Selective etching process for SiGe and doped epitaxial silicon

Information

  • Patent Grant
  • 11854865
  • Patent Number
    11,854,865
  • Date Filed
    Friday, July 30, 2021
    2 years ago
  • Date Issued
    Tuesday, December 26, 2023
    4 months ago
Abstract
The present disclosure relates to a fabricating procedure of a radio frequency device, in which a precursor wafer including active layers, SiGe layers, and a silicon handle substrate is firstly provided. Each active layer is formed from doped epitaxial silicon and underneath a corresponding SiGe layer. The silicon handle substrate is over each SiGe layer. Next, the silicon handle substrate is removed completely, and the SiGe layer is removed completely. An etch passivation film is then formed over each active layer. Herein, removing each SiGe layer and forming the etch passivation film over each active layer utilize a same reactive chemistry combination, which reacts differently to the SiGe layer and the active layer. The reactive chemistry combination is capable of producing a variable performance, which is an etching performance of the SiGe layer or a forming performance of the etch passivation film over the active layer.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to a fabricating procedure of a radio frequency (RF) device, and more particularly to a selective etching process for silicon germanium (SiGe) and doped epitaxial silicon in the fabricating procedure of the radio frequency (RF) device.


BACKGROUND

The wide utilization of cellular and wireless devices drives the rapid development of radio frequency (RF) technologies. The substrates on which RF devices are fabricated play an important role in achieving high level performance in the RF technologies. Fabrications of the RF devices on conventional silicon substrates may benefit from low cost of silicon materials, a large-scale capacity of wafer production, well-established semiconductor design tools, and well-established semiconductor manufacturing techniques.


Despite the benefits of using conventional silicon substrates for RF device fabrications, it is well known in the industry that conventional silicon substrates may have two undesirable properties for RF devices: harmonic distortion and low resistivity values. The harmonic distortion is a critical impediment to achieve high level linearity in the RF devices built over silicon substrates. In addition, high speed and high-performance transistors are more densely integrated in RF devices. Consequently, the amount of heat generated by the RF devices will increase significantly due to the large number of transistors integrated in the RF devices, the large amount of power passing through the transistors, and/or the high operation speed of the transistors. Accordingly, it is desirable to package the RF devices in a configuration for better heat dissipation.


Radio frequency silicon on insulator (RFSOI) wafers are conventionally used for fabricating RF devices. However, with the looming shortage of conventional RFSOI wafers expected in the coming years, alternative technologies are being devised to get around the need for high resistivity using silicon wafers, the trap rich layer formation, and Smart-Cut SOI wafer process. One alternative technology is based on the use of a silicon germanium (SiGe) layer instead of a buried oxide layer (BOX) between a silicon substrate and a silicon epitaxial layer; however, this technology will also suffer from the deleterious distortion effects due to the silicon substrate, similar to what is observed in an RFSOI technology.


In addition, due to the narrow gap nature of the SiGe material, it is possible that the SiGe between the silicon substrate and the silicon epitaxial layer may be conducting, which may cause appreciable current leakage. Therefore, in some applications, such as switch field-effect transistor (FET) applications, the presence of the SiGe layer can cause harm to the devices.


To reduce deleterious harmonic distortion of the RF devices and to utilize the Si—SiGe—Si structure to manufacture RF devices without undesirable current leakage in the RF devices, it is therefore an object of the present disclosure to provide an improved fabricating method for enhancing thermal and electrical performance of the devices.


SUMMARY

The present disclosure relates to a fabricating procedure of a radio frequency (RF) device, and more particularly to a selective etching process for silicon germanium (SiGe) and doped epitaxial silicon in the fabricating procedure of the radio frequency (RF) device. According to an exemplary fabricating process, a precursor wafer, which includes a number of device regions, a number of interfacial layers, and a silicon handle substrate, is firstly provided. Each device region includes an active layer that is fabricated from doped epitaxial silicon. Each interfacial layer formed of silicon germanium (SiGe) is directly over one active layer of a corresponding device region, and the silicon handle substrate is over each interfacial layer. Next, the silicon handle substrate is removed completely, and each interfacial layer is removed completely to expose the active layer. An etch passivation film is then formed directly over the active layer of each device region. Herein, both removing each interfacial layer and forming the etch passivation film utilize a same reactive chemistry combination. This reactive chemistry combination is chosen in a manner that the reactive chemistry combination reacts differently to the interfacial layer and the active layer. The reactive chemistry combination is capable of producing a variable net performance, which is an etching performance of the interfacial layer or a forming performance of the etch passivation film over the active layer.


In one embodiment of the exemplary fabricating process, the interfacial layer is removed by a dry etching process.


In one embodiment of the exemplary fabricating process, the reactive chemistry combination is a mixed gas flow of sulfur hexafluoride (SF6), nitrogen (N2), and boron chloride (BCl3), such that reactive radicals fluorine (F), chlorine (Cl), boron nitride (BN), and boron chloride (BClx) are provided in removing the interfacial layer and forming the etch passivation film. The F and Cl radicals are capable of etching doped epitaxial silicon and SiGe, and the BN and BClx radicals are capable of forming a passivation material on doped epitaxial silicon and SiGe. A competition between an etching rate of the F and Cl radicals and a forming rate of the BN and BClx radicals determines the net performance. For the interfacial layer, the etching rate of the F and Cl radicals is faster than the forming rate of the BN and BClx, such that the net performance is the etching performance leading to the removal of the interfacial layer. For the active layer, the etching rate of the F and Cl radicals is slower than the forming rate of the BN and BClx, such that the net performance is the forming performance of the etch passivation film over the active layer.


In one embodiment of the exemplary fabricating process, in the mixed gas flow, SF6 has a flow rate between 5 sccm and 60 sccm, N2 has a flow rate between 20 sccm and 90 sccm, and BCl3 has a flow rate between 20 sccm and 90 sccm.


In one embodiment of the exemplary fabricating process, the flow rate of SF6, the flow rate of N2, and the flow rate of BCl3 are constant in removing the interfacial layer and forming the etch passivation film.


In one embodiment of the exemplary fabricating process, an oxygen (O2) gas flow and an argon (Ar) gas flow are used with the reactive chemistry combination in removing the interfacial layer and forming the etch passivation film.


In one embodiment of the exemplary fabricating process, the O2 gas flow has a flow rate between 50 sccm and 400 sccm, and the Ar gas flow has a flow rate between 10 sccm and 60 sccm.


According to another embodiment, the exemplary fabricating process further includes a breakthrough etching step before the removal of the interfacial layer. The breakthrough etching step removes a surface oxide layer, which is formed after the removal of the silicon handle substrate and directly on the interfacial layer, to expose the interfacial layer.


In one embodiment of the exemplary fabricating process, the surface oxide layer is removed by a dry etching process, and is pre-calibrated.


In one embodiment of the exemplary fabricating process, the surface oxide layer is removed using a SF6 gas flow.


In one embodiment of the exemplary fabricating process, during the breakthrough etching step, the SF6 gas flow has a flow rate between 5 sccm and 40 sccm.


In one embodiment of the exemplary fabricating process, an O2 gas flow and an Ar gas flow are used with the SF6 gas flow in the breakthrough etching step, where the O2 gas flow has a flow rate between 50 sccm and 400 sccm, and the Ar gas flow has a flow rate between 10 sccm and 60 sccm.


In one embodiment of the exemplary fabricating process, the surface oxide layer and the interfacial layer are removed by a same dry etching process but utilize different reactive chemistry combinations.


In another aspect, any of the foregoing aspects individually or together, and/or various separate aspects and features as described herein, may be combined for additional advantage. Any of the various features and elements as disclosed herein may be combined with one or more other disclosed features and elements unless indicated to the contrary herein.


Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.



FIG. 1 shows an exemplary radio frequency (RF) device with enhanced thermal and electrical performance according to one embodiment of the present disclosure.



FIG. 2 provides a flow diagram that illustrates an exemplary fabricating procedure of the RF device shown in FIG. 1 according to one embodiment of the present disclosure.



FIGS. 3-14 illustrate the steps associated with the fabricating procedure provided in FIG. 2.





It will be understood that for clear illustrations, FIGS. 1-14 may not be drawn to scale.


DETAILED DESCRIPTION

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


Embodiments are described herein with reference to schematic illustrations of embodiments of the disclosure. As such, the actual dimensions of the layers and elements can be different, and variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are expected. For example, a region illustrated or described as square or rectangular can have rounded or curved features, and regions shown as straight lines may have some irregularity. Thus, the regions illustrated in the figures are schematic and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the disclosure. Additionally, sizes of structures or regions may be exaggerated relative to other structures or regions for illustrative purposes and, thus, are provided to illustrate the general structures of the present subject matter and may or may not be drawn to scale. Common elements between figures may be shown herein with common element numbers and may not be subsequently re-described.



FIG. 1 shows an exemplary RF device 10 formed from a silicon handle substrate-silicon germanium interfacial layer-silicon epitaxial layer (Si—SiGe—Si) wafer (processing details are described in following paragraphs) according to one embodiment of the present disclosure. For the purpose of this illustration, the exemplary RF device 10 includes a mold device die 12 with a device region 14, device passivation layers 15, and a first mold compound 16, and a multilayer redistribution structure 18 formed under the mold device die 12.


In detail, the device region 14 includes a front-end-of-line (FEOL) portion 20 and a back-end-of-line (BEOL) portion 22 underneath the FEOL portion 20. In one embodiment, the FEOL portion 20 is configured to provide a switch field-effect transistor (FET), and includes an active layer 24 and a contact layer 26. Herein, the active layer 24 has a source 28 (e.g., N+ doped silicon), a drain 30 (e.g., N+ doped silicon), and a channel 32 (e.g., P doped silicon) between the source 28 and the drain 30. The source 28, the drain 30, and the channel 32 are formed from a same silicon epitaxial layer. The contact layer 26 is formed underneath the active layer 24 and includes a gate structure 34, a source contact 36, a drain contact 38, and a gate contact 40. The gate structure 34 may be formed of silicon oxide, and extends horizontally underneath the channel 32 (from underneath the source 28 to underneath the drain 30). The source contact 36 is connected to and under the source 28, the drain contact 38 is connected to and under the drain 30, and the gate contact 40 is connected to and under the gate structure 34. An insulating material 42 may be formed around the source contact 36, the drain contact 38, the gate structure 34, and the gate contact 40 to electrically separate the source 28, the drain 30, and the gate structure 34. In different applications, the FEOL portion 20 may have different FET configurations or provide different device components, such as a diode, a capacitor, a resistor, and/or an inductor.


In addition, the FEOL portion 20 also includes isolation sections 44, which reside over the insulating material 42 of the contact layer 26 and surround the active layer 24. The isolation sections 44, which may be formed of silicon dioxide, are configured to electrically separate the RF device 10, especially the active layer 24, from other devices formed in a common wafer (not shown). Herein, the isolation sections 44 may extend from a top surface of the contact layer 26 and vertically beyond a top surface of the active layer 24 to define an opening 46 that is within the isolation sections 44 and over the active layer 24.


Notice that the active layer 24 is formed from a silicon epitaxial layer of the Si—SiGe—Si wafer, while the silicon handle substrate and SiGe interfacial layer of the Si—SiGe—Si wafer are completely removed during the fabricating process of the RF device 10 (process details are described in following paragraphs).


In one embodiment, the device passivation layers 15 include a first device passivation layer 15-1 and a second device passivation layer 15-2. The first device passivation layer 15-1 extends over an entire backside of the device region 14, such that the first device passivation layer 15-1 continuously covers exposed surfaces within the opening 46 and top surfaces of the isolation sections 44. The first device passivation layer 15-1 may be formed of silicon dioxide and is configured to terminate the surface bonds at the top surface of the active layer 24, which may be responsible for unwanted leakage. The second device passivation layer 15-2 is formed directly over the first device passivation layer 15-1. Herein, the second device passivation layer 15-2 may be formed of silicon nitride and is configured to provide an excellent barrier to moisture and impurities, which could diffuse into the channel 32 of the active layer 24 and cause reliability concerns in the device.


The RF device 10 further includes an etch passivation film 48, which may be formed of boron nitride (BN) and boron chloride (BClx, x=0-3), directly over the top surface of the active layer 24 and within the opening 46. As such, the first device passivation layer 15-1 is directly over the etch passivation film 48. The etch passivation film 48 is formed as a result of a selective etching process and protects the active layer 24 from being further etched (process details are described in following paragraphs).


The first mold compound 16 is formed over the device passivation layers 15, such that the first mold compound 16 fills the opening 46 and is in contact with the second device passivation layer 15-2. The first mold compound 16 may have a thermal conductivity greater than 1 W/m·K, or greater than 10 W/m·K. In addition, the first mold compound 16 may have a low dielectric constant less than 8, or between 3 and 5 to yield low RF coupling. In one embodiment, the first mold compound 16 may be formed of thermoplastics or thermoset polymer materials, such as PPS (poly phenyl sulfide), overmold epoxies doped with boron nitride, alumina, carbon nanotubes, or diamond-like thermal additives, or the like. A thickness of the first mold compound 16 is based on the required thermal performance of the RF device 10, the device layout, the distance from the multilayer redistribution structure 18, as well as the specifics of the package and assembly. The first mold compound 16 may have a thickness between 200 μm and 500 μm. Notice that, silicon crystal, which has no nitrogen or oxygen content, does not exist between the first mold compound 16 and the top surface of the active layer 24. Each of the device passivation layers 15 is formed of silicon composite.


