 2008 B1
7325037 Lawson Jan 2008 B2
7336960 Zavalkovsky et al. Feb 2008 B2
7340772 Panasyuk et al. Mar 2008 B2
7346410 Uchiyama Mar 2008 B2
7349695 Oommen et al. Mar 2008 B2
7353533 Wright et al. Apr 2008 B2
7356011 Waters et al. Apr 2008 B1
7356337 Florence Apr 2008 B2
7366497 Nagata Apr 2008 B2
7366654 Moore Apr 2008 B2
7369848 Jiang May 2008 B2
7369856 Ovadia May 2008 B2
7373136 Watler et al. May 2008 B2
7373179 Stine et al. May 2008 B2
7379731 Natsuno et al. May 2008 B2
7388950 Elsey et al. Jun 2008 B2
7389412 Sharma et al. Jun 2008 B2
7391724 Alakoski et al. Jun 2008 B2
7395244 Kingsford Jul 2008 B1
7401338 Bowen et al. Jul 2008 B1
7403763 Maes Jul 2008 B2
7409447 Assadzadeh Aug 2008 B1
7409569 Illowsky et al. Aug 2008 B2
7411930 Montojo et al. Aug 2008 B2
7418253 Kavanah Aug 2008 B2
7418257 Kim Aug 2008 B2
7421004 Feher Sep 2008 B2
7423971 Mohaban et al. Sep 2008 B1
7428750 Dunn et al. Sep 2008 B1
7433362 Mallya et al. Oct 2008 B2
7436816 Mehta et al. Oct 2008 B2
7440433 Rink et al. Oct 2008 B2
7444669 Bahl et al. Oct 2008 B1
7450591 Korling et al. Nov 2008 B2
7450927 Creswell et al. Nov 2008 B1
7454191 Dawson et al. Nov 2008 B2
7457265 Julka et al. Nov 2008 B2
7457870 Lownsbrough et al. Nov 2008 B1
7460837 Diener Dec 2008 B2
7466652 Lau et al. Dec 2008 B2
7467160 McIntyre Dec 2008 B2
7472189 Mallya et al. Dec 2008 B2
7478420 Wright et al. Jan 2009 B2
7486185 Culpepper et al. Feb 2009 B2
7486658 Kumar Feb 2009 B2
7493659 Wu et al. Feb 2009 B1
7496652 Pezzutti Feb 2009 B2
7499438 Hinman et al. Mar 2009 B2
7499537 Elsey et al. Mar 2009 B2
7502672 Kolls Mar 2009 B1
7505756 Bahl Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7508799 Sumner et al. Mar 2009 B2
7512128 DiMambro et al. Mar 2009 B2
7512131 Svensson et al. Mar 2009 B2
7515608 Yuan et al. Apr 2009 B2
7515926 Bu et al. Apr 2009 B2
7516219 Moghaddam et al. Apr 2009 B2
7522549 Karaoguz et al. Apr 2009 B2
7522576 Du et al. Apr 2009 B2
7526541 Roese et al. Apr 2009 B2
7529204 Bourlas et al. May 2009 B2
7535880 Hinman et al. May 2009 B1
7536695 Alam et al. May 2009 B2
7539132 Werner et al. May 2009 B2
7539862 Edgett et al. May 2009 B2
7540408 Levine et al. Jun 2009 B2
7545782 Rayment et al. Jun 2009 B2
7546460 Maes Jun 2009 B2
7546629 Albert et al. Jun 2009 B2
7548875 Mikkelsen et al. Jun 2009 B2
7548976 Bahl et al. Jun 2009 B2
7551921 Petermann Jun 2009 B2
7551922 Roskowski et al. Jun 2009 B2
7554983 Muppala Jun 2009 B1
7555757 Smith et al. Jun 2009 B2
7561899 Lee Jul 2009 B2
7562213 Timms Jul 2009 B1
7564799 Holland et al. Jul 2009 B2
7565141 Macaluso Jul 2009 B2
7574509 Nixon et al. Aug 2009 B2
7574731 Fascenda Aug 2009 B2
7577431 Jiang Aug 2009 B2
7580356 Mishra et al. Aug 2009 B1
7580857 VanFleet et al. Aug 2009 B2
7583964 Wong Sep 2009 B2
7584298 Klinker et al. Sep 2009 B2
7586871 Hamilton et al. Sep 2009 B2
7593417 Wang et al. Sep 2009 B2
7593730 Khandelwal et al. Sep 2009 B2
7596373 McGregor et al. Sep 2009 B2
7599288 Cole et al. Oct 2009 B2
7599714 Kuzminskiy Oct 2009 B2
7602746 Calhoun et al. Oct 2009 B2
7606918 Holzman et al. Oct 2009 B2
7607041 Kraemer et al. Oct 2009 B2
7609650 Roskowski et al. Oct 2009 B2
7609700 Ying et al. Oct 2009 B1
7610047 Hicks, III et al. Oct 2009 B2
7610057 Bahl et al. Oct 2009 B2
7610328 Haase et al. Oct 2009 B2
7610396 Taglienti et al. Oct 2009 B2
7614051 Glaum et al. Nov 2009 B2
7616962 Oswal et al. Nov 2009 B2
7617516 Huslak et al. Nov 2009 B2
7620041 Dunn et al. Nov 2009 B2
7620065 Falardeau Nov 2009 B2
7620162 Aaron et al. Nov 2009 B2
7620383 Taglienti et al. Nov 2009 B2
7627314 Carlson et al. Dec 2009 B2
7627600 Citron et al. Dec 2009 B2
7627767 Sherman et al. Dec 2009 B2
7627872 Hebeler et al. Dec 2009 B2
7633438 Tysowski Dec 2009 B2
7634388 Archer et al. Dec 2009 B2
7636574 Poosala Dec 2009 B2
7636626 Oesterling et al. Dec 2009 B2
7643411 Andreasen et al. Jan 2010 B2
7644151 Jerrim et al. Jan 2010 B2
7644267 Ylikoski et al. Jan 2010 B2
7644414 Smith et al. Jan 2010 B2
7647047 Moghaddam et al. Jan 2010 B2
7650137 Jobs et al. Jan 2010 B2
7653394 McMillin Jan 2010 B2
7656271 Ehrman et al. Feb 2010 B2
7657920 Arseneau et al. Feb 2010 B2
7660419 Ho Feb 2010 B1
7661124 Ramanathan et al. Feb 2010 B2
7664494 Jiang Feb 2010 B2
7668176 Chuah Feb 2010 B2
7668612 Okkonen Feb 2010 B1
7668903 Edwards et al. Feb 2010 B2
7668966 Klinker et al. Feb 2010 B2
7676673 Weller et al. Mar 2010 B2
7680086 Eglin Mar 2010 B2
7681226 Kraemer et al. Mar 2010 B2
7684370 Kezys Mar 2010 B2
7685131 Batra et al. Mar 2010 B2
7685254 Pandya Mar 2010 B2
7685530 Sherrard et al. Mar 2010 B2
7688792 Babbar et al. Mar 2010 B2
7693107 De Froment Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7697540 Haddad et al. Apr 2010 B2
7710932 Muthuswamy et al. May 2010 B2
7711848 Maes May 2010 B2
7719966 Luft et al. May 2010 B2
7720206 Devolites et al. May 2010 B2
7720464 Batta May 2010 B2
7720505 Gopi et al. May 2010 B2
7720960 Pruss et al. May 2010 B2
7721296 Ricagni May 2010 B2
7724716 Fadell May 2010 B2
7725570 Lewis May 2010 B1
7729326 Sekhar Jun 2010 B2
7730123 Erickson et al. Jun 2010 B1
7734784 Araujo et al. Jun 2010 B1
7742406 Muppala Jun 2010 B1
7746854 Ambe et al. Jun 2010 B2
7747240 Briscoe et al. Jun 2010 B1
7747699 Prueitt et al. Jun 2010 B2
7747730 Harlow Jun 2010 B1
7752330 Olsen et al. Jul 2010 B2
7756056 Kim et al. Jul 2010 B2
7756534 Anupam et al. Jul 2010 B2
7756757 Oakes, III Jul 2010 B1
7760137 Martucci et al. Jul 2010 B2
7760711 Kung et al. Jul 2010 B1
7760861 Croak et al. Jul 2010 B1
7765294 Edwards et al. Jul 2010 B2
7769397 Funato et al. Aug 2010 B2
7770785 Jha et al. Aug 2010 B2
7774323 Helfman Aug 2010 B2
7774412 Schnepel Aug 2010 B1
7774456 Lownsbrough et al. Aug 2010 B1
7778176 Morford Aug 2010 B2
7778643 Laroia et al. Aug 2010 B2
7792257 Vanier et al. Sep 2010 B1
7792538 Kozisek Sep 2010 B2
7792708 Alva Sep 2010 B2
7797019 Friedmann Sep 2010 B2
7797060 Grgic et al. Sep 2010 B2
7797204 Balent Sep 2010 B2
7797401 Stewart et al. Sep 2010 B2
7801523 Kenderov Sep 2010 B1
7801783 Kende et al. Sep 2010 B2
7801985 Pitkow et al. Sep 2010 B1
7802724 Nohr Sep 2010 B1
7805140 Friday et al. Sep 2010 B2
7805522 Schlüter et al. Sep 2010 B2
7805606 Birger et al. Sep 2010 B2
7809351 Panda et al. Oct 2010 B1
7809372 Rajaniemi Oct 2010 B2
