This invention pertains to treating a silicon wafer to remove a thin film, such as a copper film, from regions on the silicon wafer.
The fabrication of a microelectronic circuit and/or component from a substrate typically involves a substantial number of processes. Many of these processes involve the deposition of a thin film on the surface of the workpiece followed by contact with a processing liquid, vapor, or gas. In a known process for treating a microelectronic workpiece, such as a silicon wafer, on which microelectronic devices have been fabricated, thin-film layers are successively applied and etched to form, for example, a metallized interconnect structure. In a typical metallization process, a barrier layer is applied over a dielectric layer on the front side of the workpiece. Depending upon the particular process used to form the interconnect structures, the dielectric layer may include a pattern of recessed micro-structures forming the various interconnect paths. A thin metal film, such as a copper film, is applied exterior to the barrier layer. In most instances, the thin film serves as an initial seed layer for subsequent electroplating of a further metal layer, such as a further copper layer. Due to manufacturing constraints, the thin film is not applied over an outer, peripheral margin of the front side.
Known techniques, such as physical vapor deposition (sputtering) or chemical vapor deposition, are typically used to apply the barrier layer and the thin film. If a further metal layer is to be electroplated exterior to the thin film, one or more electrical contacts are connected to an outer margin of the thin film to provide plating power.
The surface area of the front side beyond the inner boundary of the outer margin of the thin film is not available for fabricating the microelectronic devices since the present manufacturing processes limit the extent to which device structures can be formed at the outer margin. It would be highly desirable and would result in increased yield if more surface area beyond the present limits of the outer margin of the thin film were available for fabricating interconnect structures.
In the known process discussed above, and in other processes, contamination by copper, other metals, or other contaminants can occur on the back side of the workpiece. Although copper and other metals tend to diffuse rapidly through silicon or silicon dioxide, the back side is generally not provided with barrier layers capable of preventing copper, other metals, or other contaminants from diffusing through the silicon wafer to the front side, where such contamination can be very detrimental to device performance.
Such contamination can result from overspraying or other processing artifacts or from cross-contamination via fabrication tools. Such contamination can occur on the outer perimeter of a silicon wafer as well as on its back side. If not removed, such contamination can lead to cross-contamination of other wafers, via fabrication tools. Such contamination can be very difficult to remove, particularly if the contaminant has formed a stable silicide. It would be highly desirable if such contamination could be easily removed in a controlled manner without detrimentally affecting the front side of the workpiece.
In a first aspect of the invention, a processing fluid is selectively applied or excluded from an outer peripheral margin of at least one of the front or back sides of the workpiece. Exclusion and/or application of the processing fluid occurs by applying one or more processing fluids to the workpiece as the workpiece, and a reactor holding the workpiece, are spinning. The flow rate of the one or more processing fluids, fluid pressure, and/or spin rate are used to control the extent to which the processing fluid is selectively applied or excluded from the outer peripheral margin.
In a second aspect of the invention, a thin film is applied over the front side and over at least a portion of the outer perimeter. A barrier layer may be applied over the front side and over at least a portion of the outer perimeter, whereupon a further thin film, such as a conductive seed layer, is applied over the barrier layer.
After one or more further intervening steps, such as electroplating of a metal layer onto the conductive seed layer, an etchant capable of removing one or more of the thin film layers is caused to flow over an outer margin of the front side while the etchant is prevented from flowing over the front side except for the outer margin. Thus, the etchant only contacts the outer margin of the front side thereby selectively removing only the one or more thin film layers from the outer margin of the front side. If the etchant is also caused to flow over the back side and over the outer perimeter, as well as over the outer margin of the front side, the one or more thin film layers are removed from the outer perimeter and any contaminant that the etchant is capable of removing is stripped from the back side as well. A cleaning chemical can be used instead of an etchant in some applications to remove or dissolve the one or more thin film layers as described above.
These and other objects, features, and advantages of this invention are evident from the following description of a preferred mode for carrying out this invention, with reference to the accompanying drawings.
