The present invention relates to the field of semiconductor devices and more specifically to integrated circuits (ICs) having bond pads incorporated therein. More particularly, the invention relates to a semiconductor device comprising a new bond pad structure wherein cracking is eliminated, or at least reduced. More in detail, the present invention relates to a semiconductor device comprising a bond pad structure, which enables wire bonding and probing to be carried out without the induction of—or at least with a reduced occurrence of—cracks in the intermetal dielectrics applied.
In state-of-the-art IC technology, bond pads consist of a multilayer aluminum metallization, generally with one or more layers of e.g. titanium or titanium nitride. Bond pads are present for attaching solder, wire or other bonding elements, especially constructed from aluminum, gold or copper.
Bond pads are typically disposed above one or more layers or stacks of brittle and/or soft intermetal dielectric materials, such as silicon oxides and organic materials.
Bond pad cracks can occur during ultrasonic wire bonding or even through probing. Cracks can lead to reliability problems, especially when low-k spin-on dielectrics, such as hydrogen silsesquioxane (HSQ), are used. Such dielectrics, and especially HSQ, are more brittle than other oxides, such as tetraethoxysilane-based oxides. In HSQ layers cracks can therefore more easily propagate than in other oxides. Similar problems occur with aerogels, organic polyimides, parylenes and the like, which all have low dielectric constants as compared to silicon oxides, but are structurally and mechanically weaker than these oxides.
In the art, there is a need for structures or methods to prevent or at least reduce the occurrence of bond pad cracking.
It has been proposed in EP-A-0 875 934 to dispose a patterned reinforcing structure in a dielectric layer disposed under the bond pad. The basic principle laid down in this document is that through the use of metal grids mechanical reinforcement of the dielectric stack can be achieved and damage due to bonding can be prevented. More in detail, this known reinforced structure is manufactured by forming a metal layer, patterning the metal layer in a predetermined area in accordance with a predetermined pattern having a plurality of vacant areas, forming a dielectric layer above the patterned metal layer, and filling the vacant areas in the patterned metal layer. Finally, a bond pad is formed on the dielectric layer above the patterned metal layer.
The known reinforcing structure may be a joined or interconnected grid or a crosshatch structure with a plurality of voids or vacant areas for containing and accommodating a large portion of weak dielectric material such as the said HSQ and the like. The grid structure is planar with a thickness below the thickness of the intermetal dielectric stack. In another embodiment, the reinforcing structure includes a repeating and non-interconnected pattern such as a crucifix pattern arranged in a regular manner. Other structures such as spirals have been described as well.
The present inventors have intensively studied two of the structures known from EP-A-0 875 934:
In the crosshatch structure, the metal line widths and spacings were designed to confine much of the HSQ into the reservoirs while minimizing the area of each reservoir, so that the HSQ layer is spared the direct mechanical impact of bonding. Vias were formed only at the pad periphery.
In the crucifix structure, the more open pattern allows the HSQ to flow more easily in the voids present in the structure. By virtue thereof, the amount of HSQ remaining over the metal lines is reduced slightly further as compared to the crosshatch structure.
Both known structures have, however, a continuous TEOS dielectric layer between the metal layers, which dielectric layer can be cracked due to bonding or probing.
The present invention aims to solve or at least reduce this problem. In accordance with the present invention, it has DOW been found that elimination, or at least reduction of bond pad cracking can be achieved by isolating the intermetal dielectrics with metal lines and via lines. Further, the bond pad structure of the semiconductor device according to the present invention prevents the propagation of any cracks that are formed. Moreover, metal peel off during bonding is diminished. Metal peel off is a failure mode occurring at the interface between a top metal plate and intermetal dielectrics.