7813746 Rajkotia Oct 2010 B2
7817615 Breau et al. Oct 2010 B1
7817983 Cassett et al. Oct 2010 B2
7822837 Urban et al. Oct 2010 B1
7822849 Titus Oct 2010 B2
7826427 Sood et al. Nov 2010 B2
7826607 De Carvalho Resende et al. Nov 2010 B1
7835275 Swan et al. Nov 2010 B1
7843831 Morrill et al. Nov 2010 B2
7843843 Papp, III et al. Nov 2010 B1
7844034 Oh et al. Nov 2010 B1
7844728 Anderson et al. Nov 2010 B2
7848768 Omori et al. Dec 2010 B2
7849161 Koch et al. Dec 2010 B2
7849170 Hargens et al. Dec 2010 B1
7849477 Cristofalo et al. Dec 2010 B2
7853255 Karaoguz et al. Dec 2010 B2
7853656 Yach et al. Dec 2010 B2
7856226 Wong et al. Dec 2010 B2
7860088 Lioy Dec 2010 B2
7865182 Macaluso Jan 2011 B2
7865187 Ramer et al. Jan 2011 B2
7868778 Kenwright Jan 2011 B2
7873001 Silver Jan 2011 B2
7873344 Bowser et al. Jan 2011 B2
7873346 Petersson et al. Jan 2011 B2
7873540 Arumugam Jan 2011 B2
7873705 Kalish Jan 2011 B2
7877090 Maes Jan 2011 B2
7881199 Krstulich Feb 2011 B2
7881697 Baker et al. Feb 2011 B2
7882029 White Feb 2011 B2
7882247 Sturniolo et al. Feb 2011 B2
7882560 Kraemer et al. Feb 2011 B2
7886047 Potluri Feb 2011 B1
7889384 Armentrout et al. Feb 2011 B2
7890084 Dudziak et al. Feb 2011 B1
7890111 Bugenhagen Feb 2011 B2
7894431 Goring et al. Feb 2011 B2
7899039 Andreasen et al. Mar 2011 B2
7899438 Baker et al. Mar 2011 B2
7903553 Liu Mar 2011 B2
7907970 Park et al. Mar 2011 B2
7908358 Prasad et al. Mar 2011 B1
7911975 Droz et al. Mar 2011 B2
7912025 Pattenden et al. Mar 2011 B2
7912056 Brassem Mar 2011 B1
7920529 Mahler et al. Apr 2011 B1
7921463 Sood et al. Apr 2011 B2
7925740 Nath et al. Apr 2011 B2
7925778 Wijnands et al. Apr 2011 B1
7929959 DeAtley et al. Apr 2011 B2
7929960 Martin et al. Apr 2011 B2
7929973 Zavalkovsky et al. Apr 2011 B2
7930327 Craft et al. Apr 2011 B2
7930446 Kesselman et al. Apr 2011 B2
7930553 Satarasinghe et al. Apr 2011 B2
7933274 Verma et al. Apr 2011 B2
7936736 Proctor, Jr. et al. May 2011 B2
7937069 Rassam May 2011 B2
7937450 Janik May 2011 B2
7940685 Breslau et al. May 2011 B1
7940751 Hansen May 2011 B2
7941184 Prendergast et al. May 2011 B2
7944948 Chow et al. May 2011 B2
7945238 Baker et al. May 2011 B2
7945240 Klock et al. May 2011 B1
7945945 Graham et al. May 2011 B2
7948952 Hurtta et al. May 2011 B2
7948953 Melkote et al. May 2011 B2
7948968 Voit et al. May 2011 B2
7949529 Weider et al. May 2011 B2
7953808 Sharp et al. May 2011 B2
7953877 Vemula et al. May 2011 B2
7957020 Mine et al. Jun 2011 B2
7957381 Clermidy et al. Jun 2011 B2
7957511 Drudis et al. Jun 2011 B2
7958029 Bobich et al. Jun 2011 B1
7962622 Friend et al. Jun 2011 B2
7965983 Swan et al. Jun 2011 B1
7966405 Sundaresan et al. Jun 2011 B2
7969950 Iyer et al. Jun 2011 B2
7970350 Sheynman Jun 2011 B2
7970426 Poe et al. Jun 2011 B2
7974624 Gallagher et al. Jul 2011 B2
7975184 Goff et al. Jul 2011 B2
7978627 Taylor et al. Jul 2011 B2
7978686 Goyal et al. Jul 2011 B2
7979069 Hupp et al. Jul 2011 B2
7979889 Gladstone et al. Jul 2011 B2
7979896 McMurtry et al. Jul 2011 B2
7984130 Bogineni et al. Jul 2011 B2
7984511 Kocher et al. Jul 2011 B2
7986935 D'Souza et al. Jul 2011 B1
7987496 Bryce et al. Jul 2011 B2
7987510 Kocher et al. Jul 2011 B2
7990049 Shioya Aug 2011 B2
8000276 Scherzer et al. Aug 2011 B2
8000318 Wiley et al. Aug 2011 B2
8005009 McKee et al. Aug 2011 B2
8005459 Balsillie Aug 2011 B2
8005726 Bao Aug 2011 B1
8005913 Carlander Aug 2011 B1
8005988 Maes Aug 2011 B2
8010080 Thenthiruperai et al. Aug 2011 B1
8010081 Roskowski Aug 2011 B1
8010082 Sutaria et al. Aug 2011 B2
8010990 Ferguson et al. Aug 2011 B2
8015133 Wu et al. Sep 2011 B1
8015234 Lum et al. Sep 2011 B2
8019687 Wang et al. Sep 2011 B2
8019820 Son et al. Sep 2011 B2
8019846 Roelens et al. Sep 2011 B2
8019868 Rao et al. Sep 2011 B2
8019886 Harrang et al. Sep 2011 B2
8023425 Raleigh Sep 2011 B2
8024397 Erickson et al. Sep 2011 B1
8024424 Freimuth et al. Sep 2011 B2
8027339 Short et al. Sep 2011 B2
8031601 Feroz et al. Oct 2011 B2
8032168 Ikaheimo Oct 2011 B2
8032409 Mikurak Oct 2011 B1
8032899 Archer et al. Oct 2011 B2
8036387 Kudelski et al. Oct 2011 B2
8036600 Garrett et al. Oct 2011 B2
8044792 Orr et al. Oct 2011 B2
8045973 Chambers Oct 2011 B2
8046449 Yoshiuchi Oct 2011 B2
8050275 Iyer Nov 2011 B1
8050690 Neeraj Nov 2011 B2
8050705 Sicher et al. Nov 2011 B2
8059530 Cole Nov 2011 B1
8060017 Schlicht et al. Nov 2011 B2
8060463 Spiegel Nov 2011 B1
8064418 Maki Nov 2011 B2
8064896 Bell et al. Nov 2011 B2
8065365 Saxena et al. Nov 2011 B2
8068824 Shan et al. Nov 2011 B2
8068829 Lemond et al. Nov 2011 B2
8073427 Koch et al. Dec 2011 B2
8073721 Lewis Dec 2011 B1
8078140 Baker et al. Dec 2011 B2
8078163 Lemond et al. Dec 2011 B2
8085808 Brusca et al. Dec 2011 B2
8086398 Sanchez et al. Dec 2011 B2
8086497 Oakes, III Dec 2011 B1
8086791 Caulkins Dec 2011 B2
8090359 Proctor, Jr. et al. Jan 2012 B2
8090361 Hagan Jan 2012 B2
8090616 Proctor, Jr. et al. Jan 2012 B2
8091087 Ali et al. Jan 2012 B2
8094551 Huber et al. Jan 2012 B2
8095112 Chow et al. Jan 2012 B2
8095124 Balia Jan 2012 B2
8095640 Guingo et al. Jan 2012 B2
8095666 Schmidt et al. Jan 2012 B2
8098579 Ray et al. Jan 2012 B2
8099077 Chowdhury et al. Jan 2012 B2
8099517 Jia et al. Jan 2012 B2
8102814 Rahman et al. Jan 2012 B2
8103285 Kalhan Jan 2012 B2
8104080 Burns et al. Jan 2012 B2
8107953 Zimmerman et al. Jan 2012 B2
8108520 Ruutu et al. Jan 2012 B2
8108680 Murray Jan 2012 B2
8112435 Epstein et al. Feb 2012 B2
8116223 Tian et al. Feb 2012 B2
8116749 Proctor, Jr. et al. Feb 2012 B2
8116781 Chen et al. Feb 2012 B2
8122128 Burke, II et al. Feb 2012 B2
8122249 Falk et al. Feb 2012 B2
8125897 Ray et al. Feb 2012 B2
8126123 Cai et al. Feb 2012 B2
8126396 Bennett Feb 2012 B2
8126476 Vardi et al. Feb 2012 B2
8126722 Robb et al. Feb 2012 B2
8130793 Edwards et al. Mar 2012 B2
8131256 Martti et al. Mar 2012 B2
8131281 Hildner et al. Mar 2012 B1
8131840 Denker Mar 2012 B1
8131858 Agulnik et al. Mar 2012 B2
8132256 Bari Mar 2012 B2
8134954 Godfrey et al. Mar 2012 B2
8135388 Gailloux et al. Mar 2012 B1
8135392 Marcellino et al. Mar 2012 B2
8135657 Kapoor et al. Mar 2012 B2
8140690 Ly et al. Mar 2012 B2
8144591 Ghai et al. Mar 2012 B2
8145194 Yoshikawa et al. Mar 2012 B2
8146142 Lortz et al. Mar 2012 B2
