The present invention relates to a semiconductor device and a technique of manufacturing the same and more particularly to a technique which is useful for a semiconductor device having a high voltage MISFET and a resistance element over a semiconductor substrate and a technique of manufacturing the same.
As a technique of electrically isolating neighboring semiconductor elements, the STI (Shallow Trench Isolation) technique has been known where a trench is made in an element isolating region of a semiconductor substrate and an insulating film is buried in it. In order to make such an element isolating trench, first the semiconductor substrate is etched to make a trench and then a silicon oxide film whose thickness is larger than the depth of the trench is deposited on the substrate. Then, the silicon oxide film portion protruding from the trench is removed by chemical mechanical polishing, so that some of the silicon oxide film is left inside the trench and the trench surface is flattened.
The size a semiconductor element is optimized according to its purpose or functionality and in fact, various semiconductor elements of different sizes are mounted on a semiconductor substrate. For example, it is common that a MISFET which operates at high supply voltage (hereinafter called a high voltage MISFET) is larger than a MISFET which operates at low supply voltage (hereinafter called a low voltage MISFET) and also the gate insulating film of the former is thicker than that of the latter. Furthermore, generally speaking, passive elements such as resistance elements and capacitors are larger than low voltage MISFETs. In addition, since integrated circuits vary in integration density of semiconductor elements according to the purpose or functionality, it is common that some areas of an actual semiconductor substrate are densely dotted with semiconductor elements and other areas of it are sparsely dotted with semiconductor elements.
On the other hand, the size of a semiconductor element isolating trench is determined by the semiconductor element size and density. This means that in an actual semiconductor substrate, there are element isolating trenches of different sizes and some areas are densely dotted with element isolating trenches and other areas are sparsely dotted with element isolating trenches.
However, in the conventional process of making element isolating trenches, the following problem arises: when plural trenches of different sizes are made in a semiconductor substrate and then a silicon oxide film is deposited on them and their surfaces are polished by chemical mechanical polishing, the surface of the buried silicon oxide film may become concave particularly in a large trench, like a dish (this phenomenon is called dishing).
If such dishing should occur on a silicon oxide film in an element isolating trench, when a thin film is deposited on the semiconductor substrate at a later step, the surface flatness of the thin film deteriorates in the area above the element isolating trench. For this reason, at a next step where a photoresist film is formed over the thin film and an exposure is made, the exposure light focus range may decrease in the area above the element isolating trench, resulting in a decline in resist pattern accuracy.
As a solution to this problem, the following technique has been proposed and being applied to actual semiconductor product manufacturing processes: many small dummy active regions are made in a matrix pattern in a large element isolating region where dishing might occur considerably, in order to decrease the actual area of element isolating trenches in this region and thereby prevent dishing of the silicon oxide film.
One of the conventional techniques of making dummy active regions in a large element isolating region is described in Japanese Unexamined Patent Publication No. 2002-158278. This document discloses a technique which improves the surface flatness of the silicon oxide film and reduces the amount of data for making a photo mask for dummy active region formation by making two types of dummy active regions of different sizes in an element isolating region.
Japanese Unexamined Patent Publication No. 2002-261244 points out a problem that when a resistance element made up of a polycrystal silicon film is formed over an element isolating trench, the resistance element's width, thickness and sectional shape are different between the central part and peripheral parts of the trench due to dishing of the silicon oxide film. As a solution to this problem, the document discloses a technique which arranges dummy active regions in the vicinities of regions where resistance elements are to be formed and partitions the silicon oxide film as needed to prevent dishing.
The present inventors examined these conventional techniques and found the following problems. In the case of the technique which arranges dummy active regions in element isolating regions and forms resistance elements over them, coupling capacitance might occur between a dummy active region and a resistance element, causing change in the characteristics of the resistance element.
The technique which improves the chip surface flatness by making dummy active regions in part of a semiconductor chip is effective only when the ratio of dummy active regions to the whole semiconductor chip is large enough, which would necessitate an increase in the chip area.
An object of the present invention is to provide a technique which improves the surface flatness of semiconductor substrate while an increase in dummy active regions does not necessitate an increase in the chip area.
Another object of the invention is to provide a technique which improves the reliability of a resistance element.
A further object of the invention is to provide a technique which improves the electrostatic discharge immunity of a resistance element for an ESD protection circuit.
A further object of the invention is to provide a technique which simplifies a semiconductor device manufacturing process in which a high voltage MISFET and resistance elements are formed on a semiconductor substrate.
The above and further objects and novel features of the invention will more fully appear from the following detailed description in this specification and the accompanying drawings.