The BEOL portion 22 is underneath the FEOL portion 20 and includes multiple connecting layers 50 formed within dielectric layers 52. Some of the connecting layers 50 are encapsulated by the dielectric layers 52 (not shown), while some of the connecting layers 50 have a bottom portion not covered by the dielectric layers 52. Certain connecting layers 50 are electrically connected to the FEOL portion 20. For the purpose of this illustration, one of the connecting layers 50 is connected to the source contact 36, and another connecting layer 50 is connected to the drain contact 38.


The multilayer redistribution structure 18, which is formed underneath the BEOL portion 22 of the mold device die 12, includes a number of redistribution interconnections 54, a dielectric pattern 56, and a number of bump structures 58. Herein, each redistribution interconnection 54 is connected to a corresponding connecting layer 50 within the BEOL portion 22 and extends over a bottom surface of the BEOL portion 22. The connections between the redistribution interconnections 54 and the connecting layers 50 are solder-free. The dielectric pattern 56 is formed around and underneath each redistribution interconnection 54. A bottom portion of each redistribution interconnection 54 is exposed through the dielectric pattern 56. Each bump structure 58 is formed at a bottom of the multilayer redistribution structure 18 and electrically coupled to a corresponding redistribution interconnection 54 through the dielectric pattern 56. Consequently, the redistribution interconnections 54 are configured to connect the bump structures 58 to certain ones of the connecting layer 50 in the BEOL portion 22, which are electrically connected to the FEOL portion 20. As such, the bump structures 58 are electrically connected to the FEOL portion 20 via corresponding redistribution interconnections 54 and corresponding connecting layers 50. In addition, the bump structures 58 are separate from each other and extend underneath the dielectric pattern 56.


The multilayer redistribution structure 18 may be free of glass fiber or glass-free. Herein, the glass fiber refers to individual glass strands twisted to become a larger grouping. These glass strands may then be woven into a fabric. The redistribution interconnections 54 may be formed of copper or other suitable metals. The dielectric pattern 56 may be formed of benzocyclobutene (BCB), polyimide, or other dielectric materials. The bump structures 58 may be solder balls or copper pillars. The multilayer redistribution structure 18 has a thickness between 2 μm and 300 μm.



FIG. 2 provides a flow diagram that illustrates an exemplary fabricating procedure 200 of the RF device 10 shown in FIG. 1 according to one embodiment of the present disclosure. FIGS. 3-14 illustrate the steps associated with the fabricating procedure 200 provided in FIG. 2. Although the exemplary steps are illustrated in a series, the exemplary steps are not necessarily order dependent. Some steps may be done in a different order than that presented. Further, processes within the scope of this disclosure may include fewer or more steps than those illustrated in FIGS. 3-14.


Initially, a Si—SiGe—Si wafer 62 is provided as illustrated in FIG. 3 (Step 202). The Si—SiGe—Si wafer 62 includes a common silicon epitaxial layer 64, a common SiGe interfacial layer 66 over the common silicon epitaxial layer 64, and a silicon handle substrate 68 over the common SiGe interfacial layer 66. Herein, the common silicon epitaxial layer 64 is formed from a device grade silicon material, which has desired silicon epitaxial characteristics to form electronic devices. The common SiGe interfacial layer 66, which separates the common silicon epitaxial layer 64 from the silicon handle substrate 68, is formed from an alloy with any molar ratio of Si and Ge. The higher the Ge concentration, the better the etching selectivity between the silicon handle substrate 68 and the common SiGe interfacial layer 66 and between the common SiGe interfacial layer 66 and the common silicon epitaxial layer 64. However, the higher the Ge concentration, the more difficult the epitaxial growth of the common silicon epitaxial layer 64 becomes. In one embodiment, the common SiGe interfacial layer 66 may have a Ge concentration between 25% and 30%. The Ge concentration may be uniform throughout the common SiGe interfacial layer 66 or may be vertically graded so as to yield the necessary strain relief for the growth of the common silicon epitaxial layer 64. The silicon handle substrate 68 may consist of conventional low cost, low resistivity, and high dielectric constant silicon. The common silicon epitaxial layer 64 has higher resistivity, lower harmonic generation, and lower dielectric constant than the silicon handle substrate 68. A thickness of the common silicon epitaxial layer 64 may be between 700 nm and 2000 nm, a thickness of the common SiGe interfacial layer 66 may be between 100 nm and 1000 nm, and a thickness of the silicon handle substrate 68 may be between 200 μm and 500 μm.


Next, a complementary metal-oxide-semiconductor (CMOS) process is performed on the Si—SiGe—Si wafer 62 to provide a precursor wafer 70 with a number of device regions 14, as illustrated in FIG. 4 (Step 204). For the purpose of this illustration, the FEOL portion 20 of each device region 14 is configured to provide a switch FET. In different applications, the FEOL portion 20 may have different FET configurations or provide different device components, such as a diode, a capacitor, a resistor, and/or an inductor.


In this embodiment, the isolation sections 44 of each device region 14 extend through the common silicon epitaxial layer 64 and the common SiGe interfacial layer 66 and extend into the silicon handle substrate 68. As such, the common SiGe interfacial layer 66 separates into a number of individual SiGe interfacial layers 66I, and the common silicon epitaxial layer 64 separates into a number of individual silicon epitaxial layers 64I, each of which is used to form a corresponding active layer 24 (i.e., a doped source-drain epitaxial silicon layer) in one device region 14. The isolation sections 44 may be formed by shallow trench isolation (STI).


The top surface of the active layer 24 is in contact with a corresponding SiGe interfacial layer 66I. The silicon handle substrate 68 resides over each SiGe interfacial layer 66I, and portions of the silicon handle substrate 68 may reside over the isolation sections 44. The BEOL portion 22 of the device region 14, which includes at least the multiple connecting layers 50 and the dielectric layers 52, is formed under the contact layer 26 of the FEOL portion 20. Bottom portions of certain connecting layers 50 are exposed through the dielectric layers 52 at the bottom surface of the BEOL portion 22.


After the precursor wafer 70 is completed, the precursor wafer 70 is then bonded to a temporary carrier 72, as illustrated in FIG. 5 (Step 206). The precursor wafer 70 may be bonded to the temporary carrier 72 via a bonding layer 74, which provides a planarized surface to the temporary carrier 72. The temporary carrier 72 may be a thick silicon wafer from a cost and thermal expansion point of view, but may also be construed of glass, sapphire, or other suitable carrier material. The bonding layer 74 may be a span-on polymeric adhesive film, such as the Brewer Science WaferBOND line of temporary adhesive materials.


The silicon handle substrate 68 is then selectively removed to provide an etched wafer 76, wherein the selective removal is stopped on each SiGe interfacial layer 66I, as illustrated in FIG. 6 (Step 208). Removing the silicon handle substrate 68 may be provided by chemical mechanical grinding and an etching process with a wet/dry etchant chemistry, which may be potassium hydroxide (KOH), sodium hydroxide (NaOH), acetylcholine (ACH), tetramethylammonium hydroxide (TMAH), or xenon difluoride (XeF2), or provided by the etching process itself. As an example, the silicon handle substrate 68 may be ground to a thinner thickness to reduce the following etching time. An etching process is then performed to completely remove the remaining silicon handle substrate 68.


Since the silicon handle substrate 68 and the SiGe interfacial layers 66I have different ingredients/characteristics, they will have different reactions to a same etching technique. For instance, the SiGe interfacial layers 66I have a much slower etching speed than the silicon handle substrate 68 with a same etchant (e.g., TMAH, KOH, NaOH, ACH, or XeF2). Consequently, the etching system is capable of identifying the presence of the SiGe interfacial layers 66I and capable of indicating when to stop the etching process. Herein each SiGe interfacial layer 66I functions as an etch stop layer for the corresponding active layer 24 (i.e., the doped source-drain epitaxial silicon layer).


In addition, the isolation sections 44 may be formed of silicon dioxide, which may resist etching chemistries such as TMAH, KOH, NaOH, ACH, or XeF2. During the removal process, the isolation sections 44 are hardly removed and protect sides of each active layer 24. If the isolation sections 44 extend vertically beyond the SiGe interfacial layers 66I, the removal of the silicon handle substrate 68 will provide the opening 46 over each active layer 24 and within the isolation sections 44. The bonding layer 74 and the temporary carrier 72 protect the bottom surface of each BEOL portion 22.


Due to the narrow gap nature of the SiGe material, it is possible that the SiGe interfacial layers 66I may be conducting. Each SiGe interfacial layer 66I may cause appreciable leakage between the source 28 and the drain 30 of the active layer 24. Therefore, in some applications, especially FET applications, it is desired to completely remove the SiGe interfacial layers 66I.


After the removal of the silicon handle substrate 68, there might be a surface oxide layer (i.e., silicon oxide layer) 67 formed on each SiGe interfacial layer 66I because the SiGe interfacial layer 66I is exposed to the atmosphere. Accordingly, before removing the SiGe interfacial layers 66I, there is a breakthrough etching step to remove each surface oxide layer 67 on the SiGe interfacial layers 66I, as illustrated in FIG. 7 (Step 210).


The surface oxide layer 67 may be removed by a dry etching process utilizing a plasma etch system with a sulfur hexafluoride (SF6) gas flow. Herein, the SF6 gas flow may be provided with an argon (Ar) gas flow and an oxygen (O2) gas flow, where the Ar gas flow acts as a carrier gas flow, and the O2 gas flow is used to dilute the SF6 gas flow and implement uniformity during the processing. In this breakthrough etching step, the SF6 gas flow has a flow rate of 5-60 standard cubic centimeter per minute (sccm), the O2 gas flow has a flow rate of 50-400 sccm, and the Ar gas flow has a flow rate of 10-60 sccm. Since the surface oxide layer 67 is typically very thin (e.g., about a few Å), a duration of the breakthrough etching step is very short and can be pre-calibrated in the plasma etch system (e.g., by using a timer). The isolation sections 44 formed of silicon dioxide may only be minimally etched in this breakthrough etching step (Step 210) and still protect sides of each active layer 24.


As described above, each active layer 24 is directly underneath the SiGe interfacial layer 66I that may cause unwanted current leakage in the active layer 24. It is therefore highly desired to completely remove each SiGe interfacial layer 66I without harming the active layer 24. The SiGe interfacial layers 66I may be removed by the same dry etching process used to remove the surface oxide layer 67 in the same plasma etch system, but by utilizing a different reactive chemistry combination. The reactive chemistry combination provides the removal of the SiGe interfacial layers 66I followed by the etch passivation film 48 formed on the surface of the minimally etched active layer 24.


Table 1 shows detailed conditions of the dry etching process in the breakthrough etching step (Step 210), a SiGe etching step (Step 212), and a passivation film forming step (Step 214). In the SiGe etching step and the passivation film forming step, the reactive chemistry combination is a mixed gas flow of SF6, Nitrogen (N2), and boron chloride (BCl3). These reactive gas components may be carried by the Ar gas flow and may be diluted to various concentration degrees by using the O2 gas flow. Note that the reactions of the Ar and O2 gas flows are negligible during Steps 210-214. The following reactions are expected to occur in the plasma etch system once power is applied:

SF6=>F*+SFx
BCl3=>BCly+Cl*
BCly+N2=>BN+BCly+Cl*

Various reactive radicals fluorine (F), chlorine (Cl), BN, and boron chloride (BCly) are generated, wherein * represents an excited state of the radicals (with high energy), x represents a number between 0 and 6, and y represents a number between 0 and 3. Herein, the F and Cl radicals can etch silicon and SiGe, while the BN and BClx radicals can form an etch passivation film. A competition between the etching rate of the F and Cl radicals and the forming rate of the BN and BClx radicals determines a net performance, which can lead to an SiGe etching result or a passivation film forming result.












TABLE 1








SiGe Etching





Step





and Passivation


Process

Breakthrough
Film


parameter
Units
Etching Step
Forming Step







Wafer
Celsius
 15-50
 15-50


Temperature





Power
Watt
400-1400
400-1400


Bias
Watt
  0-200
  0-200


Pressure
milliTorr
 05-60
 05-60


SF6
sccm (standard cubic
 05-40
 05-40



centimeter per minute)




N2
SCCM
None
 20-90


BCl3
sccm
None
 20-90


Ar
sccm
 10-60
 10-60


O2
sccm
 50-400
 50-400









The reactive chemistry combination is carefully chosen in a manner that it reacts differently to the SiGe interfacial layer 66I and the active layer 24 (i.e., the doped source-drain epitaxial silicon layer) causing a variable net performance. In other words, the reactive chemistry combination is optimized to achieve an infinite selectivity between SiGe and silicon by shifting the net performance to an etching performance of the SiGe interfacial layer 66I, and to a forming performance of the etch passivation film 48 over the active layer 24. When the SiGe interfacial layers 66I are exposed to the reactive chemistry combination, the etching rate of the F and Cl radicals is faster than the forming rate of the BN and BClx, such that the net performance is the etching performance leading to the removal of the SiGe interfacial layers 66I, as illustrated in FIG. 8 (Step 212). A net etching speed of the SiGe interfacial layers 66I may be between 10 Å/min and 300 Å/min.


