The present application corresponds to Japanese Patent Application No. 2015-26756 filed in the Japan Patent Office on Feb. 13, 2015, and the entire disclosure of the application is incorporated herein by reference.
The present invention relates to a semiconductor device and a semiconductor module provided therewith.
A switching device may cause thermal destruction when an overcurrent continues to flow, for example, upon short circuit. In order to prevent a malfunction of this type, for example, Patent Document 1 (Japanese Patent Application Publication No. 2013-247804) has disclosed a semiconductor device which includes a semiconductor switching element, a semiconductor driving circuit, a sense element defined in the semiconductor switching element and an overcurrent detection portion defined in the semiconductor driving circuit. The sense element is arranged with a sense terminal in which a current flows in proportion to a main current of the semiconductor switching element and a sense resistor which is connected between a main terminal of the semiconductor switching element and the sense terminal to convert a voltage of the sense current. Further, the overcurrent detection portion detects a sense current which flows through the sense element described above and turns off the semiconductor switching element when the sense current exceeds a predetermined value, thereby protecting the semiconductor switching element from the overcurrent.
An overcurrent protection system disclosed in Patent Document 1 is conducted by a method in which the semiconductor switching element is turned off based on a sense current. Therefore, the system is susceptible to an influence of noise and may erroneously detect a noise-contaminated sense current as an overcurrent in some cases. In order to prevent a malfunction derived from the noise, such a system is available that a semiconductor switching element is not turned off instantly when a sense current exceeds a predetermined threshold value but turned off after the lapse of a certain waiting time (mask time).
However, the above-described system which provides the waiting time also has a problem. A certain waiting time is needed, with the influence of noise taken into account (for example, about 500 n seconds). While a device which has low on-resistance is under development, such a case is found in which time at which the device is broken by an overcurrent is shorter than the waiting time, thus resulting in a failure of the overcurrent protection system itself.
Thus, a preferred embodiment of the present invention is to provide a semiconductor device which is capable of reducing a malfunction derived from current noise and protecting favorably a switching element from an overcurrent and also provide a semiconductor module which is provided with the semiconductor device.
A preferred embodiment of the present invention provides a semiconductor device which includes a semiconductor substrate, a switching element defined on the semiconductor substrate and a temperature sense element which is provided on the surface of the semiconductor substrate independently from the switching element and characterized by being dependent on a temperature.
Further, a preferred embodiment of the present invention provides a semiconductor device which includes a semiconductor substrate, a switching element defined on the semiconductor substrate and a temperature sense element which is provided on the surface of the semiconductor substrate independently from the switching element and characterized by being dependent on a temperature and provides the semiconductor device which performs a single function by the switching element.
According to the above arrangement, when a temperature changes on the surface of the semiconductor substrate, the temperature sense element will thereby be changed in characteristics (voltage value, resistance value, and the like). Therefore, the change in characteristics of the temperature sense element can be monitored to detect a change in temperature of the semiconductor substrate. For example, when an overcurrent flows in the switching element due to a short circuit or the like, the above relationship is used to detect a temperature rise of the semiconductor substrate due to the overcurrent. It is thereby possible to determine whether or not the overcurrent flows in the switching element on the basis of the detection result. Further, a target to be monitored is not a sense current which flows in the switching element. Therefore, even where noise enters into the sense current to cause superimposition, there is no chance that a current resulting from the superimposition is erroneously detected as an overcurrent. As a result, it is possible to reduce a malfunction by current noise.
A preferred embodiment of the present invention includes mutually paired first and second electrodes on the semiconductor substrate in which only the temperature sense element is provided as a circuit element in an electrical circuit between the first electrode and the second electrode.
In a preferred embodiment of the present invention, the temperature sense element includes a pn diode which is made of a polysilicon layer defined on the semiconductor substrate.
Polysilicon can be easily defined into a desired shape and at a desired position by semiconductor manufacturing technology which has been established. Therefore, the polysilicon layer (pn diode) is defined in the vicinity of the surface of the semiconductor substrate which is a heat generating portion, thus making it possible to detect a change in temperature of the semiconductor substrate with high accuracy. For example, a constant current is continuously applied to the pn diode to monitor a forward direction voltage VF of the pn diode, thus making it possible to detect a change in temperature of the semiconductor substrate.
In a preferred embodiment of the present invention, the switching element includes a planar gate type MISFET having a gate electrode which is defined along the surface of the semiconductor substrate, and the polysilicon layer is defined on the same layer as that of the gate electrode.
