The present invention is directed, in general, to a semiconductor device and, more specifically, to a semiconductor device having a strain inducing sidewall spacer and a method of manufacture therefore.
There exists a continuing need to improve semiconductor device performance and further scale semiconductor devices. A characteristic that limits scalability and device performance is electron and/or hole mobility (e.g., also referred to as channel mobility) throughout the channel region of transistors. As devices continue to shrink in size, the channel region for transistors also continues to shrink in size, which can limit channel mobility.
One technique that may improve scaling limits and device performance is to introduce strain into the channel region, which can improve electron and/or hole mobility. Different types of strain, including uniaxial or biaxial tensile strain, compressive strain, etc. have been introduced into channel regions of various types of transistors in order to utilize their effect on electron and/or hole mobility. For some devices, certain types of strain improve mobility whereas other types degrade mobility.
Positioned on both sides of the gate structure 130 are source/drain sidewall spacers 140. Additionally positioned in the substrate 110 proximate the gate structure 130 are source/drain regions 150. The source/drain regions 150 therefore define a channel region 160 in the substrate 110.
After the source/drain regions 150 have been formed by implanting a suitable dopant, such as arsenic in the instant case, a strain-inducing layer 170 is deposited over the substrate 110 and gate structure 130. Then, a rapid thermal anneal is performed at a relatively high temperature, introducing and locking strain 180 into the channel region 160. The strain-inducing layer 170 is then removed and silicide regions (not shown) are typically formed on the source/drain regions 150 and gate electrode layer 138. A suitable silicide process is a conventional cobalt, nickel or other similar metal salicide process.
Compressive stress from the gate electrode layer 138 is enhanced by the annealing process described above, which introduces strain 180 (e.g., tensile) across the channel region 160. This strain 180 can improve the performance of the semiconductor device 100 by improving hole and/or electron mobility in the channel region 160. The cap-annealing process described supra can show improvement for, among others, NMOS devices. Unfortunately, it has been observed that the introduction of strain into the channel region using such a strain-inducing layer is insufficient to support some of the next generation devices.
Accordingly, what is needed in the art is an improved method for manufacturing a semiconductor device, and a device
To address the above-discussed deficiencies of the prior art, the present invention provides a method for manufacturing a semiconductor device as well as a semiconductor device. The method, among other steps, may include forming a gate structure over a substrate, and forming a strain inducing sidewall spacer proximate a sidewall of the gate structure, the strain inducing sidewall spacer configured to introduce strain in a channel region below the gate structure.
The present invention further provides a method for manufacturing an integrated circuit. This method, in one embodiment, includes (1) forming gate structures over a semiconductor substrate, wherein each of the gate structures includes a gate dielectric and a gate electrode, (2) forming source/drain regions in the semiconductor substrate, wherein the source/drain regions are located proximate each of the gate structures, (3) forming a strain inducing sidewall spacer proximate a sidewall of each of the gate structures, (4) annealing the strain inducing sidewall spacers to introduce strain in a channel region located below each of the gate structures, the channel regions defined by the source/drain regions, and (5) forming interconnects within dielectric layers located over the gate structures, the interconnects contacting the gate structure or source/drain regions.
The present invention additionally provides a semiconductor device. The semiconductor device, without limitation, may include a gate structure located over a substrate, and a strain inducing sidewall spacer located proximate a sidewall of the gate structure, the strain inducing sidewall spacer configured to introduce strain in a channel region below the gate structure.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Prior Art
The present invention is based, at least in part, on the recognition that gate sidewall spacers may be designed to introduce strain in a channel region below a gate structure. From this recognition, the present invention acknowledges that various different gate sidewall spacers can be designed to introduce the strain in the channel region. For example, the present invention acknowledges that by increasing the ratio of bis t-butylaminosilane (BTBAS) to ammonia (NH3) during the formation of silicon nitride gate sidewall spacers to a value of 1:1 or greater, the carbon concentration in the BTBAS silicon nitride layer can be increased. As the carbon concentration in the BTBAS silicon nitride layer is increased, the stress therein is also increased, thereby increasing the strain in the underlying silicon (e.g., the channel region).