Once the SiGe interfacial layers 66I are completely removed, the active layers 24 are exposed to the reactive chemistry combination. For the active layers 24, the etching rate of the F and Cl radicals is slower than the forming rate of the BN and BClx, such that the net performance is the forming performance of the etch passivation film 48 over each active layer 24, as illustrated in FIG. 9 (Step 214). Therefore, each active layer 24 is not etched at all or only minimally etched at a top surface. Accordingly, superior etching selectivity is achieved between the SiGe interfacial layers 66I and the active layers 24. In a more general way, the superior etching selectivity can be achieved between SiGe material and doped silicon material by utilizing a special reactive chemistry combination (e.g., a gas combination of SF6, N2, and BCl3). A net forming speed of the etch passivation film 48 may be between 1 Å/min and 20 Å/min. In one embodiment, the net forming speed of the etch passivation film 48 may be much slower than the net etching speed of the SiGe interfacial layer 66I.


During the SiGe etching step (Step 212) and the passivation film forming step (Step 214), the isolation sections 44 are not etched by the mixed gas flow. In the mixed gas flow, SF6 may have a flow rate of 5-60 sccm, N2 may have a flow rate of 20-90 sccm, BCl3 may have a flow rate of 20-90 sccm, O2 may have a flow rate of 50-400 sccm, and Ar may have a flow rate of 10-60 sccm. By adjusting the flow ratio of respective gas flows, different etching/forming rates and selectivity can be achieved between the SiGe interfacial layers 66I and the active layers 24. In one embodiment, the reactive chemistry combination and the flow ratios of these reactive gas components may remain constant during the SiGe etching step (Step 212) and the passivation film forming step (Step 214).


Next, the device passivation layers 15 are formed over the etch passivation film 48, as illustrated in FIGS. 10A and 10B (Step 216). The device passivation layers 15 continuously cover exposed surfaces within each opening 46 and the top surface of each isolation section 44. As shown in FIG. 10A, the first device passivation layer 15-1 is firstly applied continuously over the exposed surfaces within each opening 46 and the top surface of each isolation section 44. The first device passivation layer 15-1 is in contact with the passivation layer 48 and always covers each active layer 24. The first device passivation layer 15-1 may be formed of silicon dioxide by a plasma enhanced deposition process, an anodic oxidation process, an ozone-based oxidation process, or a number of other proper techniques. The first device passivation layer 15-1 is configured to terminate the surface bonds at the top surface of the active layer 24, which may be responsible for unwanted leakage.


As shown in FIG. 10B, the second device passivation layer 15-2 is then applied directly over the first device passivation layer 15-1. The second device passivation layer 15-2 also covers each active layer 24, side surfaces of each isolation section 44 within each opening 46, and the top surface of each isolation section 44. Herein, the second device passivation layer 15-2 may be formed of silicon nitride and is configured to provide an excellent barrier to moisture and impurities, which could diffuse into the channel 32 of the active layer 24 and cause reliability concerns in the device. The second device passivation layer 15-2 may be formed by a chemical vapor deposition system such as a plasma enhanced chemical vapor deposition (PECVD) system, or an atomic layer deposition (ALD) system.


After the device passivation layers are formed, the first mold compound 16 is applied over the device passivation layers 15 to provide a mold device wafer 78, as illustrated in FIG. 11 (Step 218). The mold device wafer 78 includes a number of the mold device dies 12, each of which includes the device region 14, a portion of the device passivation layers 15, and a portion of the first mold compound 16. Herein, the first mold compound 16 fills each opening 46, fully covers the device passivation layers 15, and is in contact with the second device passivation layer 15-2.


The first mold compound 16 may be applied by various procedures, such as compression molding, sheet molding, overmolding, transfer molding, dam fill encapsulation, and screen print encapsulation. The first mold compound 16 may have a superior thermal conductivity greater than 1 W/m·K or greater than 10 W/m·K, and may have a dielectric constant less than 8 or between 3 and 5. During the molding process of the first mold compound 16, the temporary carrier 72 provides mechanical strength and rigidity to the etched wafer 76. A curing process (not shown) is followed to harden the first mold compound 16. The curing temperature is between 100° C. and 320° C. depending on which material is used as the first mold compound 16. After the curing process, the first mold compound 16 may be thinned and/or planarized (not shown).


The temporary carrier 72 is then debonded from the mold device wafer 78, and the bonding layer 74 is cleaned from the mold device wafer 78, as illustrated in FIG. 12 (Step 220). A number of debonding processes and cleaning processes may be applied depending on the nature of the temporary carrier 72 and the bonding layer 74 chosen in the earlier steps. For instance, the temporary carrier 72 may be mechanically debonded using a lateral blade process with the stack heated to a proper temperature. Other suitable processes involve radiation of UV light through the temporary carrier 72 if it is formed of a transparent material, or chemical debonding using a proper solvent. The bonding layer 74 may be eliminated by wet or dry etching processes, such as proprietary solvents and plasma washing. After the debonding and cleaning process, the bottom portions of certain ones of the connecting layers 50, which may be functioned as input/output (I/O) ports of the mold device die 12, are exposed through the dielectric layers 52 at the bottom surface of each BEOL portion 22. As such, each mold device die 12 in the mold device wafer 78 may be electrically verified to be working properly at this point.


With reference to FIGS. 13A-13C, the multilayer redistribution structure 18 is formed underneath the mold device wafer 78 according to one embodiment of the present disclosure (Step 222). Although the redistribution steps are illustrated in a series, the redistribution steps are not necessarily order dependent. Some steps may be done in a different order than that presented. Further, redistribution steps within the scope of this disclosure may include fewer or more steps than those illustrated in FIGS. 13A-13C.


A number of the redistribution interconnections 54 are firstly formed underneath each BEOL portion 22, as illustrated in FIG. 13A. Each redistribution interconnection 54 is electrically coupled to the exposed bottom portion of the corresponding connecting layer 50 within the BEOL portion 22 and may extend over the bottom surface of the BEOL portion 22. The connections between the redistribution interconnections 54 and the connecting layers 50 are solder-free. The dielectric pattern 56 is then formed underneath each BEOL portion 22 to partially encapsulate each redistribution interconnection 54, as illustrated in FIG. 13B. As such, the bottom portion of each redistribution interconnection 54 is exposed through the dielectric pattern 56. In different applications, there may be extra redistribution interconnections (not shown) electrically coupled to the redistribution interconnection 54 through the dielectric pattern 56, and extra dielectric patterns (not shown) formed underneath the dielectric pattern 56, such that a bottom portion of each extra redistribution interconnection is exposed.


Next, a number of the bump structures 58 are formed to complete the multilayer redistribution structure 18 and provide a wafer-level fan-out (WLFO) package 80, as illustrated in FIG. 13C. Each bump structure 58 is formed at the bottom of the multilayer redistribution structure 18 and electrically coupled to an exposed bottom portion of the corresponding redistribution interconnection 54 through the dielectric pattern 56. Consequently, the redistribution interconnections 54 are configured to connect the bump structures 58 to certain ones of the connecting layer 50 in the BEOL portion 22, which are electrically connected to the FEOL portion 20. As such, the bump structures 58 are electrically connected to the FEOL portion 20 via corresponding redistribution interconnections 54 and corresponding connecting layers 50. In addition, the bump structures 58 are separate from each other and extend underneath the dielectric pattern 56.


The multilayer redistribution structure 18 may be free of glass fiber or glass-free. Herein, the glass fiber refers to individual glass strands twisted to become a larger grouping. These glass strands may then be woven into a fabric. The redistribution interconnections 54 may be formed of copper or other suitable metals, the dielectric pattern 56 may be formed of BCB, polyimide, or other dielectric materials, and the bump structures 58 may be solder balls or copper pillars. The multilayer redistribution structure 18 has a thickness between 2 μm and 300 μm. FIG. 14 shows a final step to singulate the WLFO package 80 into individual RF devices 10 (Step 224). The singulating step may be provided by a probing and dicing process at certain isolation sections 44.


It is contemplated that any of the foregoing aspects, and/or various separate aspects and features as described herein, may be combined for additional advantage. Any of the various embodiments as disclosed herein may be combined with one or more other disclosed embodiments unless indicated to the contrary herein.


Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. A method comprising: providing a precursor wafer having a plurality of device regions, wherein: each of the plurality of device regions includes an active layer that is fabricated from doped epitaxial silicon;an interfacial layer formed of silicon germanium (SiGe) is directly over the active layer of each of the plurality of device regions; anda silicon handle substrate is directly over each interfacial layer;removing the silicon handle substrate completely;removing the interfacial layer completely to expose the active layer; andforming an etch passivation film directly over the active layer of each of the plurality of device regions, wherein: both removing the interfacial layer and forming the etch passivation film utilize a same reactive chemistry combination;the reactive chemistry combination is a mixed gas flow of sulfur hexafluoride (SF6), nitrogen (N2), and boron chloride (BCl3), which reacts differently to the interfacial layer and the active layer, and provides reactive radicals fluorine (F), chlorine (Cl), boron nitride (BN), and boron chloride (BClx);the reactive chemistry combination is capable of producing a variable net performance, which is an etching performance of the interfacial layer or a forming performance of the etch passivation film over the active layer; andthe F and Cl radicals are capable of etching doped epitaxial silicon and SiGe, and the BN and BClx radicals are capable of forming a passivation material on doped epitaxial silicon and SiGe, wherein a competition between an etching rate of the F and Cl radicals and a forming rate of the BN and BClx radicals determines the net performance.
  • 2. The method of claim 1 wherein the interfacial layer is removed by a dry etching process.
  • 3. The method of claim 2 wherein: for the interfacial layer, the etching rate of the F and Cl radicals is faster than the forming rate of the BN and BClx, such that the net performance is the etching performance leading to the removal of the interfacial layer; andfor the active layer, the etching rate of the F and Cl radicals is slower than the forming rate of the BN and BClx, such that the net performance is the forming performance of the etch passivation film over the active layer.
  • 4. The method of claim 3 wherein in the mixed gas flow, SF6 has a flow rate between 5 sccm and 60 sccm, N2 has a flow rate between 20 sccm and 90 sccm, and BCl3 has a flow rate between 20 sccm and 90 sccm.
  • 5. The method of claim 4 wherein the flow rate of SF6, the flow rate of N2, and the flow rate of BCl3 are constant in removing the interfacial layer and forming the etch passivation film.
  • 6. The method of claim 3 wherein an oxygen (O2) gas flow and an argon (Ar) gas flow are used with the reactive chemistry combination in removing the interfacial layer and forming the etch passivation film.
  • 7. The method of claim 6 wherein the O2 gas flow has a flow rate between 50 sccm and 400 sccm, and the Ar gas flow has a flow rate between 10 sccm and 60 sccm.
  • 8. The method of claim 1 further comprising, before the removal of the interfacial layer, a breakthrough etching step to remove a surface oxide layer to expose the interfacial layer, wherein the surface oxide layer is formed after the removal of the silicon handle substrate directly on the interfacial layer.
  • 9. The method of claim 8 wherein the surface oxide layer is removed by a dry etching process.
  • 10. The method of claim 9 wherein the surface oxide layer is removed using a SF6 gas flow.
  • 11. The method of claim 10 wherein during the breakthrough etching step, the SF6 gas flow has a flow rate between 5 sccm and 40 sccm.
  • 12. The method of claim 10 wherein an O2 gas flow and an Ar gas flow are used with the SF6 gas flow in the breakthrough etching step.
  • 13. The method of claim 12 wherein the O2 gas flow has a flow rate between 50 sccm and 400 sccm, and the Ar gas flow has a flow rate between 10 sccm and 60 sccm.
  • 14. The method of claim 10 wherein a duration of the breakthrough etching step is pre-calibrated.
  • 15. The method of claim 8 wherein the surface oxide layer and the interfacial layer are removed by a same dry etching process.
  • 16. The method of claim 15 wherein: the surface oxide layer is removed using a SF6 gas flow;for the interfacial layer, the etching rate of the F and Cl radicals is faster than the forming rate of the BN and BClx, such that the net performance is the etching performance leading to the removal of the interfacial layer; andfor the active layer, the etching rate of the F and Cl radicals is slower than the forming rate of the BN and BClx, such that the net performance is the forming performance of the etch passivation film over the active layer.
  • 17. The method of claim 16 wherein: during the breakthrough etching step, the SF6 gas flow has a flow rate between 5 sccm and 40 sccm; andduring removing the interfacial layer and forming the etch passivation film, in the mixed gas flow, SF6 has a flow rate between 5 sccm and 60 sccm, N2 has a flow rate between 20 sccm and 90 sccm, and BCl3 has a flow rate between 20 sccm and 90 sccm.
  • 18. The method of claim 17 wherein the flow rate of SF6, the flow rate of N2, and the flow rate of BCl3 are constant in removing the interfacial layer and forming the etch passivation film.
  • 19. The method of claim 16 wherein an O2 gas flow and an Ar gas flow are used in removing the surface oxide layer, removing the interfacial layer, and forming the etch passivation film.
  • 20. The method of claim 19 wherein the O2 gas flow has a flow rate between 50 sccm and 400 sccm, and the Ar gas flow has a flow rate between 10 sccm and 60 sccm.
RELATED APPLICATIONS