According to this arrangement, the polysilicon layer (pn diode) can be defined in the same step as that of the gate electrode, by which it is possible to suppress an increase in the number of steps in defining the pn diode. Further, the pn diode can be disposed on the semiconductor substrate via a gate insulating film which is thinner than a relatively thick film such as an interlayer insulating film, by which a position of the pn diode can be brought immediately near a current channel on the surface of the semiconductor substrate. It is thereby possible to detect a change in temperature of the semiconductor substrate with improved accuracy.
In a preferred embodiment of the present invention, the pn diode includes a p-type region and an n-type region which surrounds the p-type region in a plan view.
According to this arrangement, since the p-type region is not overlapped with the n-type region in a plan view, the need for separately providing routing wiring or the like is eliminated. Therefore, contact can be provided easily both in the p-type region and the n-type region.
In a preferred embodiment of the present invention, the switching element includes a trench gate type MISFET which has a gate trench defined on the semiconductor substrate and a gate electrode buried into the gate trench, and the polysilicon layer is buried into a second trench defined on the semiconductor substrate independently from the gate trench.
According to this arrangement, the second trench can be defined in the same step as that of the gate trench, and the polysilicon layer (pn diode) can be defined in the same step as that of the gate electrode, thus making it possible to suppress an increase in the number of steps in defining the pn diode. Further, the pn diode is arranged so as to be buried into a surface portion of the semiconductor substrate, by which a position of the pn diode can be brought immediately near a current channel on the surface of the semiconductor substrate. It is thereby possible to detect a change in temperature of the semiconductor substrate with improved accuracy.
In a preferred embodiment of the present invention, the gate trench and the second trench are defined so as to be equal in width to each other.
According to this arrangement, since the gate trench and the second trench can be defined at substantially the same etching rate, it is possible to finally define the gate trench and the second trench at substantially the same depth. The second trench is made substantially equal in depth to the gate trench where a channel of the MISFET is defined, thus making it possible to promptly detect a temperature rise of the semiconductor substrate resulting from an overcurrent.
In a preferred embodiment of the present invention, the temperature sense element includes a pn diode which is made of an impurity region defined on the surface portion of the semiconductor substrate.
The impurity region can be easily defined at a desired position by semiconductor manufacturing technology which has been established. Therefore, the impurity region (pn diode) is defined so as to be immediately near a current channel on the surface of the semiconductor substrate which is a heat generating portion, thus making it possible to detect a change in temperature of the semiconductor substrate with high accuracy. For example, a constant current is continuously applied to a pn diode to monitor a forward direction voltage VF of the pn diode, thus making it possible to detect a change in temperature of the semiconductor substrate. Further, where the pn diode is made of an impurity region, the pn diode can be favorably operated at a high temperature region (for example, 200° C. or higher). Thus, the pn diode is in particular effectively used in a power device such as SiC and GaN.
In a preferred embodiment of the present invention, the above-described pn diode includes a p-type region and an n-type region which surrounds the p-type region in a plan view.
According to this arrangement, since the p-type region is not overlapped with the n-type region in a plan view, the need for separately providing routing wiring or the like is eliminated. Therefore, contact can be provided easily both in the p-type region and the n-type region.
In a preferred embodiment of the present invention, the temperature sense element includes a serial connection unit in which the plurality of pn diodes are connected in series.
According to this arrangement, a variation in temperature of the forward direction voltage VF is increased in proportion to the number of the connected pn diodes, thus making it possible to detect a change in temperature with an improved sensitivity. When deflection width of the forward direction voltage VF per pn diode is, for example, XmV/° C., five of the pn diodes are connected in series to arrange a serial connection unit, by which the deflection width of the serial connection unit as a whole can be made into 5 XmV/° C.
In a preferred embodiment of the present invention, the temperature sense element includes an arrangement in which at least a pair of serial connection units are connected in parallel in a reverse direction to each other.
According to this arrangement, a terminal of an aggregate of the pn diodes is free of distinction of polarity between an anode side and a cathode side. Therefore, wiring such as bonding wires can be improved in degree of freedom on assembly of a module or the like.
In a preferred embodiment of the present invention, the temperature sense element includes a reverse-series connection unit in which at least a pair of pn diodes are connected in series in a reverse direction to each other.
According to this arrangement, of the pair of pn diodes, since a reverse bias is applied to at least one of them, the reverse-series connection unit as a whole is increased in resistance. Therefore, it is possible to suppress a current necessary for monitoring a change in temperature to a lower extent and attain power saving.
