Generally, the present invention relates to semiconductor devices and methods of making semiconductor devices. More particularly, the present invention relates to the application of high-K dielectric materials to semiconductor technology.
Semiconductor devices are used in many electronic and other applications. Semiconductor devices comprise integrated circuits that are formed on semiconductor wafers by depositing many types of thin films of material over the semiconductor wafers, and patterning the thin films of material to form the integrated circuits.
One type of semiconductor device is a memory device, in which data is typically shored as a logical “1” or “0”. Memory devices may be static or dynamic. Dynamic memory devices need to be refreshed to “remember” the data, whereas static memory devices do not need to be refreshed to retain stored data.
One type of static memory device, also referred to as a non-volatile memory (NVM) device, is a floating gate device. Floating gate memory devices can be either erasable programmable read-only memory (EPROM) or electrically erasable programmable read-only memory (EEPROM). Both of these floating gate memories rely on charge stored in the floating gate (or a charge trap layer) by suitable application of a bias to the various terminals of the device. The charge may be stored by a number of mechanisms such as carrier tunneling and/or injection. The charge may be removed either electrically as in EEPROM or by an external source such as an ultra violet light. The present of this charge in the floating gate determines the state of the memory “1” or “0”. Flash EEPROM memories are so called due to their fast program and erase times (as in a lightning flash).
The floating gate devices may be stacked in large arrays to form memory cells such as a Flash memory cells. Based on the stacking or layout of the floating gate transistors, flash memories may comprise NOR, NAND or a AND memory architecture. As an example, most commercial memory cards such as memory sticks comprise NAND flash memory cells. Flash memories are amongst the most popular memories available in the market today. The popularity of flash memory arises partly due to its compatibility with existing CMOS process flows. Flash memory is simply a field effect transistor except it has a polysilicon floating gate (or silicon nitride charge trap layer) sandwiched between a tunnel oxide and an inter-poly oxide to form a charge storage layer.
An embodiment of the invention is a semiconductor device, comprising: a high-K dielectric material; and a silicon material disposed over the second dielectric material, the silicon material comprising the element nitrogen.
An embodiment of the invention is a semiconductor device, comprising: a substrate; a first dielectric disposed over the substrate; a floating gate disposed over the first dielectric; a second dielectric material disposed over the floating gate; a silicon material disposed over the second dielectric material, the silicon material comprising the element nitrogen; and a control gate disposed over the silicon material.
An embodiment of the invention is a semiconductor device, comprising: a substrate; a first dielectric layer disposed over the substrate; a first gate disposed over the first dielectric layer; a second dielectric layer disposed over the first gate; a silicon material disposed over the high-K material, the silicon material comprising the element nitrogen; and a second gate disposed over the silicon material.
An embodiment of the invention is a method of making a semiconductor device, comprising: providing a surface having a first portion and a second portion; forming a high-K dielectric material over the first portion; forming a silicon material over the high-K dielectric, the silicon material comprising the element nitrogen; and subjecting the silicon material and the second portion of the surface to a controlled thermal oxidation process.
An embodiment of the invention is a method of making a semiconductor device, comprising: providing a surface, the surface having a first portion and a second portion; forming a high-K dielectric material over the first portion; forming an additional material over the high-K dielectric material; and subjecting the additional material and the second portion to a dielectric formation process, the dielectric formation process causing an additional dielectric to be formed on the second portion, the additional material not allowing essentially any of the additional dielectric to be formed on the additional material. In one or more embodiment, the additional material may be a nitrogen-doped silicon material. In one or more embodiments the additional material may be a nitrogen-doped polysilicon material. In one or more embodiments, the additional material may be a nitrogen-doped amorphous silicon material.
The following detailed description refers to the accompanying drawings that show, by way of illustration, specific details and embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the invention. The various embodiments are not necessarily mutually exclusive, as some embodiments can be combined with one or more other embodiments to form new embodiments.