This application claims the benefit of provisional patent application Ser. No. 63/157,057, filed Mar. 5, 2021, the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (361)
Number Name Date Kind
4093562 Kishimoto Jun 1978 A
4366202 Borovsky Dec 1982 A
5013681 Godbey et al. May 1991 A
5061663 Bolt et al. Oct 1991 A
5069626 Patterson et al. Dec 1991 A
5164687 Kurian et al. Nov 1992 A
5294295 Gabriel Mar 1994 A
5362972 Yazawa et al. Nov 1994 A
5391257 Sullivan et al. Feb 1995 A
5459368 Onishi et al. Oct 1995 A
5646432 Iwaki et al. Jul 1997 A
5648013 Uchida et al. Jul 1997 A
5699027 Tsuji et al. Dec 1997 A
5709960 Mays et al. Jan 1998 A
5729075 Strain Mar 1998 A
5831369 Fürbacher et al. Nov 1998 A
5920142 Onishi et al. Jul 1999 A
6072557 Kishimoto Jun 2000 A
6084284 Adamic, Jr. Jul 2000 A
6137125 Costas et al. Oct 2000 A
6154366 Ma et al. Nov 2000 A
6154372 Kalivas et al. Nov 2000 A
6235554 Akram et al. May 2001 B1
6236061 Walpita May 2001 B1
6268654 Glenn et al. Jul 2001 B1
6271469 Ma et al. Aug 2001 B1
6377112 Rozsypal Apr 2002 B1
6423570 Ma et al. Jul 2002 B1
6426559 Bryan et al. Jul 2002 B1
6441498 Song Aug 2002 B1
6446316 Fürbacher et al. Sep 2002 B1
6578458 Akram et al. Jun 2003 B1
6649012 Masayuki et al. Nov 2003 B2
6703688 Fitzergald Mar 2004 B1
6713859 Ma Mar 2004 B1
6841413 Liu et al. Jan 2005 B2
6864156 Conn Mar 2005 B1
6864540 Divakaruni et al. Mar 2005 B1
6902950 Ma et al. Jun 2005 B2
6943429 Glenn et al. Sep 2005 B1
6964889 Ma et al. Nov 2005 B2
6992400 Tikka et al. Jan 2006 B2
7042072 Kim et al. May 2006 B1
7049692 Nishimura et al. May 2006 B2
7064391 Conn Jun 2006 B1
7109635 McClure et al. Sep 2006 B1
7183172 Lee et al. Feb 2007 B2
7190064 Wakabayashi et al. Mar 2007 B2
7238560 Sheppard et al. Jul 2007 B2
7279750 Jobetto Oct 2007 B2
7288435 Aigner et al. Oct 2007 B2
7307003 Reif et al. Dec 2007 B2
7393770 Wood et al. Jul 2008 B2
7402901 Hatano et al. Jul 2008 B2
7427824 Iwamoto et al. Sep 2008 B2
7489032 Jobetto Feb 2009 B2
7596849 Carpenter et al. Oct 2009 B1
7619347 Bhattacharjee Nov 2009 B1
7635636 McClure et al. Dec 2009 B2
7714535 Yamazaki et al. May 2010 B2
7723838 Takeuchi et al. May 2010 B2
7749882 Kweon et al. Jul 2010 B2
7790543 Abadeer et al. Sep 2010 B2
7816231 Dyer et al. Oct 2010 B2
7843072 Park et al. Nov 2010 B1
7855101 Furman et al. Dec 2010 B2
7868419 Kerr et al. Jan 2011 B1
7910405 Okada et al. Mar 2011 B2
7955955 Lane et al. Jun 2011 B2
7960218 Ma et al. Jun 2011 B2
8004089 Jobetto Aug 2011 B2
8183151 Lake May 2012 B2
8299633 Su Oct 2012 B2
8420447 Tay et al. Apr 2013 B2
8503186 Lin et al. Aug 2013 B2
8563403 Farooq et al. Oct 2013 B1
8568547 Yamazaki et al. Oct 2013 B2
8643148 Lin et al. Feb 2014 B2
8658475 Kerr Feb 2014 B1
8664044 Jin et al. Mar 2014 B2
8772853 Hong et al. Jul 2014 B2
8791532 Graf et al. Jul 2014 B2
8802495 Kim et al. Aug 2014 B2
8803242 Marino et al. Aug 2014 B2
8816407 Kim et al. Aug 2014 B2
8835978 Mauder et al. Sep 2014 B2
8906755 Hekmatshoartabari et al. Dec 2014 B1
8921990 Park et al. Dec 2014 B2
8927968 Cohen et al. Jan 2015 B2
8941248 Lin et al. Jan 2015 B2
8963321 Lenniger et al. Feb 2015 B2
8983399 Kawamura et al. Mar 2015 B2
9064883 Meyer et al. Jun 2015 B2
9165793 Wang et al. Oct 2015 B1
9214337 Carroll et al. Dec 2015 B2
9349700 Hsieh et al. May 2016 B2
9368429 Ma et al. Jun 2016 B2
9406637 Wakisaka et al. Aug 2016 B2
9461001 Tsai et al. Oct 2016 B1
9520428 Fujimori Dec 2016 B2
9530709 Leipold et al. Dec 2016 B2
9613831 Morris et al. Apr 2017 B2
9646856 Meyer et al. May 2017 B2
9653428 Hiner et al. May 2017 B1
9698081 Yu et al. Jul 2017 B2
9786586 Shih Oct 2017 B1
9812350 Costa Nov 2017 B2
9824951 Leipold et al. Nov 2017 B2
9824974 Gao et al. Nov 2017 B2
9859254 Yu et al. Jan 2018 B1
9875971 Bhushan et al. Jan 2018 B2
9941245 Skeete et al. Apr 2018 B2
10134837 Fanelli et al. Nov 2018 B1
10727212 Moon et al. Jul 2020 B2
10784348 Fanelli et al. Sep 2020 B2
10882740 Costa et al. Jan 2021 B2
20010004131 Masayuki et al. Jun 2001 A1
20020070443 Mu et al. Jun 2002 A1
20020074641 Towle et al. Jun 2002 A1
20020127769 Ma et al. Sep 2002 A1
20020127780 Ma et al. Sep 2002 A1
20020137263 Towle et al. Sep 2002 A1
20020185675 Furukawa Dec 2002 A1
20030207515 Tan et al. Nov 2003 A1
20040021152 Nguyen et al. Feb 2004 A1
20040093901 Kim et al. May 2004 A1
20040164367 Park Aug 2004 A1
20040166642 Chen et al. Aug 2004 A1
20040219765 Reif et al. Nov 2004 A1
20040266159 Gardecki et al. Dec 2004 A1
20050037595 Nakahata Feb 2005 A1
20050077511 Fitzergald Apr 2005 A1
20050079686 Aigner et al. Apr 2005 A1
20050212419 Vazan et al. Sep 2005 A1
20050258447 Oi et al. Nov 2005 A1
20050260842 Kaltalioglu et al. Nov 2005 A1
20060009041 Iyer et al. Jan 2006 A1
20060057782 Gardes et al. Mar 2006 A1
20060099781 Beaumont et al. May 2006 A1
20060105496 Chen et al. May 2006 A1
20060108585 Gan et al. May 2006 A1
20060110887 Huang May 2006 A1
20060228074 Lipson et al. Oct 2006 A1
20060261446 Wood et al. Nov 2006 A1
20070020807 Geefay et al. Jan 2007 A1
20070034910 Shie Feb 2007 A1
20070045738 Jones et al. Mar 2007 A1
20070069393 Asahi et al. Mar 2007 A1
20070075317 Kato et al. Apr 2007 A1
20070121326 Nall et al. May 2007 A1
20070122943 Foong et al. May 2007 A1
20070158746 Ohguro Jul 2007 A1
20070181992 Lake Aug 2007 A1
20070190747 Humpston et al. Aug 2007 A1
20070194342 Kinzer Aug 2007 A1
20070252481 Iwamoto et al. Nov 2007 A1
20070276092 Kanae et al. Nov 2007 A1
20080020513 Jobetto Jan 2008 A1
20080050852 Hwang et al. Feb 2008 A1
20080050901 Kweon et al. Feb 2008 A1
20080087959 Monfray et al. Apr 2008 A1
20080157303 Yang Jul 2008 A1
20080164528 Cohen et al. Jul 2008 A1
20080251927 Zhao et al. Oct 2008 A1
20080265978 Englekirk Oct 2008 A1
20080272497 Lake Nov 2008 A1
20080277800 Hwang et al. Nov 2008 A1
20080315372 Kuan et al. Dec 2008 A1
20090008714 Chae Jan 2009 A1
20090010056 Kuo et al. Jan 2009 A1
20090014856 Knickerbocker Jan 2009 A1
20090090979 Zhu et al. Apr 2009 A1
20090179266 Abadeer et al. Jul 2009 A1
20090230542 Lin et al. Sep 2009 A1
20090243097 Koroku et al. Oct 2009 A1
20090261460 Kuan et al. Oct 2009 A1
20090302484 Lee et al. Dec 2009 A1
20100003803 Oka et al. Jan 2010 A1
20100012354 Hedin et al. Jan 2010 A1
20100029045 Ramanathan et al. Feb 2010 A1
20100045145 Tsuda Feb 2010 A1
20100081232 Furman et al. Apr 2010 A1
20100081237 Wong et al. Apr 2010 A1
20100105209 Winniczek Apr 2010 A1
20100109122 Ding et al. May 2010 A1
20100120204 Kunimoto May 2010 A1
20100127340 Sugizaki May 2010 A1
20100173436 Ouellet et al. Jul 2010 A1
20100200919 Kikuchi Aug 2010 A1
20100314637 Kim et al. Dec 2010 A1
20110003433 Harayama et al. Jan 2011 A1
20110018126 Kling et al. Jan 2011 A1
20110026232 Lin et al. Feb 2011 A1
20110036400 Murphy et al. Feb 2011 A1
20110062549 Lin Mar 2011 A1
20110068433 Kim et al. Mar 2011 A1
20110102002 Riehl et al. May 2011 A1
20110171792 Chang et al. Jul 2011 A1
20110227158 Zhu Sep 2011 A1
20110272800 Chino Nov 2011 A1
20110272824 Pagaila Nov 2011 A1
20110294244 Hattori et al. Dec 2011 A1
20120003813 Chuang et al. Jan 2012 A1
20120045871 Lee et al. Feb 2012 A1
20120068276 Lin et al. Mar 2012 A1
20120094418 Grama et al. Apr 2012 A1
20120098074 Lin et al. Apr 2012 A1
20120104495 Zhu et al. May 2012 A1
20120119346 Im et al. May 2012 A1
20120153393 Liang et al. Jun 2012 A1
20120168863 Zhu et al. Jul 2012 A1
20120256260 Cheng et al. Oct 2012 A1
20120292700 Khakifirooz et al. Nov 2012 A1
20120299105 Cai et al. Nov 2012 A1
20120313243 Chang et al. Dec 2012 A1
20130001665 Zhu et al. Jan 2013 A1
20130015429 Hong et al. Jan 2013 A1
20130037929 Essig et al. Feb 2013 A1
20130049205 Meyer et al. Feb 2013 A1
20130082399 Kim et al. Apr 2013 A1
20130099315 Zhu et al. Apr 2013 A1
20130105966 Kelkar et al. May 2013 A1
20130147009 Kim Jun 2013 A1
20130155681 Nall et al. Jun 2013 A1
20130196483 Dennard et al. Aug 2013 A1
20130200456 Zhu et al. Aug 2013 A1
20130221493 Kim et al. Aug 2013 A1
20130241040 Tojo et al. Sep 2013 A1
20130280826 Scanlan et al. Oct 2013 A1
20130299871 Mauder et al. Nov 2013 A1
20130334698 Mohammed et al. Dec 2013 A1
20140015131 Meyer et al. Jan 2014 A1
20140021583 Lo et al. Jan 2014 A1
20140035129 Stuber et al. Feb 2014 A1
20140134803 Kelly et al. May 2014 A1
20140168014 Chih et al. Jun 2014 A1
20140197530 Meyer et al. Jul 2014 A1
20140210314 Bhattacharjee et al. Jul 2014 A1
20140219604 Hackler, Sr. et al. Aug 2014 A1
20140252566 Kerr et al. Sep 2014 A1
20140252567 Carroll et al. Sep 2014 A1
20140264813 Lin et al. Sep 2014 A1
20140264818 Lowe, Jr. et al. Sep 2014 A1
20140306324 Costa et al. Oct 2014 A1
20140323064 McCarthy Oct 2014 A1
20140327003 Fuergut et al. Nov 2014 A1
20140327150 Jung et al. Nov 2014 A1
20140346573 Adam et al. Nov 2014 A1
20140356602 Oh et al. Dec 2014 A1
20150015321 Dribinsky et al. Jan 2015 A1
20150021754 Lin et al. Jan 2015 A1
20150060956 Chen Mar 2015 A1
20150076713 Tsai et al. Mar 2015 A1
20150097302 Wakisaka et al. Apr 2015 A1
20150108666 Engelhardt et al. Apr 2015 A1
20150115416 Costa et al. Apr 2015 A1
20150130045 Tseng et al. May 2015 A1
20150136858 Finn et al. May 2015 A1
20150162307 Chen et al. Jun 2015 A1
20150171006 Hung et al. Jun 2015 A1
20150197419 Cheng et al. Jul 2015 A1
20150235990 Cheng et al. Aug 2015 A1
20150235993 Cheng et al. Aug 2015 A1
20150243881 Sankman et al. Aug 2015 A1
20150255368 Costa Sep 2015 A1
20150262844 Meyer et al. Sep 2015 A1
20150279789 Mahajan et al. Oct 2015 A1
20150311132 Kuo et al. Oct 2015 A1
20150364344 Yu et al. Dec 2015 A1
20150380394 Jang et al. Dec 2015 A1
20150380523 Hekmatshoartabari et al. Dec 2015 A1
20160002510 Champagne et al. Jan 2016 A1
20160056544 Garcia et al. Feb 2016 A1
20160079137 Leipold et al. Mar 2016 A1
20160079233 Deboy et al. Mar 2016 A1
20160093580 Scanlan et al. Mar 2016 A1
20160100489 Costa et al. Apr 2016 A1
20160126111 Leipold et al. May 2016 A1
20160126196 Leipold et al. May 2016 A1
20160133591 Hong et al. May 2016 A1
20160141249 Kang et al. May 2016 A1
20160141263 Lin et al. May 2016 A1
20160155706 Yoneyama et al. Jun 2016 A1
20160260745 Huang et al. Sep 2016 A1
20160284568 Morris et al. Sep 2016 A1
20160284570 Morris et al. Sep 2016 A1
20160300771 Lin Oct 2016 A1
20160343592 Costa et al. Nov 2016 A1
20160343604 Costa et al. Nov 2016 A1
20160347609 Yu et al. Dec 2016 A1
20160362292 Chang et al. Dec 2016 A1
20170005000 Beyne Jan 2017 A1
20170024503 Connelly Jan 2017 A1
20170032957 Costa et al. Feb 2017 A1
20170033026 Ho et al. Feb 2017 A1
20170053938 Whitefield Feb 2017 A1
20170062284 Mason et al. Mar 2017 A1
20170062366 Enquist Mar 2017 A1
20170077028 Maxim et al. Mar 2017 A1
20170098587 Leipold et al. Apr 2017 A1
20170190572 Pan et al. Jul 2017 A1
20170200648 Lee et al. Jul 2017 A1
20170207350 Leipold et al. Jul 2017 A1
20170263539 Gowda et al. Sep 2017 A1
20170271200 Costa Sep 2017 A1
20170323804 Costa et al. Nov 2017 A1
20170323860 Costa et al. Nov 2017 A1
20170334710 Costa et al. Nov 2017 A1
20170358511 Costa et al. Dec 2017 A1
20180019184 Costa et al. Jan 2018 A1
20180019185 Costa et al. Jan 2018 A1
20180042110 Cok Feb 2018 A1
20180044169 Hatcher, Jr. et al. Feb 2018 A1
20180044177 Vandemeer et al. Feb 2018 A1
20180047653 Costa et al. Feb 2018 A1
20180076174 Costa et al. Mar 2018 A1
20180138082 Costa et al. May 2018 A1
20180138227 Shimotsusa et al. May 2018 A1