In a preferred embodiment of the present invention, the temperature sense element includes an arrangement in which the plurality of reverse-series connection units are connected in series.
According to this arrangement, it is possible to attain power saving to a greater extent.
In a preferred embodiment of the present invention, the temperature sense element includes an arrangement in which at least a pair of pn diodes are connected in parallel in a reverse direction to each other.
According to this arrangement, terminals of the pair of pn diodes are free of distinction of polarity between an anode side and a cathode side, therefore, wiring such as bonding wires can be improved in degree of freedom on assembly of a module, etc.
In a preferred embodiment of the present invention, the temperature sense element is disposed at a peripheral portion of the semiconductor substrate.
According to this arrangement, a relatively wide region can be secured at a part other than a region where the temperature sense element is placed, thus making it possible to increase an area of a terminal for a switching element. Therefore, even when a chip is downsized, wiring members such as a bonding plate and relatively thick bonding wires can be connected to the terminal.
In a preferred embodiment of the present invention, the semiconductor substrate includes a SiC semiconductor substrate.
According to this arrangement, it is possible to favorably protect a low on-resistance SiC switching element from an overcurrent.
A preferred embodiment of the present invention provides a semiconductor module which includes the above-described semiconductor device and a second semiconductor device which has a circuit that is electrically connected to the switching element and the temperature sense element, that is, a circuit which cuts off a current channel of the switching element when a determination is made that an overcurrent flows in the switching element on the basis of a change in characteristics of the temperature sense element.
According to this arrangement, since the above-described semiconductor devices are provided, it is possible to realize a semiconductor module which is reduced in malfunction due to current noise and also favorably protects the switching element from the overcurrent.
Hereinafter, a detailed description will be given of the preferred embodiments of the present invention by referring to attached drawings.
The semiconductor device 1 is a discrete semiconductor device and provided with a single function by a switching element SW. The switching element SW may be, for example, a MISFET (metal insulator semiconductor field effect transistor) or may be others such as an IGBT (insulated gate bipolar transistor), a JFET (junction field effect transistor), a bipolar transistor and a thyristor. In this preferred embodiment, a case where the switching element SW is a MISFET is shown. A source pad 2 and a gate pad 3 are defined on the surface of the semiconductor device 1 which is defined as a tetragonal chip in a plan view. The source pad 2 covers substantially all the surface and the gate pad 3 is disposed in an internal region of the source pad 2. Further, although not illustrated, a drain electrode is defined at the back of the semiconductor device 1.
The semiconductor device 1 is provided with a temperature sense element TS, in addition to the above-described switching element SW. The temperature sense element TS is disposed on the surface of the semiconductor device 1. The temperature sense element TS is independent from the switching element SW and not directly involved in switching operation by the switching element SW.
Next, a brief description will be given of an overcurrent protection system in a semiconductor module 4 which is provided with the semiconductor device 1.
The semiconductor module 4 includes the semiconductor device 1 and a gate driver G/D as an example of the second semiconductor device of the present invention which has a short-circuit protection circuit 5. The semiconductor module 4 may be provided with semiconductor chips (IC, discrete component, etc.) other than those shown in
The short-circuit protection circuit 5 is electrically connected to a gate G of the switching element SW and to the temperature sense element TS individually in an independent manner. The short-circuit protection circuit 5 continuously monitors characteristics of the temperature sense element TS. For example, when a short circuit occurs in the switching element SW and an overcurrent flows, the temperature sense element TS undergoes a change in characteristics by heat generation resulting from the overcurrent. The short-circuit protection circuit 5 senses the change in characteristics as occurrence of a short circuit in the switching element SW and turns off the gate G of the switching element SW. Thereby, a drain current Id which flows between a source and a drain (S-D) of the switching element SW is cut off to protect the switching element SW.
The semiconductor device 1 includes a semiconductor substrate 6 which defines an outer configuration thereof and has a structure in which the switching element SW and the temperature sense element TS are defined on the semiconductor substrate 6.
The semiconductor substrate 6 is formed in a tetragonal shape in a plan view, and a substantially entire region of the surface thereof is covered by the source pad 2 which is formed substantially in a tetragonal shape in a plan view. A cell region 7 which constitutes the switching element SW is defined at a greater part below the source pad 2. The gate pad 3 is disposed at least at one side of an outer peripheral side of the semiconductor substrate 6. A gate finger 8 is connected to the gate pad 3. The gate finger 8 extends to a central portion of the semiconductor substrate 6 to separate the cell region 7 into one side and the other side and also extends to a peripheral portion of the semiconductor substrate 6, thereby surrounding the cell region 7.
