1. Field of the Invention
The present invention generally relates to a semiconductor device and a manufacturing method thereof in which a ferroelectric capacitor is formed, and a thin film device which needs excellent orientation.
2. Description of the Related Art
DRAM (dynamic random access memory) and SRAM (static RAM) known as volatile memories, and FLASH memory known as a non-volatile memory have been used in various fields. On the other hand, as memory which has both the high-speed low-voltage operability of DRAM and the non-volatile property of FLASH, FRAM (ferroelectric RAM), MRAM (magnetic RAM), and PRAM (programmable RAM) have potential, and various research and development efforts have been made of these devices. In fact, some of them have been mass-produced.
FRAM is a non-volatile memory making use of the hysteresis of a ferroelectric material. A semiconductor device comprising a FRAM has a capacitor structure in which an upper electrode, a ferroelectric layer, and a lower electrode are disposed on a substrate. As a ferroelectric material for the ferroelectric layer, Pb(Zr,Ti)O3 [PZT] has large spontaneous polarization and has great potential. To form a ferroelectric layer, a CVD (chemical vapor deposition) method is suitable because of the need to form a dense film.
One of the technological issues regarding the ferroelectric capacitor is to increase capacity by making its structure fine. For miniaturization of the device structure, several methods are being considered, such as, employing a 1T1C (one transistor and one capacitor) circuit structure in place of a 2T2C (two transistors and two capacitors) circuit structure, employing a stack structure in place of a planar structure, and employing a three-dimensional structure in place of a flat structure.
To change the structure from a planar structure to a stack structure, it is necessary to form a lower electrode right above a transistor via a plug. In order to prevent oxidization of the plug, the lower electrode itself must have an oxygen barrier property. Further, in order for the PZT to have large spontaneous polarization, the PZT itself must have excellent orientation and crystal quality. In order to achieve this, the lower electrode positioned under the ferroelectric layer (PZT layer) also must have excellent orientation and crystal quality.
To obtain excellent orientation in the ferroelectric capacitor, it is proposed to perform PLA (plasma annealing) on a SiO2/Si substrate in an NH3 atmosphere prior to forming a lower electrode, and then, to form a Ti film. (See, for example, Japanese Laid-Open Patent Publication No. 2004-153031.) A lower electrode made of Ir and so on is formed on the Ti film. However, the Ti itself becomes TiOx having an insulating property in a high temperature oxygen atmosphere. For this reason, when the Ti film is used on the plug, electric contact between the capacitor and the plug cannot be obtained.
Meanwhile, to prevent oxidization between the lower electrode of the capacitor and the plug, it is proposed to form a cavity by removing the uppermost end of a metal plug filling in a contact hole and to form a conductive film, such as a TiN film, in the cavity by sputtering, thereby forming a plug having a high oxidization preventing effect. (See, for example, Japanese Laid-Open Patent Publication No. 2001-284548.) However, in this method, a plug having a TiN film on the uppermost position comes into contact with an Ir/IrO2 lower electrode.
Further, as a method for ensuring good electric characteristics of a ferroelectric capacitor, it is proposed to form a contact plug itself using TiN by vapor deposition and to form a lower electrode made of IrO2 on the contact plug. (See, for example, Japanese Laid-Open Patent Publication No. 2000-114482).
However, with the above-described conventional methods aiming to prevent the oxidization, crystal orientation of the capacitor is not considered at all.
When a Ti film is formed after the PLA process, the crystal quality becomes good, and the orientation of the ferroelectric material of a capacitor can be well maintained. However, electric contact between the plug and the capacitor cannot be sufficiently obtained due to not sufficiently preventing oxidization.
If a TiN film deposited by sputtering or vapor deposition is inserted between a plug and a capacitor, oxidization is sufficiently prevented; however, satisfactory crystal quality cannot be obtained.
Accordingly, the present invention may provide a semiconductor device with a ferroelectric capacitor with satisfactory electric characteristics, which device can simultaneously provide good crystal quality and sufficiently prevent oxidization. The invention may also provide a method of manufacturing such a semiconductor device. Further, there is provided a thin film device that requires excellent orientation.
According to an embodiment of the present invention, instead of depositing a titanium nitride (TiN) film by sputtering or vapor deposition, a titanium (Ti) film is formed first, and then the titanium film is nitrided by, for example, RTA (rapid thermal annealing) in a nitrogen-containing atmosphere to form a TiN film. With this method, the crystal quality of the titanium nitride film can be improved, while maintaining the oxygen barrier property.
In a more preferred example, the Ti film is formed after PLA (plasma annealing) pretreatment is performed on the wafer. Then, the Ti film is nitrided through the annealing in the nitrogen atmosphere to form the TiN film. With this method, a TiN film with more excellent crystal quality can be obtained, as compared with the TiN film obtained by nitriding a Ti film without PLA pretreatment.
Specifically, according to a first aspect of the present invention, there is provided a semiconductor device. The semiconductor device includes a capacitor having a titanium nitride (TiN) film as a part of a lower electrode. The titanium nitride film is obtained by nitriding a titanium (Ti) film formed after applying a PLA process.