8149748 Bata et al. Apr 2012 B2
8149823 Turcan et al. Apr 2012 B2
8150394 Bianconi et al. Apr 2012 B2
8150431 Wolovitz et al. Apr 2012 B2
8151205 Follmann et al. Apr 2012 B2
8155155 Chow et al. Apr 2012 B1
8155620 Wang et al. Apr 2012 B2
8155666 Alizadeh-Shabdiz Apr 2012 B2
8155670 Fullam et al. Apr 2012 B2
8156206 Kiley et al. Apr 2012 B2
8159520 Dhanoa et al. Apr 2012 B1
8160015 Rashid et al. Apr 2012 B2
8160056 Van der Merwe et al. Apr 2012 B2
8160598 Savoor Apr 2012 B2
8165576 Raju et al. Apr 2012 B2
8166040 Brindisi et al. Apr 2012 B2
8166554 John Apr 2012 B2
8170553 Bennett May 2012 B2
8174378 Richman et al. May 2012 B2
8174970 Adamczyk et al. May 2012 B2
8175574 Panda et al. May 2012 B1
8180333 Wells et al. May 2012 B1
8180881 Seo et al. May 2012 B2
8180886 Overcash et al. May 2012 B2
8184530 Swan et al. May 2012 B1
8184590 Rosenblatt May 2012 B2
8185088 Klein et al. May 2012 B2
8185093 Jheng et al. May 2012 B2
8185127 Cai et al. May 2012 B1
8185152 Goldner May 2012 B1
8185158 Tamura et al. May 2012 B2
8190087 Fisher et al. May 2012 B2
8190122 Alexander et al. May 2012 B1
8190675 Tribbett May 2012 B2
8191106 Choyi et al. May 2012 B2
8191116 Gazzard May 2012 B1
8191124 Wynn et al. May 2012 B2
8194549 Huber et al. Jun 2012 B2
8194553 Liang et al. Jun 2012 B2
8194572 Horvath et al. Jun 2012 B2
8194581 Schroeder et al. Jun 2012 B1
8195093 Garrett et al. Jun 2012 B2
8195153 Frencel et al. Jun 2012 B1
8195163 Gisby et al. Jun 2012 B2
8195661 Kalavade Jun 2012 B2
8196199 Hrastar et al. Jun 2012 B2
8200163 Hoffman Jun 2012 B2
8200200 Belser et al. Jun 2012 B1
8200509 Kenedy et al. Jun 2012 B2
8200775 Moore Jun 2012 B2
8200818 Freund et al. Jun 2012 B2
8204190 Bang et al. Jun 2012 B2
8204505 Jin et al. Jun 2012 B2
8208788 Ando et al. Jun 2012 B2
8208919 Kotecha Jun 2012 B2
8213296 Shannon et al. Jul 2012 B2
8213363 Ying et al. Jul 2012 B2
8214536 Zhao Jul 2012 B2
8214890 Kirovski et al. Jul 2012 B2
8219134 Maharajh et al. Jul 2012 B2
8223655 Heinz et al. Jul 2012 B2
8223741 Bartlett et al. Jul 2012 B1
8224382 Bultman Jul 2012 B2
8224773 Spiegel Jul 2012 B2
8228818 Chase et al. Jul 2012 B2
8229394 Karlberg Jul 2012 B2
8229914 Ramer et al. Jul 2012 B2
8233433 Kalhan Jul 2012 B2
8233883 De Froment Jul 2012 B2
8233895 Tysowski Jul 2012 B2
8234583 Sloo et al. Jul 2012 B2
8238287 Gopi et al. Aug 2012 B1
8238913 Bhattacharyya et al. Aug 2012 B1
8239520 Grah Aug 2012 B2
8242959 Mia et al. Aug 2012 B2
8244241 Montemurro Aug 2012 B2
8249601 Emberson et al. Aug 2012 B2
8254880 Aaltonen et al. Aug 2012 B2
8254915 Kozisek Aug 2012 B2
8255515 Melman et al. Aug 2012 B1
8255534 Assadzadeh Aug 2012 B2
8255689 Kim et al. Aug 2012 B2
8259692 Bajko Sep 2012 B2
8264965 Dolganow et al. Sep 2012 B2
8265004 Toutonghi Sep 2012 B2
8266249 Hu Sep 2012 B2
8266681 Deshpande et al. Sep 2012 B2
8270955 Ramer et al. Sep 2012 B2
8270972 Otting et al. Sep 2012 B2
8271025 Brisebois et al. Sep 2012 B2
8271045 Parolkar et al. Sep 2012 B2
8271049 Silver et al. Sep 2012 B2
8271992 Chatley et al. Sep 2012 B2
8275415 Huslak Sep 2012 B2
8275830 Raleigh Sep 2012 B2
8279067 Berger et al. Oct 2012 B2
8279864 Wood Oct 2012 B2
8280354 Smith et al. Oct 2012 B2
8284740 O'Connor Oct 2012 B2
8285249 Baker et al. Oct 2012 B2
8285992 Mathur et al. Oct 2012 B2
8290820 Plastina et al. Oct 2012 B2
8291238 Ginter et al. Oct 2012 B2
8291439 Jethi et al. Oct 2012 B2
8296404 McDysan et al. Oct 2012 B2
8300575 Willars Oct 2012 B2
8306518 Gailloux Nov 2012 B1
8306741 Tu Nov 2012 B2
8307067 Ryan Nov 2012 B2
8310943 Mehta et al. Nov 2012 B2
8315198 Corneille et al. Nov 2012 B2
8315593 Gallant et al. Nov 2012 B2
8315594 Mauser et al. Nov 2012 B1
8315718 Caffrey et al. Nov 2012 B2
8315999 Chatley et al. Nov 2012 B2
8320244 Muqattash et al. Nov 2012 B2
8320949 Matta Nov 2012 B2
8325638 Jin et al. Dec 2012 B2
8325906 Fullarton et al. Dec 2012 B2
8326319 Davis Dec 2012 B2
8326828 Zhou et al. Dec 2012 B2
8331223 Hill et al. Dec 2012 B2
8331293 Sood Dec 2012 B2
8332375 Chatley et al. Dec 2012 B2
8339991 Biswas et al. Dec 2012 B2
8340625 Johnson et al. Dec 2012 B1
8340628 Taylor et al. Dec 2012 B2
8340678 Pandey Dec 2012 B1
8340718 Colonna et al. Dec 2012 B2
8346210 Balsan et al. Jan 2013 B2
8346923 Rowles et al. Jan 2013 B2
8347104 Pathiyal Jan 2013 B2
8347362 Cai et al. Jan 2013 B2
8347378 Merkin et al. Jan 2013 B2
8350700 Fast et al. Jan 2013 B2
8351592 Freeny, Jr. et al. Jan 2013 B2
8351898 Raleigh Jan 2013 B2
8352360 De Judicibus et al. Jan 2013 B2
8352980 Howcroft Jan 2013 B2
8353001 Herrod Jan 2013 B2
8355570 Karsanbhai et al. Jan 2013 B2
8355696 Olding et al. Jan 2013 B1
8356336 Johnston et al. Jan 2013 B2
8358638 Scherzer et al. Jan 2013 B2
8358975 Bahl et al. Jan 2013 B2
8363658 Delker et al. Jan 2013 B1
8363799 Gruchala et al. Jan 2013 B2
8364089 Phillips Jan 2013 B2
8364806 Short et al. Jan 2013 B2
8369274 Sawai Feb 2013 B2
8370477 Short et al. Feb 2013 B2
8370483 Choong et al. Feb 2013 B2
8374090 Morrill et al. Feb 2013 B2
8374592 Proctor, Jr. et al. Feb 2013 B2
8375128 Tofighbakhsh et al. Feb 2013 B2
8375136 Roman et al. Feb 2013 B2
8380247 Engstrom Feb 2013 B2
8385199 Coward et al. Feb 2013 B1
8385896 Proctor, Jr. et al. Feb 2013 B2
8385964 Haney Feb 2013 B2
8385975 Forutanpour et al. Feb 2013 B2
8386386 Zhu Feb 2013 B1
8391262 Maki et al. Mar 2013 B2
8392982 Harris et al. Mar 2013 B2
8396458 Raleigh Mar 2013 B2
8396929 Helfman et al. Mar 2013 B2
8401968 Schattauer et al. Mar 2013 B1
8402165 Deu-Ngoc et al. Mar 2013 B2
8402540 Kapoor et al. Mar 2013 B2
8406427 Chand et al. Mar 2013 B2
8406736 Das et al. Mar 2013 B2
8407763 Weller et al. Mar 2013 B2
8411587 Curtis et al. Apr 2013 B2
8411691 Aggarwal Apr 2013 B2
8412798 Wang Apr 2013 B1
8413245 Kraemer et al. Apr 2013 B2
8418168 Tyhurst et al. Apr 2013 B2
8422988 Keshav Apr 2013 B1
8423016 Buckley et al. Apr 2013 B2
8429403 Moret et al. Apr 2013 B2
8437734 Ray et al. May 2013 B2
8442015 Behzad et al. May 2013 B2
8446831 Kwan et al. May 2013 B2
8447324 Shuman et al. May 2013 B2
8447607 Weider et al. May 2013 B2
8447980 Godfrey et al. May 2013 B2
8448015 Gerhart May 2013 B2
8452858 Wu et al. May 2013 B2
8461958 Saenz et al. Jun 2013 B2
8463194 Erlenback et al. Jun 2013 B2
8463232 Tuli et al. Jun 2013 B2