Preferred embodiments of the invention which will be disclosed herein are briefly outlined below.
According to one aspect of the present invention, a semiconductor device includes: a first MISFET which has a first gate insulating film formed in a first region of a main surface of a semiconductor substrate and operates at a first supply voltage; a second MISFET which has a second gate insulating film formed in a second region of the main surface of the semiconductor substrate and thicker than the first gate insulating film and operates at a second supply voltage higher than the first supply voltage; and a resistance element made up of a silicon film formed in a third region of the main surface of the semiconductor substrate. Here, an insulating film is formed in the third region of the main surface of the semiconductor substrate at the same level as the second gate insulating film and the resistance element is formed over the insulating film.
According to another aspect of the invention, semiconductor device has: an internal circuit including a first MISFET which has a first gate insulating film formed in a first region of a main surface of a semiconductor substrate and operates at a first supply voltage, a second MISFET which has a second gate insulating film formed in a second region of the main surface of the semiconductor substrate and thicker than the first gate insulating film and operates at a second supply voltage higher than the first supply voltage, and a first resistance element made up of a silicon film formed in a third region of the main surface of the semiconductor substrate; and an electrostatic discharge protection circuit including a second resistance element made up of a silicon film formed in a fourth region of the main surface of the semiconductor substrate. Here, a first insulating film is formed under each of the first and second resistance elements at the same level as the second gate insulating film.
The effects brought about by preferred embodiments disclosed herein are briefly outlined below.
The ratio of dummy active regions to the overall area of the semiconductor substrate can be smaller than when dummy active regions are made in element isolating regions and resistance elements are formed over them; thus it is possible to improve the surface flatness of the semiconductor substrate and reduce the chip size at the same time.
Next, preferred embodiments of the present invention will be described in detail referring to the accompanying drawings. In all the drawings that illustrate the preferred embodiments, elements with like functions are designated by like reference numerals and repeated descriptions of such elements are omitted.
Although not shown in
Located between the input/output terminal 50 and the internal circuit 51, the ESD protection circuit 52 prevents the internal circuit 51 from breaking down due to high voltage electrostatic charge on the input/output terminal 50. The ESD protection circuit consists of protective diodes D1 and D2 and a resistance element ER. 6 V is supplied to the resistance element ER of the ESD protection circuit 52 and the resistance element IR of the internal circuit 51, like medium voltage MISFETs.
Next, referring to
As shown in
In the figure, region A represents a region in which a high voltage n-channel MISFET to operate at 25 V supply voltage is to be formed; region B represents a region in which a high voltage p-channel MISFET to operate at 25 V supply voltage is to be formed; region C represents a region in which a medium voltage p-channel MISFET to operate at 6 V supply voltage is to be formed; region D represents a region in which a low voltage p-channel MISFET to operate at 1.5 V supply voltage is to be formed; region E represents a region in which the resistance element ER of the ESD protection circuit 52 is to be formed; and region F represents a region in which the resistance element IR of the internal circuit 51 is to be formed. As illustrated in the figure, in this embodiment, an element isolating trench 2 spreads all over the region E of the substrate 1 in which the resistance element ER of the ESD protection circuit 52 is to be formed. On the other hand, no element isolating trench is formed in the region F of the substrate 1 in which the resistance element IR of the internal circuit 51 is formed.
Next, as shown in
The n-type wells 5 made in the region A of the substrate 1 function as the source and drain for the high voltage n-channel MISFET and the p-type wells 6 made in the region B function as part of the source and drain for the high voltage p-channel MISFET.
As shown in
Next, as shown in
In this embodiment, the cap insulating film 9 and the n-type polycrystal silicon film are left over the gate insulating film 7 in the region E to form a resistance element ER made up of an n-type polycristal silicon film covered by the cap insulating film 9. Also, the cap insulating film 9 and the n-type polycrystal silicon film are left over the gate insulating film 7 in the region F to form a resistance element IR made up of an n-type polycrystal silicon film covered by the cap insulating film 9.
In other words, according to this embodiment, the resistance element IR can be formed over an active region (n-type buried layer 3) without making almost any consideration of the capacitance with the substrate 1. This means that the ratio of dummy active regions to the overall area of the substrate 1 can be smaller than when a dummy active region is made in an element isolating trench 2 with a silicon oxide film buried therein and a resistance element IR is formed over it. Consequently, it is possible to improve the surface flatness of the substrate 1 and reduce the chip size at the same time.
In this embodiment, an insulating film to lie between the n-type buried insulating film 3 and the resistance element IR, and the gate insulating film 7 for the high voltage MISFET are formed simultaneously, which eliminates the need for a special process to form an insulating film.