The present invention has conducted many different experiments and determined that the aforementioned BTBAS to ammonia ratio can provide a peak carbon concentration of about 1.1E21 atoms/cm3 or greater, or even 2.0E21 atoms/cm3 or greater, resulting in a stress value of 1.25 GPa or greater. The present invention has further acknowledged that the increase in stress in the BTBAS silicon nitride layer also increases the resulting boron concentration in the substrate of the semiconductor device (e.g., for a given original boron dose and concentration). The increase in Boron concentration results in less source/drain resistance and increased transistor performance. Specifically, it is believed that the higher stress in the BTBAS silicon nitride layer reduces the boron outdiffusion from the substrate.
Turning now to
In the embodiment shown, the semiconductor device 200 of
Located within the substrate 210 is a well region 220. The well region 220 contains a P-type dopant. For example, the well region 220 would likely be doped with a P-type dopant dose ranging from about 1E13 atoms/cm2 to about 1E14 atoms/cm2 and at an energy ranging from about 100 keV to about 500 keV. This may result in the well region 220 having a peak dopant concentration ranging from about 5E17 atoms/cm3 to about 1E19 atoms/cm3. Those skilled in the art understand that in certain circumstances where the P-type substrate 210 dopant concentration is high enough, the well region 220 may be excluded.
Located over the substrate 210 is a gate structure 230. The gate structure 230 includes a gate dielectric 233 and a gate electrode 238. The gate dielectric 233 may comprise a number of different materials and stay within the scope of the invention. For example, the gate dielectric 233 may comprise silicon dioxide, or in an alternative embodiment comprise a high dielectric constant (K) material. In the illustrative embodiment of
Any one of a plurality of manufacturing techniques could be used to form the gate dielectric 233. For example, the gate dielectric 233 may be either grown or deposited. Additionally, the growth or deposition steps may require a
While the embodiment of
The deposition conditions for the gate electrode 238 may vary. However, if the gate electrode 238 were to comprise standard polysilicon, such as the instance in
The oxide offset spacer 320, if used as a strain inducing sidewall spacer, would typically have a stress value of about 0.5 GPa or greater, or in an alternative embodiment an even higher stress value of about 2.0 GPa or greater. For instance, the oxide offset spacer 320 might comprise a BTBAS oxide layer, or alternatively another oxide layer, while providing such stress values. In the embodiment wherein the oxide offset spacer 320 comprises a BTBAS oxide layer, it might have a peak carbon concentration of about 1.1E21 atoms/cm3 or greater. In an alternative embodiment, the BTBAS oxide layer might have a peak carbon concentration of about 1.5E21 atoms/cm3 or greater, or even a peak carbon concentration of about 2.0E21 atoms/cm3 or greater. The aforementioned peak carbon concentration values are particularly beneficial in providing significant improvement in the stress values of the oxide offset spacer 320.
The BTBAS oxide layer might be deposited using a chemical vapor deposition (CVD) process to a thickness ranging from about 1 nm to about 50 nm. In the specific embodiment shown in
In the embodiment wherein the oxide offset spacer 320 does not comprise the BTBAS oxide layer but a non BTBAS oxide layer configured as a strain inducing layer, the non BTBAS oxide layer might also be formed using a CVD process. For example, the non BTBAS oxide layer might be formed using the CVD process to a thickness ranging from about 2.0 nm to about 10 nm. It is important in this embodiment that the temperature maintained during the formation of the non BTBAS oxide layer should also remain low in order to provide the desired tensile stress therein. For instance, a temperature of less than about 600° C. should be used. In those embodiments wherein a desire does not exist for the oxide offset spacer 320 to function as a strain inducing sidewall spacer, the oxide offset spacer 320 might be conventionally formed, for example possibly using conventional growth, deposition or a combination of growth and deposition steps.