8468337 Gaur et al. Jun 2013 B2
8472371 Bari et al. Jun 2013 B1
8477778 Lehmann, Jr. et al. Jul 2013 B2
8483135 Cai et al. Jul 2013 B2
8483694 Lewis et al. Jul 2013 B2
8484327 Werner et al. Jul 2013 B2
8488597 Nie et al. Jul 2013 B2
8489110 Frank et al. Jul 2013 B2
8489720 Morford et al. Jul 2013 B1
8494559 Malmi Jul 2013 B1
8495181 Venkatraman et al. Jul 2013 B2
8495227 Kaminsky et al. Jul 2013 B2
8495360 Falk et al. Jul 2013 B2
8495700 Shahbazi Jul 2013 B2
8495743 Kraemer et al. Jul 2013 B2
8499087 Hu Jul 2013 B2
RE44412 Naqvi et al. Aug 2013 E
8500533 Lutnick et al. Aug 2013 B2
8503358 Hanson et al. Aug 2013 B2
8503455 Heikens Aug 2013 B2
8504032 Lott et al. Aug 2013 B2
8504574 Dvorak et al. Aug 2013 B2
8504687 Maffione et al. Aug 2013 B2
8504690 Shah et al. Aug 2013 B2
8504729 Pezzutti Aug 2013 B2
8505073 Taglienti et al. Aug 2013 B2
8509082 Heinz et al. Aug 2013 B2
8514927 Sundararajan et al. Aug 2013 B2
8516552 Raleigh Aug 2013 B2
8520589 Bhatt et al. Aug 2013 B2
8520595 Yadav et al. Aug 2013 B2
8521110 Rofougaran Aug 2013 B2
8521775 Poh et al. Aug 2013 B1
8522039 Hyndman et al. Aug 2013 B2
8522249 Beaule Aug 2013 B2
8522337 Adusumilli et al. Aug 2013 B2
8523547 Pekrul Sep 2013 B2
8526329 Mahany et al. Sep 2013 B2
8526350 Xue et al. Sep 2013 B2
8527410 Markki et al. Sep 2013 B2
8527662 Biswas et al. Sep 2013 B2
8528068 Weglein et al. Sep 2013 B1
8531954 McNaughton et al. Sep 2013 B2
8531995 Khan et al. Sep 2013 B2
8532610 Manning Cassett et al. Sep 2013 B2
8533775 Alcorn et al. Sep 2013 B2
8535160 Lutnick et al. Sep 2013 B2
8538394 Zimmerman et al. Sep 2013 B2
8538421 Brisebois et al. Sep 2013 B2
8538458 Haney Sep 2013 B2
8539544 Garimella et al. Sep 2013 B2
8543265 Ekhaguere et al. Sep 2013 B2
8543814 Laitinen et al. Sep 2013 B2
8544105 Mclean et al. Sep 2013 B2
8548427 Chow et al. Oct 2013 B2
8549173 Wu et al. Oct 2013 B1
8554876 Winsor Oct 2013 B2
8559369 Barkan Oct 2013 B2
8561138 Rothman et al. Oct 2013 B2
8565746 Hoffman Oct 2013 B2
8566236 Busch Oct 2013 B2
8571474 Chavez et al. Oct 2013 B2
8571501 Miller et al. Oct 2013 B2
8571598 Valavi Oct 2013 B2
8571993 Kocher et al. Oct 2013 B2
8572117 Rappaport Oct 2013 B2
8572256 Babbar Oct 2013 B2
8583499 De Judicibus et al. Nov 2013 B2
8588240 Ramankutty et al. Nov 2013 B2
8589955 Roundtree et al. Nov 2013 B2
8594665 Anschutz Nov 2013 B2
8595186 Mandyam et al. Nov 2013 B1
8600895 Felsher Dec 2013 B2
8601125 Huang et al. Dec 2013 B2
8605691 Soomro et al. Dec 2013 B2
8615507 Varadarajulu et al. Dec 2013 B2
8619735 Montemurro et al. Dec 2013 B2
8620257 Qiu et al. Dec 2013 B2
8631428 Scott et al. Jan 2014 B2
8634425 Gorti et al. Jan 2014 B2
8635164 Rosenhaft et al. Jan 2014 B2
8639215 McGregor et al. Jan 2014 B2
8644702 Kalajan Feb 2014 B1
8644813 Gailloux et al. Feb 2014 B1
8645518 David Feb 2014 B2
8655357 Gazzard et al. Feb 2014 B1
8656472 McMurtry et al. Feb 2014 B2
8660853 Robb et al. Feb 2014 B2
8666395 Silver Mar 2014 B2
8667542 Bertz et al. Mar 2014 B1
8670334 Keohane et al. Mar 2014 B2
8675852 Maes Mar 2014 B2
8676682 Kalliola Mar 2014 B2
8676925 Liu et al. Mar 2014 B1
8693323 McDysan Apr 2014 B1
8694772 Kao et al. Apr 2014 B2
8700729 Dua Apr 2014 B2
8701015 Bonnat Apr 2014 B2
8705361 Venkataraman et al. Apr 2014 B2
8706863 Fadell Apr 2014 B2
8713535 Malhotra et al. Apr 2014 B2
8713641 Pagan et al. Apr 2014 B1
8719397 Levi et al. May 2014 B2
8719423 Wyld May 2014 B2
8724486 Seto et al. May 2014 B2
8725899 Short et al. May 2014 B2
8730842 Collins et al. May 2014 B2
8731519 Flynn et al. May 2014 B2
8732808 Sewall et al. May 2014 B2
8739035 Trethewey May 2014 B2
8744339 Halfmann et al. Jun 2014 B2
8761711 Grignani et al. Jun 2014 B2
8780857 Balasubramanian et al. Jul 2014 B2
8787249 Giaretta et al. Jul 2014 B2
8793304 Lu et al. Jul 2014 B2
8804695 Branam Aug 2014 B2
8811338 Jin et al. Aug 2014 B2
8811991 Jain et al. Aug 2014 B2
8818394 Bienas et al. Aug 2014 B2
8819253 Simeloff et al. Aug 2014 B2
8825109 Montemurro et al. Sep 2014 B2
8826411 Moen et al. Sep 2014 B2
8831561 Sutaria et al. Sep 2014 B2
8838752 Lor et al. Sep 2014 B2
8843849 Neil et al. Sep 2014 B2
8845415 Lutnick et al. Sep 2014 B2
8849297 Balasubramanian Sep 2014 B2
8855620 Sievers et al. Oct 2014 B2
8862751 Faccin et al. Oct 2014 B2
8863111 Selitser et al. Oct 2014 B2
8875042 LeJeune et al. Oct 2014 B2
8880047 Konicek et al. Nov 2014 B2
8891483 Connelly et al. Nov 2014 B2
8898748 Burks et al. Nov 2014 B2
8908516 Tzamaloukas et al. Dec 2014 B2
8929374 Tönsing et al. Jan 2015 B2
8930238 Coffman et al. Jan 2015 B2
8943551 Ganapathy et al. Jan 2015 B2
8948726 Smith et al. Feb 2015 B2
8949382 Cornell et al. Feb 2015 B2
8949597 Reeves et al. Feb 2015 B1
8955038 Nicodemus et al. Feb 2015 B2
8966018 Bugwadia et al. Feb 2015 B2
8971912 Chou et al. Mar 2015 B2
8977284 Reed Mar 2015 B2
8995952 Baker et al. Mar 2015 B1
9002342 Tenhunen et al. Apr 2015 B2
9014973 Ruckart Apr 2015 B2
9015331 Lai et al. Apr 2015 B2
9030934 Shah et al. May 2015 B2
9049010 Jueneman et al. Jun 2015 B2
9064275 Lu et al. Jun 2015 B1
9105031 Shen et al. Aug 2015 B2
9111088 Ghai et al. Aug 2015 B2
9137286 Yuan Sep 2015 B1
9172553 Dawes et al. Oct 2015 B2
9177455 Remer Nov 2015 B2
9282460 Souissi Mar 2016 B2
9286469 Kraemer et al. Mar 2016 B2
9286604 Aabye et al. Mar 2016 B2
9313708 Nam et al. Apr 2016 B2
9325737 Gutowski et al. Apr 2016 B2
9326173 Luft Apr 2016 B2
9344557 Gruchala et al. May 2016 B2
9363285 Kitamura Jun 2016 B2
9367680 Mahaffey et al. Jun 2016 B2
9413546 Meier et al. Aug 2016 B2
9418381 Ahuja et al. Aug 2016 B2
9459767 Cockcroft et al. Oct 2016 B2
9501803 Bilac et al. Nov 2016 B2
9544397 Raleigh et al. Jan 2017 B2
9589117 Ali et al. Mar 2017 B2
9609459 Raleigh Mar 2017 B2
9986413 Raleigh May 2018 B2
20010048738 Baniak et al. Dec 2001 A1
20010053694 Igarashi et al. Dec 2001 A1
20020013844 Garrett et al. Jan 2002 A1
20020022472 Watler et al. Feb 2002 A1
20020022483 Thompson et al. Feb 2002 A1
20020049074 Eisinger et al. Apr 2002 A1
20020099848 Lee Jul 2002 A1
20020116338 Gonthier et al. Aug 2002 A1
20020120370 Parupudi et al. Aug 2002 A1
20020120540 Kende et al. Aug 2002 A1
20020131404 Mehta et al. Sep 2002 A1
20020138599 Dilman et al. Sep 2002 A1
20020138601 Piponius et al. Sep 2002 A1