20180145678 Maxim et al. May 2018 A1
20180166358 Costa et al. Jun 2018 A1
20180240797 Yokoyama et al. Aug 2018 A1
20180261470 Costa et al. Sep 2018 A1
20180269188 Yu et al. Sep 2018 A1
20180277632 Fanelli et al. Sep 2018 A1
20180331041 Liao et al. Nov 2018 A1
20180342439 Costa et al. Nov 2018 A1
20190013254 Costa et al. Jan 2019 A1
20190013255 Costa et al. Jan 2019 A1
20190043812 Leobandung Feb 2019 A1
20190057922 Costa et al. Feb 2019 A1
20190074263 Costa et al. Mar 2019 A1
20190074271 Costa et al. Mar 2019 A1
20190172826 Or-Bach et al. Jun 2019 A1
20190172842 Whitefield Jun 2019 A1
20190189599 Baloglu et al. Jun 2019 A1
20190229101 Lee Jul 2019 A1
20190237421 Tsuchiya Aug 2019 A1
20190287953 Moon et al. Sep 2019 A1
20190304910 Fillion Oct 2019 A1
20190304977 Costa et al. Oct 2019 A1
20190312110 Costa et al. Oct 2019 A1
20190326159 Costa et al. Oct 2019 A1
20190378819 Costa et al. Dec 2019 A1
20190378821 Costa et al. Dec 2019 A1
20200006193 Costa Jan 2020 A1
20200058541 Konishi et al. Feb 2020 A1
20200115220 Hammond et al. Apr 2020 A1
20200118838 Hammond et al. Apr 2020 A1
20200176347 Costa et al. Jun 2020 A1
20200234978 Costa et al. Jul 2020 A1
20200235024 Costa et al. Jul 2020 A1
20200235040 Costa et al. Jul 2020 A1
20200235054 Costa et al. Jul 2020 A1
20200235059 Cok et al. Jul 2020 A1
20200235066 Costa et al. Jul 2020 A1
20200235074 Costa et al. Jul 2020 A1
20210134699 Costa et al. May 2021 A1
20210167031 Costa et al. Jun 2021 A1
20210183693 Costa et al. Jun 2021 A1
20210188624 Costa et al. Jun 2021 A1
20210348078 Haramoto et al. Nov 2021 A1
Foreign Referenced Citations (52)
Number Date Country
1256300 Jun 2000 CN
1696231 Nov 2005 CN
101785098 Jul 2010 CN
101901953 Dec 2010 CN
102956468 Mar 2013 CN
103000537 Mar 2013 CN
103730429 Apr 2014 CN
103811474 May 2014 CN
103872012 Jun 2014 CN
104134607 Nov 2014 CN
106098609 Nov 2016 CN
106158786 Nov 2016 CN
102014117594 Jun 2016 DE
1098386 May 2001 EP
2862204 Apr 2015 EP
2996143 Mar 2016 EP
S505733 Feb 1975 JP
S5338954 Apr 1978 JP
H11-220077 Aug 1999 JP
200293957 Mar 2002 JP
2002100767 Apr 2002 JP
2002252376 Sep 2002 JP
2004273604 Sep 2004 JP
2004327557 Nov 2004 JP
2006005025 Jan 2006 JP
2007227439 Sep 2007 JP
2008235490 Oct 2008 JP
2008279567 Nov 2008 JP
2009026880 Feb 2009 JP
2009530823 Aug 2009 JP
2009200274 Sep 2009 JP
2009302526 Dec 2009 JP
2011216780 Oct 2011 JP
2011243596 Dec 2011 JP
2012129419 Jul 2012 JP
2012156251 Aug 2012 JP
2013162096 Aug 2013 JP
2013222745 Oct 2013 JP
2013254918 Dec 2013 JP
2014509448 Apr 2014 JP
201409612 Mar 2014 TW
201448172 Dec 2014 TW
201705382 Feb 2017 TW
201724310 Jul 2017 TW
201733056 Sep 2017 TW
201826332 Jul 2018 TW
201839870 Nov 2018 TW
2007074651 Jul 2007 WO
2010080068 Jul 2010 WO
2015074439 May 2015 WO
2018083961 May 2018 WO
2018125242 Jul 2018 WO
Non-Patent Literature Citations (418)
Entry
US 10,896,908 B2, 01/2021, Costa et al. (withdrawn)
Corrected Notice of Allowability for U.S. Appl. No. 17/109,935, dated Jan. 10, 2023, 4 pages.
First Office Action for Chinese Patent Application No. 201780063121.2, dated Nov. 23, 2022, 12 pages.
Preliminary Examination Report for Taiwanese Patent Application No. 108140788, dated Dec. 9, 2022, 13 pages.
Non-Final Office Action for U.S. Appl. No. 16/426,527, dated Feb. 9, 2023, 9 pages.
Non-Final Office Action for U.S. Appl. No. 16/527,702, dated Jan. 10, 2020, 10 pages.
Office Action for Japanese Patent Application No. 2018-526613, dated Nov. 5, 2019, 8 pages.
Intention to Grant for European Patent Application No. 17757646.9, dated Feb. 27, 2020, 55 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034645, dated Sep. 19, 2019, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/063460, dated Feb. 25, 2020, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055317, dated Feb. 6, 2020, 17 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/055321, dated Jan. 27, 2020, 23 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/034699, dated Oct. 29, 2019, 13 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Apr. 1, 2020, 4 pages.
Final Office Action for U.S. Appl. No. 16/204,214, dated Mar. 6, 2020, 14 pages.
Notice of Allowance for U.S. Appl. No. 15/816,637, dated Apr. 2, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/527,702, dated Apr. 9, 2020, 8 pages.
Decision of Rejection for Japanese Patent Application No. 2015-180657, dated Mar. 17, 2020, 4 pages.
Dhar, S. et al., “Electron Mobility Model for Strained-Si Devices,” IEEE Transactions on Electron Devices, vol. 52, No. 4, Apr. 2005, IEEE, pp. 527-533.
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Apr. 15, 2020, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Apr. 30, 2020, 8 pages.
Advisory Action for U.S. Appl. No. 16/204,214, dated Apr. 15, 2020, 3 pages.
Examination Report for European Patent Application No. 16751791.1, dated Apr. 30, 2020, 15 pages.
Notification of Reasons for Refusal for Japanese Patent Application No. 2018-526613, dated May 11, 2020, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/873,152, dated May 11, 2020, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/454,687, dated May 15, 2020, 14 pages.
Welser, J. et al., “Electron Mobility Enhancement in Strained-Si N-Type Metal-Oxide-Semiconductor Field-Effect Transistors,” IEEE Electron Device Letters, vol. 15, No. 3, Mar. 1994, IEEE, pp. 100-102.
Zeng, X. et al., “A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity,” ACS Nano, vol. 11, No. 5, 2017, American Chemical Society, pp. 5167-5178.
Quayle Action for U.S. Appl. No. 16/703,251, dated Jun. 26, 2020, 5 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated May 20, 2020, 4 pages.
Notice of Allowability for U.S. Appl. No. 15/695,579, dated Jun. 25, 2020, 4 pages.
Notice of Allowance for U.S. Appl. No. 16/368,210, dated Jun. 17, 2020, 10 pages.
Non-Final Office Action for U.S. Appl. No. 16/374,125, dated Jun. 26, 2020, 12 pages.
Non-Final Office Action for U.S. Appl. No. 16/390,496, dated Jul. 10, 2020, 17 pages.
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated May 19, 2020, 15 pages.
Non-Final Office Action for U.S. Appl. No. 16/454,809, dated May 15, 2020, 12 pages.
Examination Report for Singapore Patent Application No. 11201901193U, dated May 26, 2020, 6 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014662, dated May 7, 2020, 18 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014665, dated May 13, 2020, 17 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014666, dated Jun. 4, 2020, 18 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014667, dated May 18, 2020, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/014669, dated Jun. 4, 2020, 15 pages.
Notice of Allowance for U.S. Appl. No. 16/454,687, dated Aug. 14, 2020, 7 pages.
Decision to Grant for Japanese Patent Application No. 2018-526613, dated Aug. 17, 2020, 5 pages.
Final Office Action for U.S. Appl. No. 16/454,809, dated Aug. 21, 2020, 12 pages.
Von Trapp, F., “Hybrid Bonding: From Concept to Commercialization,” Apr. 2, 2018, 3D InCities, https://www.3dincites.com/2018/04/hybrid-bonding-from-concept-to-commercialization/, 10 pages.
Notice of Allowance for U.S. Appl. No. 16/703,251, dated Aug. 27, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/527,702, dated Nov. 13, 2020, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/374,125, dated Dec. 16, 2020, 9 pages.
Final Office Action for U.S. Appl. No. 16/390,496, dated Dec. 24, 2020, 21 pages.
Non-Final Office Action for U.S. Appl. No. 16/426,527, dated Nov. 20, 2020, 7 pages.
Final Office Action for U.S. Appl. No. 16/204,214, dated Nov. 30, 2020, 15 pages.
Notice of Allowance for U.S. Appl. No. 16/204,214, dated Feb. 17, 2021, 11 pages.
Advisory Action for U.S. Appl. No. 16/454,809, dated Oct. 23, 2020, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/426,527, dated Aug. 17, 2022, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/427,019, dated Aug. 15, 2022, 17 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Jul. 14, 2022, 3 pages.
Final Office Action for U.S. Appl. No. 16/678,586, dated Sep. 1, 2022, 7 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Jul. 14, 2022, 4 pages.
Advisory Action for U.S. Appl. No. 16/844,406, dated Jul. 26, 2022, 3 pages.
Corrected Notice of Allowability U.S. Appl. No. 17/109,935, dated Jul. 1, 2022, 4 pages.
Corrected Notice of Allowability U.S. Appl. No. 17/109,935, dated Jul. 27, 2022, 4 pages.
Final Office Action for U.S. Appl. No. 17/102,957, dated Aug. 18, 2022, 12 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/063094, dated Aug. 9, 2022, 24 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Sep. 2, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Sep. 2, 2022, 4 pages.
Notice of Allowance for U.S. Appl. No. 16/454,809, dated Nov. 25, 2020, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/427,019, dated Nov. 19, 2020, 19 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,573, dated Feb. 19, 2021, 11 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,602, dated Feb. 19, 2021, 10 pages.
First Office Action for Chinese Patent Application No. 201680058198.6, dated Dec. 29, 2020, 14 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/025591, dated Oct. 15, 2020, 6 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/034645, dated Jan. 14, 2021, 9 pages.
Advisory Action for U.S. Appl. No. 16/390,496, dated Mar. 1, 2021, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/390,496, dated Apr. 5, 2021, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/426,527, dated May 14, 2021, 9 pages.
Final Office Action for U.S. Appl. No. 16/427,019, dated May 21, 2021, 16 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,551, dated Apr. 7, 2021, 9 pages.
Final Office Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,551, dated Jun. 28, 2021, 9 pages.
Applicant-Initiated Interview Summary for U.S. Appl. No. 16/678,573, dated May 7, 2021, 2 pages.
Final Office Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,573, dated Jun. 28, 2021, 10 pages.
Notice of Allowance for U.S. Appl. No. 16/678,619, dated Jul. 8, 2021, 10 pages.
Final Office Action for U.S. Appl. No. 16/678,602, dated Jun. 1, 2021, 9 pages.
Notice of Reasons for Refusal for Japanese Patent Application No. 2020119130, dated Jun. 29, 2021, 4 pages.
Notice of Reasons for Rejection for Japanese Patent Application No. 2019507765, dated Jun. 28, 2021, 4 pages.
Search Report for Japanese Patent Application No. 2019507768, dated Jul. 15, 2021, 42 pages.
Notice of Reasons for Refusal for Japanese Patent Application No. 2019507768, dated Jul. 26, 2021, 4 pages.
Supplementary Examination Report for Singapore Patent Application No. 11201901194S, dated Mar. 10, 2021, 3 pages.
Reasons for Rejection for Japanese Patent Application No. 2019507767, dated Jun. 25, 2021, 5 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/063460, dated Jun. 10, 2021, 9 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/055317, dated Apr. 22, 2021, 11 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/055321, dated Apr. 22, 2021, 14 pages.
Office Action for Taiwanese Patent Application No. 108140788, dated Mar. 25, 2021, 18 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/426,527, dated Aug. 18, 2021, 4 pages.
