The present invention relates to the field of semiconductor devices, and more specifically, to the formation of improved isolation structures with nitrogen-containing liners.
The dominant semiconductor technology used for the manufacture of ultra-large scale integrated (ULSI) circuits is the metal-oxide-semiconductor field effect transistor (MOSFET) technology. Reduction in the size of MOSFETs has provided continued improvement in speed, performance, circuit density, and cost per unit function over the past few decades. As the gate length of the conventional bulk MOSFET is reduced, the source and drain increasingly interact with the channel and gain influence on the channel potential. Consequently, a transistor with a short gate length suffers from problems related to the inability of the gate to substantially control the on and off states of the channel.
Phenomena such as reduced gate control associated with transistors with short channel lengths are termed short-channel effects. Increased body doping concentration, reduced gate oxide thickness, and ultra-shallow source/drain junctions are ways to suppress short-channel effects. However, for device scaling well into the N2x nm regime, approaches involving the use of fin field-effect transistors (finFETs) are being investigated to improve the short channel effects.
Generally, fins are produced by etching a trench in a silicon substrate. A liner of in-situ steam generation (ISSG) oxide is formed along the sidewalls of the trench, and then the trench is filled by a high-density plasma (HDP) oxide or a high-aspect-ratio process (HARP) oxide. An etch-back process is typically performed to recess the oxide within the trench, thereby forming the fins. During the etch-back process, however, oxide fences are often formed along sidewalls of the trench due to the differences in the etch rate between the liner oxide and the HDP/HARP oxide. The oxide fences may result in a thinner gate oxide or bottom oxide and may adversely impact the gate leakage performance of the finFETs.
As a result, a structure of and method for forming semiconductor devices having fins with no or reduced oxide fences are needed.
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by preferred embodiments of the present invention which provides semiconductor devices having semiconductor fins without fences along the sidewalls.
In accordance with an embodiment of the present invention, a method of forming a semiconductor device is provided. A substrate is provided and one or more fins are formed in the substrate. An area between adjacent ones of the fins is filled with a dielectric material. Thereafter, the dielectric material is recessed without forming fences along sidewalls of the fins. The dielectric material may be recessed using, for example, one or more etch processes, including a plasma etch process using NH3 and NF3, a poly-rich gas etch process, or an H2 etch process.
In accordance with another embodiment of the present invention, a method of forming a semiconductor device is provided. A substrate is provided and one or more trenches are formed therein. The trenches are at least partially filled with a dielectric material, and then the dielectric material is recessed such that fences remain along sidewalls of the trenches. Thereafter, the fences are removed. The fences may be removed using, for example, one or more etch processes, including a plasma etch process using NH3 and NF3, a poly-rich gas etch process, or an H2 etch process.
In accordance with yet another embodiment of the present invention, another method of forming a semiconductor device is provided. A substrate is provided having a trench formed therein. The trench is filled with a dielectric material and a first etch process is performed to recess a top surface of the dielectric material below a top surface of the substrate. A second etch process is used to remove dielectric material along sidewalls of the trench. The second etch process may include, for example, one or more etch processes, including a plasma etch process using NH3 and NF3, a poly-rich gas etch process, or an H2 etch process.
It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The intermediate stages of manufacturing an isolation structure in accordance with an embodiment of the present invention are illustrated in
Referring first to
The patterned mask 104 defines a pattern of isolation trenches to be formed in subsequent processing steps. The patterned mask 104 may comprise a hard mask of one or more dielectric layers. For example, the hard mask may be a layer of a silicon dioxide or a silicon nitride formed by, for example, thermal oxidation, chemical vapor deposition (CVD), or the like. Alternatively, the hard mask may be formed of other dielectric materials, such as silicon oxynitride. A multi-layer hard mask, such as layers of silicon dioxide and silicon nitride, may also be used. Furthermore, other materials, such as a metal, a metal nitride, a metal oxide, or the like may be used. For example, the hard mask may be formed of tungsten.
As illustrated in
The trenches 202 are filled with a dielectric material forming isolation regions 206 in accordance with an embodiment of the present invention. The trenches 202 may be filled by forming a dielectric layer over the patterned mask 104 and substantially filling the trenches 202. In an embodiment, the dielectric layer comprises a silicon dioxide layer that may be formed by first forming a layer of ISSG oxide along the sidewalls followed by forming a HDP oxide using a CVD deposition process with a SiH4 and O2 mixture. In an embodiment, the dielectric layer is about 500 Å to about 100,000 Å in thickness.
Thereafter, a planarization process is performed to remove excess material. The dielectric layer may be planarized, for example, by using a chemical-mechanical polishing (CMP) process using an oxide slurry wherein the patterned mask 104 acts as a stop layer.
As illustrated in
The NF3 and NH3 combine in the form of plasma such that the etchants NH4F and NH4F.HF result. These etchants react with the silicon dioxide, creating (NH4)2SiF6 (which is a solid) and H2O. The solid material is formed along the bottom of the recesses 402 and acts as a mask to reduce the etching or recessing along the bottom. As a result, the dielectric material along the sidewalls of the trench is etched at a faster rate than the bottom of the recesses 402.
After removing the dielectric material along the sidewalls of the trenches 202, the solid material, e.g., (NH4)2SiF6, may be removed by sublimation at a temperature greater than about 100° C. The sublimination results in a SiF4 gas, NH3 gas, and HF gas.
