1. Field of the Invention
The present invention relates to a method of fabricating TFTs.
2. Description of Related Art
Thin-film transistors (TFTs) using an amorphous silicon film as an active layer have been well known. TFTs using this amorphous silicon film as an active layer are employed in active matrix liquid crystal displays (AMLCDs).
However, TFTs using an amorphous silicon film have low characteristics and so the P-channel type cannot be put into practical use. Therefore, the actual situation is that the use of the TFTs using an amorphous silicon film is limited to active matrix circuits.
An active matrix liquid crystal display with which peripheral driver circuits are integrated to reduce the fabrication cost and to miniaturize the liquid crystal panel is also known. In this configuration, even the peripheral driver circuits are composed of TFTs. Therefore, this kind of display must meet some requirements, i.e., high-speed operation and realization of P-channel TFTs.
TFTs using a crystalline silicon film are known as a configuration satisfying these requirements. One main method of obtaining a crystalline silicon film is heat treatment for an amorphous silicon film. Another main method is to irradiate the amorphous silicon film with laser light.
The former method results in a clear polycrystalline state. However, the electrical characteristics tend to be nonuniform because of clear crystal grain boundaries. This problem is deeply concerned with the fact that the positions and the state of the crystal grain boundaries cannot be controlled.
The latter method can produce a crystalline silicon film of uniform quality. However, the production yield is low. In addition, the crystallinity is not sufficiently high.
In an attempt to solve these problems, we have proposed a technique for obtaining a crystalline silicon film having desired film quality and electrical characteristics. In particular, nickel is introduced into an amorphous silicon film, and then a heat treatment is performed.
However, doping is utilized in forming source and drain regions. The resulting damage must be healed. Nickel element remaining in the active layer adversely affects the characteristics of the completed device. These problems must be alleviated.
It is an object of the present invention to provide a method of fabricating TFTs in which the foregoing problems have been mitigated.
One embodiment of the present invention lies in a device comprising: a gate electrode comprising a heat-resistant material; and an active layer comprising a semiconductor film comprising silicon to which a catalytic element is intentionally added to promote crystallization of silicon. The source and drain regions of the active layer are more heavily doped with the metallic element than other regions.
Tantalum or a material mainly comprising tantalum can be used as the heat-resistant material described above. Nickel can be the most favorable element as the catalytic element for promoting crystallization of silicon.
In the configuration described above, the concentration of the catalytic element in the source and drain regions is higher than in other regions by two or more orders of magnitude. This can lower the catalytic element concentration in the channel region. In consequence, the characteristics and reliability of the finished TFTs can be enhanced.
More particularly, the concentration of the catalytic element in the channel region is reduced less than 5×1016 atoms/cm3. Consequently, the characteristics and the reliability of the TFTs can be improved.
One or more elements selected from the group consisting of Fe, Co, Ru, Rh, Pd, Os, Ir, Pt, Cu, and Au can be used as the aforementioned catalytic element, though the merits are less conspicuous than where nickel is used alone. Furthermore, Ni may be added to one or more elements selected from this group, and the resulting compound may be used together with other catalytic element.
Another structure of the invention lies in a method of fabricating a semiconductor device having a gate electrode comprising a heat-resistant material and an active layer comprising a semiconductor film comprising silicon to which a catalytic element for promoting crystallization of silicon is added. This method starts with forming an active layer comprising a crystalline semiconductor film comprising silicon by using of the catalytic element described above. Phosphorus is introduced into regions to be source and drain. A heat treatment is performed at 550 to 700° C. to getter the catalytic element in the active layer to the phosphorus-doped regions.
Other objects and features of the invention will appear in the course of the description thereof, which follows.
In the present invention, TFTs using gate electrodes comprising a heat-resistant metal typified by tantalum are formed. The TFTs use an active layer fabricated from a silicon film crystallized, using nickel element. During the fabrication, phosphorus is introduced into the source/drain regions. Then, a heat treatment is performed at 550 to 700° C. The heat treatment can getter the nickel element toward the source/drain regions and, at the same time, anneal out the source/drain regions.
In the present embodiment, N-channel TFTs are fabricated. The process sequence of the present embodiment is illustrated in
First, an amorphous silicon film 102 is formed on the glass substrate 101 to a thickness of 50 nm by LPCVD. Then, nickel element is introduced into the surface of the amorphous silicon film. In this example, a nickel acetate solution adjusted to a desired nickel concentration is applied to the surface of the amorphous silicon film 102. Thus, nickel element is introduced into the amorphous silicon film.
In this manner, a state shown in
Under this condition, nickel element is distributed within the crystalline silicon film at a relatively high concentration of about 1018 atoms/cm3 or more. This cannot be fully avoided because the crystallization progresses with diffusion of the nickel element.
After obtaining the crystalline silicon film 104, this is patterned to form an active layer pattern (not shown) for TFTs. Source/drain regions, a channel region, and highly resistant regions are formed in this active layer pattern.