20020154751 Thompson et al. Oct 2002 A1
20020161601 Nauer et al. Oct 2002 A1
20020164983 Raviv et al. Nov 2002 A1
20020176377 Hamilton Nov 2002 A1
20020188732 Buckman et al. Dec 2002 A1
20020191573 Whitehill et al. Dec 2002 A1
20020199001 Wenocur et al. Dec 2002 A1
20030004937 Salmenkaita et al. Jan 2003 A1
20030005112 Krautkremer Jan 2003 A1
20030013434 Rosenberg et al. Jan 2003 A1
20030018524 Fishman et al. Jan 2003 A1
20030028623 Hennessey et al. Feb 2003 A1
20030046396 Richter et al. Mar 2003 A1
20030050070 Mashinsky et al. Mar 2003 A1
20030050837 Kim Mar 2003 A1
20030084321 Tarquini et al. May 2003 A1
20030088671 Klinker et al. May 2003 A1
20030133408 Cheng et al. Jul 2003 A1
20030134650 Sundar et al. Jul 2003 A1
20030159030 Evans Aug 2003 A1
20030161265 Cao et al. Aug 2003 A1
20030171112 Lupper et al. Sep 2003 A1
20030182420 Jones et al. Sep 2003 A1
20030182435 Redlich et al. Sep 2003 A1
20030184793 Pineau Oct 2003 A1
20030188006 Bard Oct 2003 A1
20030188117 Yoshino et al. Oct 2003 A1
20030220984 Jones et al. Nov 2003 A1
20030224781 Milford et al. Dec 2003 A1
20030229900 Reisman Dec 2003 A1
20030233332 Keeler et al. Dec 2003 A1
20030236745 Hartsell et al. Dec 2003 A1
20040019539 Raman et al. Jan 2004 A1
20040019564 Goldthwaite et al. Jan 2004 A1
20040021697 Beaton et al. Feb 2004 A1
20040024756 Rickard Feb 2004 A1
20040030705 Bowman-Amuah Feb 2004 A1
20040039792 Nakanishi Feb 2004 A1
20040044623 Wake et al. Mar 2004 A1
20040047358 Chen et al. Mar 2004 A1
20040054779 Takeshima et al. Mar 2004 A1
20040073672 Fascenda Apr 2004 A1
20040082346 Skytt et al. Apr 2004 A1
20040098715 Aghera et al. May 2004 A1
20040102182 Reith et al. May 2004 A1
20040103193 Pandya et al. May 2004 A1
20040107360 Herrmann et al. Jun 2004 A1
20040116140 Babbar et al. Jun 2004 A1
20040127200 Shaw et al. Jul 2004 A1
20040127208 Nair et al. Jul 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20040132427 Lee et al. Jul 2004 A1
20040133668 Nicholas, III Jul 2004 A1
20040137890 Kalke Jul 2004 A1
20040165596 Garcia et al. Aug 2004 A1
20040167958 Stewart et al. Aug 2004 A1
20040168052 Clisham et al. Aug 2004 A1
20040170191 Guo et al. Sep 2004 A1
20040176104 Arcens Sep 2004 A1
20040198331 Coward et al. Oct 2004 A1
20040203755 Brunet et al. Oct 2004 A1
20040203833 Rathunde et al. Oct 2004 A1
20040225561 Hertzberg et al. Nov 2004 A1
20040225898 Frost et al. Nov 2004 A1
20040236547 Rappaport et al. Nov 2004 A1
20040243680 Mayer Dec 2004 A1
20040243992 Gustafson et al. Dec 2004 A1
20040249918 Sunshine Dec 2004 A1
20040255145 Chow Dec 2004 A1
20040259534 Chaudhari et al. Dec 2004 A1
20040260766 Barros et al. Dec 2004 A1
20040267872 Serdy et al. Dec 2004 A1
20050007993 Chambers et al. Jan 2005 A1
20050009499 Koster Jan 2005 A1
20050021995 Lal et al. Jan 2005 A1
20050041617 Huotari et al. Feb 2005 A1
20050048950 Morper Mar 2005 A1
20050055291 Bevente et al. Mar 2005 A1
20050055309 Williams et al. Mar 2005 A1
20050055595 Frazer et al. Mar 2005 A1
20050060266 Demello et al. Mar 2005 A1
20050060525 Schwartz et al. Mar 2005 A1
20050075115 Corneille et al. Apr 2005 A1
20050079863 Macaluso Apr 2005 A1
20050091505 Riley et al. Apr 2005 A1
20050096024 Bicker et al. May 2005 A1
20050097516 Donnelly et al. May 2005 A1
20050107091 Vannithamby et al. May 2005 A1
20050108075 Douglis et al. May 2005 A1
20050111463 Leung et al. May 2005 A1
20050128967 Scobbie Jun 2005 A1
20050135264 Popoff et al. Jun 2005 A1
20050163320 Brown et al. Jul 2005 A1
20050166043 Zhang et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050186948 Gallagher et al. Aug 2005 A1
20050198377 Ferguson et al. Sep 2005 A1
20050216421 Barry et al. Sep 2005 A1
20050228985 Ylikoski et al. Oct 2005 A1
20050238046 Hassan et al. Oct 2005 A1
20050239447 Holzman et al. Oct 2005 A1
20050245241 Durand et al. Nov 2005 A1
20050246282 Naslund et al. Nov 2005 A1
20050250508 Guo et al. Nov 2005 A1
20050250536 Deng et al. Nov 2005 A1
20050254435 Moakley et al. Nov 2005 A1
20050266825 Clayton Dec 2005 A1
20050266880 Gupta Dec 2005 A1
20060014519 Marsh et al. Jan 2006 A1
20060019632 Cunningham et al. Jan 2006 A1
20060020787 Choyi et al. Jan 2006 A1
20060026679 Zakas Feb 2006 A1
20060030306 Kuhn Feb 2006 A1
20060034256 Addagatla et al. Feb 2006 A1
20060035631 White et al. Feb 2006 A1
20060040642 Boris et al. Feb 2006 A1
20060045245 Aaron et al. Mar 2006 A1
20060048223 Lee et al. Mar 2006 A1
20060068796 Millen et al. Mar 2006 A1
20060072451 Ross Apr 2006 A1
20060072550 Davis et al. Apr 2006 A1
20060072646 Feher Apr 2006 A1
20060075506 Sanda et al. Apr 2006 A1
20060085543 Hrastar et al. Apr 2006 A1
20060095517 O'Connor et al. May 2006 A1
20060098627 Karaoguz et al. May 2006 A1
20060099970 Morgan et al. May 2006 A1
20060101507 Camenisch May 2006 A1
20060112016 Ishibashi May 2006 A1
20060114821 Willey et al. Jun 2006 A1
20060114832 Hamilton et al. Jun 2006 A1
20060126562 Liu Jun 2006 A1
20060135144 Jothipragasam Jun 2006 A1
20060136882 Noonan et al. Jun 2006 A1
20060143066 Calabria Jun 2006 A1
20060143098 Lazaridis Jun 2006 A1
20060156398 Ross et al. Jul 2006 A1
20060160536 Chou Jul 2006 A1
20060165060 Dua Jul 2006 A1
20060168128 Sistla et al. Jul 2006 A1
20060173959 Mckelvie et al. Aug 2006 A1
20060174035 Tufail Aug 2006 A1
20060178917 Merriam et al. Aug 2006 A1
20060178918 Mikurak Aug 2006 A1
20060182137 Zhou et al. Aug 2006 A1
20060183462 Kolehmainen Aug 2006 A1
20060190314 Hernandez Aug 2006 A1
20060190987 Ohta et al. Aug 2006 A1
20060193280 Lee et al. Aug 2006 A1
20060199608 Dunn et al. Sep 2006 A1
20060200663 Thornton Sep 2006 A1
20060206709 Labrou et al. Sep 2006 A1
20060206904 Watkins et al. Sep 2006 A1
20060218395 Maes Sep 2006 A1
20060233108 Krishnan Oct 2006 A1
20060233166 Bou-Diab et al. Oct 2006 A1
20060236095 Smith et al. Oct 2006 A1
20060242685 Heard et al. Oct 2006 A1
20060258341 Miller et al. Nov 2006 A1
20060277590 Limont et al. Dec 2006 A1
20060291419 McConnell et al. Dec 2006 A1
20060291477 Croak et al. Dec 2006 A1
20070005795 Gonzalez Jan 2007 A1
20070019670 Falardeau Jan 2007 A1
20070022289 Alt et al. Jan 2007 A1
20070025301 Petersson et al. Feb 2007 A1
20070033194 Srinivas et al. Feb 2007 A1
20070033197 Scherzer et al. Feb 2007 A1
20070036312 Cai et al. Feb 2007 A1
20070055694 Ruge et al. Mar 2007 A1
