1. Field of the Invention
This invention relates to a method for manufacturing a semiconductor device adopting an element isolation structure.
2. Description of the Related Art
An SOI (Silicon On Insulator) structure is conventionally known as an element isolation structure.
First, as shown in
Successively, as shown in
After that, elements (not shown) are formed in respective regions that are isolated from one another, and as shown in
The present invention has been made in view of the above problems. An object of the present invention is to simplify a method for manufacturing a semiconductor device having an element isolation structure.
According to the present invention, briefly, after a trench is formed in a wafer from a principal surface of the wafer, the trench is filled with an insulating film. Then, the thickness of the wafer is thinned from a back surface of the wafer so that the insulating film is exposed on the back surface. Accordingly, element isolation of the wafer can be achieved by the insulating film penetrating the wafer from the principal surface to the back surface. It is not necessary to use a bonding wafer. As a result, the method for manufacturing the semiconductor device can be simplified.
Other objects and features of the present invention will become more readily apparent from a better understanding of the preferred embodiment described below with reference to the following drawings, in which;
A method for manufacturing a semiconductor device adopting an element isolation structure according to the preferred embodiment is explained with reference to
First, as shown in
Next, as shown in
According to the method described above, a bonding wafer that is used in a conventional SOI structure is not necessitated. The element isolation structure can be provided by performing the element formation step to the one wafer 1. Because of this, the element isolation structure can be simplified, and the manufacturing process of the semiconductor device to which the element isolation structure is adopted can be simplified simultaneously. As a result, cost reduction can be attained.
Also in the case of the conventional SOI structure, to take an electrical potential of a support wafer, the support wafer is die-mounted on a metallic plate or the like through conductive paste. To the contrary, in the case of the present embodiment, because such support wafer is not used and it is not necessary to take the electrical potential, the chip can be die-mounted by the insulating paste 5. This also contributes to cost reduction.
In the above-mentioned embodiment, although the back surface 1b is polished by the CMP method, it may be thinned by other methods such as etching. Besides in the above-mentioned embodiment, although the chip and the mounting board 6 are bonded together by the insulating adhesive 5 so that the insulating isolation at the chip back surface is provided, the insulating isolation may be attained by forming an insulating film such as an oxide film on the chip back surface. For example, in the step shown in
Next, more specific method for thinning a wafer will be described with reference to
Similarly to the embodiment described above, an element formation wafer 21 composed of silicon substrate is prepared. This wafer also has a structure to form semiconductor elements such as a bi-polar transistor, a MOS transistor, or the like. In
Then, the wafer 21 is thinned to a predetermined thickness using a CMP (Chemical mechanical Polishing) apparatus. The predetermined thickness is thinner than a thickness corresponding to a depth of the trenches 23, for example, several μm to several ten μm.
More specifically, as shown in
The wafer attached to the holder 30 is pressed to a polishing stage (polishing pad) 40 and is rotated with respect to the polishing stage 40. Moreover, the polishing stage is also rotated. Slurry including abrasives is supplied on the polishing stage 40 by a dispenser 50 to polish the wafer. When the guide ring 31 contacts the polishing stage 40, the polishing is finished. The guide ring 31 is composed of a hard metal such as Molybdenum. Therefore, the guide ring 31 is not polished so that the polishing is finished.
Then, an oxide film (not shown) is formed at the back surface of the wafer that is exposed after the polishing is finished, so that the MOS transistor 24b is insulated from the bi-polar transistor 24a with the trench 23 and the oxide film.
After that, the wafer is separated into chips by dicing with a dicing blade 60.
Finally, semiconductor devices without respective supporting substrates are formed through the above-mentioned process. The supporting wafer is unnecessary since the supporting substrates are unnecessary for the devices, so that cost for producing the semiconductor devices can be cut down.
Incidentally, disadvantage may occur due to thinness of the wafer or the devices when the thinned wafer is handled or diced. In this case, a supporting substrate 25 can be attached to the back surface of the wafer with adhesive such as a paste including silver after the polishing is finished as shown in FIG. 3A. The supporting substrate may be composed of a metal such as copper. The thinned wafer 21 can be detached from the holder 30 and transferred with the supporting substrate. Moreover, the thinned wafer 21 is separated into chips with the supporting substrate by using the dicing blade 60 as shown in FIG. 3B. In this case, the supporting substrate 25 works as a heat sink or a pedestal.
While the present invention has been shown and described with reference to the foregoing preferred embodiment, it will be apparent to those skilled in the art that changes in form and detail may be made therein without departing from the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
11-326930 | Nov 1999 | JP | national |
The present application is a continuation of application U.S. Ser. No. 09/987,798, filed on Nov. 16, 2001, now U.S. Pat. No. 6,524,890, entitled METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE HAVING ELEMENT ISOLATION STRUCTURE, which is a continuation-in-part of U.S. application Ser. No. 09/708,046 filed on Nov. 8, 2000, now abandoned, entitled METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE HAVING ELEMENT ISOLATION STRUCTURE (now abandoned) which is based upon and claims the benefit of Japanese Patent Application No. 11-326930 filed on Nov. 17, 1999, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3457123 | Pul | Jul 1969 | A |
4501060 | Frye et al. | Feb 1985 | A |
4784970 | Solomon | Nov 1988 | A |
4839309 | Easter et al. | Jun 1989 | A |
5091330 | Cambou et al. | Feb 1992 | A |
5204282 | Tsuruta et al. | Apr 1993 | A |
5449946 | Sakakibara et al. | Sep 1995 | A |
5459104 | Sakai | Oct 1995 | A |
5502289 | Takiar et al. | Mar 1996 | A |
5773352 | Hamajima | Jun 1998 | A |
6177359 | Chen et al. | Jan 2001 | B1 |
6225191 | Ahlquist et al. | May 2001 | B1 |
6303462 | Gidon | Oct 2001 | B1 |
Number | Date | Country |
---|---|---|
A-59-186345 | Oct 1984 | JP |
A-63-302552 | Dec 1988 | JP |
A-9-8126 | Jan 1997 | JP |
A-11-307488 | Nov 1999 | JP |
A-2000-195825 | Jul 2000 | JP |
A-2001-144173 | May 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20030153125 A1 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09987798 | Nov 2001 | US |
Child | 10340747 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09708046 | Nov 2000 | US |
Child | 09987798 | US |