Preferably, the FWHM (full width half maximum) of the (111) face of the titanium nitride film at a peak in an XRD (X-ray diffraction) pattern measured by a rocking curve method is in a range of 2° to 7°.
More preferably, the FWHM at the peak is in a range of 3° to 5°.
According to a second aspect of the present invention, there is provided a thin film device. The thin film device includes a semiconductor substrate, a titanium nitride film on the semiconductor substrate, and an orientation film on the titanium nitride film. In the thin film device, the FWHM at a peak on the (111) face in an XRD pattern measured by a rocking curve method of the titanium nitride film is in a range of 2° to 7°. More preferably, the FWHM at the peak is in a range of 3° to 5°.
The orientation film includes a metal thin film, a dielectric thin film, a piezoelectric thin film, a conductive nitride film, a conductive oxide film, or a ferroelectric thin film. When the orientation film is a metal thin film such as an Ir film or a Pt film, or a conductive nitride film such as a TiAlN film, the dielectric thin film, the piezoelectric thin film, and/or the ferroelectric thin film can be formed on the orientation film.
According to a third aspect of the present invention, there is provided a manufacturing method of a semiconductor device. The manufacturing method of the semiconductor device includes the steps of forming a contact plug in an insulation film so as to be connected to an element on a semiconductor substrate, applying a PLA (plasma annealing) process to the insulation film in an NH3 atmosphere, forming a titanium film on the contact plug, nitriding the titanium film to form a titanium nitride film as a part of a lower electrode of a capacitor, and forming a metal film as another part of the lower electrode of the capacitor on the titanium nitride film.
In a preferred example, the PLA (plasma annealing) pretreatment is performed for 5 seconds or more, and more preferably, in a range from 5 seconds to 240 seconds. By performing the PLA process prior to the formation of the Ti film, the FWHM at the peak of the TiN (111) face measured by a rocking curve method can be converged to the range of 3° to 5°, and the FWHM at the peak of the (111) face of the lower electrode metal can be converged to the range of 2° to 3°.
By using the TiN film obtained through the above-described method as a part of the lower electrode of a ferroelectric capacitor, the electric characteristics of the ferroelectric capacitor can be improved to a great degree.
Other objects and further features of the present invention will be apparent from the following detailed description when read in conjunction with the accompanying drawings, in which:
Referring to the drawings, an embodiment of the present invention is explained.
First, referring to
In
In
In
In
In
In
In
On the other hand, pattern (c) is measured from the sample of the embodiment, in which sample a Ti film is formed on the SiO2/Si substrate after applying the PLA process, then RTA is performed on the Ti film in a nitrogen atmosphere to form a TiN film, and an Ir film is formed thereon. The TiN film shows a clear peak (refer to
Similarly, in the pattern (e) of the embodiment of the present invention, in which a Ti film is formed without applying the PLA pretreatment, is nitrided by RTA in a nitrogen atmosphere to form a TiN film, and an Ir film is formed thereon, the TiN film shows a gentle peak (refer to
As shown in
Returning to
Both of the patterns (c) and (e) of the lower electrode in the embodiment of the present invention indicate excellent film crystal quality and an oxygen barrier property. However, the pattern (c) having the PLA process applied indicates a more excellent film crystal quality (orientation).
In the TiN film directly deposited by a sputtering process and so on (pattern (d)), the peak itself does not exist and the FWHM cannot be measured.
In the pattern (a) from the sample in which the Ir film is formed over the Ti film by an existing technology, the FWHM of the Ir film is over 5°, and there is less contribution to improving the orientation of a ferroelectric material. In addition, the Ti film has a low oxygen barrier property.
In the pattern (b) from the sample in which a Ti film is formed after the PLA process and an Ir film is formed thereon by an existing technology, the FWHM of the Ir (111) face is 2.9°, which value is excellent. However, similar to the pattern (a), the Ti film has a low oxygen barrier property.
In the pattern (c) of the embodiment of the present invention, in which a Ti (111) film is formed after the PLA process, is nitrided by RTA in a nitrogen atmosphere, and an Ir film is formed on the TiN film, the FWHM of the Ir (111) face is 2.8°, and the FWHM of the TiN (111) face is 3.7°. These measurement results show excellent crystal quality. The orientation of a ferroelectric film formed on the above lower electrode film is improved and a capacitor is able to have an excellent polarization characteristic. The FWHM of the TiN film can be made as small as approximate 2° when tuned by a PLA process.
In the pattern (e) of the embodiment of the present invention, in which a Ti film is formed on a SiO2/Si substrate without applying the PLA pretreatment, is nitrided by RTA in a nitrogen atmosphere to form the TiN film, and an Ir film is formed thereon, the FWHM of the Ir (111) face is 4.9°, and the FWHM of the TiN (111) face is 6.9°.
As supported by the data, when the TiN film having an XRD FWHM ranging from 2° to 7°, preferably, 3° to 5°, is used for a part of the lower electrode, a satisfactory oxygen barrier property and good crystal quality can be obtained. In this case, the XRD FWHM of the Ir film formed over the TiN film is 2° to 5°, preferably, 2° to 3°.
