Embodiments described herein relate a semiconductor device and a method of manufacturing the same.
The characteristics of a channel semiconductor layer of a semiconductor memory significantly affect the performance of a memory cell. For example, as the mobility of the channel semiconductor layer decreases, the threshold voltage of the memory cell increases, which results in an increase in the operation voltage of the memory cell.
At least one embodiment provides a semiconductor device and a method for manufacture thereof which allow improvement of the characteristics of a semiconductor layer.
In general, according to at least one embodiment, a semiconductor device includes a semiconductor layer containing metal atoms, a charge storage layer provided on a surface of the semiconductor layer via a first insulating film, and an electrode layer provided on a surface of the charge storage layer via a second insulating film. The thickness of the first insulating film is 5 nm or more and 10 nm or less. The concentration of the metal atoms in the semiconductor layer is 5.0×1017 [EA/cm3] or higher and 1.3×1020 [EA/cm3] or lower.
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In
The semiconductor device illustrated in
The substrate 1 is, for example, a semiconductor substrate such as a Si (silicon) substrate. In
The lower insulating film 2 is formed on a diffusion layer L which is formed in the substrate 1. The source-side conductive layer 3 is formed on the lower insulating film 2. The upper insulating film 4 is formed on the source-side conductive layer 3.
The plurality of electrode layers 5 and the plurality of insulating layers 6 are alternately stacked on the upper insulating film 4. The electrode layer 5 is, for example, a metal layer, and serves as a word line or a select line. The number of electrode layers 5 is, for example, 64 or more. The insulating layer 6 is, for example, a SiO2 film (silicon oxide film). The number of insulating layers 6 is, for example, 64 or more.
The cover insulating film 7 is formed on these electrode layers 5 and the insulating layers 6. The drain-side conductive layer 8 is formed on the cover insulating film 7 so as to be adjacent to the step regions. The first interlayer insulating film 9 is formed on the cover insulating film 7 to fill the space over each step region. The second interlayer insulating film 10 is formed on the drain-side conductive layer 8 and the first interlayer insulating film 9.
The plurality of contact plugs 11 are formed inside the contact holes H that pass through the cover insulating film 7, the first interlayer insulating film 9, and the second interlayer insulating film 10. These contact plugs 11 are electrically connected to different electrode layers 5, respectively. The contact plug 11 is formed of a barrier metal layer such as a titanium (Ti) containing layer and a plug material layer such as a tungsten (W) layer.
The block insulating film 12, the charge storage layer 13, the tunnel insulating film 14, the channel semiconductor layer 15, and the core insulating film 16 are formed in this order on the side surface of the memory hole M which passes through the lower insulating film 2, the source-side conductive layer 3, the upper insulating film 4, the electrode layer 5, the insulating layer 6, the cover insulating film 7, the drain-side conductive layer 8, and the second interlayer insulating film 10. The block insulating film 12 is, for example, a SiO2 film. The charge storage layer 13 is, for example, a silicon nitride film (SiN film), but may be a semiconductor layer such as a polysilicon layer. The tunnel insulating film 14 is, for example, a SiO2 film. The channel semiconductor layer 15 is, for example, a polysilicon layer, and is electrically connected to the substrate 1. The core insulating film 16 is, for example, a SiO2 film.
The block insulating film 12, the charge storage layer 13, the tunnel insulating film 14, the channel semiconductor layer 15, and the core insulating film 16 are formed in the following order for example. First, the block insulating film 12, the charge storage layer 13, and the tunnel insulating film 14 are formed in this order on the side surface and the bottom surface of the memory hole M. Next, the tunnel insulating film 14, the charge storage layer 13, and the block insulating film 12 are removed from the bottom surface of the memory hole M. Thereafter, the channel semiconductor layer 15 and the core insulating film 16 are buried in the memory hole M in this order.
Next, the channel semiconductor layer 15 and the tunnel insulating film 14 of at least one embodiment will be described in detail.
The channel semiconductor layer 15 of this embodiment contains a minute amount of metal atoms. The concentration of the metal atoms in the channel semiconductor layer 15 is, for example, 5.0×1017 [EA/cm3] or higher and 1.3×1020 [EA/cm3] or lower. In at least one embodiment, these metal atoms are substantially evenly distributed in the channel semiconductor layer 15. These metal atoms are, for example, nickel (Ni) atoms. In addition, the thickness of the tunnel insulating film 14 of at least one embodiment is 5 nm or more and 10 nm or less.
