This U.S. nonprovisional application claims priority under 35 U.S.C § 119 to Korean Patent Application No. 10-2017-0164435 filed on Dec. 1, 2017, in the Korean Intellectual Property Office, the entire contents of which are hereby incorporated by reference.
Inventive concepts relate to a semiconductor device and a method of manufacturing the same, and more particularly, to a semiconductor device including conductive patterns on a substrate and a method of manufacturing the same.
Semiconductor devices are beneficial in electronic industry because of their small size, multi-functionality, and/or low fabrication cost. Semiconductor device may be categorized as one of a semiconductor memory device storing logic data, a semiconductor logic device processing operations of logic data, and a hybrid semiconductor device having both memory and logic elements. A semiconductor device has been increasingly required for higher integration with the advanced development of the electronic industry. For example, a semiconductor device has been increasingly requested for higher reliability, higher speed, and/or multi-functionality. A semiconductor device is gradually complicated and integrated to meet these requested characteristics.
Some example embodiments of inventive concepts provide a semiconductor device with improved reliability due to reduction in process risk.
Some example embodiments of inventive concepts provide a method of manufacturing a semiconductor device in which the method has an improvement in reliability due to the reduction in process risk.
According to example embodiments of inventive concepts, a method of manufacturing a semiconductor device may comprise: providing a layout comprising a first group and a second group, the first group including a first pattern and a second pattern, the second group including a third pattern and a fourth pattern; examining a bridge risk region in the layout; biasing one end of at least one of the first and third patterns; and forming first to fourth conductive patterns by respectively using the first to fourth patterns of the layout. The one end of at least one of the first and third patterns may be adjacent to the bridge risk region.
According to example embodiments of inventive concepts, a method of manufacturing a semiconductor device may comprise: providing a layout; performing a line-end biasing on the layout; and using the layout to form conductive patterns on a substrate. The operation of performing the line-end biasing comprises: examining a bridge risk region in the layout; biasing one end of at least one of patterns in the layout, the one end being adjacent to the bridge risk region; and performing a design rule check.
According to example embodiments of inventive concepts, a semiconductor device may comprise: a substrate; and first, second, third, and fourth conductive patterns on the substrate. The first to fourth conductive patterns may extend in parallel to each other in a first direction. The first to fourth conductive patterns may be sequentially arranged in a second direction crossing the first direction. The third conductive pattern may comprise on its one side a first extension protruding toward the first conductive pattern. The second conductive pattern may comprise on its one side a second extension protruding toward the fourth conductive pattern. The first extension and the second extension may be spaced apart from each other in the first direction. The first extension may be aligned in the second direction with one end of the first conductive pattern. The second extension may be aligned in the second direction with one end of the fourth conductive pattern.
The CPU 10 may allow the computer system to execute software (e.g., application programs, operating system, and device drivers). The CPU 10 may process an operating system loaded in the working memory 30. The CPU 10 may execute various application programs driven based on the operating system. For example, the CPU 10 may process a layout design tool 32, a placement and routing tool 34, a line-end biasing tool 36, and/or an OPC tool 38 loaded in the working memory 30.
The operating system or application programs may be loaded in the working memory 30. When the computer system is booted up, based on booting sequence, an operating system image (not shown) stored in the auxiliary storage 70 may be loaded to the working memory 30. Overall input/output operations of the computer system may be supported by the operating system. Likewise, the working memory 30 may be loaded with the application programs that are selected by a user or provided for a basic service.
The layout design tool 32 for layout design may be loaded from the auxiliary storage 70 to the working memory 30. The working memory 30 may be loaded from the auxiliary storage 70 with the placement and routing tool 34 that places designed standard cells and routes the placed standard cells.
The line-end biasing tool 36 may be loaded from the auxiliary storage 70 to the working memory 30. The working memory 30 may be loaded from the auxiliary storage 70 with the OPC tool 38 that performs an optical proximity correction (OPC) on designed layout data.
The layout design tool 32 may include a bias function by which specific layout patterns are changed in shapes and positions defined by a design rule. In addition, the layout design tool 32 may perform a design rule check (DRC) under the changed bias data condition. The working memory 30 may be either a volatile memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory) or a nonvolatile memory such as PRAM (Phase change Random Access Memory), MRAM (Magnetic Random Access Memory), ReRAM (Resistance Random Access Memory), FRAM (Ferroelectric Random Access Memory), or NOR Flash memory.