A temperature sense region 9 which constitutes the temperature sense element TS is defined in an internal region of the cell region 7. The temperature sense region 9 is surrounded by the cell region 7. A position of the temperature sense region 9 may be, for example, at a peripheral portion of the semiconductor substrate 6. As long as the temperature sense region 9 is disposed at a peripheral portion of the semiconductor substrate 6, a relatively wide region can be secured at a part other than the temperature sense region 9 on the semiconductor substrate 6. Therefore, the source pad 2 can be increased in area. As a result, even if a chip is downsized, wiring members such as a bonding plate and relatively thick bonding wires can be connected to the source pad 2.
A first electrode 10 and a second electrode 11 are provided so as to hold the temperature sense region 9 between them in a plan view. That is, the paired first electrode 10 and second electrode 11 are disposed on the semiconductor substrate 6, at an interval kept between them, and the temperature sense region 9 is defined in a region between the first electrode 10 and the second electrode 11. The first electrode 10 and the second electrode 11 are disposed side by side, for example, along one side of the semiconductor substrate 6 in which the gate pad 3 is disposed. Thereby, wiring members such as bonding wires can be drawn out in the same direction (in the left direction of the plane of
<Cell Structure>
The semiconductor substrate 6 may be, for example, a SiC substrate and may also be others such as a GaN substrate and a Si substrate. Further, the semiconductor substrate 6 may be an epitaxial substrate which includes a ground substrate and an epitaxial layer, the crystal of which has grown thereon. In this preferred embodiment, a case where the semiconductor substrate 6 is an n-type SiC epitaxial substrate is shown. The n-type SiC epitaxial substrate may include an n+-type ground substrate and an n−-type epitaxial layer on the n+-type ground substrate. The n+-type ground substrate may be, for example, from 1.0×1018 cm−3 to 1.0×1020 cm−3 in impurity concentration. The n−-type epitaxial layer may be, for example, from 5.0×1014 cm−3 to 5.0×1016 cm−3 in impurity concentration. As n-type impurities, for example, N (nitrogen), As (arsenic) and P (phosphorus), etc., can be cited.
As shown in
On a surface portion of the internal region in the p-type body region 12, an n+-type source region 14 is defined, at an interval apart from a periphery of the p-type body region 12. The n+-type source region 14 is higher in n-type impurity concentration than the n-type semiconductor substrate 6 and may be, for example, from 1×1018 cm−3 to 5×1021 cm−3.
A p+-type body contact region 15 is defined in an internal region of the n+-type source region 14. The p+-type body contact region 15 is defined so as to penetrate through the n+-type source region 14 in a depth direction. The p+-type body contact region 15 is higher in p-type impurity concentration than the p-type body region 12 and may be, for example, from 1×1018 cm−3 to 5×1021 cm−3.
A gate insulating film 16 is defined on the surface of the semiconductor substrate 6. The gate insulating film 16 may be made of silicon oxide (SiO2), for example. The thickness of the gate insulating film 16 may be, for example, from 300 Å to 600 Å.
A gate electrode 17 is defined on the gate insulating film 16. The gate electrode 17 opposes a peripheral portion of the p-type body region 12 (a part which surrounds the n+-type source region 14 in a plan view), with the gate insulating film 16 held therebetween. Although the gate electrode 17 is made of, for example, n-type polysilicon (n-type doped polysilicon), it may be made of p-type polysilicon. The thickness of the gate electrode 17 may be, for example, from 6000 Å to 12000 Å.
An interlayer insulating film 18 which covers the gate electrode 17 is defined on an entire surface of the semiconductor substrate 6. The interlayer insulating film 18 may be made of, for example, silicon oxide (SiO2) or may be arranged so as to be laminated with a plurality of silicon oxide films, as will be described later (refer to
<Structure of Temperature Sense Element>
As shown in
The gate insulating film 16 of the cell region 7 is defined on the surface of the semiconductor substrate 6 so as to extend up to the temperature sense region 9. A temperature sense diode 20 (pn diode) as one example of the temperature sense element TS is defined on the gate insulating film 16 in the temperature sense region 9. The temperature sense diode 20 is opposed to the semiconductor substrate 6, with the gate insulating film 16 held therebetween. For example, as shown in
The temperature sense diode 20 is made of, for example, a single-layered polysilicon layer 21. The temperature sense diode 20 made of the polysilicon layer 21 may be defined in the same step as that of the gate electrode 17 and, thereby, defined on the same layer as that of the gate electrode 17. That is, the polysilicon layer 21 may be defined in the thickness of 6000 Å to 12000 Å as with the gate electrode 17. As a matter of course, the polysilicon layer 21 may be defined in a step different from that of the gate electrode 17 or may have the thickness different from that of the gate electrode 17.