Although the process of the present invention has applicability to any process in which a processing fluid is selectively provided to or excluded from an outer margin of a workpiece, the invention will be described in connection with a sequence of processing steps for depositing one or more metallization layers or metallized structures on the workpiece. The known sequence of processing steps in accordance with the prior art begins with a silicon wafer 10, on which microelectronic devices (not shown) have been fabricated. As illustrated in
After the one or more electrical contacts 40 have been connected to the seed layer copper film 30 a further copper layer 50 from which interconnect structures and/or metallized devices are fabricated is electroplated onto the wafer 10 as illustrated in
The processing steps of the invention, as shown in
A further copper film 150 from which metallized interconnects and/or microelectronic devices are fabricated is then applied using an electrochemical deposition process. As illustrated in
In accordance with the process, a liquid processing fluid is selectively applied to the outer peripheral margin of at least the front side of the workpiece. Exclusion and/or application of the processing fluid occurs by applying one or more processing fluids to the workpiece as the workpiece and corresponding reactor are spinning about an axis of rotation that is generally parallel (or antiparallel) to the vector defining the face of the workpiece being processed. The flow rate of the one or more processing fluids, fluid pressure, and/or spin rate are used to control the extent to which the processing fluid is selectively applied to the outer peripheral margin.
A reactor suitable for executing the foregoing removal process may generally be comprised of upper and lower members that define an upper chamber and a lower chamber with respect to the workpiece contained therein. A centrally disposed inlet is provided to each of the upper an lower chambers for supplying one or more processing fluids. Fluid outlets are disposed at peripheral portions of the chambers and are adapted to assist in the exclusion of one processing fluid from the outer margin of the workpiece while allowing intrusion of an etchant thereat. The upper and lower chambers are rotated together to distribute a processing fluid in the upper chamber across an upper side of the workpiece through centripetal acceleration and to distribute a processing fluid in the lower chamber across a lower side of the workpiece through centripetal acceleration. Depending upon the processes being performed, however, the processing fluids in the upper and lower chambers may be the same fluid or different fluids.
Also rather than relying on the rotation of the workpiece, the processing fluid could also be selectively driven by pumps.
Through control of the respective pressures of the processing fluids entering the respective chambers and of the rotational speed of the rotating chambers, it is possible to control the reactor to cause the processing fluid entering the inlet of the lower chamber to flow over the near side of the wafer, over the outer perimeter of the workpiece, and over an outer margin of the far side of the workpiece, and to prevent the same processing fluid from flowing over the far side except for the outer margin. The control of the fluid pressures may be achieved for example through the use of a pump for liquids, or a pressure regulator for a pressurized gas source.
The process provided by this invention can be advantageously practiced in a reactor illustrated and described in PCT/US99/05674, PCT/US99/05676, and U.S. Pat. No. 6,264,752, incorporated herein by reference.
As shown in the
Generally, except as disclosed herein, the reactor 1100 is similar to the reactors illustrated and described in U.S. Pat. No. 6,264,752. However, as illustrated in the drawings and described herein, the reactor 1100 is improved to be more versatile in executing select microelectronic fabrication processes.
The reactor 1100 has an upper chamber member or rotor that includes an upper chamber wall 1120 and a lower chamber member or rotor that includes a lower chamber wall 1140. These walls 1120, 1140, are arranged to open so as to permit a wafer 1010 to be loaded into the reactor 1100 for processing, by a loading and unloading mechanism (not shown) that, for example, may be in the form of a robot having an end effector. These walls 1120, 1140, are arranged to close so as to define a capsule 1160 supporting a wafer 1010 in a processing position, between these walls 1120, 1140.
The reactor 1010 has an head 1200 containing a rotor assembly 1210 supported by bearings 1124. A motor 1220 for rotating the rotor 1210, about a vertical axis A is supported in the head 1200.
The rotor assembly includes the upper rotor and a lower rotor which can be moved vertically apart, for loading and unlading, and which can be brought together, for processing a wafer. The upper rotor has an inlet 1122 in an upper chamber wall 1120 for entry of processing fluids, which may be liquid, vaporous, or gaseous. The lower rotor similarly has a lower chamber wall 1140 with an inlet 1142 for such fluids. A nozzle 1212 in the head 1200 extends axially through a sleeve 1222, so as not to interfere with the rotation of the sleeve 1222. The upper nozzle 1212 directs streams of processing fluids downwardly through the inlet 1122 of the upper chamber wall 1120.
The upper chamber wall 1120 includes an array of similar outlets 1124, which are spaced similarly at uniform angular spacings around the vertical axis A. In the disclosed embodiment, thirty-six such outlets 1124 are employed. The outlets 1124 are spaced radially apart on a circle, with each outlet at the same distance from axis A. The outlets are located near the outside circumference of the rotors, typically about 1.5 mm in from the edge of the rotors.