Referring to
Next, a first dielectric material 220 is formed over the substrate 210 in both the memory portion 100M and the logic portion 100L. In one or more embodiments, the first dielectric layer 220 may comprise an oxide (such as silicon dioxide SiO2), a nitride (such as Si3N4 or SixNy) an oxynitride (for example, a nitrided oxide) such as SiOxNy, an oxide/nitride stack such as a SiO2/SixNy stack (where the layers may be in any order), an oxide/nitride/oxide stack (for example, an ONO stack) or combinations thereof.
In one or more embodiments, the first dielectric material may comprise a high-K dielectric material. The high-K material may have a dielectric constant greater than 3.9. The high-K material may have a dielectric constant greater than silicon dioxide. The high-K material may comprise a hafnium-based material. The high-K material may comprise one or more of the elements Hf, Al, Si, Zr, O, N, Ta, La, Ti, Y, Pr, Gd and combinations thereof. The high-K material may comprise HfSiON, HfSiO, HfO2, HfSiOx, HfAlOx, HfAlOxNy, HfSiAlOx, HfSiAlOxNy, Al2O3, ZrO2, ZrSiOx, Ta2O5, SrTiO3, La2O3, Y2O3, Gd2O3, Pr2O3, TiO2, ZrAlOx, ZrAlOxNy, SiAlOx, SiAlOxNy, ZrSiAlOx, ZrSiAlOxNy, or combinations thereof. The high-K material may comprise Al2O3. In one or more embodiments, the first dielectric material 220 may comprise any other dielectric material or high-k dielectric material. In one or more embodiments, the first dielectric material 220 may comprise an oxide/high-K stack such as a SiO2/Al2O3 stack.
In one or more embodiments, the first dielectric material may have a thickness of at least 4 nm (nanometers). In one or more embodiments, the first dielectric material may have a thickness greater than about 6 nm. In one or more embodiments, the first dielectric material may have a thickness greater than about 8 nm. In one or more embodiment, the first dielectric material may have a thickness of less than about 15 nm. In one or more embodiments, the first dielectric material may have a thickness of less than about 12 nm. In one or more embodiments, the first dielectric material may comprise a single layer of material or it may comprise two or more layers of material.
The first dielectric material may be formed in many different ways. For example, the first dielectric material may be grown by a thermal oxidation, deposited by a chemical vapor deposition, atomic layer deposition, physical vapor deposition, or a jet vapor deposition.
In one or more embodiments, the first dielectric material may serve as the floating gate dielectric material for the floating gate of a floating gate memory device that is formed in the memory portion 100M of the chip. In one or more embodiments, the floating gate dielectric material may serve as a tunneling dielectric material for a floating gate memory device.
Next, a floating gate material 230 may be formed over the first dielectric material 220 for both the memory portion 100M and the logic portion 100L. In one or more embodiments, the floating gate material 230 may be any conductive material. Hence, in one or more embodiments, the material 230 may comprise any conductive material. In one or more embodiments, the floating gate material may comprise, for example, a polysilicon material. The polysilicon may be doped with an n-type dopant (such as phosphorus) or a p-type dopant (such a boron). The doping may be accomplished using an ion implantation process or it may be done in-situ.
In one or more embodiments, the floating gate material may comprise a metallic material such as a pure metal or a metal alloy. In one or more embodiments, the floating gate material 230 may be any material that can serve as a floating gate for a floating gate memory device. In one or more embodiments, the floating gate material 230 may comprise a conductive material. In one or more embodiments, the floating gate material 230 may comprise a semiconductor material. In one or more embodiments, it is possible that the floating gate material 230 may comprise a dielectric material.