20070060200 Boris et al. Mar 2007 A1
20070061243 Ramer et al. Mar 2007 A1
20070061800 Cheng et al. Mar 2007 A1
20070061878 Hagiu et al. Mar 2007 A1
20070073899 Judge et al. Mar 2007 A1
20070076616 Ngo et al. Apr 2007 A1
20070093243 Kapadekar et al. Apr 2007 A1
20070100981 Adamczyk et al. May 2007 A1
20070101426 Lee et al. May 2007 A1
20070104126 Calhoun et al. May 2007 A1
20070109983 Shankar et al. May 2007 A1
20070111740 Wandel May 2007 A1
20070130283 Klein et al. Jun 2007 A1
20070130315 Friend et al. Jun 2007 A1
20070140113 Gemelos Jun 2007 A1
20070140145 Kumar et al. Jun 2007 A1
20070140275 Bowman et al. Jun 2007 A1
20070143824 Shahbazi Jun 2007 A1
20070147317 Smith et al. Jun 2007 A1
20070147324 McGary Jun 2007 A1
20070155365 Kim et al. Jul 2007 A1
20070165630 Rasanen et al. Jul 2007 A1
20070168499 Chu Jul 2007 A1
20070171856 Bruce et al. Jul 2007 A1
20070174490 Choi et al. Jul 2007 A1
20070191006 Carpenter Aug 2007 A1
20070192460 Choi et al. Aug 2007 A1
20070198656 Mazzaferri et al. Aug 2007 A1
20070201502 Abramson Aug 2007 A1
20070213054 Han Sep 2007 A1
20070220251 Rosenberg et al. Sep 2007 A1
20070226225 Yiu et al. Sep 2007 A1
20070226775 Andreasen et al. Sep 2007 A1
20070234402 Khosravi et al. Oct 2007 A1
20070243862 Coskun et al. Oct 2007 A1
20070248100 Zuberi et al. Oct 2007 A1
20070254646 Sokondar Nov 2007 A1
20070254675 Zorlu Ozer et al. Nov 2007 A1
20070255769 Agrawal et al. Nov 2007 A1
20070255797 Dunn et al. Nov 2007 A1
20070255848 Sewall et al. Nov 2007 A1
20070257767 Beeson Nov 2007 A1
20070259656 Jeong Nov 2007 A1
20070259673 Willars et al. Nov 2007 A1
20070263558 Salomone Nov 2007 A1
20070266422 Germano et al. Nov 2007 A1
20070274327 Kaarela et al. Nov 2007 A1
20070280453 Kelley Dec 2007 A1
20070282896 Wydroug et al. Dec 2007 A1
20070293191 Mir et al. Dec 2007 A1
20070294395 Strub et al. Dec 2007 A1
20070294410 Pandya et al. Dec 2007 A1
20070297378 Poyhonen et al. Dec 2007 A1
20070298764 Clayton Dec 2007 A1
20070299965 Nieh et al. Dec 2007 A1
20070300252 Acharya et al. Dec 2007 A1
20080005285 Robinson et al. Jan 2008 A1
20080005561 Brown et al. Jan 2008 A1
20080010379 Zhao Jan 2008 A1
20080010452 Holtzman et al. Jan 2008 A1
20080018494 Waite et al. Jan 2008 A1
20080022354 Grewal et al. Jan 2008 A1
20080025230 Patel et al. Jan 2008 A1
20080032715 Jia et al. Feb 2008 A1
20080034063 Yee Feb 2008 A1
20080034419 Mullick et al. Feb 2008 A1
20080039102 Sewall et al. Feb 2008 A1
20080049630 Kozisek et al. Feb 2008 A1
20080050715 Golczewski et al. Feb 2008 A1
20080051076 O'Shaughnessy et al. Feb 2008 A1
20080052387 Heinz et al. Feb 2008 A1
20080056273 Pelletier et al. Mar 2008 A1
20080059474 Lim Mar 2008 A1
20080059743 Bychkov et al. Mar 2008 A1
20080060066 Wynn et al. Mar 2008 A1
20080062900 Rao Mar 2008 A1
20080064367 Nath et al. Mar 2008 A1
20080066149 Lim Mar 2008 A1
20080066150 Lim Mar 2008 A1
20080066181 Haveson et al. Mar 2008 A1
20080070550 Hose Mar 2008 A1
20080077705 Li et al. Mar 2008 A1
20080080457 Cole Apr 2008 A1
20080081606 Cole Apr 2008 A1
20080082643 Storrie et al. Apr 2008 A1
20080083013 Soliman et al. Apr 2008 A1
20080085707 Fadell Apr 2008 A1
20080089295 Keeler et al. Apr 2008 A1
20080089303 Wirtanen et al. Apr 2008 A1
20080095339 Elliott et al. Apr 2008 A1
20080096559 Phillips et al. Apr 2008 A1
20080098062 Balia Apr 2008 A1
20080109679 Wright et al. May 2008 A1
20080120129 Seubert et al. May 2008 A1
20080120668 Yau May 2008 A1
20080120688 Qiu et al. May 2008 A1
20080125079 O'Neil et al. May 2008 A1
20080126287 Cox et al. May 2008 A1
20080127304 Ginter May 2008 A1
20080130534 Tomioka Jun 2008 A1
20080130656 Kim et al. Jun 2008 A1
20080132201 Karlberg Jun 2008 A1
20080132268 Choi-Grogan et al. Jun 2008 A1
20080134330 Kapoor et al. Jun 2008 A1
20080139210 Gisby et al. Jun 2008 A1
20080147454 Walker et al. Jun 2008 A1
20080160958 Abichandani et al. Jul 2008 A1
20080162637 Adamczyk et al. Jul 2008 A1
20080162704 Poplett et al. Jul 2008 A1
20080164304 Narasimhan et al. Jul 2008 A1
20080166993 Gautier et al. Jul 2008 A1
20080167027 Gautier et al. Jul 2008 A1
20080167033 Beckers Jul 2008 A1
20080168275 DeAtley et al. Jul 2008 A1
20080168523 Ansari et al. Jul 2008 A1
20080177998 Apsangi et al. Jul 2008 A1
20080178300 Brown et al. Jul 2008 A1
20080183812 Paul et al. Jul 2008 A1
20080184127 Rafey et al. Jul 2008 A1
20080189760 Rosenberg et al. Aug 2008 A1
20080201266 Chua et al. Aug 2008 A1
20080207167 Bugenhagen Aug 2008 A1
20080212470 Castaneda et al. Sep 2008 A1
20080212751 Chung Sep 2008 A1
20080219268 Dennison Sep 2008 A1
20080221951 Stanforth et al. Sep 2008 A1
20080222692 Andersson et al. Sep 2008 A1
20080225748 Khemani et al. Sep 2008 A1
20080229385 Feder et al. Sep 2008 A1
20080229388 Maes Sep 2008 A1
20080235511 O'Brien et al. Sep 2008 A1
20080240373 Wilhelm Oct 2008 A1
20080250053 Aaltonen et al. Oct 2008 A1
20080256593 Vinberg et al. Oct 2008 A1
20080259924 Gooch et al. Oct 2008 A1
20080262798 Kim et al. Oct 2008 A1
20080263348 Zaltsman et al. Oct 2008 A1
20080268813 Maes Oct 2008 A1
20080270212 Blight et al. Oct 2008 A1
20080279216 Sharif-Ahmadi et al. Nov 2008 A1
20080282319 Fontijn et al. Nov 2008 A1
20080293395 Mathews et al. Nov 2008 A1
20080298230 Luft et al. Dec 2008 A1
20080305793 Gallagher et al. Dec 2008 A1
20080311885 Dawson et al. Dec 2008 A1
20080313315 Karaoguz et al. Dec 2008 A1
20080313730 Iftimie et al. Dec 2008 A1
20080316923 Fedders et al. Dec 2008 A1
20080318547 Ballou et al. Dec 2008 A1
20080318550 DeAtley Dec 2008 A1
20080319879 Carroll et al. Dec 2008 A1
20080320497 Tarkoma et al. Dec 2008 A1
20090005000 Baker et al. Jan 2009 A1
20090005005 Forstall et al. Jan 2009 A1
20090006116 Baker et al. Jan 2009 A1
20090006200 Baker et al. Jan 2009 A1
20090006229 Sweeney et al. Jan 2009 A1
20090013157 Beaule Jan 2009 A1
20090016310 Rasal Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090042536 Bernard et al. Feb 2009 A1
20090044185 Krivopaltsev Feb 2009 A1
20090046707 Smires et al. Feb 2009 A1
20090046723 Rahman et al. Feb 2009 A1
20090047989 Harmon et al. Feb 2009 A1
20090048913 Shenfield et al. Feb 2009 A1
20090049156 Aronsson et al. Feb 2009 A1
20090049518 Roman et al. Feb 2009 A1
20090054030 Golds Feb 2009 A1
20090065571 Jain Mar 2009 A1