The temperature sense diode 20 includes a p-type region 22 and an n+-type region 23 which surrounds the p-type region 22. As long as such an arrangement is realized that the p-type region 22 is surrounded by the n+-type region 23, the p-type region 22 is not overlapped with the n+-type region 23 in a plan view. Thus, the need for separately providing routing wiring or the like is eliminated, and contact can be provided easily both in the p-type region 22 and the n+-type region 23.
Each of the p-type region 22 and the n+-type region 23 may be defined so as to extend from the surface of the polysilicon layer 21 to the back thereof, as shown in
The temperature sense diode 20 may additionally include a p+-type contact region 24 and a p-type outer periphery region 25. The p+-type contact region 24 may be defined in an internal region of the p-type region 22, at an interval apart from a periphery of the p-type region 22, and the p-type outer periphery region 25 may be defined so as to surround the n+-type region 23. The p+-type contact region 24 and the p-type outer periphery region 25 may each be defined so as to extend from the surface of the polysilicon layer 21 to the back thereof, as shown in
In addition, the temperature sense diode 20 may be arranged, as shown in
The temperature sense diode 20 is covered with the interlayer insulating film 18 on the semiconductor substrate 6. The first electrode 10 is connected via a contact hole 27 of the interlayer insulating film 18 to the p+-type contact region 24 as an anode electrode. The second electrode 11 is connected via a contact hole 28 of the interlayer insulating film 18 to the n+-type region 23 as a cathode electrode. As described previously, the first electrode 10 and the second electrode 11 connected to both ends of the temperature sense diode 20 are defined so as to be separated from the source pad 2 and the gate pad 3 for the switching element SW. Therefore, the temperature sense diode 20 is electrically independent from the switching element SW.
Polysilicon can be easily defined into a desired shape or at a desired position by semiconductor manufacturing technology which has been established. Therefore, the temperature sense diode 20 is defined in the vicinity of the switching element SW or near the surface of the semiconductor substrate 6 which is a heat generating portion, thus making it possible to detect a change in temperature of the semiconductor substrate 6, with high accuracy. For example, a constant current is applied to the temperature sense diode to monitor a forward direction voltage VF of the temperature sense diode 20, thereby making it possible to detect a change in temperature of the semiconductor substrate 6. For example, a constant current of 1 μA may be applied to monitor the forward direction voltage VF. An electric current may be a constant current in a range of 1 μA to 100 μA.
The second electrode 11 integrally includes an annular contact portion 30 having an open portion 29 at a part thereof and a line-shaped drawing portion 31 extending from the contact portion 30 on the interlayer insulating film 18. The contact portion 30 surrounds the p-type region 22 in a plan view. Further, the contact hole 28 is defined annularly so as to be opened partially along the contact portion 30.
The first electrode 10 integrally includes a contact portion 32 which is surrounded by the contact portion of the second electrode 11 and a line-shaped drawing portion 33 which extends from the contact portion 32 through the open portion 29 on the interlayer insulating film 18. The contact portion 32 is disposed on the p+-type contact region 24. Further, the contact hole 27 is defined so as to overlap with the lower portion of the contact portion 32.
Next, a description will be given of a method for producing the semiconductor device 1.
In producing the semiconductor device 1, for example, an n−-type epitaxial layer is defined on the n+-type ground substrate by epitaxial growth (Step 1). Thereby, the semiconductor substrate 6 is defined.
Next, p-type impurities are selectively injected into the semiconductor substrate 6 to define the p-type body region 12 and the p-type region 19 (Step S2). In a similar manner, n-type impurities and p-type impurities are selectively injected into the semiconductor substrate 6 to define the n+-type source region 14 and the p+-type body contact region 15 (Steps S3, S4).
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Thereafter, various types of wiring, the source pad 2, the gate pad 3, the first electrode 10, the second electrode 11 and a passivation film, etc., are defined to provide the semiconductor device 1.
Next, a more specific description will be given of operation of the semiconductor device 1 in the semiconductor module 4 and the overcurrent protection system.