In one or more embodiments, the floating gate material may comprise TiN, TiC, HfN, TaN, TaC, TaN, W, Al, Ru, RuTa, TaSiN, NiSix, CoSix, TiSix, Ir, Y, Pt, I, PtTi, Pd, Re, Rh, borides, phosphides, or antimonides of Ti, Hf, Zr, TiAlN, Mo, MoN, ZrSiN, ZrN, HfN, HfSiN, WN, Ni, Pr, VN, TiW, other metals, and/or combinations thereof.
The floating gate material 230 may comprise a single layer or a plurality of stacked layers (such as a polysilicon layer disposed over a metal layer). In one or more embodiments, the thickness of the floating gate material 230 may be about 300 Angstroms to about 3000 Angstroms, however, other thicknesses are also possible. The floating gate material 230 may be deposited in many different ways. Examples, include chemical vapor deposition, physical vapor deposition and atomic layer deposition.
In one or more embodiments, the floating gate material 230 may serve as a floating gate material for the floating gate of a floating gate memory device.
Next, a second dielectric material 240 is disposed over the floating gate material for both the memory portion 100M and the logic portion 100L. In one or more embodiments, the second dielectric layer 240 may comprise an oxide (such as silicon dioxide SiO2), a nitride (such as Si3N4 or SixNy) an oxynitride (for example, a nitrided oxide) such as SiOxNy, an oxide/nitride stack such as a SiO2/SixNy stack (where the layers may be in any order), an oxide/nitride/oxide stack (for example, an ONO stack) or combinations thereof.
In one or more embodiments, the second dielectric material may comprise a high-K dielectric material. The high-K material may have a dielectric constant greater than 3.9. The high-K material may have a dielectric constant greater than silicon dioxide. The high-K material may comprise a hafnium-based material. The high-K material may comprise one or more of the elements Hf, Al, Si, Zr, O, N, Ta, La, Ti, Y, Pr, Gd and combinations thereof. The high-K material may comprise HfSiON, HfSiO, HfO2, HfSiOx, HfAlOx, HfAlOxNy, HfSiAlOx, HfSiAlOxNy, Al2O3, ZrO2, ZrSiOx, Ta2O5, SrTiO3, La2O3, Y2O3, Gd2O3, Pr2O3, TiO2, ZrAlOx, ZrAlOxNy, SiAlOx, SiAlOxNy, ZrSiAlOx, ZrSiAlOxNy, or combinations thereof. The high-K material may comprise Al2O3. Alternatively, the second dielectric material 240 may comprise any other dielectric material or high-k dielectric material.
In one or more embodiments, the second dielectric material 240 may have a thickness of at least 4 nm (nanometers). In one or more embodiments, the second dielectric material may have a thickness greater than about 6 nm. In one or more embodiments, the second dielectric material may have a thickness greater than about 8 nm. In one or more embodiment, the second dielectric material may have a thickness of less than about 20 nm. In one or more embodiments, the second dielectric material may have a thickness of less than about 12 nm. In one or more embodiments, the second dielectric material may comprise a single layer of material or it may comprise two or more layers of material.
The second dielectric material may be formed in many different ways. For example, the second dielectric material may be grown by a thermal oxidation, deposited by a chemical vapor deposition, atomic layer deposition, physical vapor deposition, or a jet vapor deposition.
In one or more embodiments, the second dielectric material may serve as an inter-gate dielectric material between a floating gate and a control gate of a floating gate memory device that is formed in the memory portion 100M of the chip. In one or more embodiments, the floating gate and the control gate may both be formed of a polysilicon material. In this case, the second dielectric material may be referred to as an inter-poly dielectric material.
It is noted that the use of a high-K material as an inter-gate dielectric material (or as an inter-poly dielectric material) in a floating gate memory device may be beneficial since the larger dielectric constant may lead to larger capacitive coupling. This may lead to a reduction in the power needed to operate the device.