Advisory Action for U.S. Appl. No. 16/427,019, dated Aug. 2, 2021, 3 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,586, dated Aug. 12, 2021, 16 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,602, dated Aug. 12, 2021, 11 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/034699, dated Aug. 5, 2021, 9 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/014662, dated Aug. 5, 2021, 11 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/014665, dated Aug. 5, 2021, 10 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/014666, dated Aug. 5, 2021, 11 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/014667, dated Aug. 5, 2021, 8 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2020/014669, dated Aug. 5, 2021, 9 pages.
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,551, dated Sep. 13, 2021, 3 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,551, dated Oct. 21, 2021, 8 pages.
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,573, dated Sep. 10, 2021, 3 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,573, dated Oct. 21, 2021, 7 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Aug. 26, 2021, 4 pages.
Decision to Grant for Japanese Patent Application No. 2020119130, dated Sep. 7, 2021, 4 pages.
Second Office Action for Chinese Patent Application No. 201680058198.6, dated Sep. 8, 2021, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/390,496, dated Oct. 27, 2022, 21 pages.
Notice of Allowance for U.S. Appl. No. 16/204,214, dated Oct. 28, 2022, 11 pages.
Final Office Action for U.S. Appl. No. 16/427,019, dated Dec. 12, 2022, 19 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Oct. 4, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Nov. 2, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Dec. 7, 2022, 3 pages.
Non-Final Office Action for U.S. Appl. No. 17/573,112, dated Dec. 9, 2022, 6 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Nov. 14, 2022, 4 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Dec. 9, 2022, 4 pages.
Non-Final Office Action for U.S. Appl. No. 17/554,477, dated Nov. 25, 2022, 6 pages.
Notice of Allowance for U.S. Appl. No. 17/109,935, dated Oct. 28, 2022, 7 pages.
Corrected Notice of Allowability for U.S. Appl. No. 17/109,935, dated Nov. 10, 2022, 4 pages.
First Office Action for Chinese Patent Application No. 201780062516.0, dated Nov. 2, 2022, 10 pages.
Notice of Reasons for Rejection for Japanese Patent Application No. 2022032477, dated Oct. 3, 2022, 4 pages.
First Office Action for Chinese Patent Application No. 201780058052.6, dated Nov. 2, 2022, 22 pages.
Notice of Allowance for U.S. Appl. No. 17/330,787, dated Dec. 15, 2022, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/676,693, dated May 3, 2018, 14 pages.
Notice of Allowance for U.S. Appl. No. 15/789,107, dated May 18, 2018, 8 pages.
Final Office Action for U.S. Appl. No. 15/616,109, dated Apr. 19, 2018, 18 pages.
Notice of Allowance for U.S. Appl. No. 15/676,693, dated Jul. 20, 2018, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/695,629, dated Jul. 11, 2018, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/387,855, dated Aug. 10, 2018, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/914,538, dated Aug. 1, 2018, 9 pages.
Notice of Allowance and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Sep. 28, 2018, 16 pages.
Corrected Notice of Allowance for U.S. Appl. No. 15/676,693, dated Aug. 29, 2018, 5 pages.
Final Office Action for U.S. Appl. No. 15/601,858, dated Nov. 26, 2018, 16 pages.
Non-Final Office Action for U.S. Appl. No. 15/945,418, dated Nov. 1, 2018, 13 pages.
First Office Action for Chinese Patent Application No. 201510746323.X, dated Nov. 2, 2018, 12 pages.
Advisory Action for U.S. Appl. No. 15/601,858, dated Jan. 22, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 16/038,879, dated Jan. 9, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Jan. 11, 2019, 8 pages.
International Preliminary Report on Patentability for PCT/US2017/046744, dated Feb. 21, 2019, 11 pages.
International Preliminary Report on Patentability for PCT/US2017/046758, dated Feb. 21, 2019, 11 pages.
International Preliminary Report on Patentability for PCT/US2017/046779, dated Feb. 21, 2019, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/992,613, dated Feb. 27, 2019, 15 pages.
Non-Final Office Action for U.S. Appl. No. 15/695,579, dated Jan. 28, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/992,639, dated May 9, 2019, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/695,579, dated Mar. 20, 2019, 8 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated May 13, 2019, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Apr. 17, 2019, 9 pages.
Tsai, Chun-Lin, et al., “Smart GaN platform; Performance & Challenges,” IEEE International Electron Devices Meeting, 2017, 4 pages.
Tsai, Szu-Ping., et al., “Performance Enhancement of Flip-Chip Packaged AlGAaN/GaN HEMTs by Strain Engineering Design,” IEEE Transcations on Electron Devices, vol. 63, Issue 10, Oct. 2016, pp. 3876-3881.
Final Office Action for U.S. Appl. No. 15/992,613, dated May 24, 2019, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/873,152, dated May 24, 2019, 11 pages.
Notice of Allowance for U.S. Appl. No. 16/168,327, dated Jun. 28, 2019, 7 pages.
Lin, Yueh, Chin, et al., “Enhancement-Mode GaN MIS-HEMTs With LaHfOx Gate Insulator for Power Application,” IEEE Electronic Device Letters, vol. 38, Issue 8, 2017, 4 pages.
Shukla, Shishir, et al., “GaN-on-Si Switched Mode RF Power Amplifiers for Non-Constant Envelope Signals,” IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, 2017, pp. 88-91.
International Search Report and Written Opinion for International Patent Application No. PCT/US19/25591, dated Jun. 21, 2019, 7 pages.
Notice of Reasons for Refusal for Japanese Patent Application No. 2015-180657, dated Jul. 9, 2019, 4 pages.
Notice of Allowance for U.S. Appl. No. 15/601,858, dated Aug. 16, 2019, 8 pages.
Advisory Action for U.S. Appl. No. 15/992,613, dated Jul. 29, 2019, 3 pages.
Final Office Action for U.S. Appl. No. 15/873,152, dated Aug. 8, 2019, 13 pages.
Notice of Allowance for U.S. Appl. No. 15/975,230, dated Jul. 22, 2019, 7 pages.
Notice of Allowance for U.S. Appl. No. 16/004,961, dated Aug. 28, 2019, 8 pages.
Fiorenza, et al., “Detailed Simulation Study of a Reverse Embedded-SiGE Strained-Silicon MOSFET,” IEEE Transactions on Electron Devices, vol. 55, Issue 2, Feb. 2008, pp. 640-648.
Fiorenza, et al., “Systematic study of thick strained silicon NMOSFETs for digital applications,” International SiGE Technology and Device Meeting, May 2006, IEEE, 2 pages.
Huang, et al., “Carrier Mobility Enhancement in Strained Si-On-Insulator Fabricated by Wafer Bonding,” Symposium on VLSI Technology, Digest of Technical Papers, 2001, pp. 57-58.
Nan, et al., “Effect of Germanium content on mobility enhancement for strained silicon FET,” Student Conference on Research and Development, Dec. 2017, IEEE, pp. 154-157.
Sugii, Nobuyuki, et al., “Performance Enhancement of Strained-Si MOSFETs Fabricated on a Chemical-Mechanical-Polished SiGE Substrate,” IEEE Transactions on Electron Devices, vol. 49, Issue 12, Dec. 2002, pp. 2237-2243.
Yin, Haizhou, et al., “Fully-depleted Strained-Si on Insulator NMOSFETs without Relaxed SiGe Buffers,” International Electron Devices Meeting, Dec. 2003, San Francisco, California, IEEE, 4 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/695,579, dated Feb. 5, 2020, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/992,613, dated Sep. 23, 2019, 7 pages.
Non-Final Office Action for U.S. Appl. No. 16/204,214, dated Oct. 9, 2019, 15 pages.
Non-Final Office Action for U.S. Appl. No. 15/816,637, dated Oct. 31, 2019, 10 pages.
Advisory Action for U.S. Appl. No. 15/873,152, dated Oct. 11, 2019, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/873,152, dated Dec. 10, 2019, 9 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Apr. 11, 2022, 3 pages.
Final Office Action for U.S. Appl. No. 16/844,406, dated Jun. 24, 2022, 17 pages.
Notice of Allowance for U.S. Appl. No. 15/287,273, dated Jun. 30, 2017, 8 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jul. 21, 2017, 5 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Sep. 7, 2017, 5 pages.
Extended European Search Report for European Patent Application No. 15184861.1, dated Jan. 25, 2016, 6 pages.
Office Action of the Intellectual Property Office for Taiwanese Patent Application No. 104130224, dated Jun. 15, 2016, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/885,202, dated Apr. 14, 2016, 5 pages.
Final Office Action for U.S. Appl. No. 14/885,202, dated Sep. 27, 2016, 7 pages.
Advisory Action for U.S. Appl. No. 14/885,202, dated Nov. 29, 2016, 3 pages.
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jan. 27, 2017, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/885,202, dated Jul. 24, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/885,243, dated Aug. 31, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated May 27, 2011, 13 pages.
Non-Final Office Action for U.S. Appl. No. 12/906,689, dated Nov. 4, 2011, 20 pages.
Search Report for Japanese Patent Application No. 2011-229152, created on Feb. 22, 2013, 58 pages.
Office Action for Japanese Patent Application No. 2011-229152, drafted May 10, 2013, 7 pages.
Final Rejection for Japanese Patent Application No. 2011-229152, drafted Oct. 25, 2013, 2 pages.
International Search Report and Written Opinion for PCT/US2016/045809, dated Oct. 7, 2016, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/652,867, dated Oct. 10, 2017, 5 pages.
Bernheim et al., “Chapter 9: Lamination,” Tools and Manufacturing Engineers Handbook (book), Apr. 1, 1996, Society of Manufacturing Engineers, p. 9-1.
Fillion R. et al., “Development of a Plastic Encapsulated Multichip Technology for High Volume, Low Cost Commercial Electronics,” Electronic Components and Technology Conference, vol. 1, May 1994, IEEE, 5 pages.
Henawy, Mahmoud Al et al., “New Thermoplastic Polymer Substrate for Microstrip Antennas at 60 GHz,” German Microwave Conference, Mar. 15-17, 2010, Berlin, Germany, IEEE, pp. 5-8.
International Search Report and Written Opinion for PCT/US2017/046744, dated Nov. 27, 2017, 17 pages.
International Search Report and Written Opinion for PCT/US2017/046758, dated Nov. 16, 2017, 19 pages.
International Search Report and Written Opinion for PCT/US2017/046779, dated Nov. 29, 2017, 17 pages.
Non-Final Office Action for U.S. Appl. No. 15/616,109, dated Oct. 23, 2017, 16 pages.
Corrected Notice of Allowability for U.S. Appl. No. 14/851,652, dated Oct. 20, 2017, 5 pages.
Final Office Action for U.S. Appl. No. 15/262,457, dated Dec. 19, 2017, 12 pages.
Supplemental Notice of Allowability and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/287,273, dated Oct. 18, 2017, 6 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Nov. 2, 2017, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/491,064, dated Jan. 2, 2018, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/872,910, dated Nov. 17, 2017, 11 pages.
Notice of Allowance for U.S. Appl. No. 15/648,082, dated Nov. 29, 2017, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/652,826, dated Nov. 3, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/229,780, dated Oct. 3, 2017, 7 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Jan. 17, 2018, 5 pages.