The line-end biasing tool 36 may include a bias function for changing layout patterns in the placed standard cells. For example, the line-end biasing tool 36 may extend or pull back one end of the layout pattern. The line-end biasing tool 36 may execute a design rule check (DRC) under the changed bias data condition.
The I/O device 50 may control user input/output operations of user interfaces. For example, the I/O device 50 may include a keyboard or a monitor, allowing a designer to put relevant information. The user may use the I/O device 50 to receive information about a semiconductor region or data paths requiring adjusted operating characteristics. The I/O device 50 may display a progress status or a process result of the OPC tool 38.
The auxiliary storage 70 may serve as a storage medium for the computer system. The auxiliary storage 70 may store the application programs, the operating system image, and various data. The auxiliary storage 70 may be provided in the form of one among memory cards (e.g., MMC, eMMC, SD, and Micro SD) and a hard disk drive (HDD). The auxiliary storage 70 may include a NAND Flash memory having large memory capacity. Alternatively, the auxiliary storage 70 may include a NOR Flash memory or a next-generation volatile memory such as PRAM, MRAM, ReRAM, and FRAM.
A system interconnector 90 may be provided to serve as a system bus for providing a network in the computer system. The CPU 10, the working memory 30, the I/O device 50, and the auxiliary storage 70 may be electrically connected through the system interconnector 90 and may exchange data with each other. The system interconnector 90 may not be limited to the above descriptions. For example, the system interconnector 90 may further include additional elements for increasing efficiency in data communication.
Referring to
A layout design operation may be performed to implement on a silicon substrate a semiconductor integrated circuit that is logically completed (S20). For example, the layout design operation may be performed based on the schematic circuit synthesized in the high-level design operation or the netlist corresponding to the schematic circuit. The layout design operation may include a routing process that places and connects various standard cells provided from a cell library, based on a prescribed design rule.
The cell library for the layout design operation may include information about operation, speed, and power consumption of the standard cell. A cell library for representing a layout of a specific gate-level circuit as a layout may be defined in the layout design tool. The layout may be prepared to define shapes or dimensions of patterns constituting transistors and metal lines that will be actually formed on a silicon substrate. For example, in order to actually form an inverter circuit on a silicon substrate, it may be necessary to appropriately place or describe layout patterns such as PMOS, NMOS, N-WELL, gate electrodes, and metal lines thereon. For this, a search may be first performed to select a suitable one of inverters predefined in the cell library.
A routing operation may be performed on the selected and placed standard cells (S30). For example, high-level lines may be provided on the placed standard cells. The standard cells may be well-designedly connected to each other through the routing operation. The placement and routing of the standard cells may be automatically performed by the placement and routing tool 34.
After the routing operation, the layout may be examined to determine whether or not a bridge risk region is present. When it is determined that the bridge risk region is present, the layout pattern may be biased (changed) in its line-end causing the bridge risk region (S40). The line-end biasing tool 36 may execute the search of the bridge risk region and the biasing of the line-end.
A verification operation may be performed on the layout to check whether any portion of the schematic circuit violates the given design rule. The verification operation may include a design rule check (DRC) for verifying whether the layout meets the given design rule, an electrical rule check (ERC) for verifying whether there is an issue of an electrical disconnection in the layout, and a layout vs. schematic (LVS) for verifying whether the layout is coincident with the gate-level netlist.
An optical proximity correction (OPC) operation may be performed (S50). A photolithography process may be employed to realize on a silicon substrate the layout patterns obtained by the layout design operation. The optical proximity correction operation may be a technique for correcting an unintended optical effect occurred in the photolithography process. For example, the optical proximity correction process may correct an undesirable phenomenon such as refraction or process side effects caused by characteristics of light in an exposure process using the layout patterns. When the optical proximity correction operation is performed, the designed layout patterns may be slightly changed in their shapes and positions.
A photomask may be generated based on the layout changed by the optical proximity correction operation (S60). The photomask may generally be manufactured by describing the layout patterns using a chromium layer coated on a glass substrate.
The generated photomask may be used to manufacture a semiconductor device (S70). Various exposure and etching processes may be repeatedly performed in fabricating the semiconductor device using the photomask. Through these processes described above, patterns defined in the layout design operation may be sequentially formed on a silicon substrate.