Then, a silicon oxide film 105 is formed as a gate insulator film having a thickness of 100 nm by plasma CVD (
Thereafter, a titanium layer (not shown) is deposited to a thickness of 400 nm by sputtering and patterned it to create a pattern 106, which will become a gate electrode.
An anodic oxide film 107 is formed to a thickness of 200 nm on the exposed surface of the titanium film pattern 106 by anodic oxidation (
Then, phosphorus is introduced, using the gate electrode 106 and the surrounding anodic oxide film 107 as a mask. The implanted phosphorus acts as a dopant determining the source and drain regions. The phosphorus also serves as a gettering material for concentrating nickel element in the source and drain regions. The introduction of phosphorus produces the source region 108, the drain region 110, the channel region 109, and the highly resistant region 100 in a self-aligned manner (
Thereafter, a heat treatment is again performed to concentrate the nickel element, which is substantially uniformly distributed over the whole active layer, in the source region 108 and in the drain region 110. This heat treatment is conducted in a nitrogen atmosphere at 640° C. for 1 hour. The heating temperature may be determined, taking account of the heat resistance of the glass substrate. In this example, a glass substrate having a strain point of 667° C. is used and so the heating temperature is set to 640° C. Generally, at a temperature of 600° C., nickel element violently migrates. On the other hand, phosphorus element hardly moves.
Phosphorus and nickel are bonded in various forms such as NiP, NiP2, and Ni2P. In addition, these forms are very stable. Compounds of phosphorus and nickel are collectively known as nickel phosphides. Therefore, owing to the heat treatment described above, nickel element has moved into the regions 108 and 110 from the regions 109 and 110, as shown in
The aforementioned heat treatment activates the source and drain regions. That is, the damage to the crystal structure induced by the doping is annealed out. Simultaneously, the dopant is activated. To assure the annealing of the source/drain regions, laser annealing may be performed after the heat treatment.
Then, as shown in
Thereafter, contact holes are created, and a source electrode 115 and a drain electrode 116 are formed. In this way, an N-channel TFT is completed (
The TFT shown in
The channel region 109 and the adjacent, highly resistant region 100 greatly influence the operation of the TFT. The existence of nickel element in these regions deleteriously affect the operation of the TFT. In particular, various problems such as deterioration of the characteristics, nonuniformity of the characteristics among individual devices, and deterioration of the reliability take place.
On the other hand, neither the conductivity type nor the resistivity of the source/drain regions varies. Therefore, if these regions comprises nickel at a high concentration, the operation of the TFT is little affected, whether the device is the N-channel type or the P-channel type. Accordingly, the present invention can suppress the adverse affect of nickel element on the operation of the TFT.
The present embodiment gives an example of an improvement of the process sequence of the first embodiment. The present embodiment pertains to a process step for taking nickel element out of a region becoming an active region before this active layer is formed, in order to reduce the nickel element concentration in the active layer of the TFT.
The process sequence of the present embodiment is illustrated in
Then, a heat treatment is performed to obtain the crystalline silicon film 104 (
In the state of
Then, a heat treatment is performed at 630° C. for 2 hours to getter the implanted phosphorus into the regions 202 and 203. That is, nickel element moves from the region 200 into the regions 202 and 203 as indicated by the arrow. The nickel element concentration in the region 200 decreases. In contrast, the nickel element concentration in the regions 202 and 203 increases.
Then, using the mask 201, the exposed silicon film is removed. That is, the nickel is gettered to the phosphorus doped region and the nickel-rich regions remove is removed.
Subsequently, the mask 201 is removed, and a new mask is placed. The remaining silicon film is patterned. In this way, a silicon film pattern 204 shown in
The present embodiment gives an example in which P-channel TFTs are fabricated by the process sequence given in the first embodiment. First, the process steps of
Then, boron is then implanted at a higher dose than the previous dose of phosphorus. The doped regions has P-type conductivity. In this way, P-type source and drain regions are obtained. Subsequently, the process is conducted in the same way as in the first embodiment, thus completing a TFT.
The present embodiment gives an example in which an inverted-staggered TFT is manufactured. The process sequence of the present embodiment is illustrated in
Then, a silicon oxide film 303 is formed as a gate insulator film by plasma CVD. Thereafter, an amorphous silicon film 304 is formed by LPCVD.
Under this condition, a nickel acetate solution is applied to maintain nickel element in contact with the surface as indicated by 305. Then, a mask 309 consisting of a silicon oxide film is formed, as shown in
Thereafter, phosphorus is introduced into regions 306 and 308 by plasma doping or ion implantation techniques.
At this time, a region 307 is not doped. Regions 306, 308, and 307 will later become a source region, a drain region, and a channel region, respectively (
Then, a heat treatment is performed in a nitrogen atmosphere at 600° C. for 1 hour. As a result, nickel element moves from the region 307 toward the regions 306 and 308 as indicated by the arrow in
Subsequently, an interlayer insulating film, 309 and 310, is formed. Contact holes are created. A source electrode 311 and a drain electrode 312 are completed. In this way, a bottom-gate TFT is completed.