Notice of Allowance for U.S. Appl. No. 15/498,040, dated Feb. 20, 2018, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/387,855, dated Jan. 16, 2018, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/795,915, dated Feb. 23, 2018, 6 pages.
International Preliminary Report on Patentability for PCT/US2016/045809, dated Feb. 22, 2018, 8 pages.
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/262,457, dated Feb. 28, 2018, 5 pages.
Supplemental Notice of Allowability for U.S. Appl. No. 15/287,273, dated Feb. 23, 2018, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/676,415, dated Mar. 27, 2018, 14 page.
Non-Final Office Action for U.S. Appl. No. 15/676,621, dated Mar. 26, 2018, 16 pages.
Notice of Allowance for U.S. Appl. No. 15/795,915, dated Jun. 15, 2018, 7 pages.
Final Office Action for U.S. Appl. No. 15/387,855, dated May 24, 2018, 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Apr. 19, 2018, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/491,064, dated Apr. 30, 2018, 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/601,858, dated Jun. 26, 2018, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/616,109, dated Jul. 2, 2018, 7 pages.
Notice of Allowance for U.S. Appl. No. 15/676,621, dated Jun. 5, 2018, 8 pages.
Non-Final Office Action for U.S. Appl. No. 16/426,527, dated Feb. 16, 2022, 9 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Mar. 9, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,573, dated Mar. 31, 2022, 3 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,586, dated Mar. 3, 2022, 14 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Feb. 2, 2022, 4 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Mar. 9, 2022, 4 pages.
Non-Final Office Action for U.S. Appl. No. 16/844,406, dated Mar. 14, 2022, 16 pages.
Non-Final Office Action for U.S. Appl. No. 17/102,957, dated Feb. 17, 2022, 9 pages.
Summons to Attend for European Patent Application No. 16751791.1, dated Feb. 28, 2022, 10 pages.
Decision to Grant for Japanese Patent Application No. 2019507765, dated Feb. 10, 2022, 6 pages.
Decision to Grant for Japanese Patent Application No. 2019507768, dated Feb. 10, 2022, 6 pages.
Office Letter for Taiwanese Patent Application No. 108140788, dated Jan. 5, 2022, 16 pages.
Ali, K. Ben et al., “RF SOI CMOS Technology on Commercial Trap-Rich High Resistivity SOI Wafer,” 2012 IEEE International SOI Conference (SOI), Oct. 1-4, 2012, Napa, California, IEEE, 2 pages.
Anderson, D.R., “Thermal Conductivity of Polymers,” Sandia Corporation, Mar. 8, 1966, pp. 677-690.
Author Unknown, “96% Alumina, thick-film, as fired,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, 2 pages, http://www.matweb.com/search/DataSheet.aspx?MatGUID=3996a734395a4870a9739076918c4297&ckck=1.
Author Unknown, “CoolPoly D5108 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, 2 pages.
Author Unknown, “CoolPoly D5506 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Dec. 12, 2013, 2 pages.
Author Unknown, “CoolPoly D-Series—Thermally Conductive Dielectric Plastics,” Cool Polymers, Retrieved Jun. 24, 2013, http://coolpolymers.com/dseries.asp, 1 page.
Author Unknown, “CoolPoly E2 Thermally Conductive Liquid Crystalline Polymer (LCP),” Cool Polymers, Inc., Aug. 8, 2007, http://www.coolpolymers.com/Files/DS/Datasheet_e2.pdf, 1 page.
Author Unknown, “CoolPoly E3605 Thermally Conductive Polyamide 4,6 (PA 4,6),” Cool Polymers, Inc., Aug. 4, 2007, http://www.coolpolymers.com/Files/DS/Datasheet_e3605.pdf, 1 page.
Author Unknown, “CoolPoly E5101 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 27, 2007, http://www.coolpolymers.com/Files/DS/Datasheet_e5101.pdf, 1 page.
Author Unknown, “CoolPoly E5107 Thermally Conductive Polyphenylene Sulfide (PPS),” Cool Polymers, Inc., Aug. 8, 2007, http://coolpolymers.com/Files/DS/Datasheet_e5107.pdf, 1 page.
Author Unknown, “CoolPoly Selection Tool,” Cool Polymers, Inc., 2006, http://www.coolpolymers.com/select.asp?Application=Substrates+%26+Electcronic_Packaging, 1 page.
Author Unknown, “CoolPoly Thermally Conductive Plastics for Dielectric Heat Plates,” Cool Polymers, Inc., 2006, http://www.coolpolymers.com/heatplate.asp, 2 pages.
Author Unknown, “CoolPoly Thermally Conductive Plastics for Substrates and Electronic Packaging,” Cool Polymers, Inc., 2005, 1 page.
Author Unknown, “Electrical Properties of Plastic Materials,” Professional Plastics, Oct. 28, 2011, http://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.pdf, accessed Dec. 18, 2014, 4 pages.
Author Unknown, “Fully Sintered Ferrite Powders,” Powder Processing and Technology, LLC, Date Unknown, 1 page.
Author Unknown, “Heat Transfer,” Cool Polymers, Inc., 2006, http://www.coolpolymers.com/heattrans.html, 2 pages.
Author Unknown, “Hysol UF3808,” Henkel Corporation, Technical Data Sheet, May 2013, 2 pages.
Author Unknown, “PolyOne Therma-Tech™ LC-5000C TC LCP,” MatWeb, Date Unknown, date accessed Apr. 6, 2016, http://www.matweb.com/search/datasheettext.aspx?matguid=89754e8bb26148d083c5ebb05a0cbff1, 2 pages.
Author Unknown, “Sapphire Substrate,” from CRC Handbook of Chemistry and Physics, Date Unknown, 1 page.
Author Unknown, “Thermal Properties of Plastic Materials,” Professional Plastics, Aug. 21, 2010, http://www.professionalplastics.com/professionalplastics/ThermalPropertiesofPlasticMaterials.pdf, accessed Dec. 18, 2014, 4 pages.
Author Unknown, “Thermal Properties of Solids,” PowerPoint Presentation, No Date, http://www.phys.huji.ac.il/Phys_Hug/Lectures/77602/PHONONS_2_thermal.pdf, 28 slides.
Author Unknown, “Thermal Resistance & Thermal Conductance,” C-Therm Technologies Ltd., accessed Sep. 19, 2013, http://www.ctherm.com/products/tci_thermal_conductivity/helpful_links_tools/thermal_resistance_thermal_conductance/, 4 pages.
Author Unknown, “The Technology: AKHAN's Approach and Solution: The Miraj Diamond™ Platform,” 2015, accessed Oct. 9, 2016, http://www.akhansemi.com/technology.html#the-miraj-diamond-platform, 5 pages.
Beck, D., et al., “CMOS on FZ-High Resistivity Substrate for Monolithic Integration of SiGe-RF-Circuitry and Readout Electronics,” IEEE Transactions on Electron Devices, vol. 44, No. 7, Jul. 1997, pp. 1091-1101.
Botula, A., et al., “A Thin-Film SOI 180nm CMOS RF Switch Technology,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF '09), Jan. 2009, pp. 1-4.
Carroll, M., et al., “High-Resistivity SOI CMOS Cellular Antenna Switches,” Annual IEEE Compound Semiconductor Integrated Circuit Symposium, (CISC 2009), Oct. 2009, pp. 1-4.
Colinge, J.P., et al., “A Low-Voltage, Low-Power Microwave SOI MOSFET,” Proceedings of 1996 IEEE International SOI Conference, Oct. 1996, pp. 128-129.
Costa, J. et al., “Integrated MEMS Switch Technology on SOI-CMOS,” Proceedings of Hilton Head Workshop: A Solid-State Sensors, Actuators and Microsystems Workshop, Jun. 1-5, 2008, Hilton Head Island, SC, IEEE, pp. 900-903.
Costa, J. et al., “Silicon RFCMOS SOI Technology with Above-IC MEMS Integration for Front End Wireless Applications,” Bipolar/BiCMOS Circuits and Technology Meeting, 2008, BCTM 2008, IEEE, pp. 204-207.
Costa, J., “RFCMOS SOI Technology for 4G Reconfigurable RF Solutions,” Session WEC1-2, Proceedings of the 2013 IEEE International Microwave Symposium, 4 pages.
Esfeh, Babak Kazemi et al., “RF Non-Linearities from Si-Based Substrates,” 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMIC), Apr. 2-4, 2014, IEEE, 3 pages.
Finne, R. M. et al., “A Water-Amine-Complexing Agent System for Etching Silicon,” Journal of the Electrochemical Society, vol. 114, No. 9, Sep. 1967, pp. 965-970.
Gamble, H. S. et al., “Low-Loss CPW Lines on Surface Stabilized High-Resistivity Silicon,” IEEE Microwave and Guided Wave Letters, vol. 9, No. 10, Oct. 1999, pp. 395-397.
Huang, Xingyi, et al., “A Review of Dielectric Polymer Composites with High Thermal Conductivity,” IEEE Electrical Insulation Magazine, vol. 27, No. 4, Jul./Aug. 2011, pp. 8-16.
Joshi, V. et al., “MEMS Solutions in RF Applications,” 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Oct. 2013, IEEE, 2 pages.
Jung, Boo Yang, et al., “Study of FCMBGA with Low CTE Core Substrate,” 2009 Electronic Components and Technology Conference, May 2009, pp. 301-304.
Kerr, D.C., et al., “Identification of RF Harmonic Distortion on Si Substrates and Its Reduction Using a Trap-Rich Layer,” IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, (SiRF 2008), Jan. 2008, pp. 151-154.
Lederer, D., et al., “New Substrate Passivation Method Dedicated to HR SOI Wafer Fabrication with Increased Substrate Resistivity,” IEEE Electron Device Letters, vol. 26, No. 11, Nov. 2005, pp. 805-807.
Lederer, Dimitri et al., “Substrate loss mechanisms for microstrip and CPW transmission lines on lossy silicon wafers,” Solid-State Electronics, vol. 47, No. 11, Nov. 2003, pp. 1927-1936.
Lee, Kwang Hong et al., “Integration of III-V materials and Si-CMOS through double layer transfer process,” Japanese Journal of Applied Physics, vol. 54, Jan. 2015, pp. 030209-1 to 030209-5.
Lee, Tzung-Yin, et al., “Modeling of SOI FET for RF Switch Applications,” IEEE Radio Frequency Integrated Circuits Symposium, May 23-25, 2010, Anaheim, CA, IEEE, pp. 479-482.
Lu, J.Q., et al., “Evaluation Procedures for Wafer Bonding and Thinning of Interconnect Test Structures for 3D ICs,” Proceedings of the IEEE 2003 International Interconnect Technology Conference, Jun. 2-4, 2003, pp. 74-76.
Mamunya, Ye.P., et al., “Electrical and Thermal Conductivity of Polymers Filled with Metal Powders,” European Polymer Journal, vol. 38, 2002, pp. 1887-1897.
Mansour, Raafat R., “RF MEMS-CMOS Device Integration,” IEEE Microwave Magazine, vol. 14, No. 1, Jan. 2013, pp. 39-56.
Mazuré, C. et al., “Advanced SOI Substrate Manufacturing,” 2004 IEEE International Conference on Integrated Circuit Design and Technology, 2004, IEEE, pp. 105-111.
Micak, R. et al., “Photo-Assisted Electrochemical Machining of Micromechanical Structures,” Proceedings of Micro Electro Mechanical Systems, Feb. 7-10, 1993, Fort Lauderdale, FL, IEEE, pp. 225-229.
Morris, Art, “Monolithic Integration of RF-MEMS within CMOS,” 2015 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Apr. 27-29, 2015, IEEE, 2 pages.
Niklaus, F., et al., “Adhesive Wafer Bonding,” Journal of Applied Physics, vol. 99, No. 3, 031101 (2006), 28 pages.
Parthasarathy, S., et al., “RF SOI Switch FET Design and Modeling Tradeoffs for GSM Applications,” 2010 23rd International Conference on VLSI Design, (VLSID '10), Jan. 2010, pp. 194-199.
Raskin, J.P., et al., “Coupling Effects in High-Resistivity SIMOX Substrates for VHF and Microwave Applications,” Proceedings of 1995 IEEE International SOI Conference, Oct. 1995, pp. 62-63.
Borel, S. et al., “Control of Selectivity between SiGe and Si in Isotropic Etching Processes,” Japanese Journal of Applied Physics, vol. 43, No. 6B, 2004, pp. 3964-3966.
Non-Final Office Action for U.S. Appl. No. 16/427,019, dated Dec. 2, 2021, 17 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Nov. 24, 2021, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Jan. 27, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,573, dated Nov. 24, 2021, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,573, dated Jan. 27, 2022, 3 pages.