On the other hand, if the resistance element ER of the ESD protection circuit 52 lies over an active region, there would be a problem that the ESD immunity easily deteriorates at the edges of the polycrystal silicon film making up the resistance element ER when high voltage static electricity is applied. In other words, due to external static voltage, usually the voltage applied to the resistance element ER would be higher than the voltage applied to the resistance element IR and thus its ESD immunity would deteriorate easily. However, in this embodiment, the resistance element ER lies over the element isolating trench 2, which prevents deterioration in ESD immunity and assures the reliability of the ESD protection circuit 52. Specifically, the insulating film under the resistance element ER is thicker than the insulating film under the resistance element IR so that the ESD immunity of the resistance element ER is higher than that of the resistance element IR. Furthermore, in this embodiment, the thick insulating film (gate insulating film 7) with a thickness of 60 nm or more lies between the element isolating trench 2 and the resistance element ER, which prevents deterioration in ESD immunity more reliably.
Next, as shown in
The gate insulating films of different thicknesses 11 and 12 are formed as follows. First, a silicon oxide film with a thickness of 9 nm or so is formed on the surface of the substrate 1 in the regions A, B, C, and D by thermal oxidation of the substrate 1. Then the surface of the substrate 1 in the region C is covered by a photoresist film and the silicon oxide film formed on the surface of the substrate 1 in the other regions (A, B, and D) is removed by wet etching. After removal of the photoresist film, a gate insulating film 12 as a 3 nm thick silicon oxide film is formed on the surface of the substrate 1 in the regions A, B, and D by thermal oxidation of the substrate 1 again. In this process, the silicon oxide film with a thickness of 9 nm or so left on the surface of the substrate 1 in the region C grows into a 12 nm thick gate insulating film 11.
Next, as shown in
Next, as shown in
As a consequence of the above steps, a high voltage n-channel MISFET (QHN) is formed over the substrate 1 in the region A and a high voltage p-channel MISFET (QHP) is formed over the substrate 1 in the region B. Also a medium voltage p-channel MISFET (QMN) is formed over the substrate 1 in the region C and a low voltage p-channel MISFET (QLP) is formed over the substrate 1 in, the region D.
Next, as shown in
Though not shown, silicide layers 20 are formed on the surfaces of the respective sources and drains of the high voltage n-channel MISFET (QHN), high voltage p-channel MISFET (QHP), medium voltage p-channel MISFET (QMN), and low voltage p-channel MISFET (QLP). Then, plural wiring layers are formed over the substrate 1 with an interlayer insulating film between wiring layers though not shown. These silicide layers 20 may be cobalt silicide layers (CoSi2), titanium silicide layers (TiSi2) or nickel silicide layers (NiSi2) or the like.
According to this embodiment, since the resistance element IR can lie over an active region (n-type buried layer 3), the ratio of dummy active regions to the overall area of the substrate 1 can be decreased. Therefore it is possible to improve the surface flatness of the substrate 1 and reduce the chip side at the same time.
Since the insulating film which should lie between the active region and the resistance element IR can be formed concurrently during the process of forming the gate insulating film 7 for the high voltage MISFET, the abovementioned effect can be achieved without any additional manufacturing step.
While in the first embodiment the resistance element ER of the ESD protection circuit 52 lies over the element isolating trench 2, in the second embodiment the resistance element ER lies over an active region (n-type buried layer 3) as shown in
However, as mentioned above, when the resistance element ER lies over the active region, the ESD immunity would easily deteriorate at the edges of the polycrystal silicon film making up the resistance element ER. Therefore, in this embodiment, in order to prevent deterioration in ESD immunity, the resistance element is formed in a way that its central part lies over the active region and its edges lie over element isolating trenches 2. Furthermore, an insulating film (gate insulating film 7) with a thickness of 60 nm or more is formed between the element isolating trenches 2 and the resistance element ER so that deterioration in ESD immunity is prevented more reliably. In addition, this contributes to reduction in coupling capacitance between the resistance element ER and the substrate 1.
According to this embodiment, two different types of resistance elements ER and IR can be formed over active regions without deteriorating the ESD immunity of the resistance element ER and without making almost any consideration of the capacitance with the substrate 1. This means that the ratio of element isolating regions to the overall area of the substrate 1 can be smaller than when resistance elements ER and IR are formed over element isolating trenches 2 in which a silicon oxide film is buried. Consequently, it is possible to improve the surface flatness of the substrate 1 and reduce the chip size at the same time.