As shown in
Next, as shown in
Preferably, prior to forming the Ti film, PLA pretreatment is performed in an NH3 atmosphere. The PLA conditions in this example are as follows: the substrate temperature is 400° C., the power of the high frequency power source of 13.56 MHz to be supplied to the substrate is 100 W, the power of the high frequency power source of 350 kHz to be supplied to the plasma generating region is 55 W, and the PLA time is 60 seconds. Next, the TiAlN film 50 serving as an oxygen barrier film whose thickness is 100 nm is formed, and the Ir film 60 serving as an electrode film whose thickness is 100 nm is formed by sputtering. Further, a PZT film that is a first layer whose thickness is 5 nm is deposited by a MOCVD (metal organic chemical vapor deposition) method, and a Pb(Zr,Ti)O3[PZT] film whose thickness is 115 nm is sequentially formed on the first layer; with this, the ferroelectric film 70 is formed. At this stage, the substrate temperature is 620° C. and the pressure is 666 Pa (5 Torr). In addition, on the ferroelectric film 70, an IrO2 film 80 whose thickness is 150 nm that is a part of an upper electrode film for a ferroelectric capacitor is formed by sputtering, and further, an Ir film 90 (a part of an upper electrode film) whose thickness is 50 nm is formed on the IrO2 film 80. After this, in order to recover from damage to the ferroelectric film 70 caused by forming the upper electrode films 80 and 90, a recovery annealing process is applied. In the embodiment, a furnace annealing process is applied in an annealing furnace at 550° C. for 60 minutes in an O2 atmosphere.
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Referring to the flowchart shown in
First, a contact plug 30 connecting to an impurity diffusion region of a MOS transistor 20 is formed (step S101). Next, a PLA process is applied in an NH3 atmosphere at 400° C. for one minute (step S102). A Ti film is formed (step S103). After this, a TiN film 40 is formed by applying an RTA process to the Ti film in an N2 atmosphere (10 slm) at 650° C. for two minutes (step S104). A TiAlN film 50 is formed (step S105), and an Ir film 60 is formed (step S106). Further, a PZT film that is a ferroelectric film is formed by a MOCVD method (step S107), and an IrO2 film 80 and an Ir film 90 that are elements of an upper electrode are sequentially formed (steps S108 and S109).
Next, a hard mask is formed by stacking, for example, a TiN film and a TEOS (tetra ethyl ortho silicate) film, and patterning with a predetermined pattern (step S110). A ferroelectric capacitor 75 having a predetermined shape is formed by etching the Ir film 90, the IrO2 film 80, the ferroelectric film 70, the Ir film 60, the TiAlN film 50, and the TiN film 40 with the use of the hard mask (step S111).
Although the present invention is described based on specific examples, the present invention is not limited to these embodiments. For example, the present invention can be applied to a stack structure or a planar structure in which a material such as Pt is used as the lower electrode. In the embodiment of the present invention, the ferroelectric film is formed by sputtering or MOCVD; however, other suitable film formation methods, such as a spin-on method or a sol-gel method can be used. Further, other suitable ferroelectric materials may be used. In addition, variations and modifications may be made without departing from the scope of the present invention.
Because the TiN film of the embodiment of the present invention is highly oriented to the (111) direction, it can be applied to various types of capacitor structures as long as a material that reflects the orientation of the underlying layer is used in the capacitor structure. In addition, the TiN film can be used as a conductive film in various devices which require good orientation and the oxygen barrier property.
The TiN film of the embodiment of the present invention can also be used in thin film devices, including a piezoelectric device and a liquid crystal device which require good orientation. In such thin film devices, an orientation film may be formed over a TiN film with XRD FWHM of 2° to 7°, preferably, 3° to 5° at the peak on the (111) face, measured by the rocking curve method.
The orientation film is, for example, a metal thin film made of Ir, Pt, and so on, a conductive nitride film such as a TiAlN film, a conductive oxide film, a dielectric thin film, a piezoelectric thin film, and a ferroelectric thin film. If an Ir film, a Pt film, or a TiAlN film is used as the orientation film, another thin film, such as a dielectric thin film, a piezoelectric thin film, or a ferroelectric thin film may be formed over the orientation film.
In any one of the above cases, the combination of the PLA pretreatment and the nitriding of the Ti film can produce a TiN film with high orientation and a satisfactory oxygen barrier property. In this case, the orientation of the film formed over the TiN film can also be improved, reflecting the high orientation of the underlying TiN film.
Number | Date | Country | Kind |
---|---|---|---|
2005-236935 | Aug 2005 | JP | national |
2006-209930 | Aug 2006 | JP | national |
This application is a divisional of U.S. application Ser. No. 11/504,115 filed Aug. 15, 2006, which is a continuation in part of U.S. application Ser. No. 11/358,077 filed Feb. 22, 2006. This application is also based upon and claims the benefit of the earlier filing dates of Japanese Patent Application Nos. 2005-236935 and 2006-209930, filed in Aug. 17, 2005 and Aug. 1, 2006, respectively, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11504115 | Aug 2006 | US |
Child | 13081854 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11358077 | Feb 2006 | US |
Child | 11504115 | US |