20090067372 Shah et al. Mar 2009 A1
20090068984 Burnett Mar 2009 A1
20090070379 Rappaport Mar 2009 A1
20090077622 Baum et al. Mar 2009 A1
20090079699 Sun Mar 2009 A1
20090113514 Hu Apr 2009 A1
20090125619 Antani May 2009 A1
20090132860 Liu et al. May 2009 A1
20090149154 Bhasin et al. Jun 2009 A1
20090157792 Fiatal Jun 2009 A1
20090163173 Williams Jun 2009 A1
20090172077 Roxburgh et al. Jul 2009 A1
20090180391 Petersen et al. Jul 2009 A1
20090181662 Fleischman et al. Jul 2009 A1
20090197585 Aaron Aug 2009 A1
20090197612 Kiiskinen Aug 2009 A1
20090203352 Fordon et al. Aug 2009 A1
20090217364 Salmela et al. Aug 2009 A1
20090219170 Clark et al. Sep 2009 A1
20090248883 Suryanarayana et al. Oct 2009 A1
20090254857 Romine et al. Oct 2009 A1
20090257379 Robinson et al. Oct 2009 A1
20090271514 Thomas et al. Oct 2009 A1
20090282127 Leblanc et al. Nov 2009 A1
20090286507 O'Neil et al. Nov 2009 A1
20090287921 Zhu et al. Nov 2009 A1
20090288140 Huber et al. Nov 2009 A1
20090291665 Gaskarth et al. Nov 2009 A1
20090299857 Brubaker Dec 2009 A1
20090307696 Vals et al. Dec 2009 A1
20090307746 Di et al. Dec 2009 A1
20090315735 Bhavani et al. Dec 2009 A1
20090320110 Nicolson et al. Dec 2009 A1
20100017506 Fadell Jan 2010 A1
20100020822 Zerillo et al. Jan 2010 A1
20100027469 Gurajala et al. Feb 2010 A1
20100027559 Lin et al. Feb 2010 A1
20100030890 Dutta et al. Feb 2010 A1
20100041364 Lott et al. Feb 2010 A1
20100041365 Lott et al. Feb 2010 A1
20100042675 Fujii Feb 2010 A1
20100043068 Varadhan et al. Feb 2010 A1
20100069074 Kodialam et al. Mar 2010 A1
20100071053 Ansari et al. Mar 2010 A1
20100075666 Garner Mar 2010 A1
20100080202 Hanson Apr 2010 A1
20100082431 Ramer et al. Apr 2010 A1
20100103820 Fuller et al. Apr 2010 A1
20100113020 Subramanian et al. May 2010 A1
20100121744 Belz et al. May 2010 A1
20100131584 Johnson May 2010 A1
20100142478 Forssell et al. Jun 2010 A1
20100144310 Bedingfield Jun 2010 A1
20100151866 Karpov et al. Jun 2010 A1
20100153781 Hanna Jun 2010 A1
20100167696 Smith et al. Jul 2010 A1
20100188975 Raleigh Jul 2010 A1
20100188990 Raleigh Jul 2010 A1
20100188992 Raleigh Jul 2010 A1
20100188994 Raleigh Jul 2010 A1
20100190469 Vanderveen et al. Jul 2010 A1
20100191576 Raleigh Jul 2010 A1
20100191612 Raleigh Jul 2010 A1
20100191846 Raleigh Jul 2010 A1
20100192170 Raleigh Jul 2010 A1
20100192212 Raleigh Jul 2010 A1
20100195503 Raleigh Aug 2010 A1
20100197268 Raleigh Aug 2010 A1
20100198698 Raleigh et al. Aug 2010 A1
20100198939 Raleigh Aug 2010 A1
20100235329 Koren et al. Sep 2010 A1
20100241544 Benson et al. Sep 2010 A1
20100248719 Scholaert Sep 2010 A1
20100284327 Miklos Nov 2010 A1
20100284388 Fantini et al. Nov 2010 A1
20100287599 He et al. Nov 2010 A1
20100311402 Srinivasan et al. Dec 2010 A1
20100325420 Kanekar Dec 2010 A1
20110004917 Salsa et al. Jan 2011 A1
20110013569 Scherzer et al. Jan 2011 A1
20110019574 Malomsoky et al. Jan 2011 A1
20110081881 Baker et al. Apr 2011 A1
20110082790 Baker et al. Apr 2011 A1
20110110309 Bennett May 2011 A1
20110126141 King et al. May 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110159818 Scherzer et al. Jun 2011 A1
20110173678 Kaippallimalil et al. Jul 2011 A1
20110177811 Heckman et al. Jul 2011 A1
20110264923 Kocher et al. Oct 2011 A1
20110277019 Pritchard, Jr. Nov 2011 A1
20120020296 Scherzer et al. Jan 2012 A1
20120144025 Melander et al. Jun 2012 A1
20120166364 Ahmad et al. Jun 2012 A1
20120196644 Scherzer et al. Aug 2012 A1
20120238287 Scherzer Sep 2012 A1
20130029653 Baker et al. Jan 2013 A1
20130058274 Scherzer et al. Mar 2013 A1
20130065555 Baker et al. Mar 2013 A1
20130072177 Ross et al. Mar 2013 A1
20130084835 Scherzer et al. Apr 2013 A1
20130144789 Aaltonen et al. Jun 2013 A1
20130326356 Zheng et al. Dec 2013 A9
20140073291 Hildner et al. Mar 2014 A1
20140241342 Constantinof Aug 2014 A1
20150181628 Haverinen et al. Jun 2015 A1
Foreign Referenced Citations (99)
Number Date Country
2688553 Dec 2008 CA
1310401 Aug 2001 CN
1345154 Apr 2002 CN
1508734 Jun 2004 CN
1538730 Oct 2004 CN
1567818 Jan 2005 CN
101035308 Mar 2006 CN
1801829 Jul 2006 CN
1802839 Jul 2006 CN
1889777 Jul 2006 CN
101155343 Sep 2006 CN
1867024 Nov 2006 CN
1878160 Dec 2006 CN
1937511 Mar 2007 CN
101123553 Sep 2007 CN
101080055 Nov 2007 CN
101115248 Jan 2008 CN
101127988 Feb 2008 CN
101183958 May 2008 CN
101335666 Dec 2008 CN
101341764 Jan 2009 CN
101815275 Aug 2010 CN
1098490 May 2001 EP
1289326 Mar 2003 EP
1463238 Sep 2004 EP
1503548 Feb 2005 EP
1545114 Jun 2005 EP
1739518 Jan 2007 EP
1772988 Apr 2007 EP
1850575 Oct 2007 EP
1887732 Feb 2008 EP
1942698 Jul 2008 EP
1978772 Oct 2008 EP
2007065 Dec 2008 EP
2026514 Feb 2009 EP
3148713 Mar 2001 JP
2005339247 Dec 2005 JP
2006041989 Feb 2006 JP
2006155263 Jun 2006 JP
2006197137 Jul 2006 JP
2006344007 Dec 2006 JP
2007318354 Dec 2007 JP
2008301121 Dec 2008 JP
2009111919 May 2009 JP
2009212707 Sep 2009 JP
2009218773 Sep 2009 JP
2009232107 Oct 2009 JP
20040053858 Jun 2004 KR
1998058505 Dec 1998 WO
1999027723 Jun 1999 WO
1999065185 Dec 1999 WO
0208863 Jan 2002 WO
2002045315 Jun 2002 WO
2002067616 Aug 2002 WO
2002093877 Nov 2002 WO
2003014891 Feb 2003 WO
2003017063 Feb 2003 WO
2003017065 Feb 2003 WO
2003058880 Jul 2003 WO
2004028070 Apr 2004 WO
2004064306 Jul 2004 WO
2004077797 Sep 2004 WO
2004095753 Nov 2004 WO
2005008995 Jan 2005 WO
2005053335 Jun 2005 WO
2005083934 Sep 2005 WO
2006004467 Jan 2006 WO
2006004784 Jan 2006 WO
2006012610 Feb 2006 WO
2006050758 May 2006 WO
2006073837 Jul 2006 WO
2006077481 Jul 2006 WO
2006093961 Sep 2006 WO
2006120558 Nov 2006 WO
2006130960 Dec 2006 WO
2007001833 Jan 2007 WO
2007014630 Feb 2007 WO
2007018363 Feb 2007 WO
2007053848 May 2007 WO
2007068288 Jun 2007 WO
2007069245 Jun 2007 WO
2007097786 Aug 2007 WO
2007107701 Sep 2007 WO
2007120310 Oct 2007 WO
2007124279 Nov 2007 WO
2007126352 Nov 2007 WO
2007129180 Nov 2007 WO
2007133844 Nov 2007 WO
2008017837 Feb 2008 WO
2008051379 May 2008 WO
2008066419 Jun 2008 WO
2008080139 Jul 2008 WO
2008080430 Jul 2008 WO
2008099802 Aug 2008 WO
2009008817 Jan 2009 WO
2009091295 Jul 2009 WO
2010088413 Aug 2010 WO
2010128391 Nov 2010 WO
2011002450 Jan 2011 WO
Non-Patent Literature Citations (60)
Entry
Sabat, “The evolving mobile wireless value chain and market structure,” Nov. 2002.