In the third embodiment, as shown in
In this case, in order to reduce the coupling capacitance between the dummy active regions 21 and the resistance elements ER and IR, a thick insulating film (gate insulating film 7) is formed under each of the resistance elements ER and IR. Also in order to prevent deterioration in the ESD immunity of the resistance element ER, no dummy active regions 21 exist under the edges of the resistance element ER.
The invention made by the present inventors has been so far explained in reference to preferred embodiments thereof. However, the invention is not limited thereto and it is obvious that it may be embodied in other various forms without departing from the spirit and scope thereof.
While in the first embodiment the first polycrystal silicon film (n-type polycrystal silicon film used for the high voltage MISFET gate electrode 8) is used to form resistance elements ER and IR, the second polycrystal silicon film (n-type polycrystal silicon film used for the medium voltage p-channel MISFET gate electrode 13 and low voltage p-channel MISFET gate electrode 14) may be used to form resistance elements ER and IR. It is also possible to use the first polycrystal silicon film to form one of the resistance elements ER and IR and use the second polycrystal silicon film to form the other resistance element.
The abovementioned embodiments have been explained on the assumption that the invention is applied to an LCD driver. However the invention is not limited thereto but may be widely applied to other various semiconductor devices in which a high voltage MISFET with a thick gate insulating film and a resistance element as a silicon film are formed over a semiconductor substrate.
The invention is intended to be used for a semiconductor device in which a high voltage MISFET and a resistance element are formed over a semiconductor substrate.
Number | Date | Country | Kind |
---|---|---|---|
2005-268135 | Sep 2005 | JP | national |
This application is a continuation of application Ser. No. 12/116,193 filed May 6, 2008 now U.S. Pat. No. 7,759,763, which is a division of application Ser. No. 11/500,381 filed Aug. 8, 2006 now U.S. Pat. No. 7,393,737. This application also claims priority from Japanese patent application No. 2005-268135 filed Sep. 15, 2005, the contents of which are hereby incorporated by reference into this application.
Number | Name | Date | Kind |
---|---|---|---|
4586238 | Yatsuda et al. | May 1986 | A |
5949125 | Meyer | Sep 1999 | A |
6165825 | Odake | Dec 2000 | A |
6218704 | Brown et al. | Apr 2001 | B1 |
6323518 | Sakamoto et al. | Nov 2001 | B1 |
6384452 | Chittipeddi et al. | May 2002 | B1 |
6462380 | Duvvury et al. | Oct 2002 | B1 |
6528380 | Woolery et al. | Mar 2003 | B2 |
6531745 | Woolery et al. | Mar 2003 | B1 |
6683345 | Adler et al. | Jan 2004 | B1 |
6693315 | Kuroda et al. | Feb 2004 | B2 |
6713795 | Kuhlmann | Mar 2004 | B2 |
6781193 | Lee et al. | Aug 2004 | B2 |
6853036 | Rodov et al. | Feb 2005 | B1 |
7045865 | Amishiro et al. | May 2006 | B2 |
7109533 | Kodama | Sep 2006 | B2 |
7393737 | Yoshizumi et al. | Jul 2008 | B2 |
7495265 | Morishita | Feb 2009 | B2 |
7554202 | Koubuchi et al. | Jun 2009 | B2 |
7759763 | Yoshizumi et al. | Jul 2010 | B2 |
8044457 | Salcedo et al. | Oct 2011 | B2 |
20020096728 | Kuhlmann | Jul 2002 | A1 |
20030008458 | Hashimoto et al. | Jan 2003 | A1 |
20030030097 | Lee et al. | Feb 2003 | A1 |
20030092233 | Furukawa et al. | May 2003 | A1 |
20040092109 | Adler et al. | May 2004 | A1 |
20040164354 | Mergens et al. | Aug 2004 | A1 |
20050145947 | Russ et al. | Jul 2005 | A1 |
20050173727 | Manna et al. | Aug 2005 | A1 |
20050275032 | Kodama et al. | Dec 2005 | A1 |
20060237795 | Kato et al. | Oct 2006 | A1 |
20070069326 | Yoshizumi et al. | Mar 2007 | A1 |
20070145411 | Chen et al. | Jun 2007 | A1 |
20080001168 | Manna et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
08-195441 | Jul 1996 | JP |
11-251533 | Sep 1999 | JP |
2000-058669 | Feb 2000 | JP |
2002-158278 | May 2002 | JP |
2002-261244 | Sep 2002 | JP |
2003-142656 | May 2003 | JP |
2005-183609 | Jul 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20100244137 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11500381 | Aug 2006 | US |
Child | 12116193 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12116193 | May 2008 | US |
Child | 12813144 | US |