Next, a silicon material 250 may be formed over the second dielectric material 240 in both the memory portion 100M and the logic portion 100L of the chip. In one or more embodiments, the silicon material 250 may be an amorphous silicon material. In one or more embodiments, the silicon material 250 may be a polysilicon material. In one or more embodiments, to form a polysilicon material, the silicon material 250 may first be deposited as an amorphous silicon material and then turned into a polysilicon material (e.g. a polycrystalline silicon material) by an annealing or thermal process.
In one embodiment, the silicon material 250 may have a thickness of less than about 30 nm. In one embodiment, the silicon material 250 may have a thickness of less than about 25 nm. In one embodiment, the silicon material 250 may have a thickness of less than about 20 nm. In another embodiment, the silicon material 250 may have a thickness of less than about 15 nm. In another embodiment, the silicon material 250 may have a thickness of less than about 10 nm. In another embodiment, the silicon material 250 may be around 7 nm or less. In one or more embodiments, the silicon material may have a thickness of about 5 nm or less. In one or more embodiments, the thickness of the silicon material may be about 5 nm or greater. In one or more embodiments, the thickness of the silicon material may be between about 5 nm and about 20 nm.
Referring to
In one or more embodiments, the nitrogen doping may be accomplished by ion implanting the silicon material 250 with a nitrogen containing species. The ion implantation is shown as ion implantation 255 in
As a result of the ion implantation (or some other doping process), the silicon material 250 is thus doped with the element nitrogen (the element N) so that so as to form a silicon material comprising the element nitrogen. In the embodiment shown in
Next, referring to
Referring to
Referring to
In one or more embodiments, it is possible that the nitrogen-doped silicon material 250′ be replaced with some other material that will not permit the growth of an oxide on its surface.
In one or more embodiments, it is possible that the oxide layer 260 be replaced with another dielectric material 260. In one or more embodiments, it is possible that the oxide layer 260 be replaced with another dielectric material 260 that can serve as a gate dielectric for a gate stack of a MOS transistor. The dielectric material 260 may, for example, comprise a nitride. The dielectric material 260 may comprise an oxynitride. The dielectric material 260 may be formed as a stack of two or more materials. The dielectric material 260 may comprise a high-K material. In one or more embodiments, the dielectric material 260 may be formed by a growth process. In one or more embodiments, the dielectric material 260 may be formed from a growth process.
In addition, it is possible that the nitrogen-doped silicon material 250′ be replaced with some other material than will prevent the formation (for example, growth or deposition) of a dielectric material 260.
Next, referring to
In one or more embodiments, the control gate material 270 may comprise a metallic material such as a pure metal or a metal alloy. In one or more embodiments, the control gate material may be any other material suitable as a control gate for a floating gate device. In one or more embodiments, the control gate material 270 may comprise TiN, TiC, HfN, TaN, TaC, TaN, W, Al, Ru, RuTa, TaSiN, NiSix, CoSix, TiSix, Ir, Y, Pt, I, PtTi, Pd, Re, Rh, borides, phosphides, or antimonides of Ti, Hf, Zr, TiAlN, Mo, MoN, ZrSiN, ZrN, HfN, HfSiN, WN, Ni, Pr, VN, TiW, other metals, and/or combinations thereof.
The control gate material 270 may comprise a single layer or a plurality of stacked layers (such as a polysilicon layer disposed over a metal layer). In one or more embodiments, the thickness of the control gate material 230 may be about 300 Angstroms to about 3000 Angstroms, however, other thicknesses are also possible. The control gate material 270 may be deposited in many different ways. Examples, include chemical vapor deposition, physical vapor deposition and atomic layer deposition.
In one or more embodiments, the control gate material 270 may serve as a control gate material for the control gate of a floating gate memory device that may be formed in the memory portion 100M. The control gate material 270 may also be used for the control gate of a transistor (such as an NMOS or PMOS transistor) that may be formed in the logic portion 100L.
In another embodiment of the invention, it is also possible, in another embodiment of the invention, that another type of device be formed in the memory portion of the semiconductor chip using the method described herein.
Referring to