The nitride offset spacer 330, which as previously discussed may function as a strain inducing film, might comprise a BTBAS silicon nitride layer while remaining within the purview of the present invention. When used, the BTBAS silicon nitride layer might have a peak carbon concentration of about 1.1E21 atoms/cm3 or greater. In an alternative embodiment, the BTBAS silicon nitride layer might have a peak carbon concentration of about 1.5E21 atoms/cm3 or greater, or even a peak carbon concentration of about 2.0E21 atoms/cm3 or greater. What results with such peak carbon concentrations is the BTBAS silicon nitride layer having the aforementioned stress values.
The BTBAS silicon nitride layer would typically be deposited using a CVD process to a thickness ranging from about 1 nm to about 50 nm. In the specific embodiment shown in
The nitride offset spacer 320 may, in an alternative embodiment, be formed using a plasma enhanced CVD (PECVD) process. In this embodiment, the nitride offset spacer 320 might comprise silicon nitride. In those embodiments wherein a desire does not exist for the nitride offset spacer 330 to function as a strain inducing sidewall spacer, the nitride offset spacer 330 might be conventionally formed.
While the oxide offset spacer 320 and the nitride offset spacer 330 are shown located only along the sides of the gate structure 230, those skilled in the art are aware that the layers may have been previously blanket formed (e.g., along an upper surface of a substantial portion of the semiconductor device 200) and subsequently anisotropically etched to form the oxide offset spacer 320 and the nitride offset spacer 330.
In the embodiment wherein it is desired for the cap oxide 510 to be a strain inducing sidewall spacer, it might be formed using a process similar to that used to form the oxide offset spacer 320 when it was designed as a strain inducing sidewall spacer. In the embodiment wherein it is not desired for the cap oxide 510 to be a strain inducing sidewall spacer, it might be formed using a process similar to that used to form the oxide offset spacer 320 when it was not designed as a strain inducing sidewall spacer.
The L-shaped source/drain spacers 520 may, depending on whether they are designed as strain inducing sidewall spacers, be formed using many different processes and materials. For instance, in the embodiment wherein it is desired for the L-shaped source/drain spacers 520 to be strain inducing sidewall spacers, they might be formed using similar materials and processes as used to form the nitride offset spacers 330 when they were designed as strain inducing sidewall spacers. In the embodiment wherein it is not desired for the L-shaped source/drain spacers 520 to be strain inducing sidewall spacers, they might be formed using similar materials and processes as used to form the nitride offset spacers 330 when they were not designed as strain inducing sidewall spacers.
The bulk source/drain spacers 530 may also, depending on whether they are designed as strain inducing sidewall spacers, be formed using many different processes and materials. For instance, in the embodiment wherein it is desired for the bulk source/drain spacers 530 to be strain inducing sidewall spacers, they might be formed using similar materials and processes as used to form the oxide offset spacers 320 when they were designed as strain inducing sidewall spacers. In the embodiment wherein it is not desired for the bulk source/drain spacers 530 to be strain inducing sidewall spacers, they might be formed using similar materials and processes as used to form the oxide offset spacers 320 when they were not designed as strain inducing sidewall spacers.
Typically, the layers of the gate sidewall spacers 310 will alternate between different materials, for example the alternating oxide and nitride layers of
While a substantial amount of detail has been given regarding the specifics of the gate sidewall spacers 310, such should not be construed to be limiting on the present invention. For example, certain embodiments exist where only the nitride offset spacer 330 and bulk source/drain spacers 530, or another similar structure, comprise the gate sidewall spacers 310. Other embodiments exist where all the layers shown in
The semiconductor device 200 resulting after the anneal of
It should be noted that
Although the present invention has been described in detail, those skilled in the art should understand that they could make various changes or substitutions herein without departing from the invention.
This application is a continuation of U.S. application Ser. No. 11/344,998 filed on Feb. 1, 2006, entitled AA SEMICONDUCTOR DEVICE HAVING A HIGH CARBON CONTENT STRAIN INDUCING FILM AND A METHOD OF MANUFACTURE THEREFOR,@ commonly assigned with the present invention and incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11610908 | Dec 2006 | US |
Child | 12831815 | US | |
Parent | 11344998 | Feb 2006 | US |
Child | 11610908 | US |