Referring to
The layout LA may include first to fourth patterns LP1 to LP4. Each of the first to fourth patterns LP1 to LP4 may have a linear or bar shape extending in a second direction D2. The first to fourth patterns LP1 to LP4 may be spaced apart from each other in a first direction D1. Neighboring ones of the first to fourth patterns LP1 to LP4 may be arranged at substantially the same pitch. For example, a pitch between the first pattern LP1 and the second pattern LP2 may be substantially the same as a pitch between the second pattern LP2 and the third pattern LP3. The pitch between the second pattern LP2 and the third pattern LP3 may be substantially the same as a pitch between the third pattern LP3 and the fourth pattern LP4. The term pitch may mean a distance in the first direction D1 between one side of a pattern and one side of an adjacent pattern.
The first pattern LP1 and the third pattern LP3 may constitute a first group CL1. The second pattern LP2 and the fourth pattern LP4 may constitute a second group CL2. A first photomask may be fabricated based on the first group CL1, and a second photomask may be fabricated based on the second group CL2. For example, the layout LA of
Referring to
The first photoresist pattern PR1 may be used as an etching mask to sequentially etch the first mold layer ML1 and the mask layer HM. A first hole IH1 and a third hole IH3 may then be formed to partially expose the etching target layer ETL. The first hole IH1 and the third hole IH3 may be defined respectively by the first pattern LP1 and the third pattern LP3 of
A pattern distortion may occur in the photolithography process. As a result, a first extension hole EH1 may be formed at a region adjacent to an end EN1 of the first hole IH1. The third hole IH3 may include the first extension hole EH1. The first extension hole EH1 may have a shape that protrudes in the first direction D1 from the third hole IH3. For example, the first extension hole EH1 may have a shape that protrudes from the third hole IH3 toward the first hole IH1. When viewed in plan, the first extension hole EH1 may be aligned in the first direction D1 with the end EN1 of the first hole IH1. For example, a line LI in the first direction D1 passing through a center of the first extension hole EH1 may substantially overlap the end EN1 of the first hole IH1. In conclusion, the pattern distortion in the photolithography process may cause the third hole IH3 to have a planar shape different from that of the third pattern LP3 of
Referring to
The second photoresist pattern PR2 may be used as an etching mask to sequentially etch the third mold layer ML3, the second mold layer ML2, and the mask layer HM. A second hole IH2 and a fourth hole IH4 may then be formed to partially expose the etching target layer ETL. The second hole IH2 and the fourth hole IH4 may be defined respectively by the second pattern LP2 and the fourth pattern LP4 of
A pattern distortion may occur in the photolithography process. As a result, a second extension hole EH2 may be formed at a region adjacent to an end EN2 of the fourth hole IH4. The second hole IH2 may include the second extension hole EH2. The second extension hole EH2 may have a shape that protrudes from the second hole IH2 toward the fourth hole IH4. When viewed in plan, the second extension hole EH2 may be aligned in the first direction D1 with the end EN2 of the fourth hole IH4. The first extension hole EH1 and the second extension hole EH2 may adjoin each other. For example, the first extension hole EH1 and the second extension hole EH2 may be connected to each other. In conclusion, the pattern distortion in the photolithography process may cause the second hole IH2 to have a planar shape different from that of the second pattern LP2 of
Referring to
The mask layer HM may be removed. The first to fourth holes IH1 to IH4 of the etching target layer ETL may be filled with a conductive material to form first to fourth conductive patterns IL1 to IL4, respectively. The conductive material may include one or more of conductive metal nitride (e.g., titanium nitride or tantalum nitride) and metal (e.g., titanium, tantalum, tungsten, copper, or aluminum).
The third conductive pattern IL3 may include a first extension EP1, and the second conductive pattern IL2 may include a second extension EP2. The first and second holes EH1 and EH2 may be filled with a conductive material to form the first and second extensions EP1 and EP2, respectively. The first and second extensions EP1 and EP2 may be extremely close to each other. For example, the first and second extensions EP1 and EP2 may be in contact with each other. Thus, an electrical short may occur between the first and second extensions EP1 and EP2. For example, a bridge (e.g., an electrical short between adjacent patterns) may occur between the second conductive pattern IL2 and the third conductive pattern IL3, causing process defects on a semiconductor device.