Sadeh et al., “Understanding and Capturing People's Privacy Policies in a Mobile Social Networking Application,” ISR School of Computer Science, Carnegie Mellon University, 2007.
Schiller et al., “Location-Based Services,” The Morgan Kaufmann Series in Data Management Systems, 2004.
Steglich, Stephan, “I-Centric User Interaction,” Nov. 21, 2003.
Sun et al., “Towards Connectivity Management Adaptability: Context Awareness in Policy Representation and End-to-end Evaluation Algorithm,” Dept. of Electrical and Information Engineering, Univ. of Oulu, Finland, 2004.
Van Eijk, et al., “GigaMobile, Agent Technology for Designing Personalized Mobile Service Brokerage,” Jul. 1, 2002.
VerizonWireless.com news, “Verizon Wireless Adds to Portfolio of Cosumer-Friendly Tools With Introduction of Usage Controls, Usage Controls and Chaperone 2.0 Offer Parents Full Family Security Solution,” Aug. 18, 2008.
Windows7 Power Management, published Apr. 2009.
Wireless Broadband Alliance, “WISPr 2.0, Apr. 8, 2010”; Doc. Ref. No. WBA/RM/WISPr, Version 01.00.
Zhu et al., “A Survey of Quality of Service in IEEE 802.11 Networks,” IEEE Wireless Communications, Aug. 2004.
“Ads and movies on the run,” the Gold Coast Bulletin, Southport, Qld, Jan. 29, 2008.
“ASA/PIX: Allow Split Tunneling for VPN Clients on the ASA Configuration Example,” Document ID 70917, Jan. 10, 2008.
“Communication Concepts for Mobile Agent Systems,” by Joachim Baumann et al.; Inst. Of Parallel and Distributed High-Performance Systems, Univ. of Stuttgart, Germany, pp. 123-135, 1997.
“End to End QoS Solution for Real-time Multimedia Application;” Computer Engineering and Applications, 2007, 43 (4): 155-159, by Tan Zu-guo, Wang Wen-juan; Information and Science School, Zhanjian Normal College, Zhan jiang, Guangdong 524048, China.
“Jentro Technologies launches Zenlet platform to accelerate location-based content delivery to mobile devices,” The Mobile Internet, Boston, MA, Feb. 2008.
“The Construction of Intelligent Residential District in Use of Cable Television Network,” Shandong Science, vol. 13, No. 2, Jun. 2000.
3rd Generation Partnership Project, “Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access,” Release 8, Document No. 3GPP TS 23.401, V8A.0, Dec. 2008.
3rd Generation Partnership Project, “Technical Specification Group Services and System Aspects; Policy and Charging Control Architecture,” Release 8, Document No. 3GPP TS 23.203, V8.4.0, Dec. 2008.
Accuris Networks, “The Business Value of Mobile Data Offload—a White Paper”, 2010.
Ahmed et al., “A Context-Aware Vertical Handover Decision Algorithm for Multimode Mobile Terminals and Its Performance,” BenQ Mobile, Munich Germany; University of Klagenfurt, Klagenfurt, Austria; 2006.
Alonistioti et al., “Intelligent Architectures Enabling Flexible Service Provision and Adaptability,” 2002.
Amazon Technologies, Inc., “Kindle™ User's Guide,” 3rd Edition, Copyright 2004-2009.
Android Cupcake excerpts, The Android Open Source Project, Feb. 10, 2009.
Anton, B. et al., “Best Current Practices for Wireless Internet Service Provider (WISP) Roaming”; Release Date Feb. 2003, Version 1.0; Wi-Fi Alliance—Wireless ISP Roaming (WISPr).
Blackberry Mobile Data System, version 4.1, Technical Overview, 2006.
Chandrasekhar et al., “Femtocell Networks: A Survey,” Jun. 28, 2008.
Chaouchi et al., “Policy Based Networking in the Integration Effort of 4G Networks and Services,” 2004 IEEE.
Cisco Systems, Inc., “Cisco Mobile Exchange (CMX) Solution Guide: Chapter 2—Overview of GSM, GPRS, and UMTS,” Nov. 4, 2008.
Client Guide for Symantec Endpoint Protection and Symantec Network Access Control, 2007.
Dikaiakos et al., “A Distributed Middleware Infrastructure for Personalized Services,” Nov. 24, 2003.
Dixon et al., Triple Play Digital Services: Comcast and Verizon (Digital Phone, Television, and Internet), Aug. 2007.
Ehnert, “Small application to monitor IP trafic on a Blackberry—1.01.03”, Mar. 27, 2008; http://www.ehnert.net/MiniMoni/.
European Commission, “Data Roaming Tariffs—Transparency Measures,” obtained from EUROPA—Europe's Information Society Thematic Portal website, Jun. 24, 2011: “http://ec.europa.eu/information_society/activities/roaming/datatmeasurestindex_en.htm.”
Farooq et al., “An IEEE 802.16 WiMax Module for the NS-3 Simulator,” Mar. 2-6, 2009.
Fujitsu, “Server Push Technology Survey and Bidirectional Communication in HTTP Browser,” Jan. 9, 2008 (JP).
Han et al., “Information Collection Services for Qos-Aware Mobile Applications,” 2005.
Hartmann et al., “Agent-Based Banking Transactions & Information Retrieval—What About Performance Issues?” 1999.
Hewlett-Packard Development Company, LP, “IP Multimedia Services Charging,” white paper, Jan. 2006.
Hossain et al., “Gain-Based Selection of Ambient Media Services in Pervasive Environments,” Mobile Networks and Applications. Oct. 3, 2008.
Jing et al., “Client-Server Computing in Mobile Environments,” GTE Labs. Inc., Purdue University, ACM Computing Surveys, vol. 31, No. 2, Jun. 1999.
Kasper et al., “Subscriber Authentication in mobile cellular Networks with virtual software SIM Credentials using Trusted Computing,” Fraunhofer-Institute for Secure Information Technology SIT, Darmstadt, Germany; ICACT 2008.
Kassar et al., “An overview of vertical handover decision strategies in heterogeneous wireless networks,” ScienceDirect, University Pierre & Marie Curie, Paris, France, Jun. 5, 2007.
Kim, “Free wireless a high-wire act; MetroFi needs to draw enough ads to make service add profits,” San Francisco Chronicle, Aug. 21, 2006.
Knight et al., “Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standarization Efforts,” IEEE Communications Magazine, Jun. 2004.
Koutsopoulou et al., “Charging, Accounting and Billing Management Schemes in Mobile Telecommunication Networks and the Internet,” IEEE Communications Surveys & Tutorials, First Quarter 2004, vol. 6, No. 1.
Koutsopoulou et al., “Middleware Platform for the Support of Charging Reconfiguration Actions,” 2005.
Kuntze et al., “Trustworthy content push,” Fraunhofer-Institute for Secure Information Technology SIT; Germany; WCNC 2007 proceedings, IEEE.
Kyriakakos et al., “Ubiquitous Service Provision in Next Generation Mobile Networks,” Proceedings of the 13th IST Mobile and Wireless Communications Summit, Lyon, France, Jun. 2004.
Li, Yu, “Dedicated E-Reading Device: The State of the Art and the Challenges,” Scroll, vol. 1, No. 1, 2008.
Loopt User Guide, metroPCS, Jul. 17, 2008.
Muntermann et al., “Potentiale und Sicherheitsanforderungen mobiler Finanzinformationsdienste und deren Systeminfrastrukturen,” Chair of Mobile Commerce & Multilateral Security, Goethe Univ. Frankfurt, 2004.
NetLimiter Lite 4.0.19.0; http://www.heise.de/download/netlimiter-lite-3617703.html from vol. 14/2007.
Nilsson et al., “A Novel MAC Scheme for Solving the QoS Parameter Adjustment Problem in IEEE802.11e EDCA,” Feb. 2006.
Nuzman et al., “A compund model for TCP connection arrivals for LAN and WAN applications,” Oct. 22, 2002.
Open Mobile Alliance (OMA), Push Architecture, Candidate Version 2.2; Oct. 2, 2007; OMA-AD-Push-V2_2-20071002-C.
Oppliger, Rolf, “Internet Security: Firewalls and Bey,” Communications of the ACM, May 1997, vol. 40. No. 5.
Rao et al., “Evolution of Mobile Location-Based Services,” Communication of the ACM, Dec. 2003.
Richtel, “Cellphone consumerism; If even a debit card is too slow, now you have a new way to act on impulse: [National Edition],” National Post, Canada, Oct. 2, 2007.
Rivadeneyra et al., “A communication architecture to access data services through GSM,” San Sebastian, Spain, 1998.
Ruckus Wireless—White Paper; “Smarter Wi-Fi for Mobile Operator Infrastructures” 2010.
Related Publications (1)
Number Date Country
20190141534 A1 May 2019 US
Provisional Applications (5)
Number Date Country
61252151 Oct 2009 US
61206354 Jan 2009 US
61206944 Feb 2009 US
61207393 Feb 2009 US
61207739 Feb 2009 US
Continuations (3)
Number Date Country
Parent 14948065 Nov 2015 US
Child 16034362 US
Parent 13737748 Jan 2013 US
Child 14948065 US
Parent 12694445 Jan 2010 US
Child 13737748 US
Continuation in Parts (1)
Number Date Country
Parent 12380780 Mar 2009 US
Child 12694445 US