In at least one embodiment, the metal atoms are deposited on the surface of the channel semiconductor layer 15, and then the channel semiconductor layer 15 is crystalized. Therefore, the channel semiconductor layer 15 can be crystalized at a low temperature, and the particle diameter of crystal grains in the channel semiconductor layer 15 can be made large. As a result, a mobility of the channel semiconductor layer 15 can be increased, and a threshold voltage of a memory cell of the three-dimensional semiconductor memory can be lowered. When the channel semiconductor layer 15 is crystalized, these metal atoms enter the channel semiconductor layer 15.
In order to crystallize the channel semiconductor layer 15 without deposition of metal atoms on the surface thereof, it is necessary to crystalize the channel semiconductor layer 15 at a high temperature. For example, when the channel semiconductor layer 15 is crystalized at 650° C. to 800° C., the particle diameter of the crystal grains in the channel semiconductor layer 15 becomes about 200 nm. On the other hand, according to at least one embodiment, the channel semiconductor layer 15 can be crystalized at 500° C. to 600° C., so that the particle diameter of the crystal grains in the channel semiconductor layer 15 can be 2,000 nm or more, for example. This particle diameter can be obtained, for example, by depositing metal atoms on the surface of the channel semiconductor layer 15 such that the concentration of the metal atoms in the channel semiconductor layer 15 falls within the above range.
If the amount of metal atoms deposited on the surface of the channel semiconductor layer 15 is too small, the concentration of the metal atoms in the channel semiconductor layer 15 will be less than 5.0×1017 [EA/cm3]. In this case, the particle diameter of the crystal grains in the channel semiconductor layer 15 will fail to be sufficiently large. On the other hand, if the amount of metal atoms deposited on the surface of the channel semiconductor layer 15 are too large, the metal atoms can easily enter the tunnel insulating film 14. In this case, a leakage current may occur in the tunnel insulating film 14. Therefore, the concentration of the metal atoms in the channel semiconductor layer 15 of this embodiment is set to 5.0×1017 [EA/cm3] or higher and 1.3×1020 [EA/cm3] or lower.
If the concentration is 5.0×1017 [EA/cm3] or higher, for example, the particle diameter of 2,000 nm or more can be obtained. On the other hand, if the concentration is 1.3×1020 [EA/cm3] or lower, for example, the leakage current can be prevented in the tunnel insulating film 14. The latter concentration will be described below in detail with reference to
The metal atoms of at least one embodiment are, for example, Ni atoms, but other metal atoms may be employed. For example, the metal atoms of this embodiment desirably include at least gold (Au), aluminum (Al), copper (Cu), silver (Ag), palladium (Pd), nickel (Ni), or platinum (Pt) (first example). In addition, for example, the metal atoms of this embodiment may include at least manganese (Mn), rhodium (Rh), cobalt (Co), iron (Fe), chromium (Cr), titanium (Ti), niobium (Nb), iridium (Ir), tantalum (Ta), rhenium (Re), molybdenum (Mo), vanadium (V), hafnium (Hf), ruthenium (Ru), zirconium (Zr), or tungsten (W) (second example). The metal atoms of the first example and the metal atoms of the second example both have an effect of lowering the crystallization temperature of the channel semiconductor layer 15, but the first example generally has an effect larger than the second example.
For example, using Al or Ti is advantageous in that an insulating film can be formed on the surface of the channel semiconductor layer 15 by performing oxidation treatment or nitriding treatment after crystalizing the channel semiconductor layer 15. When Al or Ti exists in the channel semiconductor layer 15, short channel characteristics of the tunnel insulating film 14 and the channel semiconductor layer 15 may worsen. However, if the channel semiconductor layer 15 containing Al is oxidized or nitrided, an AlOx film or an AiN film is formed on the surface of the channel semiconductor layer 15, serving as an insulating film, so that it is possible to prevent worsening of short channel characteristics. Similarly, if the channel semiconductor layer 15 containing Ti is oxidized, a TiOx film is formed on the surface of the channel semiconductor layer 15, serving as an insulating film, so that it is possible to prevent worsening of short channel characteristics.