A line-end biasing method according to some example embodiments of inventive concepts may reduce or prevent the bridge discussed above with reference to
A first bulging region BR1 may be defined on the first site CS1 of the third pattern LP3. The first bulging region BR1 may define an area where formed is the first extension EP1 discussed above with reference to
Referring to
A second bulging region BR2 may be defined on the second site CS2 of the second pattern LP2. The second bulging region BR2 may define an area where formed is the second extension EP2 discussed above with reference to
Referring to
Referring to
The biasing method may include placing an extension pattern EX1 or EX2 on one or more of the first end LE1 of the first pattern LP1 and the second end LE2 of the fourth pattern LP4. For example, a first extension pattern EX1 may be placed on the first end LE1 of the first pattern LP1, and a second extension pattern EX2 may be placed on the second end LE2 of the second pattern LP2.
Each of the first and second extension patterns EX1 and EX2 may have a bar shape extending in the second direction D2. Each of the first and second extension patterns EX1 and EX2 may have a width substantially the same as a width of each of the first to fourth patterns LP1 to LP4. The first and second extension patterns EX1 and EX2 may have substantially the same length or different lengths from each other. For example, the length of each of the first and second extension patterns EX1 and EX2 may be the same as or greater than a length of each of the first and second bulging regions BR1 and BR2.
Referring to
Referring to
The first extension EP1 of the third conductive pattern IL3 shown in
Referring to
When the first end LE1 is sufficiently biased, for example, when the first end LE1 extends as much as at least the first bulging region BR1, the bridge risk region BRR may be removed. As illustrated in
Alternatively, referring to
When the first end LE1 is sufficiently biased, for example, when the first end LE1 is pulled back as much as at least the first bulging region BR1, the bridge risk region BRR may be removed. As illustrated in
Referring to
The second, fourth, sixth, eighth, tenth, and thirteenth patterns LP2, LP4, LP6, LP8, LP10, and LP13 may constitute a first group. The first, third, fifth, seventh, ninth, eleventh, and twelfth patterns LP1, LP3, LP5, LP7, LP9, LP11, and LP12 may constitute a second group. A first photomask may be fabricated based on the first group, and a second photomask may be fabricated based on the second group.
Referring to
Between the ninth pattern LP9 and the tenth pattern LP10, a first bridge risk region BRR1 may be defined to indicate an area where the first bulging region BR1 and the second bulging region BR2 overlap each other. Between the fifth pattern LP5 and the sixth pattern LP6, a second bridge risk region BRR2 may be defined to indicate an area where the first bulging region BR1 and the second bulging region BR2 overlap each other. The overlapping area between the first and second bulging regions BR1 and BR2 may be examined to ascertain whether or not the bridge risk region is present in the layout LA of
Referring to
The biased layout LA may undergo a design rule check (DRC) for verifying whether or not any portion violates a design rule (S430). The twelfth pattern LP12 and the second extension pattern EX2 placed on the eleventh pattern LP11 may be spaced apart in the second direction D2 from each other at a distance less than a minimum distance defined by the design rule. For example, a design rule violation (DRV) may exist between the twelfth pattern LP12 and the second extension pattern EX2 placed on the eleventh pattern LP11.
Referring to
Referring to
Between the ninth pattern LP9 and the tenth pattern LP10, a third bridge risk region BRR3 may be defined to indicate an area where the first bulging region BR1 and the second bulging region BR2 overlap each other. Between the second pattern LP2 and the third pattern LP3, a fourth bridge risk region BRR2 may be defined to indicate an area where the first bulging region BR1 and the second bulging region BR2 overlap each other. Although the first biasing action removes the first and second bridge risk regions BRR1 and BRR2 discussed above, it may be ascertained that the third and fourth bridge risk regions BRR3 and BRR4 are newly formed.
Referring to
The biased layout LA may undergo a design rule check (DRC) for verifying whether or not any portion violates a design rule (S430). The twelfth pattern LP12 and the second extension pattern EX2 placed on the eleventh pattern LP11 may be spaced apart in the second direction D2 from each other at a distance less than a minimum distance defined by the design rule. For example, a design rule violation (DRV) may exist between the twelfth pattern LP12 and the second extension pattern EX2 placed on the eleventh pattern LP11.