An electric circuit arrangement of the semiconductor module 4 is as shown in
On the other hand, with reference to
Then, when a short circuit occurs in the switching element SW (MISFET) of
As described so far, for example, when an overcurrent flows to the switching element SW due to a short circuit or the like, the temperature rise of the semiconductor substrate 6 by the overcurrent is detected based on the decrease in forward direction voltage VF of the temperature sense diode 20, and whether or not the overcurrent flows to the switching element SW can be determined on the basis of the above detection result. Further, a target to be monitored is not a sense current which flows to the switching element SW. Therefore, even where noise enters into the sense current to cause superimposition, there is no chance that the superimposition current is erroneously detected as an overcurrent. It is thus possible to reduce a malfunction resulting from current noise. Further, unlike a conventional overcurrent protection system, no certain waiting time (mask time) is provided or a short waiting time will suffice if provided. As a result, this overcurrent protection system is quite effectively used in a low on-resistance device (such as SiC and GaN) which will be broken by an overcurrent within a relatively short period of time.
Further, in this preferred embodiment, as shown in
In
The p-type region 43 is made of a part of a p-type region 19, whereas the n+-type region 44 is defined in a state of floating on the surface portion of the p-type region 19. The n+-type region 44 may be defined in the same step as that of an n+-type source region 14 (refer to
The temperature sense diode 42 may also include a p+-type contact region 45 and a p-type outer periphery region 46. The p+-type contact region 45 is defined in an internal region of the p-type region 43, at an interval apart from a periphery of the p-type region 43, and the p-type outer periphery region 46 may be defined so as to surround the n+-type region 44. The p-type outer periphery region 46 is made of a part of the p-type region 19 and electrically connected to the p-type region 43 via the p-type region 19 below the n+-type region 44. On the other hand, the p+-type contact region 45 is defined in a state of floating on the surface portion of the p-type region 19. The p+-type contact region 45 may be defined in the same step as that of a p+-type body contact region 15 (refer to
A first electrode 10 is connected to the p+-type contact region 45 as an anode electrode via a contact hole 27 of an interlayer insulating film 18. A second electrode 11 is connected to the n+-type region 44 as a cathode electrode via a contact hole 28 of the interlayer insulating film 18.
As described so far, the temperature sense diode 42 can be used also to perform a function similar to that of the temperature sense diode 20. Further, the temperature sense diode 42 is defined on a semiconductor substrate 6 itself. Therefore, a pn junction portion can be brought closer to a current channel on the surface of the semiconductor substrate 6 which is a heat generating portion than in the case of the temperature sense diode 20. It is thereby possible to detect a change in temperature of the semiconductor substrate 6 with high accuracy. Still further, a pn diode which is made of an impurity region favorably operates in a high temperature region (for example, a temperature of 200° C. or higher) and can be used especially effectively in a power device such as SiC and GaN in particular.
Next, a description will be given of a variation of connection modes where the plurality of temperature sense diodes 20, 42 are provided. Each of
First, as shown in
According to the arrangement of
Next, as shown in
According to the arrangement of
Next, as shown in
According to the arrangement of
Next, as shown in
According to the arrangement of
As described so far, a connection mode of the plurality of temperature sense diodes 20, 42 is not limited to the arrangement of each of
As shown in
A p-type body region 55 is defined on a surface portion of each of the unit cells 54 and an n+-type source region 56 is defined on a surface portion of the p-type body region 55. The p-type body region 55 may be, for example, from 1×1015 cm−3 to 1×1020 cm−3 in p-type impurity concentration. Further, the n+-type source region 56 is higher in impurity concentration than the n-type semiconductor substrate 6 and may be, for example, from 1×1018 cm−3 to 5×1021 cm−3 in n-type impurity concentration.
A p+-type body contact region 57 is defined in an internal region of the n+-type source region 56. The p+-type body contact region 57 is defined so as to penetrate through the n+-type source region 56 in the depth direction. The p+-type body contact region 57 is higher in p-type impurity concentration than the p-type body region 55 and may be, for example, from 1×1018 cm−3 to 5×1021 cm−3.
A gate insulating film 58 is defined on an inner surface of the gate trench 53 and on an surface of the semiconductor substrate 6. The gate insulating film 58 may be made of, for example, silicon oxide (SiO2). The thickness of the gate insulating film 58 may be, for example, from 300 Å to 600 Å.