In another embodiment, the oxide fences 404 formed of silicon dioxide may be removed using a polymer-rich gas. For example, a polymer-rich gas such as CHF3, CH2F2, CH3F, C4F6, C4F8, C5F8, or the like, may be used. The process conditions preferably include a temperature between about 10° C. and about 70° C., a pressure of between about 5 mtorr and about 20 torr, an RF power of between about 10 W and about 300 W, and a process time of between about 2 seconds and about 600 seconds.
During the etching process, a polymer is formed along the bottom of the recesses 402 and acts as a mask to reduce the etching rate along the bottom of the recesses 402. As a result, the dielectric material along the sidewalls of the trench is etched at a faster rate than the dielectric material along the bottom of the recesses. After removing the dielectric material along the sidewalls of the trench, the polymer formed along the bottom of the trench may be removed by sublimation at a temperature greater than about 100° C.
In this embodiment, the oxide fences 404 are removed using a process gas of H2 and an inert gas as a carrier gas, such as He, Ne, Ar, Kr, Xe and Rn, and combinations thereof. The process conditions preferably include a temperature of between about 500° C. and about 1100° C., a pressure of between about 2 torr and about 500 torr, and a process time of between about 2 seconds and about 60 minutes.
The H2 reacts with the silicon substrate, which in turn reacts with the silicon dioxide to form an absorbed silicon and water vapor. The absorbed silicon in turn reacts further with the silicon dioxide to form silicon oxide gas. As a result of this process, the silicon dioxide adjacent to the exposed sections of the semiconductor substrate 102 is etched at a faster rate than the silicon dioxide along the bottom of the recesses 402, thereby removing the oxide fences 404. This process also results in the silicon atoms from the substrate being converted to silicon oxide gas by product, and as a result, the corners of the fins may be rounded as illustrated in
It should be noted that the processes discussed above may also be performed without performing the first etch-back process discussed above with reference to
Similarly, a single etch-back process may be performed using a polymer-rich gas, such as CHF3, CH2F2, CH3F, C4F6, C4F8, C5F8, or the like, as discussed above. The solid polymer layer formed along the horizontal surface of the dielectric material as the dielectric material is recessed in the vertical direction allows the silicon dioxide along the sidewalls (e.g., the ISSG oxide) to be etched at a rate comparable as the etch rate in the vertical direction. As noted above, the solid polymer layer may be removed by sublimation at a temperature greater than about 100° C.
A single-etch process may also be used to recess the dielectric material using H2 as discussed above with reference to
Thereafter, steps may be taken to complete fabrication of the desired device. For example, for forming a finFET device, a gate dielectric may be formed, a gate electrode may be formed, overlying dielectric layers and metallization layers may be formed, and singulation and packaging may be performed.
One of ordinary skill in the art will realize that the removal of the fences will prevent a thinner gate oxide from being formed, thereby reducing the gate leakage and improving the transistor performance.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, different types of materials and processes may be varied while remaining within the scope of the present invention.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/147,164, filed Jan. 26, 2009, and entitled “Selective Etch-Back Process for Semiconductor Devices,” which application is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5350492 | Hall et al. | Sep 1994 | A |
6074954 | Lill et al. | Jun 2000 | A |
6171974 | Marks et al. | Jan 2001 | B1 |
6265269 | Chen et al. | Jul 2001 | B1 |
6706571 | Yu et al. | Mar 2004 | B1 |
6794268 | Karpov et al. | Sep 2004 | B2 |
6858478 | Chau et al. | Feb 2005 | B2 |
7190050 | King et al. | Mar 2007 | B2 |
7247887 | King et al. | Jul 2007 | B2 |
7265008 | King et al. | Sep 2007 | B2 |
7411268 | Karpov et al. | Aug 2008 | B2 |
7508031 | Liu et al. | Mar 2009 | B2 |
7528465 | King et al. | May 2009 | B2 |
7605449 | Liu et al. | Oct 2009 | B2 |
8455942 | Park | Jun 2013 | B2 |
20040132234 | Ko et al. | Jul 2004 | A1 |
20040248414 | Tsai et al. | Dec 2004 | A1 |
20040262660 | Huang | Dec 2004 | A1 |
20050153490 | Yoon et al. | Jul 2005 | A1 |
20050186746 | Lee et al. | Aug 2005 | A1 |
20050266647 | Kim et al. | Dec 2005 | A1 |
20060088967 | Hsiao et al. | Apr 2006 | A1 |
20060192245 | Oosawa | Aug 2006 | A1 |
20070018276 | Itou | Jan 2007 | A1 |
20070026629 | Chen et al. | Feb 2007 | A1 |
20070087499 | Seo et al. | Apr 2007 | A1 |
20070120156 | Liu et al. | May 2007 | A1 |
20070122953 | Liu et al. | May 2007 | A1 |
20070122954 | Liu et al. | May 2007 | A1 |
20070128782 | Liu et al. | Jun 2007 | A1 |
20070132053 | King et al. | Jun 2007 | A1 |
20070158756 | Dreeskornfeld et al. | Jul 2007 | A1 |
20070238295 | Alapati et al. | Oct 2007 | A1 |
20070246779 | Chun et al. | Oct 2007 | A1 |
20080081420 | Kim | Apr 2008 | A1 |
20080105915 | Park et al. | May 2008 | A1 |
20080182382 | Ingle et al. | Jul 2008 | A1 |
20080290470 | King et al. | Nov 2008 | A1 |
20080296632 | Moroz et al. | Dec 2008 | A1 |
20090181477 | King et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1 944 796 | Jul 2008 | EP |
Number | Date | Country | |
---|---|---|---|
20100190345 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
61147164 | Jan 2009 | US |