Referring to
Referring to
Referring to
Referring to
Each of the second, fourth, sixth, and tenth conductive patterns IL2, IL4, IL6, and IL10 may include a first extension EP1. The first extension EP1 may correspond to the first bulging region BR1 discussed above in
Each of the first, fifth, and ninth conductive patterns ILL IL5, and IL9 may include a second extension EP2. The second extension EP2 may correspond to the second bulging region BR2 discussed above in
A semiconductor device according to some example embodiments of inventive concepts may be fabricated by a layout design including a line-end biasing action. When a plurality of photomasks are used to form conductive patterns on a substrate, a bridge may be reduced or prevented between the conductive patterns. In conclusion, the semiconductor device may be provided to have improved reliability.
Although example embodiments of the present inventive concepts have been discussed with reference to accompanying figures, it will be understood that various changes in form and details may be made therein without departing from the spirit and scope of the present inventive concepts. It therefore will be understood that the example embodiments described above are just illustrative but not limitative in all aspects.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0164435 | Dec 2017 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6519758 | Miyagawa | Feb 2003 | B2 |
6813756 | Igarashi | Nov 2004 | B2 |
7194725 | Lukanc | Mar 2007 | B1 |
7385689 | Kim | Jun 2008 | B2 |
7434195 | Hsu | Oct 2008 | B2 |
7475383 | Suh | Jan 2009 | B2 |
7540970 | Koh | Jun 2009 | B2 |
7568180 | Eisenmann | Jul 2009 | B2 |
7884325 | Sohda | Feb 2011 | B2 |
7958463 | Ikeuchi | Jun 2011 | B2 |
8234596 | Ogawa | Jul 2012 | B2 |
8418088 | Ye | Apr 2013 | B2 |
8434033 | Abou Ghaida et al. | Apr 2013 | B2 |
8443309 | Abdo | May 2013 | B2 |
8452076 | Nakagaki | May 2013 | B2 |
8516399 | Paris et al. | Aug 2013 | B2 |
8631379 | Chen | Jan 2014 | B2 |
8644589 | Hsu | Feb 2014 | B2 |
8692380 | Tan | Apr 2014 | B2 |
8792147 | Tejnil | Jul 2014 | B2 |
8841675 | Saito | Sep 2014 | B2 |
8863048 | Gerousis et al. | Oct 2014 | B1 |
8914755 | Hsu | Dec 2014 | B1 |
8994151 | Yasuzato | Mar 2015 | B2 |
9009633 | Wu | Apr 2015 | B2 |
9104833 | Kuo | Aug 2015 | B2 |
9141751 | Lee et al. | Sep 2015 | B2 |
9158885 | Gray et al. | Oct 2015 | B1 |
9335624 | Lee et al. | May 2016 | B2 |
9390206 | Ye | Jul 2016 | B2 |
9652579 | Arkhipov et al. | May 2017 | B1 |
9858658 | Kaizerman | Jan 2018 | B2 |
10185798 | Kim | Jan 2019 | B2 |
10216082 | Kang | Feb 2019 | B2 |
10325058 | Lee | Jun 2019 | B2 |
10657207 | Tang | May 2020 | B1 |
20090217224 | Wiaux | Aug 2009 | A1 |
20130134415 | Godo | May 2013 | A1 |
20130178067 | Yu | Jul 2013 | A1 |
20140131879 | Kodama | May 2014 | A1 |
20140183702 | Kodama | Jul 2014 | A1 |
20150045935 | Cao | Feb 2015 | A1 |
20150214291 | Park | Jul 2015 | A1 |
20160071684 | Platzgummer | Mar 2016 | A1 |
20160246168 | Ye | Aug 2016 | A1 |
20160276266 | Liu | Sep 2016 | A1 |
20160327856 | Jeong | Nov 2016 | A1 |
20170077029 | Nelson | Mar 2017 | A1 |
20170269481 | Borodovsky | Sep 2017 | A1 |
20180322234 | Cao | Nov 2018 | A1 |
20190087526 | Park | Mar 2019 | A1 |
20200004921 | Baidya | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
10-2014-0029050 | Mar 2014 | KR |
Entry |
---|
Wojtowecz et al.; Rapid yield ramp using closed loop DFM and overlay process window qualification flow:; 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC); Conference Paper | Publisher: IEEE (Year: 2018). |
Number | Date | Country | |
---|---|---|---|
20190172824 A1 | Jun 2019 | US |