More in detail, the present invention is based on the principle that use is made of via lines together with metal lines to completely isolate intermetal dielectrics. For this purpose, the invention relates to a semiconductor device comprising a bond pad structure, which bond pad structure comprises a bond pad disposed above at least one layered structure, but preferably a stack of layered structures, wherein the layered structure comprises a metal layer and a layer of a dielectric material, characterized in that via lines are present in the layer of dielectric material, which via lines are arranged in such a way that the metal layers and the via lines form isolated areas filled with the dielectric material.
Furthermore, the present invention relates to a method of manufacturing a semiconductor device as described above, which method comprises the steps of:
By the use of via lines connected to the metal layer, the adhesion between the top metal plate and the underlying layers is enhanced, so that metal peal off occurs no longer or less often.
Without being bound by a very specific theory, it is assumed that when a crack is formed in an intermetal dielectric, the system releases elastic energy and gains surface energy. Based on thermodynamic principles, the crack should not form when the amount of elastic energy to be released is smaller than the amount of surface energy to be gained. Since elastic energy is proportional to the volume of the dielectric and surface energy is proportional to the surface area of the dielectric, the present invention makes use of a small volume-to-area ratio by using small feature sizes. Therefore, the via lines, or optionally the via grids, are advantageously arranged in such a way that the volume-to-surface area is—dependent on the dielectric material used—adjusted such that the amount of elastic energy to be released when a crack is formed is smaller than the amount of surface energy to be gained when said crack is formed.
Apart from the above, it is noted that in the art vias are normally patterned in square or round pillars. Multiple rows of such pillars, shifted with respect to each other, are in use in e.g. seal rings to prevent the propagation of cracks. However, in accordance with the present invention, via lines, e.g. in the form of a via grid, avoid the formation of cracks as well as the propagation in case a crack is formed anyway. Moreover, bonding stress can be released by ductile properties of the via-metal, in particular when tungsten is used as the via-metal.
The present invention will be described in further detail with reference to the drawings, wherein
In
The distances between the via lines or via grids in a particular layer structure are chosen to be such that the volume-to-surface area ratio of the dielectrics 4 in the direction parallel to the bond pad is sufficiently small to prevent crack formation during probing or bonding. For example, when the dielectrics thickness is 1 μm, the width and length of the dielectric block should be smaller than 10 μm. Normally, a bond pad size is about 80×80 μm. Without the isolation of the dielectric layers cracks can easily form.
On top of the structures in accordance with the invention a bond pad, preferably of Al, is applied.
Number | Date | Country | Kind |
---|---|---|---|
00201315 | Apr 2000 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4847162 | Haluska et al. | Jul 1989 | A |
5149674 | Freeman et al. | Sep 1992 | A |
5736791 | Fujiki et al. | Apr 1998 | A |
5739587 | Sato | Apr 1998 | A |
5917197 | Alswede et al. | Jun 1999 | A |
5923088 | Shiue et al. | Jul 1999 | A |
5976953 | Zavracky et al. | Nov 1999 | A |
6016000 | Moslehi | Jan 2000 | A |
6020647 | Skala et al. | Feb 2000 | A |
6022791 | Cook et al. | Feb 2000 | A |
6100573 | Lu et al. | Aug 2000 | A |
6100589 | Tanaka | Aug 2000 | A |
6143396 | Saran et al. | Nov 2000 | A |
6198170 | Zhao | Mar 2001 | B1 |
6232662 | Saran | May 2001 | B1 |
6297563 | Yamaha | Oct 2001 | B1 |
6313540 | Kida et al. | Nov 2001 | B1 |
6448641 | Ker et al. | Sep 2002 | B1 |
6465337 | Lee et al. | Oct 2002 | B1 |
6524942 | Tsai et al. | Feb 2003 | B1 |
6552438 | Lee et al. | Apr 2003 | B1 |
6633087 | Ker et al. | Oct 2003 | B1 |
20010000928 | Lee et al. | May 2001 | A1 |
20020187634 | Saran et al. | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
0875934 | Nov 1998 | EP |
Number | Date | Country | |
---|---|---|---|
20010045669 A1 | Nov 2001 | US |