The horizontal axis of
The tunnel insulating film 14 of at least one embodiment is a thin film, and specifically has a thickness of 5 nm or more and 10 nm or less. In a case where the tunnel insulating film 14 is a thin film, there is a high possibility that the leakage current occurs in the tunnel insulating film 14. Therefore, in order to prevent such a leakage current, it is desirable to prevent defects from being generated in the tunnel insulating film 14 as much as possible. Specifically, the defect density in the tunnel insulating film 14 is desirably controlled to be 5.0 [EA/cm2] or lower. Therefore, if this defect density is located in the graph of
For this reason, the concentration of the metal atoms in the channel semiconductor layer 15 of this embodiment is set to be, for example, 5.0×1017 [EA/cm3] or higher and 1.3×1020 [EA/cm3] or lower. Thereby, it is possible to keep the particle diameter of the crystal grains in the channel semiconductor layer 15 to 2,000 nm or more while preventing the leakage current from occurring in the tunnel insulating film 14.
The particle diameter of the crystal grain P2 of this embodiment is set to be the diameter D2 of the circle C2. For example, a microscopic image of the cross section S2 of the channel semiconductor layer 15 is acquired, the cross-sectional area of the crystal grain P2 in the cross section S2 is calculated using the microscopic image, and the diameter D2 is calculated from the cross-sectional area of the crystal grain P2. Thus, the particle diameter of the crystal grain P2 can be calculated. The cross-sectional area of the crystal grain P2 can be calculated from, for example, the number of pixels in the microscopic image of the crystal grain P2. Similarly, the particle diameter of the crystal grain P1 of this embodiment is set to the diameter D1 of the circle C1.
In at least one embodiment, the particle diameter of each crystal grain in the cross section S2 is calculated, and an average value of the particle diameters of these crystal grains is calculated. Therefore, an average particle diameter of the crystal grains in the channel semiconductor layer 15 can be calculated. The average particle diameter of the crystal grains in the channel semiconductor layer 15 of this embodiment is 2,000 nm or more for example.
First, as illustrated in
The sacrifice layer 21 is replaced with the electrode layer 5 in a later process. However, in a case where the plurality of electrode layers 5 and the plurality of insulating layers 6 are alternately formed in the process illustrated in
Next, the memory hole M is formed to pass through the sacrifice layers 21 and the insulating layers 6 and reach the substrate 1 (
The channel semiconductor layer 15 illustrated in
Next, a diffusion layer 22 is formed on the side surface of the channel semiconductor layer 15 (
Subsequently, a metal layer 23 is formed on the side surface of the diffusion layer 22 (
And then, the channel semiconductor layer 15, the diffusion layer 22, the metal layer 23, and the like are annealed at a temperature of 300° C. to 450° C. and under the pressure of from 100 Pa to atmosphere pressure (
Next, the metal layer 23 is removed from the side surface of the diffusion layer 22 (
Subsequently, the channel semiconductor layer 15 and the like are annealed at a temperature of 500° C. to 600° C. and under the pressure of from 100 Pa to atmosphere pressure (
The channel semiconductor layer 15 is crystallized at 500° C. to 600° C. such that, for example, the concentration of the metal atoms 24 in the channel semiconductor layer 15 becomes 5.0×1017 [EA/cm3] or higher and 1.3×1020 [EA/cm3] or lower. Thereby, the channel semiconductor layer 15 can be crystallized such that the particle diameter of the crystal grains in the channel semiconductor layer 15 becomes 2,000 nm or more.
If the amount of the metal atoms 24 deposited on the side surface of the channel semiconductor layer 15 are too small, the concentration of the metal atoms 24 in the channel semiconductor layer 15 will be less than 5.0×1017 [EA/cm3]. In this case, the particle diameter of the crystal grains in the channel semiconductor layer 15 will fail to be sufficiently large. On the other hand, if the amount of the metal atoms 24 deposited on the side surface of the channel semiconductor layer 15 is too large, the metal atoms 24 can easily enter the tunnel insulating film 14. In this case, a leakage current may occur in the tunnel insulating film 14. Therefore, the concentration of the metal atoms 24 in the channel semiconductor layer 15 of this embodiment is set to 5.0×1017 [EA/cm3] or higher and 1.3×1020 [EA/cm3] or lower.