Final Office Action for U.S. Appl. No. 16/678,586, dated Nov. 22, 2021, 15 pages.
Advisory Action for U.S. Appl. No. 16/678,586, dated Jan. 26, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Nov. 24, 2021, 4 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Dec. 30, 2021, 4 pages.
Decision of Rejection for Chinese Patent Application No. 201680058198.6, dated Nov. 12, 2021, 6 pages.
Examination Report for European Patent Application No. 17755402.9, dated Dec. 20, 2021, 12 pages.
Examination Report for European Patent Application No. 17755403.7, dated Dec. 20, 2021, 13 pages.
Notice of Allowance for Japanese Patent Application No. 2019507767, dated Jan. 19, 2021, 6 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/043968, dated Nov. 19, 2021, 15 pages.
Non-Final Office Action for U.S. Appl. No. 17/330,787, dated Oct. 17, 2022, 10 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/678,586, dated Sep. 13, 2022, 11 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Oct. 5, 2022, 4 pages.
Non-Final Office Action for U.S. Appl. No. 16/844,406, dated Oct. 6, 2022, 17 pages.
Corrected Notice of Allowability U.S. Appl. No. 17/109,935, dated Sep. 14, 2022, 4 pages.
Notice of Preliminary Rejection for Korean Patent Application No. 10-2018-7006660, dated Sep. 3, 2022, 6 pages.
Advisory Action for U.S. Appl. No. 17/102,957, dated Oct. 27, 2022, 7 pages.
Quayle Action for U.S. Appl. No. 16/426,527, dated May 26, 2022, 5 pages.
Final Office Action for U.S. Appl. No. 16/427,019, dated Apr. 12, 2022, 15 pages.
Advisory Action for U.S. Appl. No. 16/427,019, dated Jun. 2, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated May 13, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,551, dated Jun. 15, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,573, dated May 6, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,573, dated Jun. 10, 2022, 3 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Apr. 8, 2022, 4 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated May 13, 2022, 4 pages.
Corrected Notice of Allowability for U.S. Appl. No. 16/678,602, dated Jun. 10, 2022, 4 pages.
Notice of Allowance for U.S. Appl. No. 17/109,935, dated Apr. 20, 2022, 15 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/063093, dated May 4, 2022, 15 pages.
Invitation to Pay Additional Fees and Partial International Search for International Patent Application No. PCT/US2021/063094, dated Apr. 19, 2022, 15 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/062509, dated Mar. 29, 2022, 20 pages.
Raskin, Jean-Pierre et al., “Substrate Crosstalk Reduction Using SOI Technology,” IEEE Transactions on Electron Devices, vol. 44, No. 12, Dec. 1997, pp. 2252-2261.
Rong, B., et al., “Surface-Passivated High-Resistivity Silicon Substrates for RFICs,” IEEE Electron Device Letters, vol. 25, No. 4, Apr. 2004, pp. 176-178.
Sherman, Lilli M., “Plastics that Conduct Heat,” Plastics Technology Online, Jun. 2001, Retrieved May 17, 2016, http://www.ptonline.com/articles/plastics-that-conduct-heat, Gardner Business Media, Inc., 5 pages.
Tombak, A., et al., “High-Efficiency Cellular Power Amplifiers Based on a Modified LDMOS Process on Bulk Silicon and Silicon-On-Insulator Substrates with Integrated Power Management Circuitry,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 6, Jun. 2012, pp. 1862-1869.
Yamanaka, A., et al., “Thermal Conductivity of High-Strength Polyetheylene Fiber and Applications for Cryogenic Use,” International Scholarly Research Network, ISRN Materials Science, vol. 2011, Article ID 718761, May 25, 2011, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 18, 2013, 20 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Nov. 26, 2013, 21 pages.
Applicant-Initiated Interview Summary for U.S. Appl. No. 13/852,648, dated Jan. 27, 2014, 4 pages.
Advisory Action for U.S. Appl. No. 13/852,648, dated Mar. 7, 2014, 4 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jun. 16, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Sep. 26, 2014, 8 pages.
Notice of Allowance for U.S. Appl. No. 13/852,648, dated Jan. 22, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Jun. 24, 2015, 20 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Oct. 22, 2015, 20 pages.
Non-Final Office Action for U.S. Appl. No. 13/852,648, dated Feb. 19, 2016, 12 pages.
Final Office Action for U.S. Appl. No. 13/852,648, dated Jul. 20, 2016, 14 pages.
Non-Final Office Action for U.S. Appl. No. 14/315,765, dated Jan. 2, 2015, 6 pages.
Final Office Action for U.S. Appl. No. 14/315,765, dated May 11, 2015, 17 pages.
Advisory Action for U.S. Appl. No. 14/315,765, dated Jul. 22, 2015, 3 pages.
Non-Final Office Action for U.S. Appl. No. 14/260,909, dated Mar. 20, 2015, 20 pages.
Final Office Action for U.S. Appl. No. 14/260,909, dated Aug. 12, 2015, 18 pages.
Non-Final Office Action for U.S. Appl. No. 14/261,029, dated Dec. 5, 2014, 15 pages.
Notice of Allowance for U.S. Appl. No. 14/261,029, dated Apr. 27, 2015, 10 pages.
Corrected Notice of Allowability for U.S. Appl. No. 14/261,029, dated Nov. 17, 2015, 5 pages.
Non-Final Office Action for U.S. Appl. No. 14/529,870, dated Feb. 12, 2016, 14 pages.
Notice of Allowance for U.S. Appl. No. 14/529,870, dated Jul. 15, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/293,947, dated Apr. 7, 2017, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/293,947, dated Aug. 14, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 14/715,830, dated Apr. 13, 2016, 16 pages.
Final Office Action for U.S. Appl. No. 14/715,830, dated Sep. 6, 2016, 13 pages.
Advisory Action for U.S. Appl. No. 14/715,830, dated Oct. 31, 2016, 6 pages.
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Feb. 10, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/715,830, dated Mar. 2, 2017, 8 pages.
Non-Final Office Action for U.S. Appl. No. 14/851,652, dated Oct. 7, 2016, 10 pages.
Notice of Allowance for U.S. Appl. No. 14/851,652, dated Apr. 11, 2017, 9 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Jul. 24, 2017, 6 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/851,652, dated Sep. 6, 2017, 5 pages.
Notice of Allowance for U.S. Appl. No. 14/959,129, dated Oct. 11, 2016, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/173,037, dated Jan. 10, 2017, 8 pages.
Final Office Action for U.S. Appl. No. 15/173,037, dated May 2, 2017, 13 pages.
Advisory Action for U.S. Appl. No. 15/173,037, dated Jul. 20, 2017, 3 pages.
Notice of Allowance for U.S. Appl. No. 15/173,037, dated Aug. 9, 2017, 7 pages.
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Feb. 15, 2017, 10 pages.
Non-Final Office Action for U.S. Appl. No. 15/085,185, dated Jun. 6, 2017, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/229,780, dated Jun. 30, 2017, 12 pages.
Non-Final Office Action for U.S. Appl. No. 15/262,457, dated Aug. 7, 2017, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/408,560, dated Sep. 25, 2017, 8 pages.
Notice of Allowance for U.S. Appl. No. 15/287,202, dated Aug. 25, 2017, 11 pages.
Non-Final Office Action for U.S. Appl. No. 15/353,346, dated May 23, 2017, 15 pages.
Notice of Allowance for U.S. Appl. No. 15/353,346, dated Sep. 25, 2017, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/427,019, dated Mar. 10, 2023, 10 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,551, dated Mar. 28, 2023, 14 pages.
Notice of Allowance for U.S. Appl. No. 17/573,112, dated Mar. 8, 2023, 8 pages.
Notice of Allowance for U.S. Appl. No. 17/554,477, dated Mar. 7, 2023, 8 pages.
Final Office Action for U.S. Appl. No. 16/844,406, dated Mar. 6, 2023, 13 pages.
Corrected Notice of Allowability for U.S. Appl. No. 17/109,935, dated Mar. 1, 2023, 4 pages.
Corrected Notice of Allowability for U.S. Appl. No. 17/109,935, dated Apr. 12, 2023, 4 pages.
Non-Final Office Action for U.S. Appl. No. 17/121,194, dated May 9, 2023, 22 pages.
Non-Final Office Action for U.S. Appl. No. 17/102,957, dated Apr. 13, 2023, 24 pages.
Written Decision on Registration for Korean Patent Application No. 10-2018-7006660, dated Feb. 24, 2023, 8 pages.
Decision to Grant for Japanese Patent Application No. 2022032477, dated Mar. 14, 2023, 5 pages.
Decision of Rejection for Chinese Patent Application No. 201780058052.6, dated Mar. 30, 2023, 16 pages.
Office Action for Taiwanese Patent Application No. 109102892, dated Apr. 14, 2023, 18 pages.
Advisory Action for U.S. Appl. No. 16/844,406, dated May 12, 2023, 3 pages.
Final Office Action for U.S. Appl. No. 16/426,527, dated May 25, 2023, 9 pages.
Notice of Allowance for U.S. Appl. No. 16/426,527, dated Jun. 22, 2023, 8 pages.
Final Office Action for U.S. Appl. No. 16/678,551, dated May 26, 2023, 16 pages.
Non-Final Office Action for U.S. Appl. No. 16/844,406, dated Jun. 23, 2023, 18 pages.
Preliminary Examination Report for Taiwanese Patent Application No. 109102894, dated Apr. 7, 2023, 20 pages.
First Office Action for Chinese Patent Application No. 201980079375.2, dated May 5, 2023, 17 pages.
Preliminary Examination Report for Taiwanese Patent Application No. 109102895, dated May 30, 2023, 18 pages.
Preliminary Examination Report for Taiwanese Patent Application No. 109102896, dated Jul. 4, 2023, 19 pages.
Notice of Allowance for U.S. Appl. No. 17/306,194, dated Aug. 24, 2023, 10 pages.
Notice of Allowance for U.S. Appl. No. 16/390,496, dated Aug. 24, 2023, 24 pages.
Notice of Allowance for U.S. Appl. No. 17/970,078, dated Aug. 25, 2023, 10 pages.
Advisory Action for U.S. Appl. No. 16/678,551, dated Jul. 28, 2023, 3 pages.
Applicant-Initiated Interview Summary for U.S. Appl. No. 16/678,551, dated Aug. 22, 2023, 7 pages.
Applicant-Initiated Interview Summary for U.S. Appl. No. 16/844,406, dated Sep. 13, 2023, 2 pages.
Final Office Action for U.S. Appl. No. 16/844,406, dated Sep. 28, 2023, 7 pages.
Final Office Action for U.S. Appl. No. 17/121,194, dated Sep. 7, 2023, 24 pages.
Office Action for Taiwanese Patent Application No. 108119536, dated Jul. 13, 2023, 6 pages.
First Office Action for Chinese Patent Application No. 201980077328.4, dated Aug. 28, 2023, 15 pages.
Notice of Preliminary Rejection for Korean Patent Application No. 1020217026777, dated Jul. 28, 2023, 12 pages.
Quayle Action for U.S. Appl. No. 16/678,551, dated Oct. 4, 2023, 6 pages.
Non-Final Office Action for U.S. Appl. No. 16/678,602, dated Oct. 6, 2023, 18 pages.
Notice of Allowance for U.S. Appl. No. 17/121,194, dated Oct. 23, 2023, 8 pages.
Final Office Action for U.S. Appl. No. 17/102,957, dated Oct. 26, 2023, 27 pages.
Board Opinion for Chinese Patent Application No. 201780058052.6, dated Oct. 8, 2023, 15 pages.
First Office Action for Chinese Patent Application No. 201980050433.9, dated Sep. 4, 2023, 20 pages.
First Office Action for Chinese Patent Application No. 201980090320.1, dated Sep. 5, 2023, 11 pages.
Office Action for Taiwanese Patent Application No. 109102892, dated Sep. 13, 2023, 18 pages.
Preliminary Examination Report for Taiwanese Patent Application No. 109102893, dated Sep. 7, 2023, 10 pages.
Related Publications (1)
Number Date Country
20220285205 A1 Sep 2022 US
Provisional Applications (1)
Number Date Country
63157057 Mar 2021 US