A gate electrode 59 is buried into the gate trench 53. The gate electrode 59 is opposed to the p-type body region 55 on a side of the gate trench 58, with the gate insulating film 58 held therebetween. Although the gate electrode 59 is made of, for example, n-type polysilicon (n-type doped polysilicon), it may be made of p-type polysilicon.
Next, a description will be given of a structure of a temperature sense region 9 where the cell region 7 is as shown in
As shown in
An n+-type region 60 is defined on a surface portion of the semiconductor substrate 6 in the temperature sense region 9, and a p-type region 61 is defined below the n+-type region 60. The p-type region 61 is in contact with the n+-type region 60. The n+-type region 60 may be equal to the n+-type source region 56 in n-type impurity concentration and also at depth. Further, the p-type region 61 may be equal to the p-type body region 55 in p-type impurity concentration and also at depth. However, as shown in
A temperature sense trench 63 as one example of the second trench of the present invention is defined in an internal region of the temperature sense region 9. That is, the temperature sense trench 63 is independent from the gate trench 53 which surrounds a periphery of the temperature sense region 9. The temperature sense trench 63 may be defined, for example, by the same width as that of the gate trench 53.
The temperature sense trench 63 may be defined so as to penetrate through the p-type region 62. However, as shown in
Further, the temperature sense trench 63 is annularly defined in a plan view, and a closed region 64 is demarcated inside the temperature sense trench 63. A p+-type contact region 65 is defined in the closed region 64. The p+-type contact region 65 may be defined on an entire surface of the closed region 64, as shown in
A gate insulating film 58 of the cell region 7 is defined on an inner surface of the temperature sense trench 63 by extending up to the temperature sense region 9. Then, a temperature sense diode 66 (pn diode) as an example of the temperature sense element TS is defined inside the gate insulating film 58.
The temperature sense diode 66 is made of a buried polysilicon layer 67 which is buried into the temperature sense trench 63. The temperature sense diode 66 made of the buried polysilicon layer 67 may be defined in the same step as that of the gate electrode 59 or may be defined in a step different from that of the gate electrode 59.
The temperature sense diode 66 includes a p-type region 68 and an n+-type region 69 which is horizontally adjacent to the p-type region 68. That is, the p-type region 68 may be buried to a bottom of a certain region of the annular temperature sense trench 63, and the n+-type region 69 may be buried to a bottom of a remaining region of the temperature sense trench 63 so as to be adjacent to the p-type region 68. As long as such as arrangement is realized that the p-type region 68 is horizontally adjacent to the n+-type region 69, the p-type region 68 is not overlapped with the n+-type region 69 in a plan view. Therefore, the need for separately providing routing wiring or the like is eliminated, and contact can be easily provided both in the p-type region 68 and the n+-type region 69.
Further, the p-type region 68 may be, for example, from 1×1013 cm−3 to 1×1020 cm−3 (equal to the p-type body region 55) in p-type impurity concentration. The n+-type region 69 may be, for example, from 1×1018 cm−3 to 5×1021 cm−3 (equal to the n+-type source region 56) in n-type impurity concentration.
The temperature sense diode 66 may further include a p+-type contact region 70. The p+-type contact region 70 is defined so as to be in contact with the p-type region 68 but separated from the n+-type region 69, at an interval apart from the p-type region 68. As shown in
In addition, the first electrode 10 of
As described so far, the temperature sense diode 66 is also able to perform the same function as that of the temperature sense diode 20. Further, the temperature sense diode 66 (pn diode) is buried into the surface portion of the semiconductor substrate 6, by which a pn junction portion can be brought closer to a current channel on the surface of the semiconductor substrate 6 which is a heat generating portion than in the case of the temperature sense diode 20. It is thereby possible to detect a change in temperature of the semiconductor substrate 6 with high accuracy.
Although preferred embodiments of the present invention have been described above, the present invention may also be implemented in yet other modes.
For example, such an arrangement may be adopted that individual semiconductor parts of the semiconductor device 1 are reversed in conductivity. That is, in the semiconductor device 1, a p-type part may be an n-type and an n-type part may be a p-type.
Further, the temperature sense element TS may include a Schottky barrier diode, etc., in addition to the previously described temperature sense diodes 20, 42 (pn diode).
Further, the structure of the semiconductor device 1 may be applied to an IC such as LSI (Large-Scale Integrated circuit).
Various other design modifications can be made within the scope of matters described in the claims.