Further, the diffusion layer 22 has an effect of, for example, preventing the metal atoms 24 from diffusing too much from the metal layer 23 to the channel semiconductor layer 15. In addition, since the metal layer 23 is removed in the process of
Next, the diffusion layer 22 is removed from the side surface of the channel semiconductor layer 15 (FIG. 5C). Thereafter, the core insulating film 16 is formed on the side surface of the channel semiconductor layer 15 inside the memory hole M. In addition, the sacrifice layer 21 is replaced with the electrode layer 5. Thereby, the semiconductor device illustrated in
In at least one embodiment, the channel semiconductor layer 15 is crystallized through the annealing at a low temperature (for example, 500° C. to 600° C.), so that crystal grains of a large particle diameter are formed. However, after the crystallization of the channel semiconductor layer 15, the channel semiconductor layer 15 may be annealed to be heated at a high temperature (for example, 900° C. or higher). This also applies to a second embodiment to be described later.
In addition, after crystallization of the channel semiconductor layer 15, the metal atoms 24 may be removed from the channel semiconductor layer 15 by any method. The reason is that crystal grains of a large particle diameter are already formed. On the other hand, as described in at least one embodiment, after the crystallization of the channel semiconductor layer 15, the metal atoms 24 may be left in the channel semiconductor layer 15. Alternatively, after the crystallization of the channel semiconductor layer 15, some of the metal atoms 24 may be removed from the channel semiconductor layer 15, and the remaining metal atoms 24 may be left in the channel semiconductor layer 15. This also applies to the second embodiment, to be described.
As described above, the channel semiconductor layer 15 of at least one embodiment is crystallized at 500° C. to 600° C. such that the concentration of the metal atoms in the channel semiconductor layer 15 becomes 5.0×1017 [EA/cm3] or higher and 1.3×1020 [EA/cm3] or lower, whereby the particle diameter of the crystal grains in the channel semiconductor layer 15 becomes 2,000 nm or more. Therefore, according to at least one embodiment, it is possible to improve the characteristics of the channel semiconductor layer 15, for example increasing the mobility of the channel semiconductor layer 15.
First, similarly to the process illustrated in
The channel semiconductor layer 15 in
Subsequently, a liquid 25 containing the metal atoms 24 is supplied to the substrate 1. As a result, the liquid 25 enters the memory hole M (
Next, similarly to the process illustrated in
The channel semiconductor layer 15 is crystallized at 500° C. to 600° C. such that, for example, the concentration of the metal atoms 24 in the channel semiconductor layer 15 becomes 5.0×1017 [EA/cm3] or higher, and 1.3×1020 [EA/cm3] or lower. Thereby, the channel semiconductor layer 15 can be crystallized such that the particle diameter of the crystal grains in the channel semiconductor layer 15 becomes 2,000 nm or more.
Thereafter, the core insulating film 16 is formed on the side surface of the channel semiconductor layer 15 inside the memory hole M. In addition, the sacrifice layer 21 is replaced with the electrode layer 5. Thereby, the semiconductor device illustrated in
As described above, similarly to the first embodiment, the channel semiconductor layer 15 of the second embodiment is crystallized at 500° C. to 600° C. such that the concentration of the metal atoms in the channel semiconductor layer 15 becomes 5.0×1017 [EA/cm3] or higher and 1.3×1020 [EA/cm3] or lower, whereby the particle diameter of the crystal grains in the channel semiconductor layer 15 becomes 2,000 nm or more. Therefore, according to the second embodiment, it is possible to improve the characteristics of the channel semiconductor layer 15, for example increasing the mobility of the channel semiconductor layer 15.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms. In addition, various omissions substitutions and changes in the form of the device and the method described in this specification may be made without departing from the spirit of the inventions. The scope of claims and an equivalent scope are intended to include forms and modifications within the scope and the spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-103578 | May 2018 | JP | national |
This application is a Divisional of U.S. application Ser. No. 16/285,068, filed Feb. 25, 2019, which claims priority from Japanese Patent Application No. 2018-103578, filed May 30, 2018, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5550070 | Funai et al. | Aug 1996 | A |
6093809 | Cech et al. | Jul 2000 | A |
6346437 | Maekawa et al. | Feb 2002 | B1 |
20020125480 | Nakamura | Sep 2002 | A1 |
20040124469 | Makita | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
H09-148245 | Jun 1997 | JP |
2003-100629 | Apr 2003 | JP |
Entry |
---|
W. Knaepen et al., “In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon”, Elsevier, Science Direct, Thin Solid Films 516, 2008. |
Number | Date | Country | |
---|---|---|---|
20200373328 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16285068 | Feb 2019 | US |
Child | 16993627 | US |