As another configuration, the mask 309 may be formed from a silicon oxide film, and then the whole surface may be coated with amorphous silicon. Doped polysilicon may be produced Al, Ti, Cr, Ta, or similar other material may be deposited on the surface, thus forming source/drain regions. In this case, P ions are implanted at a dose of 5×1014 cm−2 to form source and drain regions.
In the present embodiment, crystals are grown laterally, i.e., parallel to the substrate (that is, parallel to the silicon film surface), to obtain a crystalline silicon film.
The process sequence of the present embodiment is illustrated in
Then, nickel element is introduced. In this example, a nickel acetate solution is applied to maintain nickel element 404 in contact with the surface.
Under this condition, nickel element is selectively contacted with the surface of the amorphous silicon film 402 at the portion of the opening 405. That is, nickel is kept in contact with an elongated portion of the amorphous silicon film 402 (
Then, a heat treatment is performed at 560° C. for 14 hours. During this process step, lateral growth takes place from the region of the opening 405 as indicated by the arrow 406. The lateral growth can be performed over a length of more than 100 μm (
Preferably, this heat treatment is carried out at a temperature of approximately 570° C. to 580° C. If the heat treatment were effected above this range, crystal growths other than lateral growth (i.e., crystal growths that are only induced by heating without the action of nickel) would progress. In consequence, lateral growth would be impeded. In this manner, a silicon film 407 having laterally grown regions is obtained (
Then, the mask 403 comprising the silicon oxide film is removed. The exposed silicon film is patterned to produce a silicon film pattern 408 shown in
The silicon film pattern 408 obtained in this way has a peculiar structure, i.e., pillar-shaped crystals lie in a row in the direction of crystal growth. The crystal growth direction is made coincident with the direction of movement of carriers in the channel region. In consequence, TFTs having high mobilities can be obtained.
This lateral growth technique is very effective in controlling the state of crystal grains. That is, where a polycrystalline silicon film is used, the TFT characteristics are affected greatly by the presence or absence of crystal grains. Where lateral growth techniques are employed, it is possible to control the presence of crystal grains. Therefore, the adverse effects of the presence on the TFT characteristics can be suppressed. This is important in matching the characteristics of many TFTs.
After obtaining the silicon film pattern 408 shown in
The present embodiment is a combination of the lateral growth technique of the fifth embodiment and a nickel-gettering technique using phosphorus doping. The process sequence of the present embodiment is illustrated in
Using the mask 403, phosphorus is introduced by plasma doping or ion implantation. During this process step, phosphorus is introduced into a region 410. Thereafter, a heat treatment is carried out at 620° C. for 1 hour in a nitrogen atmosphere. During this processing step, nickel element moves as indicated by the arrow 409. The result is that nickel element is concentrated in the phosphorus-doped region 410. Although the nickel element is diffused by the crystal growth step illustrated in
The obtained silicon film is patterned to obtain an active layer 408 for a TFT. Subsequently, the process is conducted in the same way as in the first embodiment to complete the TFT.
The present embodiment gives examples of devices or apparatus using TFTs according to other embodiments.
Shown in
In this configuration, an active matrix display 2005 is formed on a substrate. Preferably, peripheral driver circuits, arithmetic units, and memories are fabricated as an integrated circuit from TFTs.
Referring to
Referring next to
In this structure, the optics 2204 are required to be minimized in size because of cost considerations. Correspondingly, the display unit 2203 is required to be reduced in size.
Where the active matrix flat panel display is reduced in size, it is required that even peripheral driver circuits driving the active matrix circuit be integrated with the active matrix circuit on the same substrate. Specifically, where the active matrix circuit is miniaturized, if circuits forming the peripheral driver circuits are made of an externally attached IC, it is difficult to mount it. Therefore, the display unit 2203 comprises a substrate on which an active matrix circuit composed of TFTs is integrated with peripheral driver circuits composed of TFTs. In this example, the liquid crystal display 2503 is of the reflective type. The liquid crystal display may also be of the transmissive type. In this case, the optics must be modified.
Referring next to
Recently, a combination of the portable intelligent terminal shown in
Referring next to
Referring to
The present invention disclosed herein can be applied to various digital circuits, RF modular circuits, arithmetic units, CPUs, and so on.
Where the present invention is adopted, when a catalytic element is gettered source/drain regions, these regions are simultaneously annealed. In addition, the catalytic element can be removed from the channel region. In consequence, TFTs having excellent characteristics can be fabricated with a high yield.
Besides, material of a gate electrode is not restricted to a metal used in the embodiments. That is, material having heat-resistance to the heat treatment after phosphorus doping can be used (e.g. tantalum or a material containing tantalum).
Number | Date | Country | Kind |
---|---|---|---|
9-168021 | Jun 1997 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10951593 | Sep 2004 | US |
Child | 11520590 | US | |
Parent | 09939767 | Aug 2001 | US |
Child | 10951593 | US | |
Parent | 09094345 | Jun 1998 | US |
Child | 09939767 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11520590 | Sep 2006 | US |
Child | 12149980 | US |