When the upper and lower chamber walls 1120, 1140, are closed, they define a micro-environment reactor 1160 having an upper processing chamber 1126 that is defined by the upper chamber wall 1120 and by a first generally planar surface of the supported wafer 1010, and a lower processing chamber 1146 that is defined by the lower chamber wall 1140 and a second generally planar surface of the supported wafer opposite the first side. The upper and lower processing chambers 1126, 1146, are in fluid communication with each other in an annular region 1130 beyond the outer perimeter 16 of the supported wafer 1010 and are sealed by an annular, compressible seal (e.g. O-ring) 1132 bounding a lower portion 1134 of the annular region 1130. The seal 1132 allows processing fluids entering the lower inlet 1142 to remain under sufficient pressure to flow toward the outlets 1124.
The reactor 1100 is particularly suitable for executing a range of unique microfabrication processes. For example, reactor 1100 is particularly suited to execute a process that requires complete contact of a processing fluid at a first side of a workpiece and at only a peripheral margin portion of the second side thereof. Such processes may be realized because processing fluids entering the inlet 1142 of the lower chamber wall 1140 can act on the lower side 1014 of a supported wafer 1010, on the outer periphery 1016 of the supported wafer 1010, and on an outer margin 1018 of the upper side 1012 of the supported wafer 10 before reaching the outlets 1124, and because processing fluids entering the inlet 1122 of the upper chamber wall 1120 can act on the upper side 1012 of the supported wafer 1010, except for the outer margin 1018 of the upper side 1012, before reaching the outlets 1124.
When the reactor illustrated and described above is employed to practice the process provided by this invention for treating a silicon wafer having a front, device side, a back, non-device side, and an outer perimeter, so as to remove a thin film, such as a copper film, the silicon wafer is placed into the reactor with its back side being the lower side. An etchant capable of removing the copper is used as the processing. The etchant is delivered by a pump to the lower chamber and inert gas is used as the processing fluid entering the upper chamber. The etchant is caused to flow over the back side, over an outer perimeter of the silicon wafer, and over an outer margin of the front side, but is prevented from flowing over the front side except for the outer margin. After the etchant removes the thin film, any residual etchant is rinsed away, as with deionized water.
The processing fluid can be a mixture of an acid and an oxidizing agent.
If the thin film is a metal film, such as a copper film, a preferred etchant is a mixture of hydrofluoric acid and hydrogen peroxide, as an oxidizing agent, most preferably 0.5% hydrofluoric acid and 10% hydrogen peroxide, by volume, with the remainder being deionized water. An alternative reagent is approximately 10% sulfuric acid, although other concentrations of sulfuric acid from approximately 5% to approximately 98%, along with approximately 0% to 20% of an oxidizing agent, can be instead used to remove a metal film, such as a copper film.
The processing fluid can also be a mixture of sulfuric acid and amonium persulfate.
Other alternative reagents that can be instead used to remove a metal film, such as a copper film, include mixtures of hydrofluoric acid and a surfactant, mixtures of hydrofluoric and hydrochloric acids, mixtures of nitric and hydrofluoric acids, and EKC 5000, which is a proprietary reagent available commercially from EKC of Hayward, Calif.
When the resultant structure 160 illustrated in
The thin film removed by the process of the present invention could also be substantially comprised of silicon nitride, silicone oxide, polysilicon, or photoresist.
Various modifications can, of course, be made without departing from the scope and spirit of the invention. The invention, therefore, should not be restricted, except by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US99/05674 | Mar 1999 | WO | international |
This Application is a Division of U.S. patent application Ser. No. 09/437,926 filed Nov. 10, 1999 and now pending, which is the U.S. National Stage Application of International Application No. PCT/US99/05674, filed on Mar. 15, 1999 and published in English, and including priority claims to U. S. Provisional Patent Application Nos. 60/116,750, filed Jan. 23, 1999; 60/117,474, filed Jan. 27, 1999; and to U.S. patent application Ser. Nos. 09/041,901, filed Mar. 13, 1998, now U.S. Pat. No. 6,350,319; 09/041,649, filed Mar. 13, 1998, now U.S. Pat. No. 6,318,385; and 09/113,435, filed Jul. 10, 1998, now U.S. Pat. No. 6,264,752. This Application claims priority to each of these applications. The disclosures of PCT/US99/05674; 60/117,474; and U.S. patent application Ser. No. 09/437,711 are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60117474 | Jan 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09437926 | Nov 1999 | US |
Child | 10184141 | Jun 2002 | US |
Parent | 09041649 | Mar 1998 | US |
Child | 09881246 | Jun 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10285017 | Oct 2002 | US |
Child | 10927259 | Aug 2004 | US |
Parent | 10150631 | May 2002 | US |
Child | 10285017 | Oct 2002 | US |
Parent | 10184141 | Jun 2002 | US |
Child | 10927259 | Aug 2004 | US |
Parent | 09881246 | Jun 2001 | US |
Child | 10184141 | US |