Number | Date | Country | Kind |
---|---|---|---|
2015-26756 | Feb 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4903106 | Fukunaga et al. | Feb 1990 | A |
5304837 | Hierold | Apr 1994 | A |
5831287 | Bakowski et al. | Nov 1998 | A |
5969927 | Schirmer et al. | Oct 1999 | A |
6046470 | Williams et al. | Apr 2000 | A |
6323518 | Sakamoto | Nov 2001 | B1 |
6628491 | Tihanyi et al. | Sep 2003 | B1 |
7129557 | Berndlmaier et al. | Oct 2006 | B2 |
7808067 | Stecher et al. | Oct 2010 | B2 |
8283721 | Nakano | Oct 2012 | B2 |
8508258 | Ishikawa et al. | Aug 2013 | B2 |
8785931 | Kinouchi et al. | Jul 2014 | B2 |
8796807 | Stephan et al. | Aug 2014 | B2 |
9716052 | Osaga et al. | Jul 2017 | B2 |
20020014639 | Imai | Feb 2002 | A1 |
20050062048 | Hayashi et al. | Mar 2005 | A1 |
20070023830 | Pfirsch et al. | Feb 2007 | A1 |
20080203389 | Ozoe et al. | Aug 2008 | A1 |
20080237772 | Stecher | Oct 2008 | A1 |
20090218621 | Pfirsch et al. | Sep 2009 | A1 |
20090261445 | Sugino | Oct 2009 | A1 |
20110215400 | Nakamura | Sep 2011 | A1 |
20130153900 | Kinouchi | Jun 2013 | A1 |
20130314834 | Tamaki et al. | Nov 2013 | A1 |
20140103364 | Nakano et al. | Apr 2014 | A1 |
20140319540 | Sugimoto | Oct 2014 | A1 |
20160056144 | Yao et al. | Feb 2016 | A1 |
20160126156 | Osaga et al. | May 2016 | A1 |
20160241018 | Nakano | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
101288179 | May 2010 | CN |
105103290 | Nov 2015 | CN |
105518865 | Apr 2016 | CN |
H0750303 | Feb 1995 | JP |
H07153920 | Jun 1995 | JP |
2002280556 | Sep 2002 | JP |
2004319861 | Nov 2004 | JP |
2005175357 | Jun 2005 | JP |
2006302977 | Nov 2006 | JP |
2007142138 | Jun 2007 | JP |
2007529115 | Oct 2007 | JP |
2008172132 | Jul 2008 | JP |
2008172132 | Jul 2008 | JP |
2008177250 | Jul 2008 | JP |
2008235600 | Oct 2008 | JP |
2009503830 | Jan 2009 | JP |
2011155289 | Aug 2011 | JP |
2011187650 | Sep 2011 | JP |
2012129503 | Jul 2012 | JP |
2012195339 | Oct 2012 | JP |
2013033970 | Feb 2013 | JP |
2013074264 | Apr 2013 | JP |
2013201357 | Oct 2013 | JP |
2013247804 | Dec 2013 | JP |
2014003095 | Jan 2014 | JP |
2014127487 | Jul 2014 | JP |
2014216465 | Nov 2014 | JP |
20020075197 | Oct 2002 | KR |
2013161753 | Oct 2013 | WO |
2014199558 | Dec 2014 | WO |
2015029159 | Mar 2015 | WO |
Entry |
---|
Machine translation of Asai Japanese Patent Document JP 2008172132 A Jul. 2008 (Year: 2008). |
Office Action issued for Japanese Patent Application No. 2015-026756, dated Oct. 4, 2018, 12 pages including English translation. |
Office Action issued for Japanese Patent Application No. 2019-089080, dated Feb. 20, 2020, 10 pages Including English machine translation. |
International Rectifier IRLBD59N04E datasheet, Nov. 13, 2001 (Year: 2001) 9 pages. |
Office Action issued for Japanese Patent Application No. 2020-167510, dated Jun. 17, 2021, 8 pages Including English translation. |
Notice of Reasons for Refusal issued for Japanese Patent Application No. 2021-209823, dated Dec. 8, 2022, 7 pages including English machine translation. |
Number | Date | Country | |
---|---|---|---|
20230253399 A1 | Aug 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17938592 | Oct 2022 | US |
Child | 18304211 | US | |
Parent | 17573203 | Jan 2022 | US |
Child | 17938592 | US | |
Parent | 16228015 | Dec 2018 | US |
Child | 17573203 | US | |
Parent | 15019579 | Feb 2016 | US |
Child | 16228015 | US |